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Abstract.

Following the general strategy proposed by G.Rybnikov, we present
a proof of his well-known result, that is, the existence of two ar-
rangements of lines having the same combinatorial type, but non-
isomorphic fundamental groups. To do so, the Alexander Invariant
and certain invariants of combinatorial line arrangements are pre-
sented and developed for combinatorics with only double and triple
points. This is part of a more general project to better understand
the relationship between topology and combinatorics of line arrange-
ments.

One of the main subjects in the theory of hyperplane arrangements
is the relationship between combinatorics and topological properties.
To be precise, one has to make the following distinction: for a given
hyperplane arrangement H ⊂ Pn, one can study the topological type of
the pair (Pn,H) or the topological type of the complement Pn \ H. For
the first concept we will use the term relative topology of H, whereas
for the second one we will simply say topology of H. It is clear that
if two hyperplane arrangements have the same relative topology, then
they have the same topology, but the converse is not known. For n = 2,
topology, relative topology and combinatorics are also related via graph
manifolds with the boundary of a compact regular neighbourhood of H,
see [14, 24].

In a well-known and very cited unpublished paper [26], G. Rybnikov
found an example of two line arrangements L1 and L2 in the complex
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projective plane P2 having the same combinatorics but different topol-
ogy. A better understanding of this paper has been the aim of several
works since then ([7, 20, 8, 22]).

The most common way to prove that two topologies of line arrange-
ments are different is to check that the fundamental groups of their com-
plements are not isomorphic. This is usually not done directly, but by
calculating invariants of the fundamental group, mostly borrowed from
invariants of links, such as Alexander polynomials ([25] and references
there for links, [16] for algebraic curves), character (or characteristic)
varieties ([13] for links, [17] for algebraic curves), Alexander invariants
and Chen groups ([12, 19, 28] for links, [15, 11, 6, 20, 8, 23] for line ar-
rangements) just to mention a few (both invariants and publications). In
[26], Rybnikov uses central extensions of Chen groups in order to study
the relative topology of line arrangements (and the fundamental groups
of their complements); in this work, we use truncations of the Alexander
Invariant by the m-adic filtration, where m is the augmentation ideal;
such truncations were studied by L.Traldi in [27] for links.

Recently, the authors of this work have provided an example of two
line arrangements with different relative topologies (see [2]). The contri-
bution of [2] is that it refers to real arrangements, that is, arrangements
that admit real equations for each line (note that Rybnikov’s example
does not admit real equations).

The proof proposed by Rybnikov has two steps. Let Gi := π1(P2 \⋃
Li), i = 1, 2.

(R1) Recall that the homology of the complement of a hyperplane
arrangement depends only on combinatorics. This way, one
can identify the abelianization of G1 and G2 with an Abelian
group H combinatorially determined. Rybnikov proves that
no isomorphisms exist between G1 and G2 that induce the
identity on H . In particular, this result proves that both ar-
rangements have different relative topologies. The reason can
be outlined as follows: any automorphism of the combinatorics
of Rybnikov’s arrangement can be obtained from a diffeomor-
phism of P2, thus inducing an automorphism of fundamental
groups. Since any homeomorphism of pairs (P2,

⋃
Li) defines

an automorphism of the combinatorics of
⋃

Li, after composi-
tion one can assume that any homeomorphism of pairs induces
the identity on H . The strategy rests on the study of the first
terms of the Lower Central Series (LCS), which coincide with
the first terms of the series producing Chen groups. Since L1

and L2 are constructed using the MacLane arrangement Lω
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(see Example 1.7), it is enough to study, by some combinato-
rial arguments, the LCS of Lω with an extra structure (referred
to as an ordered arrangement). Although this part is explained
in [26, Section 3], computations are hard to verify.

(R2) The second step is essentially combinatorial. The main point
is to truncate the LCS of Gi such that the quotient K de-
pends only on the combinatorics. Rybnikov proposes to prove
that an automorphism of K induces the identity on H (up to
sign and automorphisms of the combinatorics). This proof is
only outlined in [26, Proposition 4.2]. It is worth pointing out
that such a result cannot be expected for any arrangement.
Also [26, Proposition 4.3] needs some explanation of its own.
The main difference between relative topology and topology of
the complement in terms of isomorphisms of the fundamental
group is that homeomorphisms of pairs induce isomorphisms
that send meridians to meridians, whereas homeomorphisms
of the complement can induce any kind of isomorphism, and
even if we know that the isomorphism induces the identity on
homology, this is not enough to claim that meridians are sent
to meridians.

The aim of our work is to follow the idea behind Rybnikov’s work
and, using slightly different techniques, provide detailed proofs of his
result. This is part of a more general project by the authors that aims to
better understand the relationship between topology and combinatorics
of line arrangements.

The following is a more detailed description of the layout of this
paper. In Section 1, the more relevant definitions are set, as well as a de-
scription of Rybnikov’s and MacLane’s combinatorics. Sections 2 and 3
provide a proof of Step (R1). In order to do so, we propose a new
approach related to Derived Series, which is also useful in the study
of Characteristic Varieties and the Alexander Invariant. The Alexander
Invariant of a group G, with a fixed isomorphism G/G′ ≈ Zr, is the quo-
tient G′/G′′ considered as a module over the ring Λ := Z[t±1

1 , . . . , t±1
r ],

which is the group algebra of Zr. Using the truncated modules Λ/mj,
the problem is reduced to solving a system of linear equations. Note
that other ideal could be used instead of m. Section 4 is devoted to the
study of combinatorial properties of a line arrangement which ensure
that any automorphism of the fundamental group of the complement es-
sentially induces the identity on homology (that is, the analogous of [26,
Proposition 4.2]). This is an interesting question that can be applied to
general line arrangements. For the sake of simplicity, we only present
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our progress on line arrangements with double and triple points. This
provides a proof for the second step (R2).

§ Acknowledgments

We want to thank G.Rybnikov for his contribution and his support.
His work has been a challenge for us for years. We also to thank the
helpful remarks made by the referee.

§1. Settings and Definitions

In this section, some standard facts about line combinatorics and
ordered line combinatorics will be described. Special attention will be
given to MacLane and Rybnikov’s line combinatorics.

Definition 1.1. A combinatorial type (or simply a (line) combina-
torics) is a couple C := (L,P), where L is a finite set and P ⊂ P(L),
satisfying that:

(1) For all P ∈ P , #P ≥ 2;
(2) For any �1, �2 ∈ L, �1 �= �2, ∃!P ∈ P such that �1, �2 ∈ P .

An ordered combinatorial type C ord is a combinatorial type where L is
an ordered set.

Notation 1.2. Given a combinatorial type C , the multiplicity mP

of P ∈ P is the number of elements L ∈ L such that P ∈ L; note
that mP ≥ 2. The multiplicity of a combinatorial type is the number
1 − #L +

∑
P∈P(mP − 1).
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Fig. 1. Ordered MacLane lines in F2
3

Example 1.3 (MacLane’s combinatorics). Let us consider the 2-
dimensional vector space on the field F3 of three elements. Such a plane
contains 9 points and 12 lines, 4 of which pass through the origin. Con-
sider L = F2

3 \ {(0, 0)} and P , the set of lines in F2
3 (as a subset of
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P(L)). This provides a combinatorial type structure CML that we will
refer to as MacLane’s combinatorial type. Figure 1 represents an ordered
MacLane’s combinatorial type.

Definition 1.4. Let C := (L,P) be a combinatorial type. We say
a complex line arrangement H := �0 ∪ �1 ∪ ... ∪ �r ⊂ P2 is a realization
of C if and only if there are bijections ψ1 : L → {�0, �1, ..., �r} and ψ2 :
P → Sing(H) such that ∀� ∈ H, P ∈ P , one has P ∈ � ⇔ ψ1(�) ∈ ψ2(P ).
If C ord is an ordered combinatorial type and the irreducible components
of H are also ordered, we say H is an ordered realization if ψ1 respects
orders.

Notation 1.5. The space of all complex realizations of a line com-
binatorics C is denoted by Σ(C ). This is a quasiprojective subvari-
ety of P

r(r+3)
2 , where r := #C . If C ord is ordered, we denote by

Σord(C ) ⊂ (P̌2)r the space of all ordered complex realizations of C ord.

There is a natural action of PGL(3; C ) on such spaces. This justifies
the following definition.

Definition 1.6. The moduli space of a combinatorics C is the quo-
tient M (C ) := Σ(C )/ PGL(3; C ). The ordered moduli space M ord(C )
of an ordered combinatorics C ord is defined accordingly.

Example 1.7. Let us consider the MacLane line combinatorics
CML. It is well known that such combinatorics has no real realization
and that #M (CML) = 1, however #M ord(CML) = 2. The following are
representatives for M ord(CML):

(1)

�0 = {x = 0} �1 = {y = 0} �2 = {x = y} �3 = {z = 0}
�4 = {x = z} �±5 = {z + ωy = 0} �±6 = {z + ωy = (ω + 1)x}

�±7 = {(ω + 1)y + z = x}

where ω = e2πi/3.
We will refer to such ordered realizations as

Lω := {�0, �1, �2, �3, �4, �
+
5 , �+

6 , �+
7 }

and
Lω̄ := {�0, �1, �2, �3, �4, �

−
5 , �−6 , �−7 }.

Remark 1.8. Given a line combinatorics C = (L,P), the automor-
phism group Aut(C ) is the subgroup of the permutation group of L
preserving P . Let us consider an ordered line combinatorics C ord. It
is easily seen that Aut(C ord) acts on both Σord(C ord) and M ord(C ord).
Note also that M (C ord) ∼= M ord(C ord)/ Aut(C ord).
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Example 1.9. The action of Aut(CML) ∼= PGL(2, F3) on the mod-
uli spaces is as follows: matrices of determinant +1 (resp. −1) fix (resp.
exchange) the two elements of M ord(CML). Of course complex conju-
gation also acts on M ord(CML) exchanging the two elements. From the
topological point of view one has that:

• There exists a homeomorphism (P2,
⋃

Lω) → (P2,
⋃

Lω̄) pre-
serving orientations on both P2 and the lines. Such a homeo-
morphism does not respect the ordering.

• There exists a homeomorphism (P2,
⋃

Lω) → (P2,
⋃

Lω̄) pre-
serving orientations on P2, but not on the lines. Such a home-
omorphism respects the ordering.

Also note that the subgroup of automorphisms that preserve the set
L0 := {�0, �1, �2} is isomorphic to Σ3, since the vectors (1, 0), (1, 1) and
(1, 2) generate F2

3. We will denote by L+ and L− the sets of 5 lines such
that Lω = L0∪L+ and Lω̄ = L0∪L−. Since any transposition of {0, 1, 2}
in CML produces a determinant −1 matrix in PGL(2, F3), one concludes
from the previous paragraph that any transposition of {0, 1, 2} induces
a homeomorphism (P2,

⋃
Lω) → (P2,

⋃
Lω̄) that exchanges Lω and Lω̄

as representatives of elements of M ord(CML) and globally fixes L0.

Example 1.10 (Rybnikov’s combinatorics). Let Lω and Lω̄ be or-
dered MacLane realizations as above, where L0 := {�0, �1, �2}. Let us
consider a projective transformation ρω (resp. ρω̄) fixing the initial or-
dered set L0 (that is, ρ(�i) = �i i = 0, 1, 2) and such that ρωLω (resp.
ρω̄Lω̄) and Lω intersect each other only in double points outside the
three common lines. Note that ρω, ρω̄ can be chosen with real coeffi-
cients.

Let us consider the following ordered arrangements of thirteen lines:
Rα,β = Lα ∪ ργLβ, where α, β ∈ {ω, ω̄} and γ = β (resp β̄) if α = ω
(resp. ω̄). They produce the following combinatorics CRyb := (R,P)
given by:
(2)

R := {�0, �1, �2, �3, �4, �5, �6, �7, �8, �9, �10, �11, �12}

P2 :=

⎧⎨⎩ {�2, �3}, {�0, �7}, {�1, �6}, {�4, �5},
{�2, �8}, {�0, �12}, {�1, �11}, {�9, �10},
{�i, �j} 3 ≤ i ≤ 7, 8 ≤ j ≤ 12

⎫⎬⎭
P3 :=

⎧⎪⎪⎨⎪⎪⎩
{�0, �1, �2}, {�3, �6, �7}, {�0, �5, �6}, {�1, �4, �7},
{�1, �3, �5}, {�2, �4, �6}, {�2, �5, �7}, {�0, �3, �4},
{�8, �11, �12} {�0, �10, �11}, {�1, �9, �12}, {�1, �8, �10},
{�2, �9, �11}, {�2, �10, �12}, {�0, �8, �9}

⎫⎪⎪⎬⎪⎪⎭
P := P2 ∪ P3
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Proposition 1.11. The following combinatorial properties hold:
(1) The different arrangements Rα,β have the same combinatorial type

CRyb.
(2) The set of lines L0 has the following distinctive combinatorial prop-

erty: every line in L0 contains exactly 5 triple points of the ar-
rangement; the remaining lines only contain 3 triple points.

(3) For the other 10 lines we consider the equivalence relation gen-
erated by the relation of sharing a triple point. There are two
equivalence classes which correspond to Lε and ρLε′ , ε, ε′ = ±.

By the previous remarks one can group the set R together in three
subsets. One is associated with the set of lines L0 (referred to as R0),
and the other two are combinatorially indistinguishable sets (R1 and R2)
such that R0∪R1 and R0∪R2 are MacLane’s combinatorial types. Note
that any automorphism of CRyb must preserve R0 and either preserve or
exchange R1 and R2. Therefore, Aut(CRyb) ∼= Σ3×Z/2Z. The following
results are immediate consequences of the aforementioned remarks.

Proposition 1.12. The following are (or induce) homeomorphisms
between the pairs (P2,

⋃
Rω̄,ω̄) and (P2,

⋃
Rω,ω) (resp. (P2,

⋃
Rω,ω̄) and

(P2,
⋃

Rω̄,ω)) preserving the orientation of P2:
(a) Complex conjugation, which reverses orientations of the lines.
(b) A transposition in R0, which preserves orientations of the lines.
We will refer to Rω,ω and Rω̄,ω̄ (resp. Rω,ω̄ and Rω̄,ω) as a type + (resp.
type −) arrangements.

Proposition 1.13. Any homeomorphism of pairs between a type +
and a type − arrangement should lead (maybe after composing with com-
plex conjugation) to an orientation-preserving homeomorphism of pairs
between a type + and a type − arrangement.

If such a homeomorphism existed, there should be an orientation-
preserving homeomorphism of ordered MacLane arrangements of type
Lω and Lω̄.

The purpose of the next section will be to prove that there is no
orientation-preserving homeomorphism of ordered MacLane arrangements
of type Lω and Lω̄.

§2. The truncated Alexander Invariant

Even though the Alexander Invariant can be developed for gen-
eral projective plane curves, we will concentrate on the case of line
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arrangements. Let
⋃

L ⊂ P2 be a projective line arrangement where
L = {�0, �1, ..., �r}. Let us denote its complement X := P2 \

⋃
L

and G its fundamental group. The derived series associated with this
group is recursively defined as follows: G(0) := G, G(n) := (G(n−1))′ =
[G(n−1), G(n−1)], n ≥ 1, where G′ is the derived subgroup of G, i.e. the
subgroup generated by [a, b] := aba−1b−1, a, b ∈ G. Note that the con-
secutive quotients are Abelian. This property also holds for the lower
central series defined as γ1(G) := G, γn(G) := [γn−1(G), G], n ≥ 1. It is
clear that G(0) = γ1(G) and G(1) = γ2(G).

Since H1(X) = G/G′, one can consider the inclusion G′ ↪→ G as
representing the universal Abelian cover X̃ of X , where π1(X̃) = G′,
and therefore H1(X̃) = G′/G′′.

The group of transformations H1(X) = G/G′ = Zr of the cover acts
on G′. This results in an action by conjugation on G′/G′′ = H1(X̃),
G′′ = G(2):

G/G′ × G′/G′′ → G′/G′′

(g, [a, b]) �→ g ∗ [a, b] mod G′′ = [g, [a, b]] + [a, b],

where a ∗ b := aba−1. This action is well defined since g ∈ G′ implies
g∗[a, b] ≡ [a, b] mod G′′. Additive notation will be used for the operation
in G′/G′′.

This action endows the Abelian group G′/G′′ with a G/G′-module
structure, that is, a module on the group ring Λ := Z[G/G′]. If x ∈ G,
then tx denotes its class in Λ. For i = 1, . . . , r, we choose xi ∈ G a
meridian of �i in G; the class ti := txi ∈ Λ does not depend on the
particular choice of the meridian in �i. Note that t1, . . . , tr is a basis of
G/G′ ∼= Zr and therefore one can identify

(3) Λ := Z[G/G′] = Z[t±1
1 , ..., t±1

r ].

This module is denoted by ML and is referred to as the Alexander In-
variant of L. Since we are interested in oriented topological properties
of (P2,

⋃
L), the coordinates t1, . . . , tr are well defined.

Remark 2.1. The module structure of ML is in general complicated.
One of its invariants is the zero set of the Fitting ideals of the com-
plexified Alexander Invariant of L, that is, MC

L := ML ⊗ (Λ ⊗ C ).
This sequence of invariants is called the sequence of characteristic vari-
eties of L introduced by A. Libgober [17]. These are subvarieties of the
torus (C ∗)r; in fact, irreducible components of characteristic varieties
are translated subtori [1].

Our approach in studying the structure of the Λ-module ML is via
the associated graded module by the augmentation ideal m := (t1 −
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1, ..., tr − 1). In order to do so, and to be able to do calculations, we
need some formulæ on this module relating operations in G′/G′′. For
the sake of completeness, these formulæ are listed below. However, since
they are straightforward consequences of the definitions, their proof will
be omitted. The symbol “ 2= ” means that the equality is considered in
G′/G′′:

Properties 2.2.
(1) [x, p] 2= (tx − 1)p ∀p ∈ G′,

(2) [x1 · ... ·xn, y1 · ... ·ym] 2=
n∑

i=1

m∑
j=1

Tij [xi, yj ], where Tij =
i−1∏
k=1

txk
·

j−1∏
l=1

tyl
.

(3) [p1 · ... · pn, x] 2= − (tx − 1)(p1 + ... + pn) ∀pi ∈ G′,
(4) [pxx, pyy] 2= [x, y] + (tx − 1)py − (ty − 1)px ∀px, py ∈ G′.

(5) [xα1
1 · . . . · xαn

n , yβ1
1 · . . . · yβm

m ] 2=
n∑

i=1

m∑
j=1

Tij

(
[xi, yj] + δ(i, j)

)
,

where

δ(i, j) = (tyj − 1)[αi, xi] − (txi − 1)[βj, yj ].

(6) Jacobi relations:

J(x, y, z) := (tx − 1)[y, z] + (ty − 1)[z, x] + (tz − 1)[x, y] 2= 0.

Let us recall a well-known result on presentations of fundamental
groups of line arrangements based on the celebrated Zariski-Van Kam-
pen method for computing the fundamental group of the complement
of an algebraic curve. Let us recall briefly a description of this method
applied to X := P2 \

⋃
L. For a more detailed exposition see [9, p.121]

or [21].
Let P0 ∈ �0 \(�1∪ ...∪�r) and consider the pencil of lines in P2 based

on P0. This defines a locally trivial fibration outside a finite number of
points Δ := {a0, a1, ..., as} ⊂ P1, that is, a fibration X\π−1(Δ)

π|→ P1\Δ,
where a0 = π(�0) and π−1(aj) = Hj ∩ X such that Hj is a line passing
through P0 and a singular point of

⋃
L. Let ∗ ∈ P1 \Δ be a base point

and choose {γ1, ..., γs} a set of meridians on π1(P1 \ Δ; ∗) such that γj

is a meridian of aj and γ1 · . . . · γs is the inverse of a meridian of a0. Let
y∗ ∈ π−1(∗) (|y∗| big enough) and consider xi ∈ π1(π−1(∗); y∗) =: F, a
meridian of �i. The group π1(P1 \ Δ; ∗) of the base acts on the group F

of the fiber in such a way that γj(xi) is a conjugate of xi. This action
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comes from a morphism π1(P1 \ Δ; ∗) → Br and the Artin action of Br

on the free group F with the list of generators x̄ := (x1, . . . , xr).
A straightforward consequence of the Zariski-Van Kampen method

([30, 29], and [31, Chapter VIII]) is that

〈x̄; xi = x
γj

i , i = 1, ..., r, j = 1, ..., s〉

is a presentation of G.
Moreover, one can describe the action of each γj in more detail as

follows. Let Dj be a small enough disk around aj , and gj a path from ∗
to pj ∈ ∂Dj such that γj = gj ·∂Dj ·g−1

j . Let us work on π1(π−1(pj), y∗).
The action of ∂Dj on π1(π−1(pj), y∗) can be described in a suitable

set of free generators ȳ of π1(π−1(pj), y∗) as follows. Let P := �i1∩...∩�ip

be a singular point of
⋃

L of multiplicity p on Hj and let yi1 , ..., yip

meridians of the lines such that YP := yi1 · · · yip is homotopic to a merid-
ian of P on Hj . In that case y

∂Dj

ik
= yYP

ik
. If Hj ∩ �i is not a singular

point
⋃

L then y
∂Dj

i = yi.
The path gj induces a natural isomorphism βj : π1(π−1(pj), y∗) → F

of Artin type between ȳ and x̄; βj is induced by a pure braid associated
to gj and we will identify these groups via βj . Let us denote by FP the
subgroup of F generated by yi1 , ..., yip . Since each yik

is a conjugate of
xik

, one obtains the following.

Proposition 2.3. The group G admits a presentation of the form
〈x̄; W̄ 〉, where W̄ := {W1(x̄), ..., Wm(x̄)} m ≥ 0, and Wi(x̄) ∈ F′, ∀i =
1, ..., m.

Moreover, W̄ consists of words of type

(4) [yik
, YP ] ∈ [FP , YP ], k = 1, . . . , p − 1.

for every P ∈ �i1 ∩ ...∩ �ip ordinary multiple point of
⋃

L of multiplicity
p not belonging to �0.

Remark 2.4. The difficult part of actually finding a presentation is
the computation of the pure braids mentioned above. Effective methods
have been constructed in several works [3, 7, 5].

Remark 2.5. The relations [yik
, YP ] can also be written in the form

[xik
, XP,k], where XP,k is a product of conjugates of xi1 , . . . , xip . More-

over, we may use other relations to simplify the elements XP,k.

Definition 2.6. Any presentation 〈x̄; W̄ (x̄)〉 of G as in Proposi-
tion 2.3 (or Remark 2.5) will be called a Zariski presentation of G. The
free group F := 〈x̄〉 will be referred to as the free group associated with
the given presentation.
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Notation 2.7. Most of the following construction could be done on
a broader variety of groups such as 2-formal, or 2-free groups, but since
we want to apply this theory to a particular problem, we will only deal
with Zariski presentations of groups of line arrangements.

For technical reasons it is important to consider the Alexander In-
variant corresponding to the free group associated with a given pre-
sentation. Such a module will be denoted by M̃L. The following is a
standard presentation of the modules M̃L and M̃L in terms of a Zariski
presentation of G.

The following is a presentation of the Alexander Invariant from a
given Zariski presentation. For another presentation of the Alexander
Invariant from the braid monodromy see [8, Theorem 5.3].

Proposition 2.8. Let 〈x̄; W̄ 〉 be a Zariski presentation of G and
let F := 〈x̄〉 be its associated free group, then the module M̃L admits a
presentation Γ̃/J , where

Γ̃ :=
⊕

1≤i<j≤r

[xi, xj ]Λ

and J is the submodule of Γ̃ generated by the Jacobi relations (Prop-
erty 2.2(6))

J(i, j, k) := (ti − 1)xjk + (tj − 1)xki + (tk − 1)xij .

Moreover, the module ML can be obtained as a quotient of M̃L as Γ̃/(J +
W), where W is the submodule of Γ̃ generated by the relations W̄ .

Proof. First, the Reidemeister-Schreier method on F
′
↪→ F can be

used to obtain a system of generators and a generating system of rela-
tions of F′. Let ῑ = (i1, ..., ir) ∈ Zr and �(ῑ) = max{k | ik �= 0}. Note
that xῑ := xi1

1 · . . . · xir
r is a Reidemeister-Schreier system of represen-

tatives of F
′
/F

′′
(from now on, and to avoid ambiguities, we will write

F
′
/F

′′
when referring to the group structure and M̃L when referring to

the module structure). Hence the family

x[α]ῑ := xῑxαx−1
ῑ+eα

, α = 1, ..., �(ῑ) − 1

(where eα is such that xα = xeα) represents a free system of generators
of F′. Our purpose now is to use the module structure in order to
obtain a finite set of generators of F

′
/F

′′
as the module M̃L. Let ῑα =

(i1, ..., iα−1, 0, ..., 0), where α = 1, ..., r and ῑ1 = (0, ..., 0). Note that:
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a) x[α]ῑ = [xῑ, xα][xα, xῑα ]. Therefore, using Property 2.2(2), one has

(5) x[α]ῑ
2= [xῑ, xα] − [xῑα , xα] 2=

r∑
k=α+1

T ῑk [xik

k , xα],

where T ῑ := ti11 · · · tir
r .

b) [xik

k , xα] 2=
tik

k − 1
tk − 1

[xk, xα].

Hence, the module M̃L is generated by the elements xij := [xi, xj ],
where 1 ≤ i < j ≤ r. Let us define the following sets of elements in M̃L:

Γ1 := {T ῑxjk | max{i | i is a coordinate of ῑ} ≤ j}.

and
Γ2 := {T ῑxjk | max{i | i is a coordinate of ῑ} > j}.

Note that F
′
/F

′′
is generated by Γ1. Moreover the elements in Γ1

are independent, since

T ῑxjk
2= xῑxjxkx−1

j x−1
k x−1

ῑ = (xῑxkxjx
−1
k x−1

j x−1
ῑ )−1

= x[j]−1
ῑ+ek

2= − x[j]ῑ+ek
.

Therefore the relations in the module M̃L come from rewriting the
elements in Γ2 in terms of the base Γ1. In fact, it is enough to consider
the elements in Γ2 of the form tixjk where i > j < k. One has the
following two situations:

(1) If j < i ≤ k then

tixjk
2= xi ∗ xjk = xixjxkx−1

j x−1
k x−1

i

= (xixjx
−1
i x−1

j )(xjxixkx−1
j x−1

k x−1
i ) =

= x[j]eix[j]−1
ei+ek

2= x[j]ei − x[j]ei+ek
.

Finally, applying (5),

tixjk
2= xij − xij − tixkj

2= tixjk.

(2) If j < k < i, then

tixjk
2= xi ∗ xjk = xixjxkx−1

j x−1
k x−1

i =

= (xixjx
−1
i x−1

j )(xjxixkx−1
i x−1

k x−1
j )(xjxkxix

−1
j x−1

i x−1
k )(xkxix

−1
k x−1

i ) =



Combinatorial line arrangements 13

= x[j]eix[k]ej+eix[j]−1
ek+ei

x[k]−1
ei

2= x[j]ei + x[k]ej+ei − x[j]ek+ei − x[k]ei .

Applying (5) one has

tixjk
2= xij + tjxik − xkj − tkxij − xik

2= xjk − (tk − 1)xij − (ti − 1)xki.

which produces the Jacobi relation J(j, k, i) = 0.
The second statement follows from the abelianization of

W ↪→ F′ →→ G′,

where W is the normal subgroup of F generated by W̄ . Note that W =
W/(W ∩ F′) and hence W is generated by the projection of the system
W̄ in W . Q.E.D.

Remark 2.9. Note that the expression (4) and Property 2.2(5) pro-
vide a method to rewrite the relations W̄ as elements of Γ̃.

Example 2.10. As an example of how to obtain W note that, if the
lines �i and �j in L intersect in a double point, then there is a relation
in W̄ of type [xαi

i , x
αj

j ], where αi, αj ∈ G. Using Property 2.2(5), this
relation can be written in M̃L as xi,j+(tj−1)[αi, xi]−(ti−1)[αj , xj ] ∈ W .

Analogously, if the lines �i, �j and �k in L intersect at a triple point,
one obtains relations in G of type [xαi

i , x
αj

j xαk

k ], where αi, αj , αk ∈ G,
which can be rewritten in W as

xi,j+(tj−1)[αi, xi]−(ti−1)[αj , xj ]+tj
(
xi,k+(tk−1)[αi, xi]−(ti−1)[αk, xk]

)
.

Let m be the augmentation ideal in Λ associated with the origin, that
is, the kernel of homomorphism of Λ-modules, ε : Λ → Z, ε(ti) := 1,
where Z has the trivial module structure.

One can consider the filtration on ML associated with m, that is,
F iML := miML. The associated graded module grML := ⊕∞

i=0 gri ML,
where gri ML := F iML/F i+1ML is a graded module over grm Λ :=
⊕∞

i=0F
iΛ/F i+1Λ.

Consider the rings Λj := Λ/mj, obtained by taking the quotient of Λ
by successive powers of the ideal m. This allows one to define truncations
of the Alexander Invariant.

Definition 2.11. The Λj-module, M j
L := ML ⊗Λ Λj will be called

the j-th truncated Alexander Invariant of L. The induced filtration is
finite and will be denoted in the same way.

Example 2.12. From Example 2.10, it is easily seen that the rela-
tions in M2

L coming from double and triple points are as follows.
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(1) If �i and �j intersect at a double point one has:

(6) xij + (tj − 1)[αi, xi] − (ti − 1)[αj , xj ] = 0,

(7) (tk − 1)xij = 0.

(2) If �i, �j and �k intersect at a triple point one has:

xi,j + tjxi,k + (tj − 1)[αi, xi] − (ti − 1)[αj , xj ](8)
+(tk − 1)[αi, xi] − (ti − 1)[αk, xk] = 0,

(9) (tm − 1)xi,j + (tm − 1)xi,k = 0.

For any k ∈ N, there is a natural morphism ϕk : G′ →→ Mk
L. We

will sometimes refer to ϕk(g) as g (mod mk) and equalities in Mk
L will

be denoted by p1
k≡ p2.

Remark 2.13. A Zariski presentation on G induces a (set-theoretical)
section

s : ML → G′,

s
(
ε(t1 − 1)k1 ...(tr − 1)krxij

)
:= [x[k1]

1 , x
[k2]
2 , ..., x[kr ]

r , [xi, xj ]]ε,

defined inductively, where

[w1, w2, ..., wn] := [w1, [w2, ..., wn]], [w[n]
1 , w2] := [w[n−1]

1 , w1, w2].

This, accordingly, induces a section of ϕk on each Mk
L denoted by sk.

Remark 2.14. From Property 2.2(1), we deduce that the kernel of
ϕ2 equals γ4(G). Moreover ker(G′ → M1

L) equals γ3(G).

The previous construction can be summarized in the following.

Proposition 2.15. Let ψ(p1, ..., pm) be a word on the letters p̄ :=
{p1, ..., pm}. If pi, qi ∈ G′ and pi

k≡ qi (i = 1, ..., m), then
[g, ψ(p̄)]

k+1≡ [g, ψ(q̄)], ∀g ∈ G. In particular, if p ∈ Mk
L then [g, sk(p)]

is a well-defined element of Mk+1
L ; if g = xi this element can be written

(ti − 1)p ∈ Mk+1
L .

Remark 2.16. The ring Λk is not local, but note that an element
λ ∈ Λk is a unit if an only if ε(λ) = ±1. To see this note that Λk =
Z ⊕ m/mk and the kernel of the evaluation map ε : Z ⊕ m/mk → Z is
exactly m/mk.
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Notation 2.17. Note that everything in this section can also be re-
produced by using the free group F associated with a Zariski presentation
of G and will be denoted by adding a tilde. For instance, M̃L = Λ(r

2)/J
is the Alexander Invariant associated with FG, and F iM̃L is the filtration
associated with m ⊂ Λ.

Note that any automorphism of G that sends xi to xiαi, (with αi ∈
G′) induces a filtered automorphism of Mk

L:

(10) [xi, xj ] �→ [xiαi, xjαj ]
2= [xi, xj ] + tj(ti − 1)αj − ti(tj − 1)αi.

Note that this automorphism induces the identity on grMk
L.

The following result is an immediate consequence of Proposition 2.15
and it explains why Mk

L is a more manageable object.

Corollary 2.18. Under the above conditions the following formula
holds in Mk

L:
[xiαi, xjαj ]

k≡

[xi, xj ]+(ti−1)ϕk−1(αj)−(tj−1)ϕk−1(αi)+(tj−1)(ti−1)ϕk−2(αj−αi),

and hence the formula (10) only depends on ϕk−1(αi).

Lemma 2.19. Under the above conditions

(1) The Λ1-module gr0 ML = Λ(r
2)

1 /W is free of rank g =
(
r
2

)
−v, where

v is the multiplicity of the combinatorial type of L (Notation 1.2).
(2) The Λ2-module gr1 ML is combinatorial.

The groups grk ML ⊗ Q are combinatorial, see [23].

Proof. By Proposition 2.3 and the discussion previous to it, for any
singular point P = �i1 ∩ ...∩�ip (of multiplicity p ≥ 2) there are relations
in G of type
(11)

RP ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[xαP
1

i1
, x

αP
1

i1
· · ·x

αP
ip

ip
] 2= xi1,i2 + xi1,i3 + ... + xi1,ip + ...

terms in F 1ML

[xαP
2

i2
, x

αP
1

i1
· · ·x

αP
ip

ip
] 2= xi2,i1 + xi2,i3 + ... + xi2,ip + ...

terms in F 1ML

· · ·

[x
αP

ip

ip−1
, x

αP
1

i1
· · ·x

αP
ip

ip
] 2= xip,i1 + xip,i2 + ... + xip−1,ip + ...

terms in F 1ML
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Since J ⊂ F 1M̃L, one has that gr0 M̃L = gr0 Γ̃ = Λ(r
2)

1 and hence, by

Proposition 2.8, one has gr0 ML = Λ(r
2)

1 /W1. Therefore (1) follows from
the fact that the equations of RP in (11) are independent, since each
generator xi•,ip appears only once.

To prove the second part, it is enough to see that gr1 ML must
be generated (as an Abelian group) by the elements (ti − 1)xj,k and a
generating system of relations is given by J(i, j, k) ⊗ Λ2 and (mRP ) ⊗
Λ2, for any i, j, k ∈ {1, ..., r} and P ∈ Sing(L) \ �0, which is a purely
combinatorial system of relators. Q.E.D.

Notation 2.20. Since gr0 ML and gr1 ML only depend on the com-
binatorics, we will often use the notation gr0 MC and gr1 MC respec-
tively to refer to such groups.

§3. Truncated Alexander Invariant and Homeomorphisms of
Ordered Pairs

Let L1 and L2 be two ordered line arrangements sharing the ordered
combinatorics C . Consider two Zariski presentations G1 = 〈x̄; W̄ 1(x̄)〉
and G2 = 〈x̄; W̄ 2(x̄)〉 of the fundamental groups of XL1 and XL2 , where
the subscripts of the generators x̄ := {x1, ..., xr} respect the order-
ing of the irreducible components. The Abelian groups G1/G′

1 and
G2/G′

2 can be canonically identified with gr0 MC so that xi (mod G′
1) ≡

xi (mod G′
2). Hence Λ := ΛL1 = ΛL2 We will study the existence of

isomorphisms h : G1 → G2 such that h∗ : gr0 MC → gr0 MC is the
identity.

Definition 3.1. Let Fi be the free group associated with the Zariski
presentation of Gi, i = 1, 2. A morphism h̃ : F1 → F2 is called a homo-
logically trivial morphism if h̃∗ : F1/F′

1 → F2/F′
2 satisfies h̃∗(xi) = xi.

A morphism h : G1 → G2 is called a homologically trivial isomor-
phism if it is induced by a homologically trivial morphism h̃, i.e., if
h∗ : gr0 MC → gr0 MC is the identity. Note that h̃ might not be unique.

Remarks 3.2.
(1) The above definition is mainly used for isomorphisms; in this

setting, we consider that the trivial map is the identity and not
the constant morphism. Other authors use IA-automorphisms
[4] or homologically marked groups and homologically marked
morphisms [22].

(2) In other words, a morphism h : G1 → G2 is homologically
trivial if there exists (α1, ..., αr) ∈ (G′

2)r such that h(xi) =
xiαi.
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(3) Any homologically trivial isomorphism h induces a Λ-module
morphism h : M1 := ML1 → ML2 =: M2.

(4) Any homologically trivial isomorphism h respects the filtra-
tions F and produces isomorphisms gri h : gri M1 → gri M2.
By identifying gr1 M1 ≡ gr1 MC ≡ gr1 M2, gr1 h is the identity.

In order to state some properties of homologically trivial isomor-
phisms, we need to introduce some notation. Note that the homologi-
cally trivial morphism h̃ also induces morphisms on the Alexander In-
variants of the associated free groups M̃i (i = 1, 2) and on their trunca-
tions M̃ j

i . Let us denote by h̃i : M̃ i
1 → M̃ i

2 the induced homologically
trivial morphisms of the truncated modules. A straightforward compu-
tation proves that

(12) h̃(J(xi, xj , xk)) = J(xi, xj , xk) ∈ F′
2/F′′

2 .

Homologically trivial isomorphisms induce a particular kind of iso-
morphisms of the Λ-modules M1, M2 which are worth studying.

Remark 3.3. A direct attempt to prove that two modules are ho-
mologically trivial isomorphic is almost intractable. One would have to
check if, for some choice (α1, . . . , αr) ∈ (G′

2)r mod G′′
2 , such a Λ-module

isomorphism exists. The lack of linearity in this approach is the reason
why we consider the truncated modules Mk

1 , Mk
2 .

Applying Corollary 2.18, we are faced with simply solving a linear
system as follows. Let h : G1 → G2 be a homologically trivial morphism,
then there exists (α1, . . . , αr) ∈ (G′

2)
r mod G′′

2 such that h(xi) = xiαi.
Therefore there exist Λk-morphisms hk : Mk

1 → Mk
2 induced by h for

any k ∈ N. Note that

h2(xi,j) = xi,j +
∑
u,v

αj
u,vxi,u,v −

∑
u,v

αi
u,vxj,u,v

where xi,j
2≡ [xi, xj ], xi,u,v

2≡ (ti − 1)xu,v, and

(13) αw
1≡

∑
u<v

αw
u,vxu,v,

since

(14) h2(xi,j)
2≡ [h(xi), h(xj)]

2≡ [xiαi, xjαj ]

only depends on ϕ1(αi), the class of αi mod m, by Proposition 2.18. In
order to prove that h2 is well defined, one must solve a linear system of
equations on the variables αi

u,v in the Abelian group Mk
2 . If an integer
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solution exists, one can repeat the procedure on M3
i , obtaining again a

linear system of equations in the Abelian group M3
2 , and so on. In this

work, we only need to consider h2.

Let us consider an ordered line arrangement L with a fixed Zariski
presentation G = 〈x̄; W̄ 〉. Let us denote C its ordered combinatorics.

In our particular case we can effectively compute the 2-nd truncated
Alexander Invariant. The following result is an easy computation.

Lemma 3.4. For any MacLane arrangement L, the Abelian group
M2

L is free of rank 29, and its subgroup gr1 M2
L = gr1 MCML

is free of
rank 21.

Theorem 3.5. There is no homologically trivial isomorphism be-
tween Gω := π1(P2 \

⋃
Lω) and Gω̄ := π1(P2 \

⋃
Lω̄).

Proof. Fix suitable Zariski presentations Gω = 〈x1, ..., x7; Wω
1 (x̄),

..., Wω
13(x̄)〉 and Gω̄ = 〈x1, ..., x7; W ω̄

1 (x̄), ..., W ω̄
13(x̄)〉 of the ordered ar-

rangements Lω and Lω̄ (for instance, we have used the suitable Zariski
presentations provided in [26] and other presentations obtained using
the software in [5]). We identify the corresponding free groups Fω and
Fω̄ with a free group F7. Recall that their combinatorial type has multi-
plicity 13, see Notation 1.2. We assume the relations to be ordered upon
the following condition:

Wω
i (x̄) 1≡ W ω̄

i (x̄),

(in particular Wω
i (x̄) − W ω̄

i (x̄) ∈ F 1M̃Lω̄). Let us suppose that a ho-
mologically trivial homomorphism h : Gω → Gω̄ exists. Consider the
corresponding elements α1, . . . , αr ∈ F7 that induce such a morphism
(Remark 3.2(2)). Consider Mω = MLω and Mω̄ = MLω̄ , the Alexander
Invariants of Lω and Lω̄. Let Λ := Z[t±1

1 , ..., t±1
7 ] be the ground ring

of both Alexander Invariants, where ti
1= xi as usual. This mapping

induces a Λ2-isomorphism h2 : M2
ω → M2

ω̄. By Corollary 2.18, h2 only
depends on the class αi mod m. As in (13), one has

αk
1≡

∑
1≤i<j≤7

αk
ijxij , αk

ij ∈ Z.

By (12) Jacobi relations play no role here.
Let us fix i = 1, . . . , 13. Since Wω

i (x̄) ∈ M̃2
ω vanishes in M2

ω,
one deduces that h̃2(Wω

i (x̄)) ∈ M̃2
Lω̄

should vanish in M2
ω̄. Equiva-

lently h̃2(Wω
i (x̄)) − W ω̄

i (x̄) ∈ F 1M̃2
ω̄ should also vanish in F 1M2

ω̄ =
gr1 MCML

. The vanishing of these terms, considered in the free abelian
group gr1 MCML

, produces a system of linear equations in the variables
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αk
ij (actually, even though there are 147 variables, only 126 appear in

the equations).
Solving a system with 137 equations and 126 variables is not an easy

task, but any computer will help. Using Maple8, it takes 85 seconds of
CPU time running on an Athlon at 1.4MHz and 256Kb RAM Memory
to obtain the linear set of solutions. It is an affine variety of dimension
98 of the form (λ1, ..., λ98, κ1, ..., κ28) where

κi = qi +
98∑

j=1

εi
jλj ,

εi
j ∈ {0,±1}, and qi ∈ Q. Since {qi | i = 1, . . . , 28} = {0,±1,± 1

3 ,± 2
3 ,± 4

3 ,

± 5
3} one concludes that there is no integer solution1. Q.E.D.

Corollary 3.6. There is no orientation preserving homeomorphism
between the pairs of ordered arrangements (P2,

⋃
Lω) and (P2,

⋃
Lω̄).

For Rybnikov’s arrangements, one obtains similar results.

Lemma 3.7. For any Rybnikov’s arrangement R, the Abelian group
M2

R is free of rank 55, and its subgroup gr1 M2
R = gr1 MCRyb

is free of
rank 40.

Theorem 3.8. There is no homologically trivial isomorphism be-
tween G+ := π1(P2 \

⋃
Rω,ω) and G− := π1(P2 \

⋃
Rω̄,ω).

Proof. One way to prove this statement is to follow the compu-
tational strategy proposed for MacLane arrangements. First one needs
Zariski presentations of G±. This was done by means of the software
in [5]. In this case the linear system obtained consists of 531 equations
and 420 variables (again, out of the 792 variables αk

ij , only 420 appear
in the equations) and it took the same processor a total of 23,853 sec-
onds of CPU time to compute the solutions. The space of solutions
has dimension 252, that is, it can be written as (λ1, ..., λ252, κ1, ..., κ168),
where

κi = qi +
168∑
j=1

εi
jλj ,

εi
j ∈ {0,±1}, and qi ∈ Q. Since {qi | i = 1, . . . , 168} = {0,±1,± 1

3 ,± 2
3 ,

± 4
3 ,± 5

3}, one again concludes that there is no integer solution.

1The software is written for Maple8 and can be visited at the following
public site http://riemann.unizar.es/geotop/pub/.
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Another proof that doesn’t depend as strongly on computations can
be obtained from Theorem 3.5 as follows. Let us assume that a ho-
mologically trivial isomorphism exists between G+ and G−. Such an
isomorphism induces an Λ2-isomorphism between M2

+ and M2
−. Let

Λ̂2 := Λ2/m′, where m′ is the ideal generated by (t8 − 1), ..., (t12 − 1),
and let M̂2

± denote M2
± ⊗ Λ̂2. Note that M2

ω (resp. M2
ω̄) can be consid-

ered as the Λ̂2-module obtained from the inclusion of the complements
P2 \

⋃
Rω,ω ↪→ P2 \

⋃
Lω (resp. P2 \

⋃
Rω̄,ω ↪→ P2 \

⋃
Lω̄). Moreover,

these inclusions define epimorphisms of Λ̂2-modules π : M̂2
+ � M2

ω and
π̄ : M̂2

+ � M2
ω̄. Proving the existence of a homologically trivial iso-

morphism h̃2 that matches in the commutative diagram (15), and using
Theorem 3.5 one obtains a contradiction.

(15)
M̂2

+
ĥ2

−→ M̂2
−

π ↓ ↓ π̄
M2

ω
h̃2

→→ M2
ω̄

Consider S+ the Λ̂2-submodule of M̂2
+ generated by the elements xi,j ,

i, j ∈ {1, ..., 7} and consider the commutative diagram (16). Since
π(xi,j) = xi,j and h̄2(xi,j) ≡ xi,j mod gr1 M2

ω̄.

(16)

M̂2
+

ĥ2

−→ M̂2
−

π ↪→ ↓ π̄

S+
h̄2

→→ M2
ω̄

π|

→→

M2
ω

Since M2
ω and M2

ω̄ are free Abelian of the same rank, (15) can be obtained
from (16), by proving that π| is an isomorphism, which is the statement
of Lemma 3.9. Q.E.D.

Lemma 3.9. The epimorphism π| in (16) is injective

Proof. We break the proof in several steps.

(O1) (tk − 1)xi,j = 0 in M̂2
+ if {i, j} ∩ {8, ..., 12} �= ∅.

This can be proved case by case (all the equalities are consid-
ered in M̂2

+):
(a) If i ∈ {3, ..., 7} and j ∈ {8, ..., 12} (or vice versa, since xi,j =

−xj,i): this is a consequence of Example 2.12(1) since the
lines �i and �j intersect transversally.

(b) If i, j ∈ {8, ..., 12}: this is a consequence of (a) and the Jacobi
relations (Property 2.2(6)).
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(c) If i ∈ {1, 2}, j ∈ {8, ..., 12}: using the Jacobi relations (Prop-
erty 2.2(6)) and (b) it is enough to check that (tk−1)xi,j = 0,
i, k ∈ {1, 2}, j ∈ {8, ..., 12}. If �i and �j intersect at a double
point, then (a) proves the result. Otherwise, there exists a
line �m (m ∈ {7, ..., 12}) such that �i, �j and �m intersect at a
triple point. By Example 2.12(2) one has (tk − 1)xi,j + (tk −
1)xm,j = 0, but (tk − 1)xm,j = 0 by (b), thus we are done.

(O2) gr1(M̂2
+) ⊂ S+. It is a direct consequence of (O1).

(O3) gr0(M̂2
+) =

S+

gr1 M̂2
+

⊕
kerπ + gr1 M̂2

+

gr1 M̂2
+

, i.e.,
S+

gr1 M̂2
+

∼= gr0 M2
ω.

Since kerπ is generated by 〈xi,j〉1≤i<j≤12,j>7, it is clear that
gr0(M̂2

+) decomposes in the required sum. It remains to prove that
it is a direct sum.

One can consider gr0(M̂2
+) as a quotient

〈xi,j〉1≤i<j≤12

W , hence
it is enough to check that there is a system of generators r1, ..., rn

of W such that:

(*) either ri ∈
kerπ + gr1 M̂2

+

gr1 M̂2
+

, or ri ∈
S+

gr1 M̂2
+

.

Note that a system of relators can be obtained combinatorially as
xi,j = 0 (if {�i, �j} is a double point) or xi,j +xi,k = 0 (if {�i, �j , �k}
is a triple point). Relations coming from double points satisfy (*).
For the triple point relations note that any triple point {�i, �j , �k}
such that {i, j} ⊂ {8, ..., 12}, verifies that k ∈ {8, ..., 12}; therefore,
condition (*) is also satisfied.

(O4) gr1(M̂2
+) ∼= gr1 M2

ω.
By (O1), the Abelian group M̂2

+ is generated by xi,j , i, j ∈
{1, . . . , 12}, and (tk − 1)xi,j , i, j, k ∈ {1, . . . , 7}; the relators are
obtained from the singular points (see Example 2.12) and the Ja-
cobi relations J .

By (O1) and the proof of Lemma 2.19(2), we find that gr1(M̂2
+)

is generated by the elements (tk − 1)xi,j , i, j, k ∈ {1, . . . , 7} and
the relations are exactly those in J and the relations (7) and (9)
in Example 2.12. The arguments used in (O3) also show that only
double and triple points in CML provide non-trivial relations and
thus one obtains the same system of generators and relations of
gr1 M2

ω.

Q.E.D.
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Remark 3.10. The proof of Lemma 3.9 is combinatorial and depends
strongly on the properties of CRyb. This lemma corresponds to a key
statement of the proof of [26, Lemma 4.3] which is worth mentioning.

§4. Homologically Rigid Fundamental Groups

This last section will be devoted to proving that the fundamental
groups of Rω,ω and Rω,ω̄ are not isomorphic.

Remark 4.1. Associated with a combinatorial type C := (L,P),
there is a family of groups, where

HC :=
⊕


∈L〈x
〉Z
〈
∑


∈L x
〉Z

and gri MC is given by generators and relations as a quotient of H
⊗(i+1)
C ,

i = 0, 1 as described in Lemma 2.19. Note that, if C has a realization L,
then one has identifications HC ≡ H1(P2\

⋃
L; Z) and gri MC ≡ gri ML.

Notation 4.2. There is a natural injective map Γ(C ) ↪→ Aut(HC )
given by the permutation of the generators of HC ; we identify Γ(C )
with its image in Aut(HC ). Another subgroup of Aut(HC ), denoted
by Aut1(HC ), is defined as those automorphisms of HC that induce an
automorphism of gr1 MC . It is easily seen that {±1HC } × Aut(HC ) ⊂
Aut1(HC ).

Definition 4.3. A line combinatorics C := (L,P) is called homo-
logically rigid if Aut1(HC ) = {±1} × Γ(C ).

The first goal of this section is to prove that Rybnikov’s combina-
torial type CRyb := (R,P) (described in (2)) is homologically rigid; we
will follow the ordering (1). Results of this sort have been studied by
M.Falk in [10, Corollary 3.24].

In order to do so, we are going to study Aut1(HC ) for an ordered
combinatorics C = (L,P) having at most triple points. We will denote
Pj := {P ∈ P | #P = j}, j = 2, 3, and L := {�0, �1, . . . , �r}. Let us first
describe the groups HC and gr1 MC :

HC :=
〈x0〉Z ⊕ 〈x1〉Z ⊕ · · · ⊕ 〈xr〉Z

〈x0 + x1 + ... + xr〉Z
, gr1 MC :=

∧2
HC

R2 ⊕ R3

where R2 is the subgroup generated by xi,j ({�i, �j} ∈ P2) and R3 is the
subgroup generated by xi,k + xj,k and xi,j + xi,k ({�i, �j, �k} ∈ P3).

Any isomorphism ψ : HC → HC induces a map ∧2ψ :
∧2

HC →∧2 HC . Let us represent ψ : HC → HC by means of a matrix Aψ :=
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(aj
i ) ∈ Mat(r + 1, Z) such that ψ(xi) :=

∑r
j=0 aj

ixj (note that such a
matrix is not uniquely determined: each column is only well defined
modulo the vector 11r+1 := (1, . . . , 1)). The conditions required for this
map to define a morphism on the quotient gr1 MC are called admissibility
conditions and can be expressed as follows:

(17)∣∣∣∣∣∣
ai

u ai
v 1

aj
u aj

v 1
ak

u ak
v 1

∣∣∣∣∣∣ = 0, if {�i, �j, �k} ∈ P3, {�u, �v} ∈ P2

∣∣∣∣∣∣
ai
• ai

u + ai
v + ai

w 1
aj
• aj

u + aj
v + aj

w 1
ak
• ak

u + ak
v + ak

w 1

∣∣∣∣∣∣ = 0 if {�i, �j, �k}, {�u, �v, �w} ∈ P3

(• = u, v, w)

(also note that such conditions are invariant on the coefficient vectors
(a0

•, a
1
•, ..., a

12
• ) modulo 1113). We summarize these facts.

Proposition 4.4. Any morphism ψ : HC → HC whose associated
matrix Aψ satisfies the admissibility conditions (17) produces a well-
defined morphism ∧2ψ : M1

C → M1
C .

We are going to express the admissibility conditions (17) in a more
useful way. Let ψ ∈ Aut1(HC ) and let Aψ be a matrix representing
ψ. Fix P ∈ P3 and consider the submatrix Aψ

P ∈ Mat(3 × 12, Z) of
Aψ which contains the rows associated with P . Let Σk := Zk+1/11k+1,
k ∈ N. We denote by v0(P ), v1(P ) . . . , vr(P ) ∈ Σ2, the column vectors
(mod 113) of Aψ

P .

Lemma 4.5.
(1) The vectors v0(P ), v1(P ) . . . , vr(P ) span Σ2.
(2)

∑r
j=0 vj(P ) = 0 ∈ Σ2.

(3) For any Q ∈ P and for any �u ∈ Q, the vectors vu(P ) and∑

i∈Q vi(P ) are linearly dependent (i.e., span a sublattice of Σ2

of rank less than two). In particular, if
∑


i∈Q vi(P ) �= 0, then
{vi(P ) | �i ∈ Q} spans a rank-one sublattice of Σ2.

(4) There exists Q ∈ P3 such that {vi(P ) | �i ∈ Q} spans a rank-two
sublattice of Σ2 and

∑

i∈Q vi(P ) = 0.

Proof.
(1) ψ is an automorphism.
(2) The sum of the columns of Aψ is a multiple of 11r+1.
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(3) It is an immediate consequence of the admissibility conditions
(17).

(4) If no such Q exists, then all the vectors Vi(P ) are linearly de-
pendent, which contradicts (1). The last part is a consequence
of (3).

Q.E.D.

Definition 4.6. Let C := (L,P) be a combinatorics; we say C ′ :=
(L′,P ′) is a subcombinatorics of C if L′ ⊂ L and P ′ := {P ∩ L | P ∈
P , #(P ∩ L) ≥ 2}.

We define a subcombinatorics Admψ(P ) ⊂ C as follows:

L(Admψ(P )) := {�i ∈ R | vi(P ) �= 0}.

Note that,

(18) �i /∈ L(Admψ(P )) ⇐⇒ the ith column of Aψ
P is a multiple of 113 .

This motivates the following definition.

Definition 4.7. A line combinatorics C := (L,P) with only double
and triple points is called 3-admissible if it is possible to assign a non-
zero vector vi ∈ Z2 to each �i ∈ L such that:

(1) There exists P ∈ P3, such that {vj | �j ∈ P} spans a rank-two
sublattice.

(2) For every P ∈ P and for every �i ∈ P , vi and
∑


j∈P vj are
linearly dependent.

(3)
∑


i∈L vi = (0, 0).

Remarks 4.8. The conditions of Definition 4.7 can be made more
precise.

(1) If P = {�i, �j} ∈ P2, then vi and vj are proportional, in nota-
tion, vi‖vj .

(2) If P ∈ P3 verifies condition (1) then
∑


i∈P vi = (0, 0).

Examples 4.9.

(1) With the above notation, Admψ(P ) is 3-admissible by Lemma 4.5.
(2) The combinatorics M3 of a triple point (that is, LM3 :=

{0, 1, 2},PM3 := {{0, 1, 2}}) is 3-admissible, simply using v0 :=
(1, 0), v1 := (0, 1), v2 := (−1,−1).

(3) Let C := (L,P) be a combinatorics such that
• L := L0

∐
L1

∐
L2;
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• L1 and L2 define non-empty subcombinatorics in general
position w.r.t. L0 (that is, �i ∈ L1 and �j ∈ L2 implies
that {�i, �j} ∈ P);

• at most one line of L0 intersects L1∪L2 in a non-multiple
point of L0.

Then C is not 3-admissible. It is enough to see that if {vi}
i∈L
is a set of non-zero vectors satisfying conditions (2) and (3) of
Definition 4.7, one has that vi‖vj .
• �i ∈ L1 and �2 ∈ L2; since {�i, �j} ∈ P then, by Re-

mark 4.8(1), vi‖vj .
• �i, �j ∈ L1; considering any �k ∈ L2 and using the previous

case, one has vi‖vk‖vj . The same argument works for
�i, �j ∈ L2. In particular, vi‖vj if �i, �j ∈ L1 ∪ L2.

• �i ∈ L0 and P ∈ P such that P ∩L0 = {�i}. Since all the
vectors associated with P but one are proportional, then
this must also be the case for vi.

All the vectors (but at most one) are proportional. To conclude
we apply condition (3) of Definition 4.7.

(4) Ceva’s line combinatorics is 3-admissible.

Proof. Ceva’s line combinatorics is given by the follow-
ing realization:

�2
�4

�5

�6

�3

�1

Fig. 2. Ceva’s line combinatorics

Lceva := {1, 2, 3, 4, 5, 6}

Pceva := {{1, 2}, {3, 4}, {5, 6}, {1, 3, 5}, {1, 4, 6}, {2, 3, 6}, {2, 4, 5}}.
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For example, the following is a 3-admissible set of vectors for
Ceva:

{v1 = v2 = (1, 0), v3 = v4 = (0, 1), v5 = v6 = (−1,−1)}

Q.E.D.

(5) MacLane’s line combinatorics CML is not 3-admissible.

Proof. We will use the combinatorics given in Figure 1.
Let us assume that MacLane is 3-admissible, then one has a
list of non-zero vectors v0, v1, ..., v7 associated with each line.
We will first see that v0 and v1 cannot be proportional. If they
were (v0‖v1), using {0, 1, 2}, {1, 6} and {2, 3} one would have
that v0‖v2‖v6‖v3 and finally, using {3, 6, 7}, one obtains v0‖v7,
and hence, by {1, 4, 7} and {4, 5}, all vectors are proportional,
which contradicts condition (1) of Definition 4.7.

Therefore, v0 and v1 are linearly independent. After a
change of basis, one can assume that v0 = (α, 0), v1 = (0, β),
α, β ∈ Z \ {0}, and therefore v2 = (−α,−β). We will briefly
describe the conditions and how they affect the vectors until a
contradiction is reached:

{0,7}
{1,6}→

{
v7 = (γ, 0)
v6 = (0, δ)

{3,6,7}
{0,5,6}→

{
v3 = (−γ,−δ)
v5 = (−α,−δ)

{1,3,5}→
{

α = −γ

β = 2δ.

Hence v3 does not satisfy the condition (2) of Definition 4.7
with v2 = (γ,−2δ) on the double point {2, 3}. Q.E.D.

Definition 4.10. A combinatorics C with only double and triple
points is pointwise 3-admissible if the only 3-admissible subcombina-
torics of C are isomorphic to M3.

Remark 4.11. In fact, it can be proved that a combinatorics C is
pointwise 3-admissible if and only if its first resonance variety does not
contain non-local components ([18]).

Proposition 4.12. If C is a pointwise 3-admissible combinatorics
then any ψ ∈ Aut1(HC ) induces a permutation ψ3 of P3.

Proof. Let L := {�0, ..., �r} denote the set of lines of C and let
P3 ⊂ P denote the set of triple points of C . We will first prove that
any isomorphism ψ ∈ Aut1(HC ) induces a map ψ3 : P3 → P3. Consider
a triple point P := {�i, �j, �k} ∈ P3; then Admψ(P ) is an admissible
subcombinatorics of C (Example 4.9(1)) and defines a triple point. The
map ψ3 : P3 → P3 given by ψ3(P ) := Admψ(P ) is defined.
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We will next prove that such a map is indeed injective, and hence
a permutation (in order for this to make sense, one has to assume that
#P3 > 1 and hence r ≥ 4). Assume ψ3 is not injective, and let ψ3(P1) =
ψ3(P2) = Q = {�u, �v, �w}. One has to consider two different cases
depending on whether or not P1 and P2 share a line:

(1) If P1, P2 do not share a line, i.e, P1 := {�i1 , �j1 , �k1} and
P2 := {�i2 , �j2 , �k2}, where all the subscripts are pairwise dif-
ferent. By reordering the columns, let us write Q = {�0, �1, �2}.
Let Aψ

P1,P2
be the submatrix of Aψ corresponding to the rows

{i1, j1, k1, i2, j2, k2}. Using (18):

(19) Aψ
P1,P2

:=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ai1
0 ai1

1 ai1
2 ai1

3 . . . ai1
r

aj1
0 aj1

1 aj1
2 ai1

3 . . . ai1
r

ak1
0 ak1

1 ak1
2 ai1

3 . . . ai1
r

ai2
0 ai2

1 ai2
2 ai2

3 . . . ai2
r

aj2
0 aj2

1 aj2
2 ai2

3 . . . ai2
r

ak2
0 ak2

1 ak2
2 ai2

3 . . . ai2
r

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where ai•
0 + ai•

1 + ai•
2 = aj•

0 + aj•
1 + aj•

2 = ak•
0 + ak•

1 + ak•
2 ,

• = 1, 2. The sublattice K of Σ5 generated by the columns
(mod 116) should have maximal rank equal to 5. Note that
rank (K) equals the rank of the matrix A

ψ

P1,P2
obtained by

subtracting the last row from the first ones, forgetting the last
row and replacing the first column by the sum of the first three:

(20) A
ψ

P1,P2
=

⎛⎜⎜⎜⎜⎝
bi1
0 bi1

1 b2 b3 . . . br

bj1
0 bj1

1 b2 b3 . . . br

bk1
0 bk1

1 b2 b3 . . . br

bi2
0 bi2

1 0 0 . . . 0
bj2
0 bj2

1 0 0 . . . 0

⎞⎟⎟⎟⎟⎠ ,

which does not have rank 5.
(2) If P1, P2 share a line, say P1 := {i, j1, k1} and P1 := {i, j2, k2}.

Then, analogously to the previous case, one obtains a similar
matrix to (19) but where the rows i1 and i2 are identified, and
we proceed in a similar way.

Q.E.D.

Definition 4.13. Three triple points P, Q, R ∈ P of a line combi-
natorics (L,P) are said to be in a triangle if P ∩Q = {�1}, P ∩R = {�2}
and Q ∩ R = {�3} are pairwise different.
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Proposition 4.14. For any ψ ∈ Aut1(HC ), C pointwise 3-admissible,
ψ3 satisfies the following Triangle Property: ψ3 : P3 → P3 preserves tri-
angles, that is, if P1, P2, P3 ∈ P3 are in a triangle, then ψ3(P1), ψ3(P2),
ψ3(P3) are also in a triangle.

Proof. Let P1, P2, P3 ∈ P3 be three triple points in a triangle, P1 :=
{�i, �j, �k}, P2 := {�k, �l, �m}, P3 := {�m, �n, �i}. Let us assume that
ψ3(P1), ψ3(P2), ψ3(P3) are not in a triangle. One has two possibilities,
either two of them do not share a line or three of them share a line.

(1) Two of them, say ψ3(P1), ψ3(P2) do not share a line. Af-
ter reordering, we can suppose that ψ3(P1) = {�0, �1, �2} and
ψ3(P2) = {�3, �4, �5}. For ψ3(P3) there are several possibilities
but we may assume ψ3(P3) ⊂ {�0, �3, �6, �7, �8}. Consider the
submatrix Aψ

P1,P2,P3
of Aψ given by the rows of P1, P2, P3. Ap-

plying (18) successively to the rows defined by P1, P2, P3 one
has:

(21)

Aψ
P1,P2,P3

:=

⎛⎜⎜⎜⎜⎜⎜⎝
ai
0 ai

1 ai
2 a3 a4 a5 a6 a7 a8 a9 . . . ar

aj
0 aj

1 aj
2 a3 a4 a5 a6 a7 a8 a9 . . . ar

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 . . . ar

a0 a1 a2 al
3 al

4 al
5 a6 a7 a8 a9 . . . ar

a0 a1 a2 am
3 a4 a5 a6 a7 a8 a9 . . . ar

an
0 a1 a2 an

3 a4 a5 an
6 an

7 an
8 a9 . . . ar

⎞⎟⎟⎟⎟⎟⎟⎠ ;

moreover, ai
1 = a1, ai

2 = a2,

ai
0 + a1 + a2 = aj

0 + aj
1 + aj

2 = a0 + a1 + a2(⇒ ai
0 = a0),

a3 + a4 + a5 = al
3 + al

4 + al
5= am

3 + a4 + a5(⇒ am
3 = a3)

and

a0 + a3 + a6 + a7 + a8 = an
0 + an

3 + an
6 + an

7 + an
8 .

As in the proof of Proposition 4.12 we need rank (A
ψ

P1,P2,P3
) =

5, where A
ψ

P1,P2,P3
is the matrix obtained from Aψ

P1,P2,P3
by

subtracting the last row from the first ones and forgetting the
last row. We obtain:

(22)

Āψ
P1,P2,P3

:=

⎛⎜⎜⎜⎜⎝
b0 0 0 b3 0 0 b6 b7 b8 0 . . . 0
bj
0 bj

1 bj
2 b3 0 0 b6 b7 b8 0 . . . 0

b0 0 0 b3 0 0 b6 b7 b8 0 . . . 0
b0 0 0 bl

3 bl
4 bl

5 b6 b7 b8 0 . . . 0
b0 0 0 b3 0 0 b6 b7 b8 0 . . . 0

⎞⎟⎟⎟⎟⎠
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which cannot have rank 5.
(2) If ψ3(P1), ψ3(P2) and ψ3(P3) have a common line, say �0, we

follow the same strategy and obtain the desired result.
Q.E.D.

Our main goal is to check if ψ3 is induced by an element of Aut(C ).
The next example shows that we need enough triangles.

Example 4.15. Note that Proposition 4.12 does not automati-
cally ensure that in general an automorphism of the combinatorics is
produced. For instance, consider the combinatorics C given by the
lines {0, 1, . . . , 6}, and the following triple points {0, 1, 2}, {2, 3, 4}, and
{4, 5, 6} (the remaining intersections are double points). It is easy to see
that such a combinatorics is pointwise 3-admissible. Let ψ : HC → HC

be given by the following matrix:

Aψ :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 1 0 −1
0 0 1 0 0 1 −1
0 0 0 1 0 1 −1
0 0 0 0 1 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

satisfying the admissibility relations. This induces the following maps:

P3
ψ3→ P3

{0, 1, 2} �→ {0, 1, 2}
{2, 3, 4} �→ {4, 5, 6}
{4, 5, 6} �→ {2, 3, 4}

gr1 MC
∧2ψ→ gr1 MC

x0,1 �→ x0,1

x2,3 �→ x4,5

x4,5 �→ x2,3,

where gr1 MC
∼= 〈x0,1〉Z ⊕ 〈x2,3〉Z ⊕ 〈x4,5〉Z.

However, the given permutation is not induced by an automorphism
of the combinatorics, because the point {2, 3, 4} (which is the only one
that shares a line with the other two) is not fixed.

We want to apply the previous results to CRyb. First we will check
that CRyb is pointwise 3-admissible.

Lemma 4.16. An admissible subcombinatorics of CRyb cannot have
lines in both R1 := {3, 4, 5, 6, 7} and R2 := {8, 9, 10, 11, 12}.

Proof. Any subcombinatorics of CRyb having lines in both R1 and
R2 verifies the conditions of Example 4.9(3). Q.E.D.

Lemma 4.17. CML is pointwise 3-admissible.
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Proof. It is not difficult to prove that any combinatorics (with only
double and triple points) of less than 6 lines (other than M3) is not 3-
admissible. In Example 4.9(5) it is shown for the whole combinatorics of
eight lines. Let us check the remaining cases, that is, six and seven lines.
Note that, up to a combinatorics automorphism, there is a unique way
to remove one line. There are, however, two possible ways to remove
two lines, depending on whether they intersect or not at a triple point.
Therefore we only have to check the following cases:

(1) For 7 lines
{0, 1, 2, 3, 4, 5, 6}:
{3,6}→ v3‖v6

{1,6},{2,3}→ v3‖v1‖v2
{1,4}→ v3‖v4

{4,5}→ v3‖v5.
(2) For 6 lines, removing two lines intersecting at a triple point

{0, 2, 3, 4, 5, 6}: {3,5}→ v5‖v3
{2,3},{3,6},{4,5}→ v5‖v2‖v6‖v4.

(3) For 6 lines, removing two lines intersecting at a double point

{0, 2, 3, 4, 5, 7}: {2,3},{2,4}→ v2‖v3‖v4
{3,7},{4,5}→ v2‖v5‖v7.

Q.E.D.

Proposition 4.18. CRyb is pointwise 3-admissible.

Proof. An immediate consequence of Lemmas 4.16 and 4.17.
Q.E.D.

Remarks 4.19. In order to prove that for any ψ ∈ Aut1(HCRyb
), ψ3

comes from an element of Aut(CRyb) we need to know more combinato-
rial properties of CRyb and CML.

(1) The triple point {0, 1, 2} ∈ P3 in CRyb is the only one that
belongs to 36 triangles.

(2) Any triple point P ∈ P3 in CRyb except for {3, 6, 7} and {8, 11,
12} satisfies that {0, 1, 2} and P are in a triangle.

(3) Any two triple points in CML sharing a line belong to a triangle.
(4) For any three triple points P1, P2, P3 in CML, there exists an-

other triple point Q such that Q, Pi, Pj belong to a triangle
(i, j ∈ {1, 2, 3}).

Proposition 4.20. Let ψ ∈ Aut1(CRyb).

(1) ψ3({0, 1, 2}) = {0, 1, 2}
(2) ψ3 either preserves (resp. exchanges) the triple points of R1 and

R2 in CRyb inducing an automorphism
(3) The action of ψ3 on R1 and R2 comes from an automorphism

(resp. isomorphism) of their combinatorics.
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Proof. Part (1) is true by Propositions 4.12-4.14 and Remark 4.19(1).
By Remark 4.19(2), the points {3, 6, 7} and {8, 11, 12} are either pre-
served or exchanged. In order to prove (2) and (3), we may suppose
that ψ3({3, 6, 7}) = {3, 6, 7}. Recall that the subcombinatorics defined
by R0 ∪ R1 is isomorphic to CML. Since triangles are preserved by ψ3

(Proposition 4.14), according to Remark 4.19(3) the images of any two
triple points in R0 ∪ R1 sharing a line also share a line. This implies,
using Remark 4.19(4) again, that the image of any three triple points
on R0 ∪ R1 sharing a line are also three points sharing a line. Since
any line in R1 or R2 has at least three triple points, we conclude (2)
and (3). Q.E.D.

Proposition 4.21. Let ψ ∈ Aut1(HCRyb
); then ψ3 : P3 → P3 is

induced by an automorphism of CRyb.

Proof. We will use Proposition 4.20 repeatedly. We can compose
ψ with an element of Aut(CRyb) in order to have ψ3 preserve the triple
points in Ri. Recall that ψ3|R0∪Ri comes from an automorphism ϕi

of CML which respects {0, 1, 2}. Composing again with an element of
Aut(CRyb) we may suppose that ϕ1 is the identity on {0, 1, 2}. It is
enough to prove that it is also the case for ϕ2. If it is not the case,
we may assume (by conjugation with an element of Aut(CRyb)) that
ϕ2(0) = 1. There are two possibilities to be checked, depending on
whether 9 and 10 are fixed or permuted. In both cases, the triple points
{0, 1, 2}, {3, 6, 7} and {8, 11, 12} are fixed. Using the arguments in the
proofs of Propositions 4.12 and 4.14, one can obtain the induced matrices
Aψ with all the admissibility relations, which, modulo 1113 do not have
a maximal rank in either case. Q.E.D.

Proposition 4.22. CRyb is homologically rigid.

Proof. Let ψ ∈ Aut1(HCRyb
); by Propositions 4.21 and 4.14, ψ3

comes from an automorphism of the combinatorics. Composing with
the inverse of such an automorphism, we may suppose that ψ3 = 1P3 .
It is hence enough to prove that any isomorphism ψ ∈ Aut1(HCRyb

)
that induces the identity on ψ3 is just ±1HC

Ryb

. From the definition of
Admψ(P ), P ∈ P3, we deduce the following. Let us fix the jth-column;
all the entries in this column corresponding to P ∈ P3 such that j /∈ P
are equal. We deduce from this that we can choose Aψ such that all
the elements outside the diagonal are constant in their column. Adding
multiples of 1113, we obtain that Aψ can be chosen to be diagonal. We
also know that for each P ∈ P3, the diagonal terms corresponding to P
are equal and since any two elements can be joined by a chain of triple
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points, we deduce that all the diagonal terms are equal. Since ψ is an
automorphism, they are equal to ±1 and then ψ = ±1HC

Ryb

. Q.E.D.

Therefore we can prove the main result.

Theorem 4.23. The fundamental groups of the two complex real-
izations of Rybnikov’s combinatorics are not isomorphic.

Proof. Let G+ and G− be the fundamental groups of Rω,ω and
Rω̄,ω respectively. Any isomorphism ψ̃ : G+ → G− will produce an
automorphism ψ : HCRyb

≡ G+/G′
+ → G−/G′

− ≡ HCRyb
, that is, we

can consider ψ ∈ Aut1(CRyb). By Theorem 4.22, ψ induces an automor-
phism of CRyb. Since the identifications HCRyb

≡ G±/G′
± are made up to

the action of Aut(CRyb), we may assume that ψ induces ±1HC
Ryb

. More-
over, eventually exchanging Rω,ω (resp. Rω̄,ω) for Rω̄,ω̄ (resp. Rω,ω̄), see
Example 1.10 by means of the automorphism given by complex conju-
gation, we may assume that ψ = 1HC

Ryb

(Proposition 4.22). Therefore ψ̃
is a homologically trivial isomorphism between G+ and G−, something
which is ruled out by Theorem 3.8. Q.E.D.
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[23] Ş. Papadima and A. I. Suciu, Chen Lie algebras, Int. Math. Res. Not.,
21 (2004), 1057–1086.

[24] A. Di Pasquale, Links and complements of arrangements of complex pro-
jective plane algebraic curves, Ph. D. thesis, The University of Mel-
bourne, 1999.

[25] D. Rolfsen, Knots and links, second ed., Mathematics Lecture Series, 7,
Publish or Perish, Inc., 1990.

[26] G. Rybnikov, On the fundamental group of the complement
of a complex hyperplane arrangement, preprint available at
arXiv:math.AG/9805056.

[27] L. Traldi, Milnor’s invariants and the completions of link modules, Trans.
Amer. Math. Soc., 284 (1984), 401–424.

[28] L. Traldi, Linking numbers and Chen groups, Topology Appl., 31 (1989),
55–71.

[29] E. R. van Kampen, On the fundamental group of an algebraic curve,
Amer. J. of Math., 55 (1933).



34 E. Artal, J. Carmona, J. I. Cogolludo and M. A. Marco

[30] O. Zariski, On the problem of existence of algebraic functions of two
variables possessing a given branch curve, Amer. J. of Math., 51 (1929).

[31] O. Zariski, Algebraic surfaces, Springer, Heidelberg, 1971, 2nd. ed.

Departamento de Matemáticas
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On time averaged optimization of dynamic

inequalities on a circle

Alexei Davydov

Abstract.

We analyze the maximum averaged profit for one parameter fam-
ilies of dynamic inequalities and profit densities on a circle. Generic
singularities of the profit for stationary strategies are classified. They
are shown to be stable.

§1. Introduction

A smooth function F on the tangent bundle TM of a smooth man-
ifold M defines a dynamic inequality: a tangent vector v ∈ TM is an
admissible velocity of the inequality if F (v) ≤ 0. We consider only in-
equalities (called inequalities with locally bounded derivatives) such that
the set of admissible velocities over any base point of M is compact.
We identify the space of inequalities with the space of functions F . In
particular, a family of inequalities is a family of functions.

An admissible motion is an absolutely continuous mapping t �→ x(t)
of the time axis segment to the manifold M with the derivative ẋ(t)
belonging to the convex hull of the admissible velocities in the fiber over
x(t) (whenever the derivative exists).

Given a continuous profit density function f : M �→ R, an admissible
motion x, x = x(t), on the interval [0, T ], T > 0, provides the profit

P (T ) =

T∫
0

f(x(t))dt and the averaged profit A(T ) = P (T )/T.
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An important well known control problem is to find an admissible
motion providing the maximum averaged profit on the infinite horizon,
that is when T → ∞, [1], [7], [14]. Such a motion is called optimal.

V.I.Arnold suggested a new approach to the problem based on the
singularity theory methods. He proved that a constant map (=stationary
strategy): x(t) = x0 ∈ M for any t, or periodic motions can be optimal
[2] (see also [1], [3]). The case studied by Arnold is a reasonable model
for cyclic process with a prescribed trajectory in multidimensional phase
space. An example of this process is a motion along the closed route
with the velocity depending on a chosen control.

In the present paper we follow this approach and analyze an analog
of Arnold’s model [2] defining admissible velocities by a dynamic inequal-
ity. We classify generic singularities of the maximum averaged profit
provided by stationary strategies in one parameter families of dynamic
inequalities and profit densities on the circle. We use Γ-equivalence:
two germs of functions have the same singularity if their graphs are
diffeomorphic via a parameter diffeomorphism, that is via a difeomor-
phism, which respects the natural projection to the parameter sending
any fiber to a fiber. We prove also the stability of these singularities with
respect to small perturbations: an object has stable singularity, if any
sufficiently close object has equivalent singularity and the corresponding
equivalence diffeomorphism can be taken close to the identity.

For multidimensional parameter or phase space the classification
problem remains open.

This paper was completed during my visit to Departamento de Ma-
temática Aplicada e Centro de Matemática de Universidade do Porto.
The author is very thankful to the staffs of the department for a good
scientific atmosphere and the nice working conditions and to Helena
Mena Matos for useful discussions.

§2. Classification of singularities

In this section the main results are stated. We consider only one
parameter families of inequalities and densities on the circle. The phase
variable and the parameter are denoted by x and p, respectively. A
generic or typical object is an object from an open dense subset of the
space of objects endowed with smooth or sufficiently smooth fine topol-
ogy.
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2.1. Stationary domain and shadows
Clearly, a point of the phase space is a stationary strategy if and

only if the zero level set of the dynamic inequality over this point con-
tains both non-positive and non-negative velocities. Denote by P− and
P+ the subsets of this level set which consists of non-positive and non-
negative velocities, respectively. Hence, the set of all stationary strate-
gies (=stationary domain) of an inequality is the intersection of the
images (=shadows)π(P−), π(P+) of these subsets parts the natural pro-
jection π : (x, ẋ, p) �→ (x, p) along the velocity axis.

We denote stationary domain by S and its intersection with the fiber
p = p0 by Sp0 .

Using the results of [4], [10], [11], [12], [13] on generic singulari-
ties of restrictions of projections to submanifolds and submanifolds with
boundary and taking into account that the sets P− and P+ have the
same boundary, we prove the following

Theorem 2.1. The germ of the stationary domain of a generic
dynamic inequality at any boundary point is fiber diffeomorphic to the
germ at the origin of one of the following (eight) sets

(1) 1)x ≥ 0; 2±) p ≥ ±x2; 3±) p ≥ ±|x|; 4±)x ≥ ±|p|; 5)x ≥ p|p|

Moreover the stationary domain of generic family is stable.

Remark 1. The theorem holds for a subset in the space of inequality
families which is open in fine C3-topology and dense in fine C∞-topology.

Theorem 2.1 is proved in Subsection 3.1

2.2. Maximum profit for stationary strategies
The maximum averaged profit As for stationary strategies is a so-

lution of the extremal problem

(2) As(p) = max
x∈Sp

f(x, p)

over the set of all stationary strategies for parameter value p.

Theorem 2.2. Any germ of the profit As for a generic pair of
families of inequalities and profit densities is Γ - equivalent to the germ
at the origin of one of the eight functions listed in the second column of
Table 1.

Remark 2. The third column of Table 1 contains more precise in-
formation on the equivalence used. Singularities 1–5 can be reduced
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Table 1
No Sing. Eq. Conditions
1 0 R+ unique optimal strategy either of

type 1) with fx �= 0 or an interior
one of S

2 |p| R+ unique optimal strategy either of
type 4−) or the competition of
two strategies with singularity 1

2− −|p| R+ unique optimal strategy of type
4+)

3 p|p| R+ unique optimal strategy of type
1) with fx = 0

4
√

p R+ unique optimal strategy of type
2+)

5 0, p ≥ 0 R+ unique optimal strategy of type
3+)

6
{

0, p < 0
1 +

√
p, p ≥ 0 Γ competition of two strategies

with singularity 1 and 4

7
{

0, p < 0
1, p ≥ 0 Γ competition of two strategies

with singularity 1 and 5

to normal form by a R+-equivalence, which is a particular case of Γ-
equivalence: the diffeomorphisms acts on each fiber just by a shift de-
pending on a parameter [5].

The fourth column contains description of the type of strategy, and
the type of singularity of the stationary domain from Theorem 2.1.

Theorem 2.2 is proved in Subsection 3.2.

§3. Proofs

Here Theorem 2.1 and Theorem 2.2 are proved sequentially.

3.1. Singularities of stationary domain
If a family of inequalities has no stationary strategies then this is

also true for any family of inequalities sufficiently close to the given one
in the fine C0-topology.

Consider the case when the stationary domain is not empty. The
zero level of a generic family of inequalities is non-critical. It is a smooth
(hyper)surface. The restriction τ of the natural projection π along the
velocity axis to this level is a proper map due to the imposed ”locally
bounded derivatives” condition.
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J. Mather’s theory for restrictions of projections [11] imply that for
a generic family of inequalities the map τ is LR-stable . Moreover, it
can have only Whitney fold and pleat singularities (as a map between
two dimensional manifolds [10]). Hence, in a generic case the set C of
critical values of the map τ is either empty or a smooth curve with cusps
and transversal self-intersections.

LR-stability and transversality theorems imply that in a generic case
the set C and its singularities take typical position with respect to the
natural fibering over the parameter space. Consequently, sets C for a
generic inequality and an inequality sufficiently close to it are parameter
diffeomorphic (via a diffeomorphism close to the identity). For all the
detailes which we omit here see [8], where a similar result is proven.

The stationary domain is the intersection of shadows of the sets P−
and P+. Clearly, for a generic family of inequalities, the boundary of
shadows belongs to the union of the set C and the intersection I of the
zero section ẋ = 0 with zero level of the family of inequalities. Similar
arguments show that in a generic case the union C∪I is also stable (with
respect to parameter difeomorphisms). So, generic stationary domain
and its local singularities are stable. Now we classify these singularities.

According to [10], a generic shadow of two dimensional manifold
with boundary near any its boundary point in appropriate smooth local
coordinates u, v takes the form of one of the three sets

a)u ≥ 0 or b) v ≤ |u|, or else c) v ≥ u|u|

near the origin.
The first singularity occurs either at a Whitney fold critical point

of the map τ outside the zero section ẋ = 0, or at a regular point of the
map τ which belongs to the zero section.

For a generic family of inequalities, the second singularity is a transver-
sal superposition of two singularities of the first type. Finally, the third
singularity occurs at a Whitney fold critical point of the map τ which
belongs to the zero section ẋ = 0.

Hence, the first and the third singularities are local (completely
defined by the germ at a single point of the zero level of the family
of dynamic inequalities), and the second singularity is defined by two
germs.

To classify generic singularities of stationary domain one needs to
study the singularities of the intersection of shadows of the subsets P+

and P−.
These intersections yield singularities a) - c)at the point which be-

longs to the interior of one of these shadows and to the boundary of the
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other. For a generic family of inequalities, we get a transversal superpo-
sition of these singularities when the point belongs to the boundaries of
shadows but its critical inverse images in the zero level of the family are
distinct. Due to the dimensions, only a superposition of two singularities
of first type with transversal intersection of the boundaries is generic.
In this case we obtain the normal form v ≥ |u| at the origin (up to a
diffeomorphism).

Singularity of the type c) appears simultaneously on the boundaries
of shadows of P− and P+. In a generic case, this is possible only when
the intersection of these shadow are defined by germ of the zero level
of the family of inequalities at the same point. Here the boundary of
the intersection of shadows is determined by the set I, as it is easy to
see. Hence, this gives normal form c) of the stationary domain (up to a
diffeomorphism).

Taking into account all possible different generic position with re-
spect to the natural fibering over the parameter of the singularities a)
- c) we get exactly the list (1) of the theorem (up to parameter diffeo-
morphisms).

Theorem 2.1 is proved.

3.2. Singularities of maximum profit
Without loss of generality one can think that some stationary do-

main with typical singularities from the list (1) is fixed. A boundary
point of the domain is called singular if at this point the singularity of
the boundary is not 1) from this list. Due to Theorem 2.1 singular points
of the boundary form a discrete set.

Lemma 3.1. For a generic pair of one parameter families of in-
equalities and densities the derivative of the family of densities along
the phase variable does not vanish at singular points of the boundary of
the stationary domain.

This lemma follows immediately from the stability of the stationary
domain and Thom transversality theorem. It implies

Corollary 1. For a generic pair of one-parametric families of in-
equalities and densities a singular point of the boundary of stationary
domain does not provide maximum averaged profit for stationary strate-
gies if at this point this domain has singularity 2−) or 3−) from the list
(1).

Corollary 2. For a generic pair of one parameter families of in-
equalities and densities and a singular point (x, p) of the boundary of
stationary domain the germ at the point p of the maximum averaged
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profit provided by stationary strategies which are sufficiently close to the
strategy (x, p) is the germ at the origin of one of the four functions

(3) 2+)
√

p; 3+) 0, p ≥ 0; 4±) ∓ |p|; 5) p|p|

up to R+-equivalence if at this point this domain has singularity 2+), 3+),
4±) and 5) from the list (1), respectively.

Thus to finish the proof of Theorem 2.2 one needs to study the
singularities of the maximum averaged profit for stationary strategies
which are provided either by

(a) an interior point of the stationary domain, or
(b) by a boundary point where the domain has singularity of type

1) from the list (1), or else
(c) by the competition of different stationary strategies.
Consider these three cases sequentially. For the first two cases let

(x0, p0) be the unique stationary strategy providing the profit As(p0).
Case (a). For a generic family f of profit densities with one param-

eter at least one of the derivatives fx, fxx and fxxx at any point is not
zero due to Thom transversality theorem. So if the strategy (x0, p0) is
an interior point of the stationary domain then at this point one has
to have fx = 0 and fxx < 0. Due to continuity of f and closeness of S
that implies that near the point p0 that maximum is provided by the
values of the family of densities on the set fx = 0. Due to implicit func-
tion theorem near the point (x0, p0) this set is smoothly embedded curve
x = X(p) with some smooth map X, X(p0) = x0, due to fxx(x0, p0) < 0.
Hence the germ (As, p0) is the germ of smooth function f(X(p), p) at
p0. So it is R+-equivalent to the germ of the zero function at the origin.

Case (b). Let the point (x0, p0) be the boundary point of the sta-
tionary domain with the singularity 1) from the list (1). Again due to
Thom transversality theorem at least one of the derivatives fx and fxx

does not vanish in a generic case.
When the derivative fx(x0, p0) is not zero then the germ (As, p0) is

the germ of the restriction of the family f to the boundary of the sta-
tionary domain near the point (x0, p0). Thus as above the germ (As, p0)
is the germ of a smooth function and it is R+-equivalent to the germ of
the zero function at the origin.

If the derivative fx(x0, p0) is zero then as above in the case of an
interior point the derivative fxx(x0, p0) has to be negative. Due to Thom
transversality theorem the differential of the restriction of the derivative
fx to the boundary do not vanish at the point (x0, p0) in a generic
case. Consequently the profit As near the point p0 is the maximum of
the restrictions of the density family to the boundary of the stationary
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domain and to the part of the curve fx = 0 of local maximums of the
densities that belongs to the stationary domain.

At the point p0 this boundary (the curve, respectively) is transversal
to the natural fibering over the parameter due to the type 1) of singu-
larity of the boundary (the inequality fxx(x0, p0) < 0, respectively).
Besides these boundary and curve do not tangent at this point because
the differential of the restriction of the derivative fx to the boundary do
not vanish at this point. That implies that the profit As has singularity
at the point p0 provided by discontinuity of the second derivative, and
the germ (As, p0) is R+-equivalent to the germ of function p|p| at the
origin.

Case (c). Due to multi jet transversality theorem in a generic case
for a value p0 of the parameter there can appear competition only of
two stationary strategies. Moreover the germ of the problem at one of
them s1 has to provide the singularity 1 from Table 1. For the other
strategy s2 the value of the profit density is either equal or greater then
one at the first. Otherwise there is no any competition. Consider these
two subcases consequently.

In the first subcase the germ of the problem at the other strategy has
to be also of type 1 from Table 1 due to multi jet transversality theorem.
Moreover at the value p0 the derivatives of best profits defined by the
germs of the problem at the strategies s1 and s2 are different. Hence
the competition gives singularity 2 from Table 1 up to R+-equivalence.

In the second subcase the best averaged profit As2 for stationary
strategies defined by the germ of the problem at the point s2 can not
provide the singularity 1 from Table 1, or the 4±) and 5) from the list (3).
Otherwise there is no any competition of strategies s1 and s2 at the point
p0. Thus at the point p0 the profit As2 can have up to R+-equivalence
only the singularity either 2+) or 3+) from the list (3). Consequently
the maximum averaged profit for stationary strategies has at the point
p0 the singularities 6 and 7 from Table 1, respectively.

The stability of singularities of maximum averaged profit for sta-
tionary strategies with respect to small perturbations of generic problem
follows from transversality theorems.

Finally, the stability of stationary domain up to small perturbation
of generic inequality follows from the LR-stability of the map τ [11] and
the stability of intersection of zero level of the inequality with the zero
section of tangent bundle.

Remark 3. Besides the well-known singularities |p|, max{0, 1+
√

p}
of competition of strategies [2], [5], [8], [9], in the problem studied only
one new generic singularity 7 from Table 1 appears. As we see above
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it is the result of the typical competition of the singularity 1 with the
singularity 5 from this table.
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Thom polynomial computing strategies.
A survey

László M. Fehér and Richárd Rimányi

Abstract.

Thom polynomials compute the cohomology classes of degen-
eracy loci. In this paper we use a simple example to review the
core ideas in different—mostly recently found—methods of comput-
ing Thom polynomials. Our goal is to show the underlying topol-
ogy/geometry/algebra without involving combinatorics.

§1. Introduction

Global topology can force singularities to occur. That is, in a family
of objects (where the ‘object’ can be a linear map, a map germ, a differ-
ential form, a diagram of maps, a variety, a stable bundle over a variety,
etc) some has to be singular because of the topology of the family. This
global aspect of singularities is encoded by their Thom polynomials.

Let G be a group acting on a vector space V , and let η be a G-
invariant subvariety. Then the Poincaré dual of η in equivariant coho-
mology is called the Thom polynomial of η, denoted by Tpη ∈ H∗

G(V ) =
H∗

G(point) = H∗(BG). Sometimes η is an open subset of a G-invariant
subvariety. Then we define Tpη := Tpη̄. Tracing back this definition
one finds the following topological statement: whenever a fiber bundle
E → X with fiber V and structure group G is given, the cohomology
class represented by the preimage S of the η-points under a generic sec-
tion is equal to the Thom polynomial of the bundle. That is, if V is
the collection of ‘objects’, G is a natural equivalence on them, η is the
collection of ‘singular objects’ then the mentioned sections are the ‘fam-
ilies of objects’ over the parameter space X , and S is the locus of points
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where the object is singular. Hence the knowledge of Thom polynomial
tells us the (cohomology class of the) locus of the singular points.

The determination of concrete Thom polynomials is often difficult.
What makes the case even worse is that Thom polynomial problems
come in natural infinite series, and the combinatorial organization of
calculating the infinitely many Thom polynomials at the same time often
conceals the actual topological method used. The goal of this paper is to
survey some Thom polynomial calculational methods without involving
combinatorics. Hence we will deal with just one concrete (quite trivial)
example, and show the calculation in five different ways.

Let G = GL3(C) × GL3(C) act on the vector space of 3 × 3 ma-
trices V =Hom(C3,C3), by (A, B) · M := BMA−1. Let Σ2 denote
the invariant set of matrices whose corank is 2, i.e. whose rank is
1. We will calculate the Thom polynomial of (the closure of) Σ2.
Hence Tp = TpΣ2 is a degree 4 polynomial in H∗(BGL2 × BGL2) =
Z[A1, A2, A3, B1, B2, B3] (degree of the Chern class Xi is i), or what
is the same, a degree 4 polynomial in Z[a1, a2, a3, b1, b2, b3] (degree of
the Chern root xi is 1), symmetric in a1, a2, a3 and in b1, b2, b3. Here
a1 + a2 + a3 = A1, a1a2 + a1a3 + a2a3 = A2, a1a2a3 = A3 and the same
for the B’s.

Theorem 1.1. TpΣ2 is

(1) c2
2 − c1c3,

where ci is the i’th Taylor coefficient of

1 + B1t + B2t
2 + B3t

3

1 + A1t + A2t2 + A3t3
,

that is TpΣ2 =

B2
2 − B2A1B1 + B2A

2
1 − 2B2A2 − A1B1A2 + A2

2 − B1B3+

(2) +A2B
2
1 + B1A3 + A1B3 − A1A3,

or in Chern roots, it is

(3) (b1b2+b1b3+b2b3)2−(b1b2+b1b3+b2b3)(a1+a2+a3)(b1+b2+b3)+. . .

In Sections 2-6 we will give 5 proofs. Before that we make two
preliminary remarks. One is that the geometric counterpart of giving
the Thom polynomial in Chern roots is that we restrict the group action
to the maximal torus. Because of the splitting lemma, this does not mean
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any loss of information about Tpη. The other remark is that when η
happens to be smooth in V (e.g. it is a coordinate subspace), then Tpη

is the Euler class of the representation normal to η in 0. This follows
from the definition. Some of the proofs below reduce the computation
to this special case.

§2. The restriction equations

In this method, when computing the Thom polynomial of η, one
needs to work with the simpler orbits (ones not contained in the clo-
sure of η). For such a ζ we pick a representative and find its stabilizer
subgroup Gζ ⊂ G. This inclusion induces a map BGζ → BG between
the classifying spaces, and in turn a homomorphism fζ : H∗(BG) →
H∗(BGζ).

Theorem 2.1. [14, Th. 2.4], [5, Th. 3.2] Let ζ not be contained
in the closure of η. Then the Thom polynomial of η vanishes at fζ .
Moreover, if the representation satisfies a technical condition (see [5,
3.4-3.5]), then in the expected degree, only integer multiples of the Thom
polynomial of η satisfy all these vanishing conditions.

In our situation Σ0 and Σ1 play the role of ζ, with representatives
the identity matrix and diag(1, 1, 0), respectively. Now GΣ0 and GΣ1

could be determined explicitly, but we will only compute their maximal
tori—this is enough, since H∗(BG) injects into H∗(BT ) in general. Thus
we will take

GΣ0 = {(diag(x, y, z), diag(x, y, z)) : x, y, z ∈ C∗},

GΣ1 = {(diag(x, y, u), diag(x, y, v)) : x, y, u, v ∈ C∗}.

From these the induced map can be read, as follows:

fΣ0 : Z[A1, A2, A3, B1, B2, B3] → Z[x, y, z]

maps both Ai and Bi to the i’th elementary symmetric polynomial of
x, y, z. The map

fΣ1 : Z[A1, A2, A3, B1, B2, B3] → Z[x, y, u, v]

maps Ai to the i’th elementary symmetric polynomial of x, y, u, while
maps Bi to the i’th elementary symmetric polynomial of x, y, v.

We need the intersection of the kernels of these two homomorphisms.
In fact, one factors through the other, so we only need ker fΣ1 , which
turns out (Macaulay2) to be an ideal generated by polynomials in degrees
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4, 5 and 6. The degree 4 generator, A2
2−A1A3−A1A2B1+A3B1+. . . thus

has to be ± the Thom polynomial of Σ2. The sign can be determined
by the so-called principal equation of [5, Th. 3.5], which states that the
fη image of the Thom polynomial of η is the equivariant Euler class of
η. In our case

GΣ2 = {(diag(x, u, v), diag(x, w, z)) : x, u, v, w, z ∈ C∗},

and fΣ2 is analogous to the above. The normal slice to Σ2 at diag(1, 0, 0)
is the space of matrices whose 1’st row and column is 0. Therefore the
equivariant Euler class is (w − u)(w − v)(z − u)(z − v). Computation
shows that this is the image of the above polynomial at fΣ2 , so the above
polynomial is the sought Thom polynomial.

Remark 2.2. For a reference of this method as well as many ap-
plications see [5], [14], [10]. The restriction method is very effective if
the representation has finitely many orbits. When dealing with natu-
ral infinite series, a connection with various resultant formulas can be
established, see [3].

§3. Resolution and integral

In the following method it is assumed that η is a cone in V , and,
instead of η ⊂ V , we consider the projectivization Pη ⊂ PV . The
starting point is looking for an equivariant resolution of Pη considered
as a map ϕ : R → PV .

Theorem 3.1. [6, Th. 3.1] Let αi ∈ H∗(BT ) be the weights of the
representation of G on V . Denote by q the polynomial

∏
(x + αi) −

∏
αi

x

in the equivariant cohomology ring

H∗
G(PV ) =

H∗(BG)[x]∏
(x + αi)

.

Then the Thom polynomial of η is
∫

R

ϕ∗(q).

In our case PΣ2 = P2 × P2 is already smooth, hence ϕ : R = P2 ×
P2 → P8 is the Segre embedding. The ring H∗

G(P2×P2) is H∗(BG)[y, z]
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modulo the two relations r1 :=
∏3

i=1(y − ai) and r2 :=
∏3

i=1(z + bi).
Since ϕ∗(x) = y + z (x, y, z are the classes of hyperplane sections of
P8 and the two copies of P2’s, respectively) we have that the Thom
polynomial of Σ2 is

∫
P2×P2

∏3
i=1

∏3
j=1(y + z − ai + bj) −

∏3
i=1

∏3
j=1(−ai + bj)

y + z
.

Integration means taking the top coefficient, i.e. the coefficient of yz.
Hence the procedure is to consider the integrand above, use the relations
r1, r2 to reduce its (y, z)-degree to (1, 1), and take the coefficient of
yz. Note that taking the minimal degree representative in a factor ring
is automatically done in computer algebra packages, which makes this
method very easy to code.

Remark 3.2. For a reference of this method, see [6]. It is most
effective if we can find a resolution with simple cohomology ring. In these
cases the integration part is often encoded as an interpolation problem,
so the combinatorics of divided differences enters the calculations.

§4. Resolution and integral via localization

The method presented in this section is not really a new method,
it’s rather an improvement of that of Section 3. The novelty is that
we compute the integral

∫
R ϕ∗(q), which is the Thom polynomial, by

localization techniques. This is a vital help when R is more complicated
than a projective space or Grassmannian.

We will use the Atiyah-Bott localization formula [1], as follows. Let
a torus T act on a manifold with fixed point set the disjoint union of some
Fi’s. Then the integral of an equivariant cohomology class α ∈ H∗

T (M)
can be ‘localized’: ∫

M

α =
∑

i

∫
Fi

j∗i α

e(νi)
,

where ji : Fi ⊂ M is the embedding and νi is its normal bundle. When
the fixed point set is discrete we can integrate by just “counting”:

(4)
∫

M

α =
∑

i

j∗i α

e(TFiM)
.

In our case R is P2 × P2, with 9 fixed points P1,1 := ((1 : 0 : 0), (1 :
0 : 0)), P1,2 := ((1 : 0 : 0), (0 : 1 : 0)), etc. It will be convenient to
use a different form of q ∈ H∗

G(P8), namely q = −
QQ

(−ai+bj)
x (recall
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that H∗
G(PV ) = H∗(BG)[x]/

∏ ∏
(x − ai + bj)). Then the term in (4)

corresponding to e.g. P1,1 is

L1,1 :=
3∏

i=1

3∏
j=1

(−ai+bj)
1

(−a1 + b1) · (a2 − a1)(a3 − a1)(b2 − b1)(b3 − b1)
.

The Thom polynomial is then the sum of 9 similar terms, or

TpΣ2 =
1
4

∑
σ∈S3×S3

Lσ(1,1).

Remark 4.1. See [7] for a general reference. This method is most
effective if we can simplify the resulting sum using algebra (e.g. La-
grange interpolation). In cases like ours, when the resolution is trivial,
the localized integral formula coincides with the Dusitermaat-Heckman
formula.

§5. Gröbner degeneration

The goal of this method is to “perturb” Σ2 in Hom(C3,C3) without
changing its Thom polynomial, and eventually degenerate it to another
set, whose Thom polynomial is trivial to compute. The first obstacle
is that Σ2 can not be perturbed at all to another G-invariant subset.
However, we can restrict the group action to the maximal torus T with-
out losing any Thom polynomial information, and there are lots of T -
invariant perturbations.

Let us consider the following example. The torus GL1(C)×GL1(C)
acts on C3 = C{x, y, z} by (α, β).(x, y, z) = (α2x, β2y, αβz). Then the
cone xy−z2 is invariant. But so is xy−t ·z2 for every t ∈ R. In the t = 0
limit case we get xy = 0, which is the union of two planes: x = 0 with
Thom polynomial (2b)(a+b), and y = 0 with Thom polynomial (2a)(a+
b) (see the last paragraph of the Introduction). It is easy to believe that
the perturbation did not change the Thom polynomial, hence the Thom
polynomial of the cone is (2a)(a + b) + (2b)(a + b).

What are the “legal” perturbation (where the Thom polynomial
does not change), and how to imitate this process when the variety has
higher codimension? The theory of Gröbner basis gives an answer (for
a general reference for Gröbner basis theory see e.g. [4, Ch. 15]).

Let I be the ideal of the torus-invariant variety X . Fix a term-order,
and consider in(I), the ideal generated by the initial terms of polyno-
mials in I. Then the variety (scheme) corresponding to in(I) is a flat
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deformation of X, hence their Thom polynomials are the same. (Well,
one has to be a little careful about the multiplicities of the irreducible
components of in(I).)

Note that if we have a Gröbner basis fi of I, then the leading terms
of the fi’s generate in(I). In our case

I = I(Σ2) = (a11a22 − a12a13, a11a23 − a13a21, . . .)

(the 9 2 × 2 minors) is given by a Gröbner basis with respect to e.g.
the “graded reverse lexicographic” term order generated by a11 > a12 >
a13 > a21 > . . .. Thus

in(I) = (a12a13, a13a21, . . .)

(the ‘antidiagonals’ of the 9 2× 2 minors). A computer algebra package
(e.g. Macaulay2 “primaryDecomposition in(I)”) can be used to find the
primary decomposition of in(I) which is:

(a12, a13, a22, a23), (a12, a13, a23, a31),

(a13, a21, a23, a31), (a12, a13, a31, a32),

(a13, a21, a31, a32), (a21, a22, a31, a32).

They all describe linear spaces, whose Thom polynomials are obtained
by the last remark of the Introduction, hence the Thom polynomial of
Σ2 is the sum of the following polynomials

(b1−a2)(b1−a3)(b2−a2)(b2−a3), (b1−a2)(b1−a3)(b2−a3)(b3−a1),

(b1−a3)(b2−a1)(b2−a3)(b3−a1), (b1−a2)(b1−a3)(b3−a1)(b3−a2),

(b1−a3)(b2−a1)(b3−a1)(b3−a2), (b2−a1)(b2−a2)(b3−a1)(b3−a2),

which turns out to be (3).

Remark 5.1. The theory behind this method is worked out in [11],
see also [12]. An advantage is that the Thom polynomial is obtained
as a sum with positive coefficients, which is sometimes important in
enumerative geometry. When working with natural infinite series one
meets subtle combinatorics (e.g. the “pipe dreams” of [12]).
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§6. Porteous’ method of embedded resolution

As a preparation we study Gysin maps associated with Grassmann
bundles. Let E3 → X be a bundle of rank 3 and π : Gr2(E3) → X
its associated Grassmann-2 bundle (ie. we replace the fiber over e ∈ E
from Ee to Gr2(Ee).) The goal is to understand the Gysin map π!

on some naturally defined cohomology classes of Gr2(E3)—namely the
Chern monomials of the tautological 2-bundle S on Gr2(E3). We claim
that π!(cλ1,λ2)(−S) = cλ1−1,λ2−1(−E). Here cu,v is the determinant of

the matrix
(

cu cu+1

cv−1 cv

)
. Moreover, if F is any other bundle on X , and

we denote its pullback to Gr2(E3) also by F , then π!(cλ1,λ2)(F − S) =
cλ1,λ2(F − E), for a recent reference see [8, p.43].

With this knowledge we can calculate TpΣ2 as follows. Consider
two 3-bundles E and F over X , and a generic homomorphism h be-
tween them. We want to resolve the closure of Σ2(h) ⊂ X . Let
π : Gr2(E) → X be as above and consider the bundles S, E, F over
Gr2(E). Let h̄ : S → F be the composition of the natural map S → E
with the pullback of h. The 0-points of h̄ can also be considered as Σ2(h̄).
Now one fact [Port] is that the genericity of h implies that h̄ is transver-
sal to the 0-section of Hom(S, F ), so we know the cohomology class
[Σ2(h̄)] = e(Hom(S, F )). The other fact [Port] is that π restricted to
Σ2(h̄) is a resolution of Σ2(h), thus π![Σ2(h̄)] = [Σ2(h)], what we want to
compute. In the light of the above description of π! we only need to write
e(Hom(S, F )) as a linear combinations of cλ1,λ2(F−S)’s. The Euler class
e(Hom(S, F )) is the product of differences of Chern roots of F and S,
which is the same as c3,3(F −S). Hence π!(e(Hom(S, F )) = c2,2(F −E),
which is (1), what we wanted to prove.

Remark 6.1. This method was historically the first, applied in
many different situations, see [13], [15], [9] (singularities), works of Pra-
gacz, Fulton, Harris-Tu, Buch and others (algebraic geometry, see [8]
for references and e.g. [2] for a recent application). The effective us-
age of this method requires the handling of the combinatorics of Gysin
homomorphisms, Schur and Schubert polynomials, Young tableaux, etc.
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The complex crystallographic groups and

symmetries of J10

Victor Goryunov and Show Han Man

Abstract.

We show that finite order symmetries of the function singularity
J10 give rise to some of complex crystallographic groups listed in
[12]. The groups are extracted from the equivariant monodromy of
the function. This is the first appearance of affine reflection groups
in a singularity context.

A series of papers [8, 9, 10, 5] has related finite order symmetries of
simple function singularities to certain finite unitary reflection groups of
Shephard and Todd [13]. This paper makes the next step in the same
direction: we study finite order symmetries of one of Arnold’s parabolic
singularities [1, 3, 4], J10, and construct complex crystallographic groups
from the relevant monodromy.

Our approach is similar to that introduced in [8]. First of all, the
cyclic group action on the homology of a two-dimensional symmetric Mil-
nor fibre splits the homology over C into character subspaces Hχ. In a
number of cases, as classified in [11], this splits the two-dimensional ker-
nel K of the intersection form between two subspaces Hχ corresponding
to two distinct conjugate characters: K = Kχ1 ⊕ Kχ2 . In the corre-
sponding character subspaces in the cohomology, we consider the affine
hyperplanes of all 2-cocycles taking a fixed non-zero value on a fixed
non-trivial element of Kχi . The equivariant monodromy on such a hy-
perplane turns out to be a complex crystallographic group.

Altogether our construction yields seven different affine groups. A
question which naturally arises from this paper is that of existence of
any version of a crystallographic group discriminant which gives hyper-
surfaces isomorphic to the discriminants of the symmetric J10 functions,
similar to the relation between the discriminants of the Shephard-Todd
groups and of the symmetric ADE singularities observed in [8, 9, 10].
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The structure of the paper is as follows.
Section 1 introduces the affine complex reflection groups involved.

Section 2 recalls, from [11], the list of symmetries of the J10 singulari-
ties which may lead to monodromy realisations of the groups. Here we
also formulate our main result on relating the singularities and crystal-
lographic groups. The result is then proved in Section 3. The proof
is based on the consideration of the Dynkin diagrams of the symmetric
singularities, which therefore may be treated as an analog of the affine di-
agrams of Weyl groups for the Shephard-Todd groups concerned. While
the diagrams for the invariant functions have been obtained in [11], the
diagram of the only equivariant function appearing is constructed in
Section 4.

Finally, in Section 5, we give an example of a complex crystallo-
graphic group which is not contained in Popov’s tables in [12]. This
reopens Borel’s problem of complete classification of complex crystallo-
graphic groups.

§1. The complex crystallographic groups

An affine reflection in C
n is an affine unitary transformation iden-

tical on a hyperplane, which is called the mirror of the reflection. A
group generated by such reflections and having a compact fundamental
domain is called complex crystallographic. Such groups were classified
by V. L. Popov in [12].

Let L ⊂ Un be the linear part of a complex crystallographic group
W , that is the image of W under the natural map W → Un. Of course,
L must be a Shephard-Todd group. We denote by T the maximal trans-
lation subgroup of W . Then W is an extension of L by T :

0 → T → W → L → {id}

is an exact sequence. Unlike the real case, W may not be the semi-direct
product of its linear and translation parts. However, all the groups aris-
ing in this paper from our singularity constructions are such products.

We shall now list the groups involved. Mirrors of L will be identified
by their normals which we shall call roots .

The linear parts of the groups we will need are the Shephard-Todd
groups L = G(6, 1, 2), G3(6), G5, G8, G26, G31, G32. Dynkin diagrams
of these groups are given in Figure 1. The vertex set of a diagram there
represents a set of generating reflections. Each vertex is a unit root and
is marked with the order of the reflection, order 2 traditionally omitted.
An edge a → b is equipped with the hermitian product 〈a, b〉. As usual,
ω = e2πi/3. The edge orientation is omitted if the product is real, and
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there is no edge at all if the roots are orthogonal. We borrow the G31

diagram from [10] (cf. [6]). All the other diagrams were constructed
using the roots from Table 2 of [12] (see also [6]). The rank of the group
G31 is 4. The rank of any other group is equal to the number of vertices
in its diagram.

Figure 1. Dynkin diagrams of the Shephard-Todd groups.
All the roots are unit.

The crystallographic group with L = G26 arising in our situation
will be shown to be Popov’s [K26]2. Its translation subgroup T is the
lattice spanned by the L-orbit of a non-zero root of any of its order 2
reflections.

The other groups will be Popov’s [G(6, 1, 2)], [K3(6)], [K5], [K8],
[K31] and [K32] respectively. For each of them, the lattice T is the span
of the L-orbit of any non-zero root of L. For all of these groups, except
for [K5], this leaves no ambiguity in the choice since L �= G(6, 1, 2) is
transitive on the set of its mirrors, while both obvious possibilities for
G(6, 1, 2) give the same lattice. As for [K5], when the mirror set consists
of two G5-orbits (the lattice choice between which clearly leads to the
same crystallographic group), we will be a bit more specific about the
preferable orbit later.

All our crystallographic groups have the conjugate versions, with i
and ω replaced by their conjugates. However, the conjugations yield the
same groups.

§2. Automorphisms of J10

Now we introduce the singularities we will be dealing with.
Let f be a holomorphic function-germ on (Cn, 0). Consider a diffeo-

morphism-germ g of (Cn, 0) sending the hypersurface f = 0 into itself.
It multiplies f by a function c not vanishing at the origin. In what
follows g will have a finite order, so c is just a constant, a root of unity.
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Consider the space O(g, c) of all holomorphic function-germs on
(Cn, 0) multiplied by c under the action of g. The group Rg of biholo-
morphism-germs of (Cn, 0) commuting with g acts on O(g, c). The cor-
responding equivalence is a geometric equivalence in the sense of Damon
[7]. Therefore, the base of an Rg-miniversal deformation of f in O(g, c)
is smooth and such a deformation can be constructed in the standard
way [7, 4].

Definition 2.1. An automorphism g of a hypersurface f = 0 is
called smoothable if an Rg-versal deformation of function f contains
members with smooth zero sets.

In [11] the list of all smoothable quasihomogeneous automorphisms
of all the members of the function family

J10 : x3 + ax2y2 + xy4 , a �= 4 ,

was obtained. Moreover, a further selection of cases with a potential to
yield complex crystallographic groups was carried out in [11].

The selection was based on the construction of an affine reflection
group from a semi-definite hermitian form with a one-dimensional ker-
nel, which we briefly mentioned in the introduction. For this, we lift a
smoothable automorphism of a J10 curve to a smoothable automorphism
g of its one-variable stabilisation. As a result, the second homology of the
symmetric Milnor fibre in C3 splits into a direct sum ⊕χHχ of character
subspaces, so that g acts on an individual summand as a multiplication
by the root of unity χ, χorder(g) = 1.

We want to split the 2-dimensional kernel of the J10 intersection
form between two different Hχ. On the other hand, since we are going
to extract a crystallographic group from the monodromy and since such
a group has at least two generators, we need the discriminant of an
Rg-miniversal deformation of our function to be at least of multiplicity
2. Smoothable automorphisms of J10 satisfying these two requirements
were called interesting in [11].

In fact, an automorphism g is used just to split the homology and
does not affect any monodromy on the summands Hχ obtained. There-
fore, we should not distinguish between automorphisms producing same
splittings. In particular, we should not distinguish between automor-
phisms generating the same cyclic group. As it was shown in [11], there
are just 8 different interesting symmetries of the J10 functions modulo
such identifications. We recall them in Table 1. Notice that none of the
cases contains the modulus.

The table contains seven invariant and one equivariant (J10/Z4) sin-
gularities. In the table, the versal monomials are those whose addition
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with arbitrary complex coefficients to f gives an Rg-miniversal deforma-
tion. In all the cases, their number is equal to the dimension of an Hχ

on which the intersection form degenerates. The affine groups are those
we are going to construct on such character subspaces. The notation of
the symmetric singularities in the last column is in the spirit of that in
[9]. Participation of a Weyl group in the notation (including the Weyl
G2) indicates that the discriminant of a symmetric singularity is that of
the Weyl group, and hence the monodromy groups on the Hχ and the
corresponding crystallographic group are in fact representations of the
relevant generalised braid group, with certain powers of the generators
set to be the identities.

Table 1. Symmetric J10 singularities

f g : x, y, z �→ |g| versal
monomials

kernel
χ

affine
group

notation

x3 ωx,ωy, z 3 1, y3, xy2 ω, ω [G(6, 1, 2)] J10|Z3

+y6

+z2 x,−ωy, z 6 1, x −ω,−ω [K3(6)] A
(6)
2

ωx,−ωy, z 6 1, xy2 −ω,−ω [K3(6)] G
(6)
2

ωx,−y, z 6 1, y2, y4 −ω,−ω [K5] B
(3,3)
3

x, ωy, z 3 1, x, y3, xy3 ω, ω [K26]2 F
(3)
4

ωx, y, z 3 1, y, y2, y3, y4 ω, ω [K32] A
(3)
5

x3 x, iy, z 4 1, x, y4 i,−i [K8] C
(4)
3

+xy4

+z2 −x,−y, iz 4 y, y3, y5, x, xy2 i,−i [K31] J10/Z4

Theorem 2.1. Consider an automorphism g of a J10 function singularity
from the table. Let Hχ be its character subspace in the second homology of a
g-symmetric Milnor fibre, on which the intersection form has a non-trivial
kernel. Let Γ be a hyperplane in the space dual to Hχ formed by all the
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cohomology classes taking a fixed non-zero value on a fixed element of the
kernel. Let π1 be the fundamental group of the complement to the discriminant
in the base of an Rg-versal deformation of the function. Then the monodromy
group induced by π1 on Γ is the complex crystallographic group of the table.

The proof of the theorem is given in the next section. It will use the
Dynkin diagrams of the singularities for the subspaces Hχ of the table. The
diagrams are given in Figure 2. Their elements represent both the degenerate
intersection forms on the Hχ and the relations for the corresponding Picard-
Lefschetz operators. Namely:

(1) the vertex set is a distinguished set of vanishing χ-cycles, that is of
elements of Hχ which are symmetric analogues of Morse vanishing
cycles (see [8, 9, 10] for details, cf. [2]);

(2) beside each vertex the self-intersection number of the χ-cycle is
given;

(3) non-orthogonal χ-cycles are joined by an oriented edge labelled with
the intersection number similar to how this was done for the group
diagrams;

(4) however, the edge orientation is omitted in all the tree diagrams
since the χ-cycles are defined up to multiplication by powers of χ
and up to a choice of their own orientation (for the same reason
each tree diagram serves both conjugate values of χ);

(5) inside each vertex the order of the corresponding Picard-Lefschetz
operator is written (order 2 omitted);

(6) the multiplicity of an edge between vertices a and b illustrates the
length of the braiding relation between the Picard-Lefschetz opera-
tors:

• commutativity if there is no edge;
• hahbha = hbhahb if the edge is simple;
• (hahb)

2 = (hbha)2 for a double edge;
• (hahb)

3 = (hbha)3 if the edge is triple.

In relation to Theorem 2.1, the Picard-Lefschetz operators will yield the
generating affine reflections of the crystallographic groups.

The “skeleton” of a diagram with a Weyl group in the notation is the
Dynkin diagram of the Weyl group. This reflects the fact that the discriminant
of the symmetric singularity is isomorphic to that of the Weyl group.

For all the invariant cases, the diagrams of Figure 2 were constructed in
[11] following the methods of [8, 9, 10] in a very straightforward way. The
J10/Z4 diagram will be obtained in Section 4.

Remark 2.1. The only difference between two character subspaces Hχ

for each of the singularities with tree diagrams comes out in the actual Picard-
Lefschetz operators. Each of them is a transformation

(1) ha : c �→ c − (1 − λ)〈c, a〉a/〈a, a〉
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Figure 2. Dynkin diagrams of symmetric J10 singularities.

defined not only by its root a, but also by the eigenvalue λ �= 1. For the

operators of order greater than two, λ = −χ for J10|Z3 and B
(3,3)
3 , and λ = χ

otherwise. Since the characters come in conjugate pairs, this means that the
realisations of the crystallographic groups come in conjugate pairs too.

Definition 2.2. If the hermitian form 〈·, ·〉 has a one-dimensional kernel,
a transformation (1) will be called a pseudo-reflection provided a is not in the
kernel.

Remark 2.2. The diagrams G
(6)
2 and B

(3,3)
3 are the results of folding of

the diagrams J10|Z3 and A
(3)
5 in two, similar to how the Bk diagram can be

obtained from that of A2k−1 (see [2], cf. [8, 9, 10]). This corresponds to the
symmetry groups of the second pair of singularities being index two subgroups
in the symmetry groups of the first pair.

§3. Proof of Theorem 2.1

We start with some general considerations and then apply their results in
a case-by-case study.
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3.1. Hermitian forms of corank 1

Let e0, e1, . . . , ek be coordinate vectors in Ck+1. Consider a semi-definite
hermitian form eq on Ck+1 with a one-dimensional kernel K spanned by ea =
e0 + a1e1 + · · ·+ akek, where not all of the constants aj are zero. In the basis
{ej}, the form is given by the matrix

eQ = (eqij) = (eq(ei, ej)) =

0

@

eq00 Q
T

0

Q0 Q

1

A

where Q is a k × k non-degenerate Hermitian matrix, eq00 = eq(e0, e0) and Q0

is the column of products of the ei>0 with e0. From the form of the kernel we
see that

Q0 = −Qa and eq00 = aT Qa

where a = (a1, . . . , ak)T is the truncated kernel vector . Matrix Q is actually
the matrix of the non-degenerate hermitian form q induced by eq on Ck+1/K �
C

k and written in the basis formed by the projections of the ej>0.
Assume that for each of the basic vectors ej we have a pseudo-reflection

on Ck+1 with the eigenvalue λj �= 1:

ehj : c �→ c − (1 − λj)
eq(c, ej)

eq(ej , ej)
ej .

The matrix of the transformation eh0 in our basis is

„

λ0 −β0Q
T
0

0 Ik

«

, where β0 = (1 − λ0)/eq00 .

The matrices of the other ehj are similarly constructed from the columns of eQ

and differ from Ik+1 in the jth rows only. The pseudo-reflections ehj>0 project
to Ck+1/K to the reflections hj preserving the form q there.

Since all the ehj fix K, in the dual space Ck+1,∗ of linear functionals

on Ck+1, the dual operators eh∗
j send each hypersurface formed by all the

functionals taking a fixed value on ea ∈ K into itself.
Take one of such hyperplanes,

Γ = {α0 + α1a1 + · · · + αkak = b} ⊂ Ck+1,∗ , b �= 0,

where the αj are the coordinates dual to those we had on Ck+1. Let h∗
0 be

the restriction of eh∗
0 to Γ. Then, in the coordinates ¸ = (α1, . . . , αk)T on Γ

we have

h∗
0(¸) =

`

−β0Q0 Ik

´

„

b − aT¸
¸

«

= AT
0¸− β0b Q0

where AT
0 = Ik + β0Q0 aT .
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All the h∗
j>0 are homogeneous in ¸ and their matrices AT

j are obtained

by deleting the first row and first column of the ehj matrices and then taking
the transposes. The deletion here means passing to the matrices of the hj ,
and since these reflections preserve the form q, we have

AT
j QAj = Q =⇒ Q

−1
= (AT

j )T Q
−1

(AT
j ) .

Thus, the reflections h∗
j>0 preserve the hermitian form ¸T Q

−1
¸ on Γ. It is

easily checked that the same is true for the linear part AT
0 of h∗

0 and that,
moreover, the translation vector of h∗

0 is a λ0-eigenvector of AT
0 . Therefore,

h∗
0 is indeed an affine reflection.

Let us now pass to the coordinates ¸′ = Q−1¸ on Γ. Then

¸T Q
−1
¸ = ¸′T Q¸′ and h∗

0(¸
′) = Q−1(AT

0 Q¸′ − β0bQ0)

= A
−1
0 ¸′ + β0ba .

Similarly, the matrices of all the other reflections become the A
−1
j now. Thus,

in the coordinates ¸′, we have ended up with reflections (one of them, h∗
0,

affine) preserving the hermitian form with the matrix Q.

Conclusion. Omit the leftmost vertex from each singularity diagram
of Figure 2. It is easy to see that the subdiagrams obtained produce on the
Hχ involved the monodromy groups coinciding with the linear parts L of the
crystallographic groups of Section 1. Indeed orienting all non-oriented edges
from the left to the right, changing the sign of the hermitian form (this move
does not affect any reflections) and dividing the roots by positive numbers to
make them unit we immediately get from our subdiagrams to the diagrams of
Figure 1.

The only point remaining now for a verification of Theorem 2.1 is to check
that the truncated kernel vector in each case is normal to a relevant mirror of
L (as in the discussion of the lattices in Section 1). We carry this out in the
next subsection.

In the [K31] case the rank 4 group G31 is generated by 5 reflections, but
this makes no difference in the approach.

Remark 3.1. In terms of the singularities, the vertex omission mentioned
above corresponds to the adjacencies of the symmetric J10 functions to the
symmetric ADE singularities of [8, 9, 10].

3.2. The case-by-case analysis

For all the singularities, we assume that the vertices of the diagrams of
Figure 2 are ordered from the left to the right starting with 0 (for J10/Z4 the
4-valent vertex will be number 5). The components of the truncated kernel
vector a are ordered respectively. The markings of all non-oriented edges are
understood as the intersection numbers eqj,j+1 = 〈ej , ej+1〉. The Aj>0 are
the matrices of the reflections hj on Ck corresponding to its basic vectors ej .
Their determinants are assumed to be −1, ω, i, −ω.
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The one-dimensional cases A
(6)
2 and G

(6)
2 are trivial.

Elementary calculations for the other tree diagrams give the following.

J10|Z3 : a = (2, 1) = A3
1e2

B
(3,3)
3 : a = (ω − 1,−2ω) = ωA−1

1 A2e1

C
(4)
3 : a = (2,−1 − i) = (1 + i)A−1

1 A2e1

F
(3)
4 : a = (2, 3, ω − 1) = A1A2A

−1
3 A2e1

A
(3)
5 : a = (ω − 1,−2ω, ω − ω,ω) = ωA−1

1 A2A3A
−1
4 A3A2e1

Notice that the symmetry of the G5 diagram is destroyed in the B
(3,3)
3 case

as it was promised in Section 1 and assumed by the diagram of Figure 2: the
translation lattice of this realisation of [K5] is spanned by the G5-orbit of a
multiple of e1, not of e2.

For J10/Z4, χ = i, we get a = (2, 3, 2(1 − i), 1 − i). According to [13, 6],

for the ej>0 in C4 with the diagonal hermitian form −
P4

s=1 |zs|2 we can take

e1 = (2, 0, 0, 0) , e2 = (−1,−1,−1,−1) , e3 = (0, 1 + i, 0, 1 + i) ,

e4 = (0,−1 − i, 1 + i, 0) , e5 = (−1, i,−1, i) .

This gives a = (1,−1,−1, 1) which is also a root of G31 [13, 6]. Passing to
χ = −i conjugates a and the ej settings, but gives the same affine group since
the mirror set of G31 is sent by the conjugation into itself.

This finishes the proof of Theorem 2.1.

§4. The J10/Z4 Dynkin diagrams

We shall now construct Dynkin diagrams for the J10/Z4 singularity start-
ing with the two-variable case and then passing to three variables. This in-
volves two sets of parallel objects differing just by the absence or presence of
the square of an extra variable z. In order not to repeat the definitions and
settings twice, all the notations for the 3-variable case will be the same as for
two variables, but with the tilde on the top. This will be slightly inconsistent
with the notations used in the previous sections, but will not be confusing.

4.1. The plane curve

All through this subsection g = −id will be the central symmetry of
C

2, and we shall be working with g-equivariant holomorphic functions on the
plane, that is series containing monomials of odd degrees only: f(−x,−y) =
−f(x, y).

Starting with a g-equivariant function-germ f with an isolated singularity
at the origin, we slightly deform it in a generic (but still equivariant) way to
a function f∗ with a smooth zero set. Localising this set in an appropriate
ball as it is routinely done in singularity theory, we obtain a curve V∗, a
symmetric Milnor fibre of the germ f . For a generic line in the function
space, to define vanishing cycles on V∗, one naturally takes the family of
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levels f∗ + α� = 0, where � is a generic linear function on the plane and α a
complex parameter. Morse 1-cycles in this family vanish in symmetric pairs,
e1 = ge0. Such a pair defines vanishing χ-cycles in the character spaces of g
in H1(V∗) = Hχ=1 ⊕ Hχ=−1:

(2) e0 + e1 ∈ Hχ=1 and e0 − e1 ∈ Hχ=−1 .

Now take a system of paths on Cα starting at the origin and leading to the
critical values of α. Assume they have no mutual- and self-intersections, that
is the system is distinguished . Then the corresponding distinguished systems
of vanishing χ-cycles generate the Hχ [10]. However, these cycles are no longer
independent: we get too many critical values of α.

For the J10/Z4 function, it is convenient to start with a sabirification,
that is a perturbation with all critical points real and all saddles on the zero
level, rather than with a complete smoothing of the zero set. So we take the
one-parameter family

fα = x(x + y2 + y − 1)(x − y2 + y + 1) + αy .

The zero levels for two values of α, zero and sufficiently small positive α∗,
are shown in Figure 3. The point α∗ will now be our base point. The level
fα∗ = 0 will be denoted V∗, and all the cycles will be constructed in H1(V∗).

Figure 3. The curve f0 = 0 (thin) and its smoothing V∗ =
{fα∗ = 0}.

There are four distinct critical values of α: zero (triple), one positive
(greater than α∗) and a pair of conjugates with the real part negative (see
Figure 4a). The cycles vanishing on V∗ along the real paths shown in Figure
4a may be traced in Figure 3. These are the Aj , Cj and Fj vanishing at the
relevant nodes of the curve f0 = 0, and the ovals Bj . The cycles vanishing
along the two remaining paths will be denoted respectively Dj and Ej , j = 0, 1.
We assume that the orientations in the pairs are such that the symmetry g
interchanges the cycles without affecting the orientation.

Routine calculations of the intersections yield that, within the remaining
flexibility in choosing the orientations, the Dynkin diagram for the twelve
1-cycles is the one shown on the left in Figure 5.
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Figure 4. Distinguished path systems in Cα leading to the
critical values of the parameter α.

Figure 5. Folding the curve diagram to the intersection di-
agrams for the character subspaces Hχ=±1. On
the left: an edge a → b means 〈a, b〉 = 1. On the
right: the label on an edge a → b is 〈a, b〉/2, with
the marking 1 omitted. All the self-intersections
are 0.

Passing to the intersections of the χ-cycles as in (2), we fold the 12-vertex
diagram in two and obtain the diagram on the right in Figure 5.

To simplify the last diagram, we change the paths in Cα as shown in
Figure 4b. The cycles B and D are then transformed by the relevant Picard-
Lefschetz operators

hX : Y �→ Y − 〈Y,X〉X/2 .



Complex crystallographic groups and J10 67

We also reorient the cycle C, and multiply F by −χ. The moves provide the
diagram of Figure 6 in which the modified cycles are primed.

Figure 6. The Dynkin diagram for the J10/Z4 curve corre-
sponding to the path system of Figure 4b, χ = ±1.
The conventions are as is in Figure 5 right.

Remark 4.1. Figure 6 suggests that E −D′ = F ′. We shall see why this
is indeed the case in the next subsection.

4.2. The surface

This time we have the transformation eg(x, y, z) = (−x,−y, iz). We re-
strict our attention to the functions f(x, y)+z2 multiplied by eg by −1. Morse
2-cycles of such functions vanish in symmetric pairs again, and we shall order
and orient them so that

eg : ee0 �→ ee1 �→ −ee0 .

Hence we have H2(eV∗,C) = H
eχ=i ⊕ H

eχ=−1 with the summands spanned re-
spectively by the eχ-cycles

(3) ee0 − iee1 and ee0 + iee1 .

For the J10/Z4 singularity x3 + xy4 + z2, we shall now construct the

vanishing cycles on eV∗ = {fα∗ + z2 = 0} from those we obtained on V∗
in the previous subsection. For this, we first recall an interpretation of the
suspension of the real 1-cycle e on x2 + y2 − 1 = 0 to the real 2-cycle ee on
x2 + y2 − 1 + z2 = 0. For this, one considers the family of levels φ(x, y) = β
of the function φ = x2 + y2 − 1 whose only critical value is −1. Changing β
from 0 to −1, we contract the cycle e to a point and, thus, get a thimble τ (e)
on the surface {x2 + y2 − 1 = β} ⊂ C

3
xyβ. Setting now β = −z2 and taking

the inverse image of τ (e) in the xyz-space we get there the 2-cycle ee.
Consider now the 2-parameter family of levels f0(x, y) + αy = β (f0 as

in the previous subsection). Let α be close to one of its critical values α′

of Subsection 4.1. Consider a Morse 1-cycle c which has nearly vanished
on the level f0(x, y) + αy = 0. It is the boundary of the thimble τ (c) ⊂
{f0(x, y)+αy = β} ⊂ C3

x,y,β that contracts c to the nearby critical value β′ of
fα along the straight path γ from 0 to β′ in Cβ . Let us now move α along the
path in Cα from α′ to α∗. This deforms γ to a path in Cβ from the origin to
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the relevant critical value of fα∗ . Respectively the thimble τ (c) becomes the
thimble that contracts the cycle c (now brought to V∗) along the new path.

Setting β = −z2 doubles the new thimble and makes it into a 2-cycle in eV∗.
Applying this procedure to each of our twelve 1-cycles, we obtain twelve

2-cycles in eVα∗ defined by their equators in Vα∗ and by paths in Cβ leading
from the origin to the critical values of fα∗ . To make the calculations easier,
we better have the paths without mutual- and self-intersections. However,
two pairs of the paths must share the same final points as there are just ten
critical values. And of course the paths corresponding to a pair of g-symmetric
1-cycles should be centrally symmetric in Cβ.

Figure 7. A path system in C β contracting the cycles on V∗
to the critical points of the function fα∗ .

A path system in Cβ corresponding to the path system of Figure 4a and
satisfying all these conditions is shown in Figure 7. To orient the resulting
2-cycles, we first orient the inverse images in Cz of the paths in Cβ. The
z-paths corresponding to the X0 will be oriented at the origin by the tangent
vectors with the positive real parts, and those for the X1 by the vectors with

the positive imaginary parts. We orient the 2-cycle eXj along its equator Xj

by the orientation of Xj followed by the chosen orientation zXj of the z-path.
Then

〈ea,eb〉 = −〈a, b〉 · sgn(za, zb)

if the two cycles meet only at the equators.
The result of the construction is the Dynkin diagram on the left in Figure

8.
The only intersection numbers in Figure 8 which still need explanation

are the 〈 eDj , eEj〉 since the cycles meet not just at the equators but at the poles
too. To obtain these intersections, we notice that the path system of Figure 7
demonstrates that, in terms of the monodromy operators, the 1-cycles of the
2-variable case satisfy the relations

(4) Ej = hFj hCj hAj hBj (Dj) = Dj − Bj + Cj −Fj .

The fact that the sign of Ej here is plus rather than minus can be easily checked
by comparing appropriate intersection numbers. Relations (4), in particular,
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Figure 8. Folding the surface diagram to the intersection di-
agrams for the character subspaces H

eχ=±i. On
the left: each cycle has the self-intersection −2,
a simple (dashed) edge denotes the intersection
number 1 (respectively −1). On the right: the
self-intersections are −4, the label on an edge is
half the intersection number, marking 1 is omitted
and marking −1 is presented by a dashed edge.

imply the relation of Remark 4.1. Moreover, from the same figure, we see that
the same relations, but with the tildes added everywhere, hold for the 2-cycles
we are considering now (the sign choice on the left can be verified like before).

This gives us the numbers 〈 eDj , eEj〉.
To get the Dynkin diagrams for the homology H

eχ=±i, we follow the set-
tings of (3) and fold the 12-vertex diagram in two to the diagram on the right
in Figure 8, eχ = ±i.

Switching to the path system of Figure 4b, that is applying appropriate
Picard-Lefschetz operators

eh
eX : eY �→ eY + 〈 eY , eX〉 eX/2 ,

and introducing eF ′ = −eχ eF and eC′ = −eC afterwards, we end up with the
diagram of Figure 9. Bearing in mind the notational difference, we see that
the result is exactly the J10/Z4 diagram of Figure 2, eχ = χ = ±i. Relations

(4) yield eE − eD = eF ′.
This finishes the construction.
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Figure 9. The Dynkin diagram for the J10/Z4 surface corre-
sponding to the path system of Figure 4b, eχ = ±i.
The conventions are as in Figure 8 right.

Remark 4.2. As usual, one can order the paths of Figure 4 anticlockwise
in the order they leave the base point. This provides the Dynkin diagrams
of Figures 6 and 9 with a standard ordering of the vertices: AC′F ′D′B′E and
the same with the tildes.

§5. An extra complex crystallographic group

This group came to our attention when the order of the Picard-Lefschetz
operator corresponding to the central vertex of the J10|Z3 diagram in Figure
2 was mistakenly taken to be 3 in [11] and the constructions of Section 3 were
applied to that diagram. The rank 2 group obtained turned out to be complex
crystallographic, but not contained in Popov’s classification tables in [12]. We
describe it now. In the spirit of Popov’s notations, the group will be denoted
[G(6, 2, 2)]∗.

We start with the Shephard-Todd group G(3, 1, 2). It acts on C2, equipped
with the hermitian form |z1|2 + |z2|2, by multiplying either coordinate by ω
and by swapping z1 and z2. Therefore, it is generated by the order 3 reflection
r1 defined by the root u1 and by the order two reflection r2 corresponding to
the root u2 − u1 (the uj are the unit coordinate vectors in C2).

The group [G(6, 2, 2)]∗ is the result of the addition to G(3, 1, 2) of the
affine reflection

r0 : (z1, z2) �→ (−z2,−z1) + (1, 1) .

The reflection has root u1 + u2. Therefore, the linear part of the new group
is G(6, 2, 2) [13, 6, 10]. We shall see that the group itself is not a semi-direct
product of its linear part and the translation lattice T .

Let us find the maximal translation subgroup T of [G(6, 2, 2)]∗. For this,
it will be more convenient to use the transformation

R0 = r2r0 : (z1, z2) �→ (−z1,−z2) + (1, 1) .

instead of r0. Since R0 is of order 2, any element of [G(6, 2, 2)]∗ is of the form

φ = asR0as−1R0 . . . R0a2R0a1 , a1, . . . , as ∈ G(3, 1, 2) ,
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where as and a1 may be the identity. The linear part of φ is (−1)s−1as . . . a1.
Since −id /∈ G(3, 1, 2), for φ to be a translation we need s = 2k + 1 and
a2k+1 = (a2k . . . a1)

−1. Setting bj = ajaj−1 . . . a1 so that aj = bjb
−1
j−1, we get

φ = (b−1
2k+1R0b2k+1b

−1
2k R0b2k)(b−1

2k−1R0b2k−1b
−1
2k−2R0b2k−2)

. . . (b−1
2 R0b2b

−1
1 R0b1) .

Hence the lattice T is spanned by the translations of the form
b−1
2 R0b2b

−1
1 R0b1, b1, b2 ∈ G(3, 1, 2). These are translations by the vectors

b−1
2 R0b2b

−1
1 R0b1(0) = b−1

2 (t) − b−1
1 (t) , t = u1 + u2 .

Since the G(3, 1, 2)-orbit of the vector t = (1, 1) consists of the nine vectors
whose coordinates are 1, ω and ω, this gives

(5) T = (1 − ω)Z[u1, ωu1, u2, ωu2] .

Let us check that [G(6, 2, 2)]∗ has a compact fundamental domain. First
of all we notice that the semi-direct product W of G(3, 1, 2) with the lattice
T of (5) is a realisation of the crystallographic group [G(3, 1, 2)]1 of [12]. On
the other hand, let W ′ be a similar realisation of [G(3, 1, 2)]1, but with the
finer lattice Z[u1, ωu1, u2, ωu2]. Denote by W ′′ the group generated by W ′

and −id. Since

W ⊂ [G(6, 2, 2)]∗ ⊂ W ′′

and the two groups on the sides have compact fundamental domains, the same
holds for the group in the middle.
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Boston, 1985.

[ 4 ] V. I. Arnold, V. V. Goryunov, O. V. Lyashko and V. A. Vassiliev, Sin-
gularities I. Local and global theory, Encyclopaedia of Mathematical
Sciences, 6, Dynamical Systems VI, Springer Verlag, Berlin a.o., 1993.

[ 5 ] C. E. Baines, Topics in functions with symmetry, PhD thesis, University
of Liverpool, 2000.

[ 6 ] A. M. Cohen, Finite complex reflection groups, Annales Scientifiques de
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tt∗ geometry and mixed Hodge structures

Claus Hertling

tt∗ geometry is a generalization of variation of Hodge structures (sec-
tion 2). Also the nilpotent orbits of Schmid and the relation to polarized
mixed Hodge structures generalize; part of this is still a conjecture (sec-
tion 3). tt∗ geometry turns up in the unfoldings of holomorphic functions
with isolated singularities (section 4).

This short paper is an introduction and a survey. It gives definitions,
results, conjectures and references, but no proofs. It follows closely a
talk which was given at the conference on Singularity theory and its ap-
plications (MSJ-IRI2003) in Sapporo, Japan, on 16-25 September 2003.

§1. Motivation and history

An isolated hypersurface singularity comes equipped with a polarized
mixed Hodge structure (PMHS) on the middle cohomology of a Milnor
fiber [St]. If one considers a semiuniversal unfolding with base space M
of such a singularity, one obtains a variation of PMHS’s on a subspace
of M , the μ-constant stratum. But in fact, the variation of PMHS’s
extends to a variation of a more general structure on the whole base
space.

This structure is called tt∗ geometry. The purpose of this paper is
to define it and discuss it first in an abstract setting and then in the
case of singularities.

tt∗ geometry was established more than 10 years ago in the work of
Cecotti and Vafa [CV1][CV2][CV3]. They considered moduli spaces of
N = 2 supersymmetric field theories. A distinguished class of these field
theories, the Landau-Ginzburg models, is closely related to singularities.
Especially, the unfoldings of quasihomogeneous singularities were stud-
ied by Cecotti and Vafa. Their work deserves much more attention from
the singularity community.

Received March 31, 2004.
Revised August 18, 2004.



74 C. Hertling

tt∗ geometry in the semisimple case turned up already in the work
on holonomic quantum fields of Jimbo, Miwa, Mori, Sato ([JM] and
references there, [CV2]).

Completely independently, a slightly weaker version of tt∗ geometry
was studied by Simpson [Si1][Si2][Si3] with the notion of harmonic bun-
dles. But his techniques and results seem to be further away from the
singularity case than the physicists’ work. In his work the base spaces
M are compact manifolds.

Sabbah [Sab4] greatly generalized the concepts of Simpson and proved
with them a special case of a conjecture of Kashiwara [Ka].

Mochizuki [Mo1][Mo2] built on Sabbah’s work and extended it. It
seems [Mo2, Remark 1.7] that his results imply the general case of Kashi-
wara’s conjecture.

The idea to generalize variations of Hodge structures in terms of
meromorphic connections is also present in the work of Barannikov [Ba].

One way to describe tt∗ geometry is in terms of a holomorphic vector
bundle H → C × M with a flat connection ∇ on H |C∗×M with a pole
of Poincaré rank 1 along {0} × M , with a flat real structure and a flat
pairing with certain properties [He2]. The case M = {pt} is explained
in section 2.

In the singularity case this is realized by a Fourier-Laplace trans-
formation of the Gauss-Manin system of the unfolding parametrized by
M , that means, essentially, by oscillating integrals [DS1][He2].

The same structure was used 20 years ago by K. Saito [SaK] and M.
Saito [SaM] to establish on M Frobenius manifold structures. Now tt∗

geometry enriches this with a real structure and a hermitian metric. I
hope that the interplay of these structures will have many applications,
for example on the moduli of singularities, on K. Saito’s period maps,
on two conjectures about the distribution of the spectral numbers ([He1,
ch. 14] and [CV3, ch. 4.3]), on the relation to quantum cohomology and
mirror symmetry.

Note added in proof: Conjecture 4.3 has now been proved by C.
Sabbah in [Sab5, theorem 4.9]. The proof of most of theorem 3.8 has
now been written up in [HS, chapters 6 and 9].

§2. Definitions

Definition 2.1. (a) A (TERP)-structure (Twistor Extension Real
Pairing) of weight w ∈ Z is a tuple (H → C,∇, H ′

R
, P ) with

H → C a hol. vector bundle;
∇ a flat connection on H |C∗ with a pole of order ≤ 2 at 0;
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H ′
R
→ C∗ a ∇-flat subbundle of H |C∗ of real vector spaces with

Hz = (H ′
R
)z ⊕ i(H ′

R
)z for z ∈ C

∗;
P a C-bilinear (−1)w-symmetric nondegenerate ∇-flat pairing

P : Hz × H−z → C for z ∈ C
∗

such that
P : (HR)z × (HR)−z → iwR

and such that
P : O(H)0 ×O(H)0 → zwOC,0

is nondegenerate.

This generalizes part of a Hodge structure in the following sense. De-
fine H ′ := H |C∗ and H∞ := { global flat manyvalued sections in H ′}.
It comes equipped with a real subspace H∞

R
⊂ H∞, a monodromy op-

erator Mmon : H∞
R

→ H∞
R

, and a pairing S (from P , see [He2, 7.2] for
the definition). If the pole at 0 is logarithmic (i.e. a pole of order 1),
then the pole corresponds to a decreasing Mmon-invariant filtration F •

on H∞ (which encodes the growth at 0 of sections in H). In this sense
the pole of order ≤ 2 at 0 generalizes the notion of a (Hodge) filtration
F • on H∞.

In order to generalize the notion of the filtration Fw−• in the case
of a Hodge structure of weight w, one has to do the following. Define

γ : P
1 → P

1, z → 1
z

and define a C-antilinear map

τ : Hz → Hγ(z) for z ∈ C
∗

a �→ ∇-flat shift to Hγ(z) of z−wa

(one takes the ∇-flat shift from z to γ(z) along the path within R>0 · z).
Then τ2 = id . Glue H → C and γ∗H → P1 − {0} with τ to a bundle
Ĥ → P

1. It is a holomorphic bundle with a pole of order ≤ 2 at ∞. The
pole at ∞ generalizes Fw−•.

The condition that the filtrations F • and Fw−• are opposite is gen-
eralized as follows.

Definition 2.1. (b) A (TERP (w))-structure (H,∇, H ′
R
, P ) is a

(tr.TERP)-structure if Ĥ → P1 is a trivial bundle.

This generalizes the notion of a Hodge structure.
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In the case of a (tr.TERP)-structure the fiber H0 and the space
Γ(P1,O(Ĥ)) are canonically isomorphic. By construction, the map τ

acts on Γ(P1,O(Ĥ)) and induces a C-antilinear involution

κ : H0 → H0.

The pairing P gives rise to a C-bilinear symmetric nondegenerate pairing
g on H0,

g : H0 × H0 → C

(a, b) �→ z−wP (ã, b̃) mod zOC,0

where ã, b̃ ∈ O(H)0 with ã(0) = a, b̃(0) = b. Then define a hermitian
pairing h := g(., κ.) on H0.

Definition 2.1. (c) A (tr.TERP)-structure is a (pos.def.tr.TERP)-
structure if h is positive definite.

This generalizes the notion of a polarized Hodge structure (PHS).

Lemma 2.2. Let (H,∇, H ′
R
, P ) be a (tr.TERP)-structure.

Then there exist endomorphisms U : H0 → H0 and Q : H0 → H0

such that

∇z∂z =
1
z
U −Q +

w

2
id−zκUκ

on Γ(P1,O(H)) ∼= H0.

In the case of a (pos.def.tr.TERP)-structure, Q is a hermitian en-
domorphism with real eigenvalues symmetric around 0. In the case of a
PHS it corresponds to

⊕
p(p − w

2 ) id |Hp,w−p . The physicists called Q a
new supersymmetric index [CFIV].

One can also define the notion of a variation of (TERP)-structures
[He2], in terms of a vector bundle H → C×M with a flat connection ∇
on H |C∗×M with a pole of Poincaré rank 1 along {0}×M (generalizing
Griffiths transversality), a flat real subbundle H ′

R
and a flat pairing P .

If one then has at generic parameters (tr.TERP)-structures then h
and Q vary real analytically in a most interesting way.

§3. Generalization of mixed Hodge structures

PMHS’s correspond to nilpotent orbits of Hodge structures (theorem
3.2). Conjecture 3.7 below will generalize this correspondence to (TERP)-
structures. First we review some facts on PMHS’s [Sch][CKS].
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Fix a reference PHS (H∞, H∞
R

, S, F •) of weight w with Hodge fil-
tration F • and polarizing form S. The projective manifold

Ď := {filtrations F • ⊂ H | dimF p = dim F p
0 , S(F p, Fw+1−p) = 0}

contains as an open submanifold the classifying space for PHS’s

D := {F • ∈ Ď | F • is part of a PHS}.

Fix a nilpotent endomorphism N : H∞
R

→ H∞
R

with S(Na, b) +
S(a, Nb) = 0. It gives rise to a unique increasing filtration W• on H∞

R

with N(Wl) ⊂ Wl−2 and N l : GrW
w+l → GrW

w−l an isomorphism [Sch,
Lemma 6.4].

Definition 3.1. (a) The tuple (H∞, H∞
R

, S, N, F •) with F • ∈ Ď
is a PMHS of weight w if F •GrW

k is a Hodge structure of weight k, if
N(F p) ⊂ F p−1, and if the induced Hodge structure on the primitive
subspace

Pw+l := ker(N l+1 : GrW
w+l → GrW

w−l−2)

is polarized by Sl := S(., N l.).
(b) The pair (F •, N) with F • ∈ Ď gives rise to a nilpotent orbit (of

Hodge structures) if N(F p) ⊂ F p−1 and

eiξNF • ∈ D for ξ ∈ C with Reξ � 0.

Theorem 3.2. [Sch][CKS] The pair (F •, N) is part of a PMHS
⇐⇒ it gives rise to a nilpotent orbit.

The inclusion ⇐ is a main consequence [Sch, theorem 6.16] of Schmid’s
Sl2-orbit theorem; the inclusion ⇒ is proved in [CKS, corollary 3.13].
The theorem gives a very nice geometric characterization of PMHS’s.

The definitions 3.3 and 3.6 and conjecture 3.7 will generalize defini-
tion 3.1 and theorem 3.2 to (TERP)-structures.

For x ∈ R>0 define πx : C → C, z �→ 1
xz.

Definition 3.3. A (TERP)-structure (H,∇, H ′
R
, P ) gives rise to a

nilpotent orbit if π∗
x(H,∇, H ′

R
, P ) is a (pos.def.tr.TERP)-structure for

x � 0. (Here x ∼ eReξ in definition 3.1 (b).)

The generalization of PMHS’s is much more involved and requires
a description of the Stokes structure of the order 2 pole at 0 of (H,∇).

Consider a (TERP)-structure (H,∇, H ′
R
, P ) of rank n with pole part

U := [z∇z∂z ] : H0 → H0 with set of eigenvalues {u1, ..., uk}. In the
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following we will always make the assumption, called
(No ramification): The pair (O(H)0,∇) is formally isomorphic to a sum

k⊕
i=1

e−ui/z ⊗Ri,

where Ri is a free OC,0-module with flat connection with regular singu-
larity at 0.

Define

H ′∗ := dual bundle to H ′ = H |C∗ ,

D+ := {z ∈ C
∗ | − π

2
< arg z <

π

2
+ ε (mod 2π)}, (ε > 0 small),

D− := {z ∈ C
∗ | π

2
< arg z <

3π

2
+ ε (mod 2π)},

A≤0
± := {f ∈ O(D±) | f has an asymptotic expansion of the type∑

Re(α)≥α0

∑
p

aα,pz
α(log z)p}.

(See [Mal2, IV.3, page 61] for the definition of the sheaf A≤0.) Then the
Stokes structure which distinguishes (O(H)0,∇) in its formal equiva-
lence class can be described by the following splittings (Birkhoff, Huku-
hara, Turrittin, Jurkat, Sibuya, Deligne, Malgrange, ... [Mal1][Mal2,
IV]):

Γflat(D±, H ′∗) =
k⊕

i=1

Γ±
i

where

Γ±
i := {γ ∈ Γflat(D±, H ′∗) | ∀ ω ∈ O(H)0 〈ω, γ〉 ∈ e−ui/z · A≤0

± }.

The (TERP)-structure is said to have compatible real structure and
Stokes structure if

Γ±
i = C · (Γ±

i ∩ Γflat(D±, H ′∗
R )).

Remark 3.4. In the singularity case (section 4), the oscillating inte-
grals, more precisely, the Fourier-Laplace transform of the Gauss-Manin
system of a function, gives rise to such a pair (O(H)0,∇) (theorem 4.1).
The ui are the critical values of the function. Γ±

i is the space of complex
linear combinations of the Lefschetz thimbles starting at critical points
with the (common) critical value ui. The functions 〈ω, γ〉 are oscillating
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integrals. Here the compatibility of real structure and Stokes structure is
trivial, because the Lefschetz thimbles are real. The Lefschetz thimbles
provide even a Z-lattice which is compatible with the Stokes structure.

Lemma 3.5. (a) If real structure and Stokes structure are compat-
ible, then Ri is a (TERP)-structure with regular singularity at 0.

(b) [He2, 7.3] It induces in a canonical way a tuple
(H∞

(i), H
∞
R(i), S(i), Ms(i), N(i), F

•
(i)) with Ms(i) and N(i) commuting semisim-

ple and nilpotent endomorphisms of H∞
R(i) and F •

(i) a decreasing filtration
on H∞

(i).

Definition 3.6. A (TERP(w))-structure with (No ramification) is a
(mixed.TERP)-structure if real structure and Stokes structure are com-
patible and if the regular singular pieces Ri induce PMHS’s
(H∞

(i), H
∞
R(i), S(i), Ms(i), N(i), F

•
(i)) of weight w.

Conjecture 3.7. A (TERP(w))-structure with (No ramification) is
a (mixed.TERP)-structure ⇐⇒ it induces a nilpotent orbit.

Theorem 3.8. (a) ⇒ is true.
Then for x → ∞ the eigenvalues of Q in π∗

x(H,∇, H ′
R
, P ) tend to⋃

i Exponents(Ri) − w
2 (definition of Exponents(Ri) in [He2, 7.3]).

(b) ⇐ is true if the (TERP)-structure has a regular singularity (i.e.
if its pole part U is nilpotent).

(c) ⇐ is true if rkH = 2.

Part (a) in the case U semisimple is due to Dubrovin [Du, proposition
2.2], part (a) in the case U nilpotent is proved in [He2, 7.6]. The whole
proof will appear elsewhere.

Some remarks concerning the proof:
(a) Case U nilpotent: [He2, theorem 7.20], using [CKS, corollary

3.13] and additional estimations.
Case U semisimple: [Du, proposition 2.2], the case of trivial Stokes
structure (Γ+

i = Γ−
i ) is simple, the general case is rewritten as a Riemann

boundary value problem and is solved with a singular integral equation.
General case: combination of both cases [HS, chapter 9]

(b) [HS, chapter 6], the proof uses [Mo2, theorem 12.1].
(c) The case rk H = 2 and U semisimple is considered implicitly in

[IN] and is reduced there to the radial sinh-Gordon equation

(∂2
x +

1
x

∂x) α(x) = sinh α(x).

Nilpotent orbits correspond to real solutions without singularities for
x → ∞. These are analyzed in [MTW] and [IN].



80 C. Hertling

Let (H,∇, H ′
R
, P ) be a (TERP)-structure. It is also interesting to

look at π∗
x(H,∇, H ′

R
, P ) for x → 0. Theorem 3.9 below is the analogue

for this limit to theorem 3.8 (a)+(b) in the case U nilpotent. Sabbah
[Sab2] defined a tuple (H∞, H∞

R
, S, Ms, N, F •

Sabbah) by looking at the
behaviour at z = ∞ of sections in Γ(C,O(H)) with moderate growth at
z = ∞.

Theorem 3.9. This tuple is a PMHS if and only if π∗
x(H,∇, H ′

R
, P )

is a (pos.def.tr.TERP)-structure for x > 0 close to 0.
In that case, the eigenvalues of Q tend for x → 0 to

Exponents(this PMHS) − w
2 .

This result and its proof are close to theorem 3.8 (a)+(b).
The case of (mixed.TERP(w))-structures with U semisimple is es-

pecially nice. Such (mixed.TERP(w))-structures are uniquely charac-
terized by w ∈ Z, the eigenvalues u1, ..., un of U , and a Stokes matrix
S ∈ M(n × n, R) with Sij = 0 if i > j and Sii = 1. Any such data give
rise to a (mixed.TERP(w))-structure.

Conjecture 3.10. If S + Str is positive definite then this is a
(pos.def.tr.TERP)-structure for any u1, ..., un.

This conjecture is true in rank 2 because of [MTW][IN]. In the case
of the Stokes matrices of the ADE singularities it would follow from
conjecture 4.3.

If S + Str is not positive definite then it depends on the values
u1, ..., un whether the (mixed.TERP)-structure is a (pos.def.tr.TERP)-
structure. Dubrovin’s result [Du, proposition 2.2] says that it is a
(pos.def.tr.TERP)-structure if |ui − uj | is sufficiently big for all i �= j.

§4. The case of singularities

We consider simultaneously the following two cases.
Case I: f : (Cn+1 → (C, 0) a holomorphic function germ with an isolated
singularity at 0 and Milnor number μ.
Case II: f : Y → C a regular function on an affine manifold Y (dimY =
n + 1), such that f has isolated singularities and is M-tame (definition
in [NS]); then

μ =
∑

x∈ Crit(f)

μ(f, x).

In both cases a semiuniversal unfolding F exists (cf. [DS1] for the
meaning of this in case II),

F : B × M → C,

Ft : B × {t} → C, t ∈ M,
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with F0 = f , with M ⊂ Cμ a neighborhood of 0, and with (case I) B
a small ball in C

n+1, respectively (case II) B = Y ∩ ( large ball in C
N ),

where Y ⊂ CN is a closed embedding.

Theorem 4.1. In both cases one obtains on M a variation of
(mixed.TERP)-structures of rank μ from the Fourier-Laplace transform
of the Gauss-Manin system of F .

Some remarks concerning the proof: The study of the Gauss-
Manin system [SaK][SaM] and its Fourier-Laplace transform in terms of
oscillating integrals [Ph1][Ph2] is classical in case I; part of it is reviewed
in [He2, 8.1]. A very careful more algebraic treatment of the Fourier-
Laplace transform and of the (TERP)-structures for both cases is given
in [DS1]. In [DS2, ch. 6 + Appendix] this is connected with the Lefschetz
thimbles and oscillating integrals.

For any fixed parameter t one obtains a (TERP)-structure (O(Ht)0,∇).
The dual bundle H ′∗

t is a bundle of linear combinations of Lefschetz thim-
bles. Evaluating holomorphic sections of Ht on flat sections of H ′∗

t gives
oscillating integrals.

The compatibility of real structure and Stokes structure is trivial,
because Lefschetz thimbles are real. That the local singularities come
equipped with PMHS’s via the regular singular pieces Ri is essentially
due to Varchenko [Va] and Steenbrink [St][SchSt]. The polarizing form
of the PMHS is discussed in [Loe, Cor. 3] and [He1, 10.5+10.6][He2,
7.2+8.1].

The nilpotent orbits of these (mixed.TERP)-structures (theorem 3.8
(a)) have a nice geometric meaning: for x ∈ R>0

π∗
x((TERP )(Ft) ∼= (TERP )(x · Ft).

The real 1-parameter unfoldings {x · Ft | x ∈ R>0} correspond to the
orbits in M of E + E (∼ x∂x), where E is the Euler field on M . The
flow of E + E on M corresponds to the renormalization group flow of
the physicists [CV1][CV3].

Above, M is a (small or large) ball in Cμ. But in [He2, remark
8.5] it is shown that one can extend M to a manifold which is complete
with respect to the flow of E and that the variation of (mixed.TERP)-
structures extends to this manifold. A part of the following corollary
was still a conjecture (1.4 and 8.3) in [He2].

Corollary 4.2. (of theorem 3.8 (a) and theorem 4.1)
Going sufficiently far along E+E in (this extension of) M , the (TERP)-
structures are (pos.def.tr.TERP)-structures.
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The following conjecture seems to be a theorem for the physicists in
the case of functions which correspond to Landau-Ginzburg models.

Conjecture 4.3. In case II, the (TERP)-structure of f is a
(pos.def.tr.TERP)-structure.

If the conjecture is true it would give a very distinguished class of
(pos.def.tr.TERP)-structures. It would be comparable to the fact that
the cohomology of compact Kähler manifolds carries Hodge structures.
(One could speculate that the tameness of f at infinity replaces the com-
pactness of Kähler manifolds.) It would give together with conjecture
3.7 and theorem 3.9 a good explanation for all the PMHS’s associated
to hypersurface singularities.

Consider for f as in case II the family of functions x · f : Y → C,
x ∈ R>0. Conjecture 4.3 is true for x � 0 because the (TERP)-structure
of f is a (mixed.TERP)-structure and because of theorem 3.8 (a). The
other way round, the conjectures 4.3 and 3.7 together would give a new
proof that this is a (mixed.TERP)-structure.

Conjecture 4.3 is true for x > 0 close to 0 because of theorem 3.9
and because Sabbah’s tuple (H∞, H∞

R
, S, N, F •

Sabbah) for the (TERP)-
structure of f is a PMHS. In [Sab1] Sabbah proved that it is a MHS (see
also [Sab2] for a more explicit statement). Recently (not yet available
in march 2004) he proved that it is a PMHS.

For example, if Y = Cn+1 and f is quasihomogeneous, then the de-
formations of weight < 1 are all M-tame functions and are parametrized
by a space Cm (for some m ≤ μ). With conjecture 4.3 one would obtain
a variation of (pos.def.tr.TERP)-structures on Cm. This might be useful
for Torelli problems or Schottky problems.
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able, In: Séminaire de’l ENS, Mathématique et Physique, 1979–
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Éditions, Paris, 2002.

[Sab4] C. Sabbah, Polarizable Twistor D-modules, Asterisqne (2005), no. 300,
vit 208.

[Sab5] C. Sabbah, Fourier-Laplace transform of irreducible regular differential
systems on the Riemann sphere, Uspekhi Math. Nauk, 59 (2004),
no. 6 (360), 161–176.

[Sab6] C. Sabbah, Fourier-Laplace transform of a variation of polarized com-
plex Hodge structure, preprint, math.AG/0508551.

[SaK] K. Saito, Period mapping associated to a primitive form, Publ. RIMS,
Kyoto Univ., 19 (1983), 1231–1264.

[SaM] M. Saito, On the structure of Brieskorn lattices, Ann. Inst. Fourier
Grenoble, 39 (1989), 27–72.

[SchSt] J. Scherk and J. H. M. Steenbrink, On the mixed Hodge structure
on the cohomology of the Milnor fibre, Math. Ann., 271 (1985),
641–665.

[Sch] W. Schmid, Variation of Hodge structure: The singularities of the
period mapping, Invent. Math., 22 (1973), 211–319.

[Si1] C. Simpson, Nonabelian Hodge theory, Proceedings of the ICM 1990,
Kyoto, Japan, 747–756.

[Si2] C. Simpson, Higgs bundles and local systems, Publ. IHES, 75 (1992),
5–95.

[Si3] C. Simpson, Mixed twistor structures, preprint, alg-geom/9705006.
[St] J. H. M. Steenbrink, Mixed Hodge structure on the vanishing cohomol-

ogy, In: Real and compl. Singul., Oslo, 1976, P. Holm (ed.).Alphen
aan den Rijn: Sijthoff and Noordhoff 1977, 525–562.

[Va] A. N. Varchenko, The asymptotics of holomorphic forms determine a
mixed Hodge structure, Sov. Math. Dokl., 22 (1980), 772–775.

Claus Hertling
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Thom polynomials

Maxim Kazarian

Abstract.

By (generalized) Thom polynomials we mean universal cohomol-
ogy characteristic classes that express Poincaré duals to the singu-
larity loci appearing in various context: singularities of maps, hy-
persurface singularities, complete intersection singularities, Lagrange
and Legendre singularities, multisingularities, etc. In these notes we
give a short review of the whole theory with a special account of
discoveries of last years. We discuss existence of Thom polynomials,
methods of their computations, relation between Thom polynomials
for different classifications. Some of the theorems announced here are
new and their proofs are not published yet. Some of known results
acquire a new interpretation.

§1. Introduction

Theorems of the global singularity theory relate global topological
invariants of manifolds, bundles, etc. to the geometry of singularities
of various differential geometry structures. The classical example is the
Poncaré theorem that relates the Euler characteristic of a manifold to
the singular points of a generic vector field on it. Many classical rela-
tions in algebraic geometry like Rieman-Hurwitz or Plücker formulas for
algebraic curves can also be considered as theorems of global singularity
theory.

As a separate theory, the global singularity theory appeared in the
60s after R. Thom’s observation that the cohomology classes Poincaré
dual to the cycles of singularities of smooth maps can be expressed as
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universal polynomials (called later Thom polynomials) in the Stiefel-
Whitney classes of manifolds [39]. Though Thom used topological argu-
ments, the computation of particular Thom polynomials have been ac-
complished in 60–70s using the algebraic geometry methods of blowups,
residue intersections, etc. (see references in the review [4]).

The first step towards the general study of multisingularities has
been done by S. Kleiman [24, 25]. His theory of multiple points has
been constructed entirely in the framework of the intersection theory.
For technical reasons, Kleiman’s formulas can be applied if the map
admits only singularities of corank 1 (or if the singularities of corank
greater than 1 can be ignored by dimensional reasons) but even in this
case Kleiman’s theory found many interesting applications [6, 7].

Topological methods in the study of global properties of singular-
ities have been developing independently by two groups. In Moscow,
Vassiliev [41] inspired by the ideas of Arnold [2] has created the theory
of characteristic classes for real Lagrange and Legendre singularities. He
introduced the universal complex of singularity classes which allows one
to chose those singularity classes in the real problems for which Poincaré
dual cohomology class is well defined. The Vassiliev universal complex
has been generalized by M. Kazarian [17, 18, 19, 20] to the characteris-
tic spectral sequence which contains all cohomological information about
adjacencies of singularities.

About the same time in Budapest A. Szücs developed his theory
of cobordisms of maps with prescribed collections of allowed singulari-
ties [35, 36, 37]. He constructed classifying spaces for this type of cobor-
disms by gluing the classifying spaces of the symmetry groups of various
singularities. Following Szücs, R. Rimányi [31, 32, 33] showed that the
collection of allowed singularities can be extended at least to the set of all
stable map germs. He noticed also that the gluing construction provides
an effective method for computing Thom polynomials which does not re-
quire the detailed geometric study of the singularities. He demonstrated
the efficiency of his restriction method by computing Thom polynomials
for essentially all classified singularities.

The two approaches have been developing quite independently until
the Oberwolfach Conference 2000 in Singularity theory where A. Szücs
introduced the author to his theory. Since that time the two approaches
combined providing a very strong counterpart to the methods of inter-
section theory. It is clear now that the global theory of multisingularities
is related to the cobordism theory in the same way as the global theory
of monosingularities is related to the theory of characteristic classes of
vector bundles. The universal formulas for the classes of multisingular-
ities have been obtained in [22]. These formulas allowed the author to
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solve in a unified form many enumerative problems that have not been
solved by the methods of algebraic geometry.

The discoveries of the last years changed the face of the global sin-
gularity theory dramatically. Although the construction of the theory
is not completed yet, its general pattern seems to be more or less clear.
In these notes I present my own view of the modern state of the the-
ory. Some of the theorems announced here are new and their proofs
are not published yet. Some of known results acquire a new interpre-
tation. I have tried to present main formulas in the form ready to be
applied to specific enumerative geometric problems. They may provide
rich experimental material for further research, even without rigorous
justification.

The paper is organized as follows. In Section 2 we discuss the ex-
istence theorems for Thom polynomials in different context: singulari-
ties of maps (Sect. 2.1 and 2.2), Lie group action (Sect. 2.3), stable K-
singularities (Sect. 2.4), isolated hypersurface singularities (Sect. 2.5),
and multisingularities (Sect. 2.6 and 2.7). In Sect. 2.8 we discuss some
aspects of global singularity theory which are common for all these clas-
sifications.

Section 3 is devoted to the detailed study of the structure of Thom
polynomials. We introduce the notion of a localized Thom polynomial
which is the usual Thom polynomial written in a special additive basis
well adjusted to the classification of singularities by corank. It allows
one to single out the terms in the Thom polynomial for which closed
formulae could be given. In Sect. 3.1 and 3.2 we present formulae for
localized terms of Thom polynomials related to singularities of maps. In
Sect 3.3 and 3.4 we extend this computation to the case of Lagrange,
Legendre, and isolated hypersurface singularities.

Some terms of the Thom polynomials can be computed using the
method of resolution of singularities discussed in Section 3. The simplest
way to compute remaining terms is to apply the restriction method
suggested by Rimányi. It is discussed in Section 4. The method itself
is described in Sect. 4.1. In Sect. 4.2 we explain some details of the
extension of this method to the study of multisingularities. The results
of computations are presented in Sect. 4.3. More complete tables of
computed Thom polynomials are available in [23].

§2. Existence of Thom polynomials

2.1. Characteristic classes of singularities
In the most general form the problems of the global singularity the-

ory are often formulated in the following way. Suppose we are given a
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parameter (or moduli) space M whose points parameterize some geo-
metric objects: varieties, maps, fields, configurations, etc. Generic pa-
rameter values correspond to non-degenerate objects. These values form
an open subspace M0 ⊂ M . The complement M \M0 consists of degen-
erate objects. It is stratified according to the possible degeneracy types.
Local singularity theory studies local behavior of these degenerations,
normal forms, adjacencies, etc. Denote by M(α) ⊂ M the closure of the
locus of points with prescribed degeneracy type α. Then the problem is
to find the cohomology class

[M(α)] ∈ H∗(M)

Poincaré dual to the cycle M(α). For example, if M(α) consists of finite
number of points, then the problem is just to find the number of these
points.

The general answer to this problem suggested by singularity theory
is as follows. To each classification problem S one associates an appro-
priate ‘classifying space’ BS. The classifying space is equipped with the
natural stratification. The strata of this stratification are labelled by
various singularity classes of the classification.

Consider the underlying manifoldM of a particular geometric prob-
lem. Assume that the degeneracies associated with the points of M are
classified with respect to the given classification S. Then one constructs
the ‘classifying map’

κ : M → BS
such that the partition on M is induced from the partition on BS by
the map κ.

The cohomology ring C(S) = H∗(BS) of the classifying space is
considered as the ring of ‘universal characteristic classes’ associated with
the classification S. The characteristic homomorphism

κ∗ : C(S) → H∗(M).

is a topological invariant of M . It usually can be computed indepen-
dently of the study of the singularities of the stratification on M .

Then the general principle says:
each singularity type α determines a universal characteristic class

Tpα ∈ C(S) so that the class [M(α)] is given by this class evaluated at
the given parameter space M :

[M(α)] = κ∗(Tpα).

The class Tpα expressed in terms of the multiplicative generators of
the ring C(S) is referred to as the (generalized) Thom polynomial of



Thom polynomials 89

the singularity α. It can be defined simply as the cohomology class
Tpα ∈ H∗(BS) = C(S) Poincaré dual to the closure of the stratum of
the singularity α on the classifying space.

Thus the solution of the initial problem consists of the following
steps.

Step 1. Identify the singularity theory problem S that reflects the
classification of points on M .

Step 2. Determine the ring of universal characteristic classes C(S)
corresponding to this classification problem.

Step 3. Find the Thom polynomial Tpα ∈ C(S) for a particular
singularity type α.

Step 4. Compute the characteristic homomorphism κ∗ : C(S) →
H∗(M) and the required cohomology class [M(α)] = κ∗(Tpα) ∈ H∗(M).

Every step in this program is usually non-trivial and can be done
independently. The aim of these notes is to show how this program can
be accomplished in various particular geometric problems of counting
singularities and multisingularities of maps, complete intersection singu-
larities, Lagrange and Legendre singularities, critical points of functions,
etc.

It is known that the same types of local singularities can appear
in a stable way in quite different situations. For example, the famous
‘swallowtail’ singularity Ak could appear in the context of critical point
function singularities, complete intersection singularities, caustic, wave
front singularities, and many others. Therefore, the choice of a classi-
fication problem is not well formalized and can vary according to the
preferences of the author. The variety of known classifications in singu-
larity theory is enormous. Some of them appearing in complex problems,
in a sense, the basic ones, are listed in Table 1. One can notice that even
for well-studied classifications the final answer for the topology of the
classifying space is not evident at all. The detailed explanation of the
entries of this table is discussed in the main body of the paper.

2.1. Example. Consider a nonsingular projective subvariety V ⊂
CP d, dimV = r. We study the tangency singularities of V with respect
to various s-dimensional projective subspaces. All these subspaces form
the Grassmann manifold N = Gs+1,d+1. Denote by M ⊂ V ×Gs+1,d+1

the incidence subvariety formed by the pairs (x, λ) such that x ∈ λ and
let

f : M → N, (x, λ) 
→ λ

be the natural projection to the second factor. If V satisfies certain
genericity condition, then the map f possesses only standard singu-
larities studied in singularity theory. Thus the singularity theory in
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Table 1. Characteristic classes in singularity theory

Classification
S

Classifying space
BS

Characteristic classes,
H∗(BS)

(Cm, 0) → (Cn, 0) BU(m)×BU(n) Z[c1, ..., cm, c′1, ..., c
′
n]

Orbits of G-action
on an affine
space V

BG
Characteristic classes

of G-bundles

Stable
K�-classification
of map germs,
� = n−m

BU Z[c1, c2, . . . ]

Classification
of critical points;

IHS

Stable Lagrange
(Legendre)

Grassmannian
Λ (Λleg)

Lagrange (Legendre)
characteristic classes

Multisingularities

Classifying space
of complex
cobordisms

Ω2mMU(m+ �),
m → ∞

Landweber-Novikov
operations

U2�(·) → H∗(·)

Any classification

‘Generalized
Pontryagin-
Thom-Szücs
construction’

Splitting
H∗(BS) =⊕α H

∗(BGα)

question is the classification of map germs (Cm, 0) → (Cn, 0), where
m = dimM = r + s(d− s) and n = dimN = (s+ 1)(n− d).

By a singularity class we mean any non-singular semialgebraic (not
necessary closed) subvariety in the k-jet space of map germs (Cm, 0) →
(Cn, 0) which is invariant with respect to the coordinate change of the
source and the target manifolds, where k is some large integer. The
singularity class may consist of a unique orbit of the group of left-right
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equivalence, or it may contain a continuous family of non-equivalent
orbits.

The ring of characteristic classes for this classification is the ring of
polynomials in two groups of variables c1, . . . , cm and c′1, . . . , c′n. The
characteristic classes corresponding to these variables are the corre-
sponding Chern classes of the manifolds M and N ,

κ∗ci = ci(M), κ∗c′j = f∗cj(N).

R. Thom formulated the following general statement.

2.2. Theorem ([39, 13]). The cohomology class on H∗(M) dual to
the closure of a particular singularity α is given by a universal polynomial
Tpα in the classes c1(M), . . . , cm(M), f∗c1(N), . . . , f∗cn(N).

The proof and the computation of particular Thom polynomials is
discussed below. The theorem above holds also in the real case with Z2-
cohomology and the Stiefel-Whitney classes instead of Chern classes. It
holds also in the algebraic situation for an arbitrary algebraically closed
ground field and Chow groups instead of cohomology. It seems that the
algebraic geometry proof that does not relay on topological arguments
has never been published. Therefore, we present it here.

2.2. Proof of the existence theorem for Thom polynomials
The standard topological argument used in the proof of Theorem 2.2

is as follows. On the first step we notice that the class [M(α)] is a
pull-back of the class dual to the corresponding singularity locus in the
jet bundle space Jk(M,N) under the jet extension map jkf : M →
Jk(M,N). The natural projection Jk(M,N) → M ×N has contractible
fibers

V = Jk
0 (C

m,Cn)

and the map jkf lifts the graph map Γf = id×f : M → M ×N . There-
fore, it suffices to prove that the Poincaré dual of the locus Jk(M,N)(α)
in the cohomology ring H∗(Jk(M,N)) = H∗(M ×N) is given by a uni-
versal polynomial in the Chern classes p∗1ci(M) and p∗2cj(N), where pi,
i = 1, 2, is the projection of M × N to the corresponding factor. Re-
mark that as a result we have obtained a reformulation of the existence
theorem for Thom polynomials that does not involve the original map
f at all.

On the second step we notice that Jk(M,N) forms a fiber bundle
space overM×N whose structure group G of k-jets of left-right changes
is homotopy equivalent to the group of linear changes,

G = Jk
0Diff(C

m)×Jk
0Diff(C

n) � GL(m,C)×GL(n,C) � U(m)×U(n).
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Therefore, this bundle is a pull-back of the corresponding classifying
bundle BV over the classifying space BG of G-bundles:

Jk(M,N)

V

��

κ �� BV

V

��
M

jkf
������������������� Γf �� M ×N �� BG

H∗(M) H∗(Jk(M,N))
jkf∗

�� H∗(BV )κ∗
��

H∗(M ×N) H∗(BG)

[M(α)] [Jk(M,N)(α)]�jkf∗
�� Tpα

�κ∗
��

Respectively, the cohomology class [Jk(M,N)(α)] under consideration
is the pull-back of the corresponding class in H∗(BV ). Thus, Tpα is a
universal characteristic class

Tpα ∈ H∗(U(m)× U(n)) = Z[c1, . . . , cm, c′1, . . . , c
′
n]

and Theorem follows.

Let us show how the topological argument above could be adjusted
to the algebraic situation. We need to indicate explicitly an algebraic
model for the classifying space BG and an algebraic replacement for the
classifying map κ.

Fix some K large enough and set BVK = G′
m,K ×G′′

K−n,K , where
—G′

m,K is the variety of all k-jets of germs at the origin of non-
singular m-dimensional submanifolds in CK ;

—G′′
n,k is the variety of k-jets of germs at the origin of non-singular

foliations in CK with n-codimensional fibers.
It is easy to see that BVK is a non-singular quasiprojective variety.

There is a natural projection BVK → Gm,K × GK−n,K sending an m-
submanifold to its tangent space at the origin and a foliation to the
tangent space of the fiber at the origin. This projection is a fibration
whose fibers are affine spaces. Therefore,

H∗(BVK) � H∗(Gm,K ×GK−n,K),
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and this stabilizes to the polynomial ring Z[c1, . . . , cm, c′1, . . . , c
′
n] with

the growth of K. Similar statement clearly holds for Chow groups as
well.

To each point of BVK one associates the singularity of the natural
projection from the m-dimensional submanifold to the n-dimensional
parameter space of the fibers of the foliation. More precisely, only k-jet
of this singularity is well defined. Thus, for each singularity type α one
associates the corresponding locus BVK(α) in BVK .

Let us define the Thom polynomial Tpα as the class of the closure of
BVK(α) in the cohomology (or Chow) group of BVK . By definition, the
element Tpα is independent of K if K is large enough and is expressed
as certain polynomial in the generators ci, c′j.

To complete the proof of the algebraic version of Theorem 2.2 we
need, for any two given non-singular quasiprojective varietiesM and N ,
to construct a map κ from Jk(M,N) to BVK that classifies singularities.
In the algebraic context such a map can not be constructed in general,
but it can be constructed after a suitable modification of the source
Jk(M,N).

Denote by J̄k
K(M,N) the variety whose points are parameterized by

the tuples (x, y, j, p) where x ∈ M and y ∈ N are some points, j is the
k-jet of a map germ (M,x) → (CK , 0), and p is the k-jet of a map germ
(CK , 0) → (N, y). Since the choices for j and p form an affine space we
get that the cohomology (or Chow) groups of J̄k

K(M,N) are isomorphic
to those of M ×N . Passing to the composition p ◦ j : (M,x) → (N, y)
determines a natural morphism J̄k

K(M,N) → Jk(M,N).
Now, denote by Jk

K(M,N) ⊂ J̄k
K(M,N) the open subvariety formed

by the tuples (x, y, j, p) such that j is injective and p is surjective. Re-
mark that the complement J̄k

K(M,N)\Jk
K(M,N) has codimension grow-

ing to infinity together with K. Therefore, passing to Jk
K(M,N) does

affect the cohomology (or Chow groups) in any specified in advance fi-
nite range of dimensions, if K is large enough. Over Jk

K(M,N) we have
the evident classifying map κ : Jk

K(M,N) → BVK . This map associates
with the injection i and surjection p the (k-jet of the) submanifold j(M)
and the foliation formed by the fibers of p, respectively. Thus we get the
diagram of mappings

M ×N Jk(M,N)�� J̄k
K(M,N)�� Jk

K(M,N)�� κ ��BVK

and the induced diagram of homomorphisms in cohomology. Since the
first three arrows induce an isomorphism, the universality of the Thom
polynomial Tpα follows from functorial properties of the pull-back ho-
momorphism.
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2.3. Remark (cf. [40]). The concept of the classifying space is
commonly used in topology. For example, any complex vector bundle
E → M can be induced from the classifying one over BU by some
continuous map κ : M → BU . Therefore, from the topological point
of view the Chern classes are just pull-backs of certain properly chosen
generators in the cohomology ring of the classifying space. In algebraic
setting this definition can not be used directly and the Chern classes
are usually introduced by means of a direct geometric construction, see
e.g. [10]. Let us show that the idea of the classifying map can be applied
to the algebraic situation as well.

Let M̄K be the total space of the bundle Hom(E,CK) and MK ⊂
M̄K be the open submanifold formed by those maps fx : Ex → CK ,
x ∈ M , which are injective. Let π : MK → M be the natural projection.
The maps fx provide an embedding of the pull-back bundle EK = π∗E
overMK to the trivial bundle CK . Thus the fibers of EK can be treated
as n-dimensional subspaces in CK , where n = rkE. This provides the
classifying map κ : MK → Gn,K . As above, we get the diagram of maps

M M̄K
�� MK

�� κ ��Gn,K

The first two arrows induce isomorphisms in cohomology for K large
enough. Therefore, κ can be used to define Chern classes via the char-
acteristic homomorphism

κ∗ : Hd(Gn,K) → Hd(MK) � Hd(M), K � d.

2.3. Classifying space for Lie group action
Many classification problems in singularity theory can be formulated

as the classification of orbits of a smooth action of a given Lie group G
on a given manifold V . For example, in the case of the classification of
map germs (Cm, 0) → (Cn, 0) up to the right-left equivalence one has

V = Jk
0 (C

m,Cn)

is the space of k-jets of map germs at the origin and

G = Jk
0Diff(C

m)× Jk
0Diff(C

m)

is the group of k-jets of changes of coordinates in the source and target
manifolds, respectively, where k is a fixed sufficiently large integer.

In what follows we always assume that the manifold V is topologi-
cally trivial, that is, as a manifold it is isomorphic to an affine space of
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appropriate dimension. The theory of linear representations provides a
lot of examples of such actions. Remark that in the case of left-right
equivalence of map germs the action is not linear.

The construction for the classifying space BV associated with the
classification of G-orbits on V and its cohomology group H∗(BV ) re-
peats the well-known Borel’s construction of G-equivariant cohomology
H∗

G(V ). Since V is a contractible topological space, we have

H∗(BV ) = H∗
G(V ) � H∗

G(pt) = H∗(BG).

In other words, the group of characteristic classes associated with the
classification of G-orbits on V is actually the group of characteristic
classes of G-bundles.

In more details, consider the classifying principle G-bundle EG →
BG. It means that EG is a topologically trivial space equipped with
the free G-action, and BG is the orbit space of this action. It is well
known that the cohomology ring of the classifying space H∗(BG) serves
as the ring of characteristic classes of G-bundles. Consider the diagonal
G-action on the product space V × EG.

2.4. Definition. The classifying space of (G, V )-action is defined
as the orbit space

BV = V ×G BE = (V ×BE)/G.

The fibers of the natural projection π : BV → BG are isomorphic
to V . Therefore, BV can be interpreted as the total space of the bundle
over BG with the fiber V and the structure group G associated with
the principle G-bundle EG → BG. Since π has contractible fibers, it
induces the mentioned above isomorphism H∗(BV ) � H∗(BG).

The spaces EG,BG,BV are usually infinite-dimensional. In prac-
tice, it is more convenient to replace them by smooth finite-dimensional
approximations. Namely, consider the sequence of smooth principle G-
bundles EGK → BGK with K → ∞, such that the manifold EGK is
K-connected. Then the manifolds BVK = VK ×GEG can be considered
as finite-dimensional approximations for the classifying space BG and
the isomorphisms

Hp(BVK) � Hp(BGK) � Hp(BV ) � Hp(BG)

hold in the stable range of dimensions (that is for any fixed p and large
enough K).

The partition V =
⋃
α by the orbits determines the corresponding

partition BV =
⋃
Bα of the classifying space. If α ⊂ V is an orbit, we
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set
Bα = α×G EG ⊂ BV.

2.5. Definition. The symmetry group Gα of the orbit α ⊂ V
is the stationary subgroup of any representative x ∈ α (this group is
independent, up to an isomorphism, of the point x ∈ α).

In singularity theory the orbit α is considered as a singularity class of
the given classification, and the fixed representative x ∈ α is its ‘normal
form’.

2.6. Lemma. The stratum Bα ⊂ BV corresponding to the orbit
α is homotopy equivalent to the classifying space BGα of its symmetry
group.

Proof. By definition, we have

Bα = (α× EG)/G = ({x} × EG)/Gα.

The group Gα acts free on ({x} × EG) � EG. Since this space
is topologically trivial, it can serve as the total space of the principle
classifying Gα-bundle. Therefore, ({x} × EG)/Gα � BGα. �

The lemma can be reformulated by saying that the classifying space
BV is glued from the classifying spaces of symmetry groups of various
orbits,

(1) BV =
⋃
α

BGα.

2.7. Remark. In singularity theory one considers various sta-
ble classification problems which are not reduced to the study of a
unique Lie group action. Among those are the stable classification of K-
singularities, the classification of critical points of functions with respect
to the stable R- or K-equivalence, the classification of multisingularities
etc. With a proper definition of the symmetry group, the statement
above about the gluing of the classifying space from the classifying spaces
of symmetry groups remains true for all those classifications. This as-
sertion will be detailed in the subsequent sections.

2.4. Thom polynomials for stable classification of maps
Computations show that in many cases the Thom polynomial de-

pends actually on certain combinations ci(f) = ci(f∗TN − TM) of the
classes ci(M), f∗cj(N), given by the formal expansion

1 + c1(f) + c2(f) + · · · = 1 + f∗c1(N) + f∗c2(N) + . . .

1 + c1(M) + c2(M) + . . . .
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This observation can be reformulated as follows. Fix some integer � ∈
Z and consider the so called stable K-classification of map germs f :
(Cm, 0) → (Cm+�, 0) wherem may vary. By definition, the K-singularity
class of the map germ f is the isomorphism class of the zero level germ
f−1(0) equipped with the local algebra of functions on it

Qf = OCm,0/f
∗mCm+�,0.

For � ≥ 0 the K-classification is actually the classification of finite-
dimensional local algebras while for � ≤ 0 it is the classification of
(−�)-dimensional ICIS’s (isolated complete intersection singularities).

There is the following simple interpretation of the classifying space
for this classification. Choose some large integers k � 0 and d � m � 0.
Consider the manifold G(m, d, k) of k-jets of germs ofm-dimensional sub-
manifolds in (Cd, 0). The points of this manifold are classified according
to the K-singularities of the projection to the fixed coordinate subspace
Cm+� ⊂ Cd. We define the classifying space of stable K-singularities as
the limit space of G(m, d, k) with m → ∞, (d−m) → ∞, and k → ∞.

The projection sending a germ of a submanifold to its tangent space
at the origin has contractible fibers. Therefore, the space G(m, d, k)
is homotopy equivalent to the usual Grassmannian Gm,d. Thus the
ring of universal characteristic classes associated with the stable K-
classification is isomorphic (for each � ∈ Z) to the cohomology ring of the
stable Grassmannian that is to the ring of polynomials in the variables
c1, c2, . . . . In other words, the existence theorem for Thom polynomials
of K-singularities can be formulated as follows.

2.8. Theorem ([8]). The cohomology class dual to the cycle of a
K-singularity α of a generic holomorphic map f is given by a universal
polynomial Tpα in the classes ci(f).

2.5. Thom polynomials for isolated hypersurface singular-
ities

Two function germs fi : (Cmi , 0) → (C, 0), i = 1, 2, are called stably
K-equivalent, if after adding suitable nondegenerate quadratic forms in
new variables and after the multiplication by non-vanishing functions
they can be brought one to the other by a change of coordinates in the
source space. By equivalence of hypersurfaces we mean K-equivalence
of functions providing the equations of these hypersurfaces. The classi-
fication of IHS’s (isolated hypersurface singularities) is one of the most
studied classification problem in singularity theory. Nevertheless the
theory of characteristic classes associated with this classification has ap-
peared only recently [21]. It turns out that the theory of characteristic
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classes related to the stable classification of IHS’s is the theory of Le-
gendre characteristic classes. For the first glance, the definition below
looks unmotivated. The explanation will be given in the subsequent
sections.

2.9. Definition. The ring L of universal Legendre characteristic
classes is the quotient ring of polynomials in the variables u, a1, a2,
. . . , deg u = 1, deg ai = i, over the ideal of relations generated by the
homogeneous components of the formal expansion

(2) (1 + a1 + a2 + . . . )
(
1− a1

1 + u
+

a2

(1 + u)2
− . . .

)
= 1.

If we set formally 1+ a1 + a2 + · · · = c(U) for a virtual bundle U of
virtual rank 0 and u = c1(I) for a line bundle I, then (2) can be written
as

(3) c(U + U∗⊗I) = 1.

The additive basis of L is formed by the monomials of the form
ukai1

1 a
i2
2 . . . with ij ∈ {0, 1}.

2.10. Theorem. The ring of characteristic classes associated to
the classification of IHS’s is the ring of Legendre characteristic classes.

This theorem means that whenever we have a manifold M whose
points are classified according to various IHS’s types, we have also a
natural characteristic homomorphism κ∗ : L → H∗(M) such that the
cohomology class dual to the locus of a given singularity α is given by
a universal Legendre characteristic class Tpα ∈ L determined uniquely
by α and evaluated on the homomorphism κ∗.

2.11. Example. Consider the diagram

(4) H ↪→ W
π→ N

where the first arrow is a smooth embedding of a hypersurface and the
second one is a smooth locally trivial bundle. Denote by M ⊂ H the
locus formed by the tangency points of H with the fibers of π. If certain
genericity condition holds, then M is smooth of dimension dimM =
dimN − 1. The points of M are classified according to the singularities
of the hypersurfaces cut out by H on the fibers of π.

2.12. Example. The singularities considered in the previous ex-
ample are determined completely by the composition H → N . More
general, consider an arbitrary smooth map f : H → N such that the
dimension of the cokernel of its derivative is not greater than 1 at any
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point. The fibers of this map have dimension −� = dimH − dimN
and the embedded dimension of their singularities is −� + 1 i.e. these
are isolated hypersurface singularities. The parameter space M in this
situation is the locus M ⊂ H of all singular points of the fibers of f i.e.
it is the critical set of f .

2.13. Example. In the situation of the previous example, with any
point x ∈ M one can associate the tangent hyperplane f∗TxH ⊂ Tf(x)N .
This gives an embedding i : M → PT ∗N . This embedding is Legen-
drian: the manifold i(M) is tangent to the natural contact distribution
on PT ∗N . More general, consider arbitrary Legendrian submanifold
M ⊂ PT ∗N . A Legendrian mapping is the projection of a Legendrian
submanifold M ⊂ PT ∗N to the base N of the projectivized cotangent
bundle. Singularities of Legendrian mappings are classified according to
the classes of stable K-equivalence of functions [5]. Therefore, to each
point of M there corresponds an equivalence class of IHS’s.

The Legendre characteristic classes in all three examples above are
cohomology classes in H∗(M) defined by u = c1(I) and ai = ci(f∗TN −
TM − I), where I � OPT∗N(1) is the conormal bundle of the contact
structure on PT ∗M . In Example 2.11 the bundle I can also be defined as
the restriction toM of the line bundle of the divisorH ⊂ W . Verification
of identity (3) is a nice exercise in the theory of characteristic classes.

2.6. Characteristic classes of multisingularities

In this section, by a local singularity we mean a class of stable K-
singularity of map germs (C∗, 0) → (C∗+�, 0), where � ∈ Z is fixed. A
multisingularity α = (α1, . . . , αr) is a finite collection of local singulari-
ties. In what follows we assume that the collection α contains no classes
of submersion (this condition implies an additional restriction for � ≤ 0
only).

The classification of multisingularities can be considered as an in-
dependent problem of singularity theory with its own table of normal
forms, adjacencies, bifurcation diagrams etc. This implies that the gen-
eral approach discussed in Sect. 2.1 can be applied to the case of mul-
tisingularities as well. It turns out that the construction for the clas-
sifying space of multisingularities and its cohomology ring is related to
the theory of cobordisms and cohomological operations [22]. The formu-
lated below existence theorem of universal expressions for characteristic
classes of multisingularities appears as a corollary of this construction.

To a given map f : M → N one associates a number of multisingu-
larity loci. First, we define M(α) ⊂ M r as the closure of the locus r-
tuples of pairwise different of points (x1, . . . , xr), such that f(x1) = · · · =
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f(xr) and such that f acquires the singularity αi at xi for i = 1, . . . , r.
This definition is applicable only to the maps satisfying certain gener-
icity condition. For the general case the definition should be corrected.
If the genericity condition holds, then M(α) is a subvariety of expected
dimension

dimM(α) = dimM − (r − 1)�−
∑

codimαi,

where the codimension codimαi of the local singularity αi is counted in
the jet space of map germs (C∗, 0) → (C∗+�, 0).

Consider the natural projections p : M r → M to the first factor
and q = f ◦ pM : M r → N to N , respectively. If the multisingularity
type α has no classes of submersion, then the restriction toM(α) of these
projections is finite and we can consider the corresponding multisingu-
larity loci onM and N , respectively. Denote by mα, nα the cohomology
classes dual to these loci considered as singular varieties equipped with
their reduced structures,

mα = [pM(α)] ∈ H∗(M), mα = [qM(α)] ∈ H∗(N).

If the symbol (α1, . . . , αr) of the multisingularity α contains repeat-
ing entries, then the projections p and q of the locus M(α) to its images
are not one-to-one, and it is natural to consider the classes mα, nα

with their natural multiplicity given as the degree of the corresponding
projection. Thus, we set

mα = |Aut(α)| mα = p∗[M(α)], nα = |Aut(α′)| nα = q∗[M(α)],

where α′ = (α2, . . . , αr) and |Aut(α)| is the order of the permuta-
tion subgroup Aut(α) ⊂ S(r) whose elements preserve the collection α.
These definitions imply the equalities

f∗mα = nα, f∗mα = k1 nα,

where k1 is the number of appearances of α1 in the collection α.
Recall that f∗ : H∗(M) → H∗(N) is the push-forward, or Gysin

homomorphism. It is defined as the composition of the Poincaré duality
in M , usual homomorphism f∗ in homology, and Poincaré duality in N .
In order this homomorphism to be defined, one needs to assume that the
map f is proper. The homomorphism f∗ shifts the (complex) grading of
the even-dimensional cohomology by �. It is not multiplicative. Instead
the usual projection formula holds,

f∗(f∗a)�b = a � f∗b, a ∈ H∗(N) b ∈ H∗(M).
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In other words, f∗ is a homomorphism of H∗(N)-modules, where the
action of H∗(N) on H∗(M) is defined via f∗. Because of that, we often
drop the indication on f∗ in the notation of classes on M and instead
of f∗a � b we write often a � b or just a b.

To any monomial cI(f) = ci11 (f)c
i2
2 (f) . . . in the relative Chern

classes ci(f) = ci(f∗TN−TM) we associate the push-forward Landweber-
Novikov class

sI(f) = f∗(cI(f)) ∈ H∗(N).

Landweber-Novikov classes are well known in cobordism theory. In
the original definition they take values in complex cobordisms, here
we use their images in cohomology only. In the case � ≤ 0 the class
si1,i2,...(f) vanishes for

∑
k ik < −� by dimensional reason. Besides,

if
∑

k ik = −�, then si1,i2,...(f) ∈ H0(N) is equal to the correspond-
ing characteristic number of a generic fiber of f . Except these evident
relations Landweber-Novikov classes are multiplicatively independent
for different monomials cI . It means that for any polynomial in the
Landweber-Novikov classes there is a sample map for which this poly-
nomial gives a non-trivial class.

Now we are ready to formulate the principal theorem in the the-
ory of characteristic classes of multisingularities. Shortly, this theorem
says that the Thom polynomial for a multisingularity is a polynomial in
Landweber-Novikov classes. In this theorem, � ∈ Z is a fixed integer. If
� ≤ 0, we assume that the collection of local singularities αi forming the
given multisingularity type α contains no classes of submersion.

2.14. Theorem ([22]). 1. For every collection α = (α1, . . . , αr) of
local singularities the cohomology class of the corresponding multisingu-
larity nα in the target (respectively, the class mα in the source) mani-
fold is given by a universal polynomial with rational coefficients in the
Landweber-Novikov classes sI(f) of the map (respectively, in the relative
Chern classes ci(f) and the pull-backs f∗sI(f) of the Landweber-Novikov
classes).

2. The multisingularity polynomial has in fact the following specific
form. To every multisingularity α = (α1, . . . , αr) there corresponds a
universal polynomial Rα (called residue polynomial) in the Chern classes
c1, c2, . . . such that the multisingularity classes mα, nα are determined
by the residue polynomials RαJ

= Rαj1 ,...,αjk
of various subcollections

αJ = (αj1 , . . . , αjk
) ⊂ (α1, . . . , αr) forming the given multisingularity α
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by the following explicit formulas

mα =
∑

J1�···�Jk={1,...,r}
RαJ1

f∗f∗RαJ2
. . . f∗f∗RαJk

,(5)

nα = f∗mα =
∑

J1�···�Jk={1,...,r}
f∗RαJ1

. . . f∗RαJk
,(6)

where the polynomials RαJ
are evaluated on the relative Chern classes

ci = ci(f) = ci(f∗TN − TM). The sum is taken over all possible parti-
tions of the set {1, . . . , r} into a disjoint union of non-empty non-ordered
subsets {1, . . . , r} = J1 � · · · � Jk, k ≥ 1. The subset containing the ele-
ment 1 ∈ {1, . . . , r} is denoted by J1.

Moreover, the residue polynomial Rα is independent of the order of
local singularities αi forming the collection α = (α1, . . . , αr).

For example, if the collection α = {α} contains only one element
(r = 1), then Rα = mα is the corresponding Thom polynomial of the
local singularity α.

Combining the terms on the right hand side expressions we arrive
at the following recursive relations equivalent to (5–6).

mα = Rα +
∑

1∈J�{1,...,r}
RαJ

f∗nαJ
,(7)

nα = f∗mα = f∗Rα +
∑

1∈J�{1,...,r}
f∗RαJ

nαJ
,(8)

where the sum is taken over all proper subsets J � {1, . . . , r} containing
the element 1, and J = {1, . . . , r} \ J .

The combinatorial expression (6) for the multisingularity classes nα

can be rewritten in the following way by means of generation functions.
Assume that we study multisingularities formed by the local singulari-
ties (perhaps, with repetitions) from a finite list α1, . . . , αr of pairwise
different ones. Then the following formal identity holds
(9)

1+
∑

k1,...,kr

n
α

k1
1 ...αkr

r

tk1
1

k1!
. . .

tkr
r

kr!
= exp

 ∑
k1,...,kr

f∗(Rα
k1
1 ...αkr

r
)
tk1
1

k1!
. . .

tkr
r

kr!

 .

(The author is grateful to S. Lando for this remark.)

2.15. Example. Assume that the multisingularity α = (α, . . . , α) =
(αr) contains r copies of the same singularity α. Then the class mαr
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of multiple singularity α can be determined by the following recursive
formula

(10) mαr = qr +
r−1∑
k=1

qr−knαk , f∗mαr = r nαr ,

where qk = 1
(k−1)!Rαk are certain polynomials in relative Chern classes

of the map. Over Q this relation follows from (7). Conjecturally the
polynomials qk have always integer coefficients and (10) holds in the
integer cohomology group.

At present, the first statement of Theorem is proved under certain
restrictions by topological argument from cobordism theory, see [22] and
the next section. It is a challenge to find an intersection theory proof of
this statement and especially of its various conjectural generalizations
formulated in [22].

Let us show that the second statement is a consequence of the first
one. For simplicity we shell prove the relation (9) equivalent to (6).
The relation (5) is proved by similar argument. Consider the generating
series

N (f) = 1 +
∑

k1,...,kr

n
α

k1
1 ...αkr

r

tk1
1

k1!
. . .

tkr
r

kr!
= 1 +

∑
k1,...,kr

n
α

k1
1 ...αkr

r
tk1
1 . . . tkr

r .

By the first statement of Theorem, each coefficient in this series is a
polynomial in Landweber-Novikov classes. So the coefficients of the log-
arithm log(N (f)) are. We need to show that the coefficients of log(N (f))
depend linearly in the Landweber-Novikov classes.

The generating series N (f) satisfies the following remarkable prop-
erty. Assume that M has two connected components, M = M1 �M2.
Then denoting by fi the restriction of f to Mi we have

N (f) = N (f1)N (f2).

Indeed, every multisingularity locus of the map f consists of many com-
ponents numbered by possible distributions of local singularities between
M1 andM2. These components correspond one-to-one to the summands
in the right hand side of the equality provided by the multiplication rule
for generating functions.

The equality is applied as follows. Starting from the given map
f : M → N we construct a series of new maps f (d) : M (d) → N ,
d = 1, 2, . . . , in the following way. The source manifold M (d) of f (d)

is the disjoint union of d copies of M , and the restriction of f (d) to
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each component of M (d) is defined to be a small perturbation of the
original map f . The Landweber-Novikov classes of f (d) are given by
sI(f (d)) = d sI(f). On the other hand, from the equality above we have

N (f (d)) = (N (f))d, log(N (f (d))) = d log(N (f)).

It follows that log(N (f)) has no terms of order greater then 1 in Landwe-
ber-Novikov classes since such terms would contribute to the terms in
log(N (f (d))) of order greater then 1 in d. Equality (9) is proved.

In the applications related to the enumeration of isolated multisingu-
larities of hypersurfaces one needs a Legendrian version of Theorem 2.14.
It is formulated in a similar way. The only difference is that the residue
classes Rα of the Legendre (or isolated hypersurface) multisingularity
is an element of the ring L of universal Legendre characteristic classes
(and thus it determines a cohomology class on the source manifold of a
Legendre map).

2.16. Theorem ([22]). To every collection α = (α1, . . . , αr) of sta-
ble isolated hypersurface singularity classes there corresponds a universal
Legendre characteristic class Rα ∈ L such that for any generic proper
holomorphic Legendre map f : M → PT ∗N → N the corresponding
multisingularity classes mα, nα are given by the formulas (5–8).

2.7. Multisingularities and cobordisms
In this section we show that the classical Thom’s construction for

the classifying space of cobordisms is the best fit for the study of multi-
singularities. Strangely this fact have not been noticed for such a long
time!

Consider a differentiable map f : M → N of real compact manifolds.
This map can be treated as a representative of the cobordism class [f ] ∈
O�(N), � = dimN − dimM . Therefore, it corresponds to a classifying
map from N to the classifying space of cobordisms. Recall the Thom’s
construction for this map. First, represent f as a composition of an
embedding and a projection

M ↪→ RK ×N → N.

The normal bundle of the embedding is classified by certain map M →
BO(K + �). This map extends to a map U → EO(K + �) of the total
spaces of the corresponding rank K + � bundles, where we identified the
total space of the normal bundle of M with a tubular neighborhood U
of the submanifold M ⊂ RK ×N . Finally, denoting by MO(K + �) the
Thom space of the bundle EO(K + �) we extend the constructed map
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to the whole RK × N by sending the complement of U to the marked
point in MO(K + �). Thus constructed map h : RK ×N → MO(K + �)
can be treated as a family of maps

hy : Sk → MO(K + �)

parameterized by points y ∈ N or as a map

κ : N → N�

to the corresponding iterated loop space N� = ΩKMO(K + �). The
limit limK ΩKMO(K+�) is called the classifying space of �-dimensional
cobordisms.

The cobordism class on N is determined uniquely by the homotopy
class of κ. For example, the source manifoldM of the map can be recov-
ered as the inverse image of the ‘zero section’ BO(K + �) ⊂ MO(K + �)
under the associated map RK ×N → MO(K + �). In other words, for
any y ∈ N the preimages f−1(y) are in one-to-one correspondence with
the intersection points of hy(SK) with the zero section. To any such
intersection point hy(x) we associate its K-singularity type, that is the
singularity type of the ‘projection of SK to the fiber of EO(K+ �) along
the zero section’. The following statement is almost evident.

2.17. Lemma. The stable K-singularity type of the intersection
point hy(x) coincides with the K-singularity type of the map f at the
corresponding point x ∈ M .

Remark that the usage of stable K-classification is essential here:
the manifolds participating in the two map germs (M,x) → (N, y) and
(SK , x) → (RK+�, 0) of the lemma have different dimensions (but equal
relative dimension �). Besides, the second map is not well defined and
only its K-singularity type can be determined.

The elements of the classifying space N� are continuous maps g :
SK → MO(K + �). Without loss of generality we can replace the in-
finite dimensional space BO(K + �) by its smooth finite dimensional
approximation GK+�,K1 , K1 � K + �. Moreover, we may assume that
the maps g forming the classifying space are differentiable in a neigh-
borhood of the zero section. Thus, the classifying space N� is classified
by the multisingularity types of the intersection of g(SK) with the zero
section. Therefore, the lemma can be reformulated by saying that the
classifying map κ : N → N� preserves the partitions by the multisingu-
larity types. As a result, we arrive at the following conclusion:

2.18. Corollary. The classifying space N� = ΩKMO(K + �) of
cobordisms serves also as the classifying space of multisingularities.
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The proof of the first assertion of Theorem 2.14 uses the complex
version NC

� of the classifying space of multisingularities. Ignoring some
technical difficulties we claim that the homotopy type of this space is
given by

NC
� = Ω2KMU(K + �), K � 0,

which is the classifying space of complex cobordisms. The cohomol-
ogy ring of this space can be computed explicitly, at least in the case
of rational coefficients. It is a polynomial ring whose generators corre-
spond to Landweber-Novikov classes. This leads to the formulation of
Theorem 2.14, see [22].

2.8. Generalized Pontryagin-Thom-Szücs construction
The topological type of the classifying space BS of singularities

depends heavily on the particular classification S. However all these
spaces, in particular those considered in the previous sections, have many
common features. The most important one is the following splitting that
we call the generalized Pontryagin-Thom-Szücs construction:

(11) BS =
⋃
α

Bα, Bα ∼ BGα,

where Gα is the symmetry group of the corresponding singularity α.
The notion of a ‘singularity theory classification’ can be axiomatized

as follows. By a classification S we mean a (finite or infinite) list of
symbols α called ‘singularity classes’. Every singularity class is assigned
a number codimα (its codimension) and, in addition, the following data:

• a bifurcation diagram of this singularity, that is the germ of
a (codimα)-dimensional manifold Tα equipped with the parti-
tion into the strata labelled by the singularity classes of smaller
codimensions;

• a symmetry group Gα acting on Tα preserving the partition
into the strata.

These data must satisfy some natural compatibility conditions for
adjacent singularities. For example, a normal slice to any stratum in Tα

(together with the induced partition) must be diffeomorphic to the bifur-
cation diagram of the corresponding singularity. We do not formulate
the compatibility conditions explicitly; they are always automatically
satisfied for all ‘natural’ classifications.

The homotopy type of the classifying space BS is determined uniquely
by the classification.

Indeed, the condition Bα ∼ BGα determines the topology of the
strata; and the geometry of bifurcation diagrams determines the way
how these strata are glued for adjacent singularities.
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The classifying property ofBS is formulated as follows. Assume that
we are given a parameter space M whose points are classified according
to the given classification S. Consider some stratum M(α) ⊂ M . The
structure group of the normal bundle to this stratum is reduced to Gα.
Therefore, it is classified by some map M(α) → BGa. These maps glue
together to provide a map

κ : M → BS.

in other words, the partition on M is induced from the classifying space
BS by certain classifying map κ.

The detailed realization of the general picture formulated above
meets evident technical difficulties. These difficulties have been over-
came by A. Szücs in his theory of τ -maps developed in a series of pa-
pers [35, 36, 37]. By a τ -map we mean a differentiable map that admits
only (multi)singularities from a given list τ of allowed ones. In one of
the most general form this theory is described in the joint paper with
R. Rimanyi [33]. In this theory the classifying space τY is constructed
by gluing the classifying spaces of symmetry groups of multisingulari-
ties from τ . With small changes the same construction can be applied
to any ‘abstract’ classification, not necessary related to singularities of
maps. It is assumed in the paper [33] that the classification of singu-
larities is discrete that is a neighborhood of any point intersects only
finitely many orbits. This technical restriction is not essential. It can be
dropped using the notion of a cellular classification introduced in [41].

On the other hand, in the previous sections we have used the al-
ternative a priori constructions for the classifying spaces of particular
classifications.

Both approaches to the construction of the classifying space are
equivalent.

It a consequence of a ‘general nonsense’: the uniqueness of the clas-
sifying space is guarantied by its universality that can be verified under
either approach.

Example. The classifying space τY for τ -maps can be obtained
from the classifying space N� = ΩKMO(K + �), K � 0, of cobordisms
by selecting the strata in N� corresponding to the allowed singularities.
The classifying property is almost evident: consider a τ -map M → N
and repeat the Thom’s construction for this map without regarding its
singularities; then Lemma 2.17 assures that the resulting classifying map
κ : N → N� automatically takes values in the union τY of required
strata. This interpretation of τY allows one to avoid technical difficulties
arising in the gluing construction. Another advantage of the a priori
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construction is that the space obtained in this way is smooth (although
non-compact). It is quite hard to achieve this by the gluing construction.
Besides, we obtain a clear answer to the question what is the limit of
the spaces τY when τ contains all multisingularities.

Thus instead of ‘gluing’ BS from BGα’s we prefer to speak about
‘cutting’ BS into BGα’s. Moreover, the validity of the splitting (11) can
be used to give the correct definition for the symmetry group. Here are
a few examples.

• If S is the classification of orbits of some Lie group G action
then Gα is the stabilizer of (any point of) the orbit.

• In the case of stable K�-classification the symmetry group is
the (maximal compact subgroup of) the symmetry group of
the k-jet of any stable representative f0 : (Cm, 0) → (Cm+�, 0)
with the smallest possible m (equal to the codimension of the
singularity).

• The symmetry group of a stable class of critical points of
functions is the symmetry group of any representative f0 :
(Cm, 0) → (C, 0) with the smallest possible m (equal to the
corank of the singularity).

• For the classification of multisingularities the symmetry group
of the multisingularity α = (α1, . . . , αr) is the semidirect prod-
uct of the symmetry groups Gαi of local K-singularities αi and
the subgroup in S(r) of automorphisms of the multi-index α.

The cohomological information on the topology the splitting (11) is
formulated in terms of the characteristic spectral sequence. Assume for
simplicity that there are finitely many singularity classes (the general
case is considered in [18, 19]). Consider the open increasing filtration on
BS whose pth term Fp is formed by the singularity strata of codimension
at most p,

Fp =
⋃

codimα≤p

Bα ⊂ BS.

The spectral sequence Ep,q
r associated with this filtration converges to

the cohomology of the classifying space H∗(BS). It is called the char-
acteristic spectral sequence. The complement Fp \ Fp−1 is a smooth (in
general, non-closed) submanifold in BS of codimension p formed by p-
codimensional singularities. It follows that the initial term Ep,∗

1 of this
sequence is the cohomology group of the Thom space of the normal bun-
dle to this manifold. Using the Thom isomorphism we get the following
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Ep,q
1 � ⊕

codimα=p

Hq(BGα,±Z) H∗(BGα,±Z)

E∗,∗
∞ � H∗(BS)

 

Fig. 1. Characteristic spectral sequence

description of the initial term:

Ep,q
1 �

⊕
codimα=p

Hq(BGα,±Z).

Here ±Z is the coefficient system on Bα = BGα that is locally iso-
morphic to Z and that is determined by the action of the group Gα on
the orientation of the bifurcation diagram of the singularity α (for the
details, see [18, 19]).

The Vassiliev complex is the row (E∗,0
1 , δ1) of the initial term. It

allows one to select linear combinations of the strata for which the dual
cohomology class is correctly defined.

The limit term E∗,∗∞ defines a natural filtration onH∗(BS). The pth
term of this filtration is generated by the characteristic classes that can
be represented by cycles supported on the union of strata of codimension
greater than or equal to p.

The term Ep,0
∞ corresponds to the fundamental cycles of strata of

codimension p, that is, to Thom polynomials. The terms Ep,q
∞ with

q > 0 are higher Thom polynomials, or derived characteristic classes of
singularities. They have the following meaning.
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Let M be the parameter space of some geometric problem, and α
be a singularity class of codimension p. The normal bundle to M(α)
has the structure group Gα. Therefore, every characteristic class χ of
the group Gα defines a cohomology class χ(α) ∈ Hq(M(α)) on the locus
M(α). Assume thatM(α) is closed. Then the push-out class i∗(χ(α)) ∈
Hp+q(M) is well defined, where i is the embedding. It corresponds to the
term Ep,q

1 of the spectral sequence. The derived characteristic class is the
result of an attempt to extend the definition of the class i∗(χ(α)) to the
general situation. It is not always possible (only if all differentials vanish
on this element of Ep,q

1 ). Even if this is possible, this extension is not
unique (it is defined only modula higher terms of the filtration supported
on the strata of codimension > p). Examples of derived characteristic
classes are given in the subsequent sections.

The characteristic spectral sequence has especially simple descrip-
tion in the complex problems, where all topology is often concentrated
in even dimensions and the sequence degenerates at the initial term by
dimensional reason. In this case it implies the following splitting of the
cohomology group of the classifying space,

(12) Hn(BS) �
⊕
α

Hn−codimα(BGα).

This splitting implies an interesting relation between the Poincaré series
of the cohomology groups H∗(BS) and H∗(BGα). The author used this
relation many times to check various conjectures about classifications,
the structure of symmetry groups and the topology of the classifying
spaces.

§3. Localized Thom polynomials

A localized Thom polynomial is the Thom polynomial written in a
special additive basis well adjusted to the classification of singularities
by corank. It allows one to single out the terms in the Thom poly-
nomial for which closed formulae could be given. It provides also the
correspondence between the Thom polynomials for singularities with
the same name appearing in different classifications. Finally, the con-
cept of localized Thom polynomials is crucial in the application of the
restriction method to the computation of the residue classes of complete
intersection multisingularities.

3.1. Porteous-Thom classes and their derived classes
One of the historically first examples of the computed Thom poly-

nomials are those for the so called Porteous-Thom singularities. Let M
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be the source manifold of a generic holomorphic map

f : M → N.

Denote by Σr = Σr(f) ⊂ M the locus of points where the derivative
of the map f has at least r-dimensional kernel, r ≥ max(0, �), where
� = dimN − dimM . More generally, let E,F be two complex vector
bundles over the same base M and ϕ : E → F be a generic morphism.
Then one can define the locus Σr for his morphism by similar conditions.
In the case when M is the source of a holomorphic map f we can set
E = TM , F = f∗TN , and ϕ = f∗ : TM → f∗TN is the derivative map.
If the genericity condition holds, then Σr is a subvariety of (complex)
codimension

codimΣr = r (r + �), � = rkF − rkE.

By Theorem 2.8, the dual of the locus Σr is expressed as a universal
polynomial in the classes ci = ci(f) = ci(F − E).

3.1. Theorem ([27]). The cohomology class Poincaré dual to the
locus Σr is given by the following determinant

[Σr] = det ‖cr+�−i+j‖i,j=1,...,r, ci = ci(f) = ci(F − E).

Assume for a moment that the locus Σr+1 is empty. Then (provided
the genericity condition holds) the locus Σr is smooth. Denote by pr :
Σr → M the embedding. The Gysin homomorphism pr∗ : H∗(Σr) →
H∗(M) allows us to push-forward to M cohomology classes defined on
Σr. Over Σr one has the natural kernel bundle K and cokernel bundle Q
of ranks r and r+�, respectively. These bundles form the exact sequence
(defined on Σr only)

0 → K → E
ϕ→ F → Q → 0.

Let R(v, u) be arbitrary polynomial in formal variables v1, . . . , vr,
u1, . . . , ur+�. Set vi = ci(K), uj = cj(Q).

3.2. Proposition. If Σr+1 is empty, then the push-forward class
pr∗R(c(K), c(Q)) can be expressed as a universal polynomial (determined
by �, r, and R) in the relative Chern classes ci = ci(f) = ci(F − E).

The polynomial representing the class pr∗R(c(K), c(Q)) is called the
derived Thom polynomial of the singularity Σr. Since it is a polynomial
in the classes ci(F −E), it can be considered for any map not necessary
satisfying the condition Σr+1 = ∅. The derived Thom polynomial is not
defined uniquely but only up to a class that can be represented by a
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cycle supported on Σr+1. This ambiguity can be fixed, for example, by
the following geometric construction. Consider the Grassmann bundle
Gr(E) formed by all r-dimensional subspaces λ in the fibers of the bundle
E → M .

3.3. Definition. The standard resolution Σ̃r of the singularities of
the locus Σr is the submanifold in the space of the Grassmann bundle
Gr(E) formed by all pairs of the form (x, λ), x ∈ M , λ ⊂ Ex, such that
λ ⊂ ker f .

If the genericity condition for the morphism ϕ : E → F holds, then
Σ̃r is smooth. Denote by pr : Σ̃r → M the natural projection.

Denote by K the restriction to Σ̃r of the tautological rank r bundle
over Gr(E). Denote also by Q the (virtual) bundle Q = F −E +K. In
the case when Σr+1 = ∅ the map p carries Σ̃r isomorphically to Σr and
the bundles K, Q over Σ̃r correspond to similar bundles over Σr under
this isomorphism. This justifies our notation.

Denoting vi = ci(K), uj = cj(Q) we see that R(v, u) can be con-
sidered as a cohomology class on Σ̃r. This extends the definition of the
class pr∗R(v, u) ∈ H∗(M) to the case of arbitrary morphism E → F not
necessary satisfying the condition Σr+1 = ∅.

The explicit form of the class pr∗R(v, u) can be obtained as follows.
From the definition of Q, we have c(Q) = c(F−E) c(K), or

(13) uk =
∑

i+j=k

ci vj , ci = ci(F−E).

In view of the projection formula it remains to compute the push-forward
class pr∗R(v, u) in the case when R depends on the variables vi only.
According to the splitting principle we set formally

(14) c(K) = 1 + v1 + · · ·+ vr =
r∏

i=1

(1 − ti)

and express the polynomial R in terms of t1, . . . , tr using these relations.

3.4. Theorem. The homomorphism pr∗ : H∗(Σ̃r) → M is given
on the monomials in ti by the formula

(15) pr∗ts1
1 . . . tsr

r = det ‖cr+�−i+si+j(F − E)‖i,j=1,...,r.

Some versions of this formula can be found in [15, 12] The relation
of this theorem should be understood formally since the classes ti are
not defined on Σ̃r. The determinantal expression on the right hand side
is known as the Schur polynomial.
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3.2. Localized Thom polynomials
Relations (13–15) have the following formal treatment. Consider the

polynomial rings of universal characteristic classes

H∗(BU) = Z[c1, c2, . . . ],

H∗(BU(r) ×BU(r+�)) = Z[v1, . . . , vr, u1, . . . , ur+�].

We consider the grading on these rings by setting deg ci = deg vi =
deg ui = i so that for a homogeneous cohomology class a one has
a ∈ H2 deg a(·). These rings are related by the natural multiplicative
homomorphism

p∗r : H∗(BU) −→ H∗(BU(r) ×BU(r+�))

given on the generators ci by the formal expansion

p∗r : 1 + c1 + c2 + . . . 
−→ 1 + u1 + · · ·+ ur+�

1 + v1 + · · ·+ v�
.

Besides, we consider the homomorphism of H∗(BU)-modules

pr∗ : H∗(BU(r) ×BU(r+�)) −→ H∗(BU)

given by the explicit formulae (13–15). (The action of H∗(BU) on
H∗(BU(r) ×BU(r + �)) is determined via p∗r .)

3.5. Theorem. The homomorphisms pr∗, r ≥ max(0,−�), provide
a natural splitting

(16) H∗(BU) �
⊕

r

H∗(BU(r) ×BU(r+�)).

In other words, every polynomial P in variables ci has a unique presen-
tation in the form

(17) P =
∑

r

pr∗R(r),

where R(r) is a polynomial of degree degR(r) = degP − r (r+�) in vari-
ables v1, . . . , vr, u1, . . . , ur+�.

The right hand side of (17) is called the localized form of the poly-
nomial P . Its terms pr∗(R(r)) are determined uniquely by P and by
the number �. These terms have the following meaning. Consider
a morphism of vector bundles ϕ : E → F over some base M with
rkF − rkE = �. Then the term pr∗R(r) ∈ H∗(BU) = Z[c1, c2, . . . ] eval-
uated on the relative Chern classes ci = ci(F − E) can be represented
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by a cycle supported on the locus Σr of the morphism ϕ. For example,
if P = Tpα is the Thom polynomial of some singularity α having the
kernel rank r, then the polynomials R(i) = R

(i)
α vanish for i < r.

The localized form clarifies also the structure of the residue polyno-
mials of multisingularities. The following assertion is verified on hun-
dreds of computed examples. However, we still have no formal proof of
this fact.

3.6. Conjecture. For any multisingularity α = (α1, . . . , αr) the
residue cohomology class Rα ∈ H∗(M) of a map f : M → N can be
represented by a cycle supported on the intersection

⋂r
i=1 M(αi) ⊂ M .

In particular, the number k0 of the first non-zero term in the localized
residue polynomial Rα =

∑
k≥k0

pk∗R
(k)
α is equal to the biggest kernel

rank of the singularities αi.

The splitting of the Theorem is a particular case of the splitting (12).
Consider linear maps forming the space Hom(Cm,Cm+�) with � fixed
and m = 1, 2, . . . . The classification of such maps can be considered
as an independent classification problem. The singularity classes for
this classification are the classes Σr of maps of kernel rank r. By the
symmetry group GΣr of the class Σr we mean the stationary subgroup
of any representative x ∈ Hom(Cm,Cm+�) with the smallest possible m
(that is, with m = r). It is clear that such a representative is exactly
the zero map x = 0 ∈ Hom(Cr,Cr+�). The stationary group for this
element contains all linear transformations of the source and the target
space. Therefore,

GΣr ∼ U(r) × U(r + �),

and the splitting (16) follows from (12). �
The construction for the homomorphisms pr∗ has some variations.

For example, we could consider the resolution of the locus Σr using the
Grassmann bundle Gr+�(F ) or even combine the two methods. This
would lead to another choice for the homomorphism pr∗ : H∗(BU(r) ×
BU(r+�)) → H∗(BU) such that the difference of the two choices is
supported on Σr+1. More formally, consider the decreasing filtration on
H∗(BU) whose rth term is formed by polynomials in Chern classes ci
that can be represented by cycles supported on Σr. Then the right hand
side of (16) represents the adjoint graded space of this filtration and the
equality (17) provides a particular splitting of this filtration. It follows
that the first nonzero term in the localized form of a polynomial P has
more invariant meaning with respect to the other terms.

3.7. Example. The term p0∗R
(0)
α can be non-trivial only in the case

when every local singularity αi of the multisingularity α = (α1, . . . , αr)
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is the class of immersion (that is, the class A0 of non-singular map
germs). In the latter case one has

R
(0)
Ar

0
= (r−1)! (−1)r−1ur−1

� , p0∗R
(0)
Ar

0
= (r−1)! (−1)r−1cr−1

� .

This equality together with (10) is equivalent to the known Herbert-
Ronga formula for the classes of multiple points of immersions,

mr = f∗nr−1 − c�mr−1,

where we denote by mr = 1
(r−1)!mAr

0
and nr = 1

r!nAr
0
the classes of the

corresponding reduced cycles of multiple points.

3.8. Example. There has been a number of papers studying Thom
polynomials for corank 1 maps that is for maps such that the kernel rank
of the derivative does not exceed 1 at any point, see [27, 24, 25, 6, 30,
26, 1]. The results of these papers can be interpreted as the study of
the term p1∗R(1) of these Thom polynomials. Indeed, if the map has
no points with singularities of corank greater, then 1 then Σr = ∅ for
r ≥ 2 and all terms of the localized Thom polynomial except the first
one vanish for such a map.

Our findings on the Thom polynomials for such maps can be sum-
marized as follows (all necessary ingredients for obtaining formulas of
Theorems 3.9 and 3.12 below are contained implicitly in [24, 25, 6]).
Let � ≥ 0. Denote by Ak the K-singularity class of maps with local
algebra isomorphic to C[x]/xk+1 i.e. the singularity class of the Thom-
Boardman type Σ1,...,1 (k units). The polynomial R(1)

Ak
of the first term

in the localized Thom polynomial TpAk
=
∑

pr∗R
(r)
Ak

depends on the
variables v1, u1, . . . , u�+1. Set t = −v1.

3.9. Theorem. The term R
(1)
Ak
of the localized Thom polynomial of

the singularity Ak is given by

R
(1)
Ak

= σ2σ3 . . . σk,

where

σp = u�+1 + p t
�∑

i=0

pitiu�−i = c�+1 + (p−1)t
�∑

i=0

pitic�−i, t = −v1.

For applications of this theorem remark that the homomorphism p1∗
has especially simple form:

p1∗ts = cs+�+1.
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3.10. Corollary. If f : M → N is a generic corank 1 map, then
the cohomology class dual to the singularity locus Ak can be obtained as
follows. One should expand all brackets in the product

k∏
p=2

(
c�+1 + (p−1)t

�∑
i=0

pitic�−i

)

and formally replace any occurrence of ts with s ≥ 0 by c�+1+s =
c�+1+s(f∗TN − TM).

In the case � = 0 this assertion is proved in [26].
The residue polynomials of multisingularities of corank one maps

can also be written in a closed form. To describe these polynomials we
introduce the following notation. Consider the ring homomorphism

ρ : Z[c1, c2, . . . ] → Z[t, c1, . . . , c�+1]

given on the generators by ρ(ci) = ci for i ≤ � + 1 and ρ(c�+1+j) =
c�+1t

j . The following lemma can be formally derived from the formula
of Theorem 3.4. Let P be arbitrary polynomial in the variables ck.
Consider its localized form P = p∗0R(0) + p∗1R(1) + . . . .

3.11. Lemma. The homomorphism ρ vanishes on the terms ps∗R(s)

for s ≥ 2. Moreover, the terms p∗0R(0) + p∗1R(1) are completely deter-
mined by the image ρ(P ) of this homomorphism.

In what follows we set

Qp1,...,pr = ρ(RAp1−1,...,Akr−1).

Due to Lemma 3.11, the polynomial Qp1,...,pr describes the initial terms
of the residue polynomial for the multisingularity (Ap1−1, . . . , Akr−1).
With this notation Theorem 3.9 asserts that for the case of a monosin-
gularity (r = 1) this polynomial is given by

(18) Qp = ρ(RAp−1) = σ1σ2 . . . σp−1.

3.12. Theorem. The terms p0∗R
(0)
α + p1∗R

(1)
α of the localized

residue polynomial of a given multisingularity α = (α1, . . . , αr) can be
nontrivial only if every singularity αi has the form Ak for some k ≥ 0.
For the multisingularity (Ap1−1, . . . , Apr−1) the corresponding localized
terms are given by the following formula
(19)

Qp1,...,pr =
1

tr−1

∑
{1,...,r}=J1�···�Jk

(−1)r−k (k−1)! σk−1
0 Q|p

J1
| . . .Q|p

J1
|.
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In this relation, |p
J
| denotes ∑i∈J pi. One can verify that the sum

on the right hand side is divisible by tr−1 that is Qp1,...,pr is indeed a
polynomial in variables t, c1, . . . , c�+1.

3.13. Corollary. For a generic corank one map, the residue class
of the multisingularity (Ap1−1, . . . , Apr−1) can be obtained from the poly-
nomial Qp1,...,pr in the following way. One should expand all brackets,
replace any occurrence of c�+1t

k by c�+1+k, and finally replace ci by the
relative Chern class ci(f) = ci(f∗TN − TM).

3.14. Example. For � ≤ 0 the first term of the localized Thom
polynomial (with r = 1− �) has also a special meaning. If f : (Cm, 0) →
(Cm+�, 0) is a map germ of kernel rank 1 − � (i.e. of cokernel rank 1),
then the fiber f−1(0) is the germ of ICIS of embedded dimension 1 −
�. It means that this fiber is actually the germ of an IHS (isolated
hypersurface singularity). The IHS’s admit a stabilization allowing to
compare hypersurfaces of different dimensions, see Sect. 2.5. The theory
of characteristic classes associated with the stable classification of IHS’s
is the theory of Legendre characteristic classes. Thus the term R1−�

α

of the localized Thom polynomial for a given cokernel rank 1 ICIS α
is determined by the Thom polynomial for the corresponding IHS. The
same is applied to the term R1−�

α of the residue polynomial for arbitrary
multisingularity α = (α1, . . . , αr). Recall that the ring L of universal
Legendre characteristic classes is generated by the classes u, ai which are
subject to relations (2).

3.15. Theorem. The polynomial R(1−�)
α (v1, . . . , v1−�, u1) of the

first localized term in the residue polynomial of the complete intersection
multisingularity α is nontrivial only if all singularities αi forming the
multisingularity α are hypersurface singularities. If this is true, then this
polynomial can be obtained from the Legendre residue polynomial of the
hypersurface multisingularity α by the change of variables determined by
u = u1 and

1 + a1 + a2 + · · · = (1 + u1)1−� − (1 + u1)−�v1 + · · · ± v1−�

1 + v1 + · · ·+ v1−�
.

Remark that the stabilization of IHS’s does not extend to the com-
plete intersection singularities of cokernel rank greater than 1: for dif-
ferent � ≤ 0 the classifications of (−�)-dimensional ICIS’s are quite dif-
ferent.

3.3. Symmetric and Lagrange degeneracy loci
In this section we summarize some results on symmetric and La-

grange degeneracy loci. These results can be considered as symmetric
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analogues of the results on Porteous-Thom classes. Most of the relations
of this section are known, see [14, 16, 10, 11, 12, 29]. Nevertheless, our
presentation of these relations is quite different.

Consider the following problem. Assume we are given a complex vec-
tor bundle V → M over some smooth base and a generic self-conjugate
morphism ϕ : V → V ∗. We may consider ϕ as a family of quadratic
forms on the fibers of V or as a section of the bundle Sym2 V ∗. The prob-
lem is to determine the cohomology classes dual to the locus Ωr ⊂ M
formed by the points at which ϕ has at least r-dimensional kernel.

The most efficient solution to this problem uses the language of sym-
plectic geometry. Recall that the symplectic structure on a vector space
E of even dimension 2n is a non-degenerate skew-symmetric bilinear
form. The standard example is the space of the form E = V ⊕V ∗ where
the value of the symplectic form on the vectors ξ ⊕ η, ξ′ ⊕ η′ is given by
〈ξ′, η〉 − 〈ξ, η′〉, where 〈·, ·〉 is the pairing between vectors and covectors.

A subspace L ⊂ E of the middle dimension n is called Lagrangian if
it is isotrope i.e. if L⊥ = L where the orthogonal complement is consid-
ered with respect to the symplectic structure. All Lagrange subspaces
of the fixed symplectic space E form the Lagrange Grassmannian Λn.
Remark that a linear map V → V ∗ is self-adjoint iff its graph is La-
grangian. Thus the Lagrange Grassmannian can be considered as the
natural compactification of the space of quadratic forms. In particular,
dimΛn = n (n+1)/2.

Now, consider more general problem formulated as follows. Con-
sider a vector bundle E of even rank 2n over some smooth base M .
Assume that the fibers of E are equipped with a symplectic structure
smoothly depending on the point of the base. Let V,W be two Lagrange
subbundles of E i.e. subbundles whose fibers are Lagrangian. We look
for the cohomology class dual to the locus Ωr ⊂ M formed by the points
x ∈ M at which the fibers Vx,Wx have at least r-dimensional intersec-
tion. Following [41] we call

[Ωr] ⊂ H∗(M)

Arnold-Fuks classes.
The problem on a self-adjoint map ϕ : V → V ∗ is a particular case

of this one: for the symplectic bundle E one should take E = V ⊕ V ∗

and for Lagrange subbundles one should take the bundle V ⊕ {0} and
the graph of the morphism ϕ, respectively.

3.16. Definition. The ring LLag of universal Lagrange character-
istic classes is the quotient ring of polynomials in variables a1, a2, . . . ,
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deg ai = i, modulo the ideal generated by the relations:

(20) a2
k − 2ak+1ak−1 + 2ak+2ak−2 − · · · ± 2a2k = 0.

The ring LLag is the cohomology ring of the stable Lagrange Grass-
mannian Λ = limn Λn. The generators ai correspond (up to a sign) to
the Chern classes of the tautological rank n bundle U over Λn, namely,
we set ai = ci(U∗) = (−1)ici(U). The relations can be written also in
the form

(1 + a1 + a2 + . . . ) (1− a1 + a2 − . . . ) = 1 or c(U + U∗) = 1.

In this form they immediately follow from the natural isomorphism
E/U � U∗ provided by the symplectic structure. The relations allow
one to expand all powers of the variables ai. The additive basis of LLag

is formed by the monomials of the form ai1
1 a

i2
2 . . . with ij ∈ {0, 1}.

The Lagrange analogue of Schur polynomials are the so called Schur
Q-polynomials. These are certain elements Qλ1,...,λr ∈ LLag defined
for any sequence λ = (λ1, . . . , λr) of positive integers by the following
conditions.

• if r = 1, we set Qk = ak;
• if r = 2, we set

Qk,l = a2
k − 2ak+1al−1 + 2ak+2al−2 − 2ak+3al−3 + . . . ;

• for any even r ≥ 4 we set

Qλ1,...,λr = Pf |Qλi,λj |1≤i,j≤r;

• for any odd r ≥ 3 we set

Qλ1,...,λr =
r∑

k=1

(−1)k−1aλk
Qλ1,...,λk−1,λk+1,...,λr

Here Pf is the Pfaffian. Recall that the Pfaffian of a skew-symmetric
matrix ω = ‖ωi,j‖ of even order 2n is given, by definition, by the equality

Pf ‖ωi,j‖ =
∑

±ωi1,i2 · · ·ωi2n−1,i2n ,

where the sum runs over all (2n − 1)!! ways to represent {1, 2, . . . , 2n}
as a union of n pairs {i1, i2} ∪ · · · ∪ {i2n−1, i2n} and ± is the sign of the
permutation (1, 2, . . . , 2n) 
→ (i1, i2, . . . , i2n).

The equality Qk,l = −Ql,k for k + l odd follows directly from the
definition, and for k+ l even it follows from the identity (20). Moreover,
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the polynomial Qλ1,...,λr depends skew-symmetrically on the indices λi.
This follows from the fact that the Pfaffian is skew-symmetric with re-
spect to simultaneous permutations of rows and columns of the matrix.
In particular, Qλ1,...,λr = 0 if one has λi = λj for some i %= j.

3.17. Remark. The distinction between the cases of even and odd
r is apparent. In fact, there is the following explicit formula due to
V. Kryukov:

(21) Qλ1,...,λr =
∑

i1,...,ir

wi1,...,ir aλ1+i1 . . . aλr+ir ,

where the coefficients wi1,...,ir do not depend on λ1, . . . , λr and are given
by the formal expansion

∑
wi1,...,ir τ

i1
1 . . . τ ir

r =
∏

1≤i<j≤r

τj − τi
τj + τi

=
∏

1≤i<j≤r

1− τiτ
−1
j

1 + τiτ
−1
j

=
∏

1≤i<j≤r

(1− 2 τiτ−1
j + 2 τ2

i τ
−2
j − 2 τ3

i τ
−3
j + . . . ).

(22)

Equation (22) is considered in the ring of infinite series in generators
τ1/τ2, . . . , τr−1/τr, or, which is equivalent, in the completion of the ring
of Loran polynomials with respect to an auxiliary grading such that the
degree of the monomial τ i1

1 . . . τ ir
r is equal to

∑r
k=1 k ik.

We are able now to formulate principle results on Lagrange and
symmetric degeneracy problems. Let M be a manifold. Consider a
symplectic vector bundle E and two its Lagrange subbundles V,W as at
the beginning of this section.

3.18. Definition. Lagrange characteristic classes of the triple
(E, V,W ) are the Chern classes ai = ci(E−V−W ) = ci(V ∗ − W ) =
ci(W ∗ − V ).

The identity (20) follows immediately from the equalities E/V �
V ∗, E/W � W ∗ provided by the non-degeneracy of the symplectic
structure.

For a self-adjoint map V → V ∗ one has V � W so that the Lagrange
characteristic classes in this case are ai = ci(V ∗ − V ).

3.19. Theorem. The Arnold-Fuks class [Ωr] ∈ H∗(M) of the
triple (E, V,W ) is a universal Lagrange characteristic class given by an
appropriate Schur Q-polynomial:

[Ωr] = Qr,r−1,...,1.
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The derived Arnold-Fuks classes can also be defined. The singularity
locus of the variety Ωr coincides with Ωr+1. Consider the standard
resolution Ω̃r of Ωr defined as the subvariety of Gr(E) formed by all
pairs (x,Kx), where x ∈ M and Kx is an r-dimensional subspace of the
intersection Vx ∩ Wx ⊂ Ex. Denote by K the restriction to Ω̃r of the
tautological rank r bundle over Gr(E) and by pr : Ω̃r → M the natural
projection.

Let R be an arbitrary polynomial in variables v1, . . . , vr. Denote by
R(c(K)) ∈ H∗(Ω̃) the cohomology class obtained by setting vi = ci(K).

3.20. Theorem. The push-forward class pr∗R(c(K)) is expressed
as a universal Lagrange characteristic class uniquely determined by r, R
and evaluated for the given triple (E, V,W ).

More explicitly, set formally c(K) =
∏r

i=1(1 − ti), substitute the
corresponding symmetric functions in −ti to R and expand all brackets.
Then the homomorphism pr∗ is given on the resulting monomials in the
variables ti by the following explicit formula

pr∗ts1
1 . . . tsr

r = Qr+s1,r−1+s2,...,1+sr .

3.21. Theorem. The collection of homomorphisms pr∗ provides
the universal splitting

LLag =
⊕

r

H∗(BU(r)).

In other words, any universal Lagrange characteristic class P ∈ LLag

can be presented uniquely in the form

P =
∑

r

pr∗R(r),

where R(r) is a polynomial of degree degR(r) = degP − r (r+1)/2 in the
variables v1, . . . , vr.

The splitting of the Theorem is a particular case of the splitting (12).
Namely, consider the classification of quadratic forms in arbitrary num-
ber of variables, where the forms Q(x) and Q′(x, y) = Q(x) + y2 are
considered as stably equivalent, where x ∈ Cn, y ∈ C. The classi-
fying space for this classification is the stable Lagrange Grassmannian
Λ = limn Λn. The singularity classes for this classification are the classes
Ωr of forms with kernel rank r. By the symmetry group GΩr of the class
Ωr we mean the stationary subgroup of any quadratic form x ∈ Ωr de-
pending on the smallest possible n number of variables. It is clear that
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this representative is exactly the zero form and n = r. The stationary
group for this element contains all linear transformations of the space
Cr. Therefore,

GΩr ∼ U(r)

and the splitting of Theorem follows from (12). �

3.4. Twisted Lagrange degeneracy loci and localized Le-
gendre characteristic classes

In applications, instead of Lagrange and symmetric degeneracy loci,
one meets more often their twisted analogues that are called Legendre
degeneracy loci.

Let V → M be a complex vector bundle. Consider a family ϕ of
quadratic forms on the fibers of V that take values not in numbers but
in the fibers of a supplementary line bundle I → M . One can treat
ϕ as a self-adjoint morphism V → V ∗⊗I or as a section of the bundle
Sym2 V ∗⊗I.

Similarly, one can consider a vector bundle E → M equipped with
the symplectic form on its fibers that takes values in the fibers of a
line bundle I. Lagrange subbundles of this twisted symplectic bundle
are defined similarly to the non-twisted case. If V,W are two Lagrange
subbundles in E, then one defines in a similar way the degeneracy loci
Ωr and the corresponding Arnold-Fuks class [Ωr] ∈ H∗(M).

Moreover, similarly to the non-twisted case one can consider the
resolution subvariety Ω̃r ⊂ Gr(E), the tautological rank r bundle K

over Ω̃r and the derived Arnold-Fuks class pr∗R ∈ H∗(M) where R is
an arbitrary polynomial in vi = ci(K).

The twisted analogue of the Lagrange characteristic classes are Le-
gendre ones. Recall (see Sect 2.5) that the ring L of Legendre character-
istic classes is generated by the generators u, a1, a2, . . . that are subject
to relations (2).

Lagrange characteristic classes can be obtained from Legendre ones
by setting u = 0. Conversely, one can show that over Q as well as over
any ring containing 1/2 there is an isomorphism

(23) L[ 12 ] � Z[u]⊗ LLag[12 ].

On should remark that this splitting does not hold over integers. This
remark is especially important in the real problems where the Chern
classes are replaced by the Stiefel-Whitney classes, all coefficients are
reduced modulo 2 and the division by 2 is forbidden.

3.22. Definition. Legendre characteristic classes associated with
the twisted symplectic bundle E and its Lagrange subbundles V , W are
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the Chern classes u = c1(I) and

ai = ci(E − V −W ) = ci(V ∗⊗I −W ) = ci(W ∗⊗I − V ).

Respectively, the Legendre characteristic classes associated with a twisted
self-adjoint morphism V → V ∗⊗I are u = c1(I) and ai = ci(V ∗⊗I−V ).

The identity (3) for these classes follows immediately from the iso-
morphismsE/V � V ∗⊗I, E/W � W ∗⊗I implied by the non-degeneracy
of the symplectic structure.

The twisted version of theorems of the previous section holds also
true. One should replace only Lagrange characteristic classes by their
Legendre analogues.

3.23. Theorem. Every twisted Arnold-Fuks class as well as any
its derived class is expressed as a universal Legendre characteristic class.
Moreover, the collection of homomorphisms pr∗ provides the universal
splitting

L �
⊕

r

H∗(BU(r) ×BU(1)).

In other words, any Legendre characteristic class P has a unique repre-
sentation in the following localized form

P =
∑

r

pr∗R(r),

where R(r) are polynomials in the classes vi = ci(K), i = 1, . . . , r, and
u = c1(I) of degree degR(r) = degP − r(r + 1)/2.

The importance of the splitting of this theorem is in the fact that
for any Legendre or twisted symmetric degeneracy problem the term
pr∗R(r) is represented by a cycle supported on the corresponding locus
Ωr.

The explicit formulae for the homomorphisms pr∗ follow from the
isomorphism (23). Namely, on can use the following trick borrowed
from [14]. First consider the case when I = J⊗2, where J is another line
bundle with c1(J) = c1(I)/2 = u/2. In this case the twisted symplectic
structure on E induces the non-twisted symplectic structure on E′ =
E ⊗ J∗. The subbundles V,W of E induce the Lagrange subbundles
V ′ = V⊗J∗ and W ′ = W⊗J∗ of E′. Moreover, the degeneracy locus
Ωr and its resolution Ω̃r for the triple (E, V,W ) coincide with those for
the triple (E′, V ′,W ′).

Therefore we can apply the formulas of the previous section to find
the direct images of the characteristic classes of the tautological bundle
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K ′. Since the Chern classes ci(K) = ci(K ′⊗J) are expressed as polyno-
mials in the classes ci(K ′) and u/2 = c1(J), this allows us to compute
the direct image of any polynomial in the classes ci(K). The formulas
obtained in this way can be applied to arbitrary line bundle I since they
are universal. Remark that the intermediate steps in the derivation of
these formulas use the division by 2 but the final expression for the de-
rived classes has only integer coefficients since the group of Legendre
characteristic classes is torsion free.

There are Legendre analogues of Theorems 3.6, 3.9, 3.12. In particu-
lar, there is an explicit formula for the initial terms of the localized form
of a residue polynomial for a Lagrange multisingularity. These terms
can be obtained from the trivial observation that the case � = 0 satisfies
both � ≤ 0 and � ≥ 0. Namely, the terms p0∗R

(0)
α + p1∗R

(1)
α for a La-

grange multisingularity α = (α1, . . . , αr) are non-trivial only if αi = Api

for i = 1, . . . , r and some pi ≥ 1. By Theorem 3.15, these terms are de-
termined by the corresponding formulas for the 0-dimensional complete
intersection multisingularities (Ap1 , . . . , Apr ) that is by the formulas of
Theorem 3.12 with � = 0.

§4. Computation of Thom polynomials

4.1. Restriction method

The Porteous-Thom singularities are determined by the 1-jet of the
map germ. The Thom polynomial for these singularities have been com-
puted in [27] by resolving these singularities and applying the known
formulas for the Gysin homomorphism, see Sect. 3.1. The resolution
method can be applied also for certain singularity classes determined by
higher order jets, see eg. [28, 34, 21]. Nevertheless, for more compli-
cated singularities finding an appropriate resolution is not easy and the
method meets serious technical difficulties.

Quite recently R. Rimányi [31] suggested a much more simple in-
direct method that uses the following idea. Since the existence of the
Thom polynomial is established, it remains to find the coefficients of this
polynomial. For that it is sufficient to consider a number of examples
for which both the Chern classes of the map and the classes dual to
the singularity loci are known. Every such example provides linear rela-
tions on the coefficients of the Thom polynomial. With an appropriate
choice of the examples these relations could determine the polynomial
completely. Rimányi has shown that this method can be efficiently ap-
plied to compute Thom polynomials for essentially all classified classes
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of complex singularities. In the real problems the method can also be
applied though with less efficiency [9].

For the collection of the test maps one can use the following ones.
Let f0 : Cm → Cn be the ‘normal form’ of a certain singularity class α.
The symmetry group Gα of this singularity acts on the source and the
target spaces Cm, Cn, respectively. Denote by BGα the classifying space
of the group Gα (or some of its smooth finite-dimensional approxima-
tions). Denote by M and N the total spaces of the vector bundles
E → BGα and F → BGα with the fibers Cm and Cn, respectively,
corresponding to these actions. Finally, let f : M → N be the fibred
map that coincides with f0 on each fiber.

The relative Chern classes c(f) = c(TN)/c(TM) = c(F )/c(E) of the
test map can usually be easily computed using the splitting principle.
Some information is known also on the classes dual to the singularity
loci. For example, the locus of the singularity α is the zero section
of the bundle E → BGα and its dual is the Euler characteristic class
e(E) = cm(E) of the bundle. Besides, for any class β which is not
adjacent to α the corresponding singularity locus is empty and so the
dual cohomology class is equal to zero.

Relations arising from these test examples is usually sufficient to
compute the Thom polynomials of all necessary singularities. To see
when this method can lead to the desired answer let us turn back to
the splitting (1). Assume that we know the complete classification of
singularities up to a given codimension p. Assume that the classification
problem under consideration is a complex one and that there are only
finitely many singularity classes of codimension below p. In this case
the splitting (12) holds and every test example allows us to compute
the corresponding summand of the Thom polynomial provided by this
splitting. This argument explains the applicability of the method in
complex problems.

As an example let us show the computation of the Thom polynomial
for the ‘pleat’ singularity Σ1,1 of a map between two manifolds of equal
dimension. Let ξ → B be a line bundle over some smooth base B,
say, the tautological line bundle over B = CPn for some n ≥ 2. Set
t = c1(ξ) ∈ H2(B). Consider the following quasihomogeneous normal
forms of the simplest singularities Σ1 and Σ1,1:

x 
→ x2, (x, y) 
→ (x3 + xy, y).

These formulas can be interpreted as the fibred maps ξ → ξ⊗2 and
ξ⊕ ξ⊗2 → ξ⊗3 ⊕ ξ⊗2, respectively, of the total spaces of the correspond-
ing vector bundles. The source and the target manifolds are homotopy
equivalent to B so we can identify H∗(M) � H∗(N) � H∗(B). With
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these identifications, the relative Chern classes of the test maps are

1 + 2t
1 + t

= 1 + t− t2 + . . . ,
(1 + 3t)(1 + 2t)
(1 + t)(1 + 2t)

= 1 + 2t− 2t2 + . . . ,

respectively. Besides, the Euler class of the bundle ξ ⊕ ξ⊗2 is equal to
2t2. It follows that the unknown coefficients a, b of the desired Thom
polynomial a c21 + b c2 satisfy the relations

0 = a t2 + b (−t2), 2 t2 = a (2t)2 + b (−2t2).
These equations lead to the unique solution a = b = 1 which means that
the Tom polynomial of the singularity Σ1,1 is equal to c21 + c2.

4.2. Computation of the residue polynomials for multisin-
gularities

The restriction method considered above can be applied to the study
of the characteristic classes of multisingularities. To apply the formulas
of the section 2.6 we need every test map to be proper (this restriction is
not needed for the study of monosingularities). The maps of the previous
section satisfy this condition if the relative dimension � = dimN−dimM
is non-negative. Thus the direct application of the restriction method
provides the computation of the residue polynomials of multisingularities
with � ≥ 0.

A new feature in this computation is that of the Gysin homomor-
phism f∗ : H∗(M) → H∗(N) for the test maps. Assume that M and
N are the total spaces of the vector bundles E and F , respectively,
over some smooth base B. Let f : M → N be a fibred map whose
restriction to each fiber coincides with the standard proper quasiho-
mogeneous map f0 : Cm → Cn in some coordinates. Because of the
isomorphism H∗(M) � H∗(N) � H∗(B) we can consider the homo-
morphism f∗ as acting in the cohomology group H∗(B). Due to the
projection formula this homomorphism acts as the multiplication by the
class f∗(1) ∈ H2�(B). This class can by found using the following lemma.

4.1. Lemma. The class f∗(1) satisfies the relation

f∗(1) cm(E) = cn(F ).

In applications, the cohomology ring H∗(B) has no zero divisors,
therefore, the relation of the lemma determines the class f∗(1) and the
homomorphism f∗ uniquely.

Proof. The top Chern classes cm(E) and cn(F ) are the cohomol-
ogy classes Poincaré dual to the zero sections of the bundles E and F ,
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respectively. In other words, cm(E) = i∗(1) and cn(F ) = j∗(1), where
i : B → M and j : B → N are the zero section embeddings. Since
j = f ◦ i, the relation of the lemma follows from the identity

f∗ i∗ = j∗.

Let now � < 0. Let the holomorphic map f : M → N be one of
the test maps of the previous section used for the computation of the
Thom polynomials. Then all level sets of f have positive dimensions.
Therefore, this map cannot be proper, the homomorphism f∗ is not de-
fined, and the formulas of the section 2.6 cannot be applied directly.
To extend the restriction method to this case we use the following ob-
servation. Set � = dimN − dimM . Fix some integer s ≥ max(0,−�).
Let Σs = Σs(f) ⊂ M be the locus of the corresponding Porteous-Thom
singularity. In what follows we make the following weaker assumption
on the map f :

4.2. Assumption. The restriction of the map f to the locus Σs is
proper.

If this assumption holds, then the homomorphism f∗ is well defined
on those classes that can be represented by cycles supported on Σs. More
precisely, let ps : Σ̃s → M be the natural resolution of Σs from Sect. 3.1.
Then the map f◦ps : Σ̃s → N is proper and the homomorphism (f◦ps)∗ :
H∗(Σ̃s) → H∗(N) is well defined. In other words, the homomorphism
f∗ is well defined on the image of the homomorphism ps∗ : H∗(Σ̃s) →
H∗(M).

In particular, consider some element P ∈ H∗(M) that is represented
as a polynomial in the relative Chern classes ci = ci(f). Assume that
the localized form of Sect. 3.2 for this polynomial P =

∑
k pk∗R(k) has

nontrivial terms with k ≥ s only. Then the homomorphism f∗ is well
defined on such a class. Namely, we set

f∗P =
∑

k

(fpk)∗R(k).

This assumption suggests the following conjectural sharpening of
Conjecture 3.6.

4.3. Conjecture. Let f : M → N be a holomorphic map, not
necessary proper, that satisfies Assumption 4.2. Let α = (α1, . . . , αr) be
a multisingularity type such that each individual singularity αi of this
collection has corank greater than or equal to s. Then every residue
polynomial in the right hand side expressions of (5–6) is supported on
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Σs, the homomorphism f∗ is well defined on these polynomials and re-
lations (5–6) hold.

Now we observe that for � < 0 the test maps considered in the
previous section satisfy Assumption 4.2 with s = −� + 1. This allows
us to apply the restriction method to finding the residue polynomial of
multisingularities of maps with � < 0.

4.3. Tables of computed polynomials
In this section we present some of the results on the computation

of Thom polynomials for local singularities and residue polynomials for
multisingularities. More complete tables occupy many pages. They are
available on [23]. The polynomials are represented both in the localized
form and in terms of the Chern classes. In the localized form, we skip
the expressions for the terms given by the explicit formulas of Theo-
rems 3.9, 3.12, and 3.15. The tables below allow the reader to estimate
to what extend these formulas determine the residue polynomials.

The standard notation for the singularity classes is taken mostly
from [3, 4]. All singularities in the studied range of dimensions are
simple (have no modula in the normal form). Remark that the stable
classification of K-singularities is independent for different values � of the
relative dimension of the map. Therefore, one should not confuse with
similar notation of different singularity classes appearing for different �.
Similarly, the homomorphism pr∗ of Sect. 3.2 is different for different
�. By the codimension of a multisingularity we mean its complex codi-
mension in the source manifold, that is, the degree of the corresponding
residue polynomial.

Table 2 represents the residue polynomials of Legendre multisin-
gularities (or hypersurface singularities) up to codimension 4. Up to
codimension 6 the formulas can be found in [23].

Table 2: Residue polynomials for Legendre multisingularities

RA1 = p0∗(1) = 1

RA2 = p1∗(1) = a1

RA2
1
= −p0∗(u)− 3 p1∗(1) = −u − 3 a1

RA3 = p1∗(u − 3 v1) = u a1 + 3 a2

RA1A2 = −6 p1∗(u − 2 v1) = −6 (u a1 + 2 a2)

RA3
1
= 2 p0∗(u

2) + 2 p1∗R
(1)

A3
1
= 2 (u2 + 19 a1u + 30 a2)

RA4 = p1∗R
(1)
A4

+ 3 p2∗(1) = a1u
2 + 4 a2u + 3 a1a2 + 6 a3

RD4 = p2∗(1) = −ua2 + a1a2 − 2 a3
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RA2
2
= p1∗R

(1)

A2
2
− 21 p2∗(1) = −3 (3 a1u

2 + 8 a2u + 7 a1a2 + 6 a3)

RA1A3 = p1∗R
(1)
A1A3

− 24 p2∗(1) = −4 (2 a1u
2 + 5 a2u + 6 a1a2 + 3 a3)

RA2
1A2

= p1∗R
(1)

A2
1A2

+ 144 p2∗(1) = 24 (3 a1u
2 + 7 a2u + 6 a1a2 + 3 a3)

RA4
1
= −6 p0∗(u

3) + p1∗R
(1)

A4
1
− 1026 p2∗(1)

= −6 (u3 + 111 a1u
2 + 239 a2u + 171 a1a2 + 78 a3)

RA5 = p1∗R
(1)
A5

+ p2∗(16u − 27 v1)

= a1u
3 − 4 a2u

2 + 16 a1a2u − 12 a3u + 27 a1a3 + 6 a4

RD5 = 2 p2∗(2u − 3 v1) = −2 (2 a2u
2 − 2 a1a2u + 7 a3u − 3 a1a3 + 6 a4)

RA2A3 = p1∗R
(1)
A2A3

− 6 p2∗(28 u − 39 v1)

= −6 (2 a1u
3 − 10 a2u

2 + 28 a1a2u − 39 a3u + 39 a1a3 − 18 a4)

RA1A4 = p1∗R
(1)
A1A4

− 70 p2∗(2u − 3 v1)

= −10 (a1u
3 − 4 a2u

2 + 14 a1a2u − 16 a3u + 21 a1a3 − 6 a4)

RA1D4 = −4 p2∗(5u − 6 v1) = 4 (5 a2u
2 − 5 a1a2u + 16 a3u − 6 a1a3 + 12 a4)

RA1A2
2
= p1∗R

(1)

A1A2
2
+ 18 p2∗(74u − 95 v1)

= 18 (7 a1u
3 − 20 a2u

2 + 74 a1a2u − 96 a3u + 95 a1a3 − 50 a4)

RA2
1A3

= p1∗R
(1)

A2
1A3

+ 18 p2∗(76u − 99 v1)

= 2 (56 a1u
3 − 220 a2u

2 + 684 a1a2u − 951 a3u + 891 a1a3 − 522 a4)

RA3
1A2

= p1∗R
(1)

A3
1A2

− 2400 p2∗(5u − 6 v1)

= −48 (28 a1u
3 − 55 a2u

2 + 250 a1a2u − 318 a3u + 300 a1a3 − 180 a4)

RA5
1
= 24 p0∗(u4) + p1∗R

(1)

A5
1
+ 72 p2∗(1621 u − 1830 v1)

= 24 (u4 + 671 a1u
3 − 701 a2u

2 + 4863 a1a2u

− 5844 a3u + 5490 a1a3 − 3420 a4)

The classification of K-singularities of maps of relative dimension
� = −1, that is, of one-dimensional complete intersection singularities
starts with the classification of plane curve singularities. Up to codi-
mension 5, the two classifications coincide and every residue polynomial
of the complete intersection multisingularity is determined due to The-
orem 3.15 by the residue polynomial of the corresponding hypersurface
multisingularity. In codimension 6, there appears the simplest space
curve singularity, S5. The residue polynomials of the codimension 5
multisingularities are presented in Table 3. Up to codimension 8, these
polynomials are available in [23].
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Table 3: Residue polynomials for multisingularities with ‘ = `1

RA5 = p2∗R
(2)
A5

+ 6 p3∗(1)

= 2 (15 c6
1 + 5 c2c

4
1 + 25 c3c

3
1 − 26 c2

2c
2
1 − c4c

2
1 − 15 c2c3c1

− 6 c5c1 + 3 c3
2 + 3 c2

3 − 3 c2c4)

RD5 = p2∗R
(2)
D5

− 4 p3∗(1)

= 2 (2 c6
1 − c2 c4

1 − 9 c3c
3
1 + 6 c2

2c
2
1 − 3 c4c

2
1 + 6 c2c3c1

+ c5c1 − 2 c3
2 − 2 c2

3 + 2 c2c4)

RS5 = p3∗(1) = c3
2 − 2 c1c3c2 − c4c2 + c2

3 + c2
1c4

RA2A3 = p2∗R
(2)
A2A3

− 12 p3∗(1)

= −6 (50 c6
1 − 13 c2c

4
1 + 23 c3c

3
1 − 34 c2

2c
2
1 − 7 c4c

2
1

− 14 c2c3c1 − 7 c5c1 + 2 c3
2 + 2 c2

3 − 2 c2c4)

RA1A4 = p2∗R
(2)
A1A4

− 20 p3∗(1)

= −20 (13 c6
1 − c2c

4
1 + 11 c3c

3
1 − 14 c2

2c
2
1 − 3 c4c

2
1 − 5 c2c3c1

− 2 c5c1 + c3
2 + c2

3 − c2c4)

RA1D4 = p2∗R
(2)
A1D4

+ 8 p3∗(1)

= −4 (5 c6
1 − 4 c2c

4
1 − 21 c3c

3
1 + 15 c2

2c
2
1 + 6 c2c3c1

+ c5c1 − 2 c3
2 − 2 c2

3 + 2 c2c4)

RA1A2
2
= p2∗R

(2)

A1A2
2
+ 108 p3∗(1)

= 36 (71 c6
1 − 35 c2c

4
1 + 33 c3c

3
1 − 42 c2

2c
2
1 − 9 c4c

2
1

− 15 c2c3c1 − 6 c5c1 + 3 c3
2 + 3 c2

3 − 3 c2c4)

RA2
1A3

= p2∗R
(2)

A2
1A3

+ 72 p3∗(1)

= 2 (1260 c6
1 − 545 c2c

4
1 + 425 c3c

3
1 − 692 c2

2c
2
1 − 173 c4c

2
1

− 214 c2c3c1 − 97 c5c1 + 36 c3
2 + 36 c2

3 − 36 c2c4)

RA3
1A2

= p2∗R
(2)

A3
1A2

− 864 p3∗(1)

= −48 (501 c6
1 − 332 c2c

4
1 + 215 c3c

3
1 − 241 c2

2c
2
1 − 56 c4c

2
1

− 78 c2c3c1 − 27 c5c1 + 18 c3
2 + 18 c2

3 − 18 c2c4)

RA5
1
= p2∗R

(2)

A5
1
+ 9408 p3∗(1)

= 24 (10368 c6
1 − 8561 c2c

4
1 + 5045 c3c

3
1 − 4285 c2

2c
2
1 − 1125 c4c

2
1

− 1456 c2c3c1 − 379 c5c1 + 391 c3
2 + 393 c2

3 − 390 c2c4 − c6)



Thom polynomials 131

For the case of multisingularities of maps of equally dimensional
manifolds (� = 0) and maps of relative dimension � = 1, the residue
polynomials are given in Tables 4 and 5, respectively. These polynomials
are computed up to codimension 8, see [23]. In the tables, we present
these polynomials up to codimension 5 and 6, respectively. By Ak, Ia,b,
and J6 we denote singularity classes with local algebras isomorphic to
C[x]/xk+1, C[x, y]/(x y, xa+yb), and C[x, y]/(x2, x y, y2), respectively.

Table 4: Residue polynomials for multisingularities with ‘ = 0

RA1 = p1∗(1) = c1

RA2 = p1∗(u1 − 2 v1) = c2
1 + c2

RA2
1
= −2 p1∗(2u1 − 3 v1) = −2 (2 c2

1 + c2)

RA3 = p1∗((u1 − 3 v1) (u1 − 2 v1)) = c3
1 + 3 c2c1 + 2 c3

RA1A2 = −6 p1∗((u1 − 2 v1)
2) = −6 (c3

1 + 2 c2c1 + c3)

RA3
1
= 8 p1∗(5u2

1 − 17 v1u1 + 15 v2
1) = 8 (5 c3

1 + 7 c2c1 + 3 c3)

RA4 = p1∗R
(1)
A4

+ 2 p2∗(1) = c4
1 + 6 c2c

2
1 + 9 c3c1 + 2 c2

2 + 6 c4

RI2,2 = p2∗(1) = c2
2 − c1c3

RA2
2
= p1∗R

(1)

A2
2
− 12 p2∗(1) = −3 (3 c4

1 + 12 c2c
2
1 + 13 c3c1 + 4 c2

2 + 8 c4)

RA1A3 = p1∗R
(1)
A1A3

− 8 p2∗(1) = −4 (2 c4
1 + 9 c2c

2
1 + 11 c3c1 + 2 c2

2 + 6 c4)

RA2
1A2

= p1∗R
(1)

A2
1A2

+ 48 p2∗(1) = 24 (3 c4
1 + 10 c2c

2
1 + 10 c3c1 + 2 c2

2 + 5 c4)

RA4
1
= p1∗R

(1)

A4
1
− 288 p2∗(1) = −48 (14 c4

1 + 37 c2c
2
1 + 33 c3c1 + 6 c2

2 + 15 c4)

RA5 = p1∗R
(1)
A5

+ 2 p2∗(5u1 − 11 v1)

= c5
1 + 10 c2c

3
1 + 25 c3c

2
1 + 10 c2

2c1 + 38 c4c1 + 12 c2c3 + 24 c5

RI2,3 = 2 p2∗(u1 − 2 v1) = −2 (c3c
2
1 − c2

2c1 + c4c1 − c2c3)

RA2A3 = p1∗R
(1)
A2A3

− 72 p2∗(u1 − 2 v1)

= −12 (c5
1 + 7 c2c

3
1 + 13 c3c

2
1 + 6 c2

2c1 + 17 c4c1 + 6 c2c3 + 10 c5)

RA1A4 = p1∗R
(1)
A1A4

− 60 p2∗(u1 − 2 v1)

= −10 (c5
1 + 8 c2c

3
1 + 17 c3c

2
1 + 6 c2

2c1 + 22 c4c1 + 6 c2c3 + 12 c5)

RA1I2,2 = −2 p2∗(5u1 − 8 v1) = 2 (5 c3c
2
1 − 5 c2

2c1 + 3 c4c1 − 3 c2c3)

RA1A2
2
= p1∗R

(1)

A1A2
2
+ 72 p2∗(7u1 − 13 v1)

= 18 (7 c5
1 + 40 c2c

3
1 + 65 c3c

2
1 + 28 c2

2c1 + 76 c4c1 + 24 c2c3 + 40 c5)
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RA2
1A3

= p1∗R
(1)

A2
1A3

+ 48 p2∗(9u1 − 17 v1)

= 8 (14 c5
1 + 88 c2c

3
1 + 157 c3c

2
1 + 54 c2

2c1 + 179 c4c1 + 48 c2c3 + 90 c5)

RA3
1A2

= p1∗R
(1)

A3
1A2

− 192 p2∗(19 u1 − 34 v1)

= −48 (28 c5
1 + 139 c2c

3
1 + 211 c3c

2
1 + 76 c2

2c1

+ 221 c4c1 + 60 c2c3 + 105 c5)

RA5
1
= p1∗R

(1)

A5
1
+ 768 p2∗(41 u1 − 71 v1)

= 384 (42 c5
1 + 176 c2c

3
1 + 244 c3c

2
1 + 82 c2

2c1

+ 236 c4c1 + 60 c2c3 + 105 c5)

Table 5: Residue polynomials for multisingularities with ‘ = 1

RA0 = p0∗(1) = 1

RA2
0
= −p0∗(u1) = −c1

RA1 = p1∗(1) = c2

RA3
0
= 2 p0∗(u

2
1) + 2 p1∗(1) = 2 (c2

1 + c2)

RA0A1 = 2 p1∗(−u1 + 2 v1) = −2 (c1c2 + c3)

RA4
0
= −6 p0∗(u3

1)− 6 p1∗(3u1 − 5 v1) = −6 (c3
1 + 3 c1c2 + 2 c3)

RA2 = p1∗R
(1)
A2

= c2
2 + c1c3 + 2 c4

RA2
0A1

= p1∗R
(1)

A2
0A1

= 2 (3 c2
1c2 + 2 c2

2 + 7 c1c3 + 6 c4)

RA5
0
= 24 p0∗(u

4
1) + p1∗R

(1)

A5
0
= 24 (c4

1 + 6 c2
1c2 + 2 c2

2 + 9 c1c3 + 6 c4)

RA2
1
= 2 p1∗(−u1 + 3 v1) (2u2 − 3u1v1 + 6 v2

1)

= −2 (2 c1c
2
2 + c2

1c3 + 4 c2c3 + 5 c1c4 + 6 c5)

RA0A2 = p1∗R
(1)
A0A2

= −3 (c1c
2
2 + c2

1c3 + 2 c2c3 + 4 c1c4 + 4 c5)

RA3
0A1

= p1∗R
(1)

A3
0A1

= −24 (c3
1c2 + 2 c1c

2
2 + 4 c2

1c3 + 3 c2c3 + 8 c1c4 + 6 c5)

RA6
0
= −120 p0∗(u

5
1) + p1∗R

(1)

A6
0

= −120 (c5
1 + 10 c3

1c2 + 10 c1c
2
2 + 25 c2

1c3 + 12 c2c3 + 38 c1c4 + 24 c5)

RA3 = p1∗R
(1)
A3

+ p2∗(1)

= c3
2 + 3 c1c2c3 + c2

3 + 2 c2
1c4 + 7 c2c4 + 10 c1c5 + 12 c6

RJ6 = p2∗(1) = c2
3 − c2c4
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RA0A2
1
= p1∗R

(1)

A0A2
1
+ 24 p2∗(1)

= 8 (2 c2
1c

2
2 + c3

2 + c3
1c3 + 9 c1c2c3 + 3 c2

3 + 8 c2
1c4

+ 9 c2c4 + 21 c1c5 + 18 c6)

RA2
0A2

= p1∗R
(1)

A2
0A2

+ 18 p2∗(1)

= 6 (2 c2
1c

2
2 + c3

2 + 2 c3
1c3 + 10 c1c2c3 + 3 c2

3 + 13 c2
1c4

+ 11 c2c4 + 30 c1c5 + 24 c6)

RA4
0A1

= p1∗R
(1)

A4
0A1

+ 408 p2∗(1)

= 24 (5 c4
1c2 + 20 c2

1c
2
2 + 5 c3

2 + 30 c3
1c3 + 67 c1c2c3

+ 17 c2
3 + 103 c2

1c4 + 55 c2c4 + 178 c1c5 + 120 c6)

RA7
0
= 720 p0∗(u

6
1) + p1∗R

(1)

A7
0
+ 12240 p2∗(1)

= 720 (c6
1 + 15 c4

1c2 + 30 c2
1c

2
2 + 5 c3

2 + 55 c3
1c3 + 79 c1c2c3

+ 17 c2
3 + 141 c2

1c4 + 55 c2c4 + 202 c1c5 + 120 c6)
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[36] A. Szücs, Cobordism of maps with simplest singularities, In: Topology
Symposium, Siegen, Lect. Notes in Math., 788 (1980), 223–244.
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Quasi-convex decomposition in o-minimal

structures. Application to the gradient conjecture

Krzysztof Kurdyka and Adam Parusiński

Abstract.

We show that every subset of R
n definable in an o-minimal struc-

ture can be decomposed into a finite number of definable sets that

are quasi-convex i.e. have comparable, up to a constant, the intrinsic

distance and the distance induced from the embedding. We apply

this result to study the limits of secants of the trajectories of gradi-

ent vector field ∇f of a C1 definable function f defined in an open

subset of R
n. We show that if the o-minimal structure is polynomi-

ally bounded then the limit of such secants exists, that is an analog

of the gradient conjecture of R. Thom holds. Moreover we prove that

for n = 2 the result is true in any o-minimal structure.

§ 0. Introduction

Let f be a real analytic function on an open set U ⊂ Rn and let ∇f
be its gradient in the Euclidean metric. Let x(t) be a trajectory of ∇f .
Then, after �Lojasiewicz [16], if x(t) has a limit point x0 ∈ U , then the
length of x(t) is finite and x(t) → x0 as t → ∞. Moreover, then the
trajectory cannot spiral, that is the limit of secants

lim
t→∞

x(t) − x0

|x(t) − x0|
exists. The last result, known as the gradient conjecture of R. Thom,
has been proven recently in [14]. The main purpose of this paper is to
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study this conjecture in the o-minimal set-up, that is for f that is C1

and definable in an o-minimal structure.
Recall that the o-minimal structures are natural generalizations

of the semi-algebraic or the subanalytic geometry satisfying important
finiteness properties. The reader that is not familiar with this notion
may refer to various introductory references as for instance [4], [5]. An
o-minimal structure is called polynomially bounded if for each continu-
ous function ϕ : (R, 0) → (R, 0), ϕ−1(0) = 0, definable in the structure,
there is a constant N > 0 such that |ϕ(r)| ≥ |r|N . In o-minimal poly-
nomially bounded structures the classical �Lojasiewicz Inequalities (with
exponents) hold. On the other hand the o-minimal structures that are
not polynomially bounded contain the exponential function, cf. [17],
and hence many flat functions. In what follows we suppose that we have
fixed an o-minimal structure and the functions we consider are definable
in this structure.

The trajectories of the gradient vector field of definable functions
have been studied in [9], where an analog of �Lojasiewicz’s result of finite-
ness of length was proven. Thus we may place ourselves in the following
set-up. We suppose that f : U → R is a C1 definable function defined
in an open bounded definable U ⊂ Rn. We consider a trajectory x(s)
of ∇f parameterized by the arc-length s. Since its length is finite the
trajectory x(s) has a unique limit point x0, that is x(s) → x0 as s→ s0,
and either x0 ∈ U , and then ∇f(x0) = 0, or x0 ∈ U \ U . In both cases
we shall study the limits of secants

lim
s→s0

x(s) − x0

|x(s) − x0| .

Even in the subanalytic case this set-up is more general than the classical
analytic one but of course the main difficulty to extend the gradient
conjecture to this case is the presence of flat functions. In this paper,
we were able to extend most of the properties of the trajectories of the
gradient established in [14], but we came short of proving the conjecture
in general. Our main results are the following

(1) The length of the trajectory has the same asymptotic as the
distance to the limit point

|x(s) − x0|
|s− s0| → 1 as s→ s0.
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(2) The gradient conjecture holds for n = 2. More precisely, in
this case the trajectory is definable in an o-minimal structure,
maybe bigger than the one that contains f .

(3) The gradient conjecture holds for polynomially bounded o-minimal
structures.

Moreover, similarly to [14], we were able to ”capture” the trajectories
arriving to a fixed limit point x0 ∈ U into a finite number of sets.
First of all only finitely many limiting values of f , lims→s0 f(x(s)), are
allowed along the trajectories of ∇f that tend to x0, see remark 6.2.
Furthermore, if we suppose |∇f | ≥ 1, that we can do by section 3, then
we can describe the asymptotic behavior of f at the limit point more
precisely. There exists a finite number of definable functions {ϕ(r)} of
one real variable r, where r stands for radius r = |x− x0|, such that on
each trajectory that tends to x0, f(x(s)) ∼ ϕ(|x(s) − x0|) for exactly
one such function ϕ. We shall call these functions the characteristic
functions associated to f at x0. A more precise result on the asymptotic
behavior of f along the trajectory is given in section 7.

Some parts of our argument are similar to that of [14]. Let us
stress here the main differences. The characteristic exponents of [14]
characterizing the possible asymptotic behavior of f along trajectories
are replaced by characteristic functions. In order to show their existence
we cannot use the argument of finitude of exponents as in [14] since it
does not make sense in general. Instead we use a geometric argument on
the structure of definable sets. Namely we show that each definable set
can be decomposed into a finite union of quasi-convex cells, as explained
in section 1 below. In a polynomially bounded case if ϕ : (R, 0) → (R, 0)
is definable continuous then ϕ/r is locally integrable. This is not the
case in general. We have to carefully distinguish those ϕ for which ϕ/r is
integrable, we call them small, and the other ones, that we call unit-like.
Many our arguments, in particular the proof of conjecture for n = 2,
relies on the properties of small functions. We stopped short of carrying
out the proof of the gradient conjecture for o-minimal structure because
of the existence of small functions with unit-like square root.

The paper is organized as follows. In section 1 we show that each
definable set can be decomposed in a finite union of quasi-convex cells,
that is such cells in Rn for which the induced Euclidean distance is
comparable, up to a constant, with the intrinsic one (i.e. along the
cell). This part is quite technical. The reader interested mainly in the
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properties of the trajectories of gradient can go directly to section 2.
In this section we study the germs of continuous definable functions
ϕ : (R, 0) → (R, 0) and the question of integrability of ϕ/r. In section
3 we show analogs of �Lojasiewicz and Bochnak-�Lojasiewicz Inequalities
for gradient in the o-minimal set-up. The characteristic functions are
introduced in section 4. We show that there are finitely many such
functions and that each trajectory x(s) of ∇f with the origin as the limit
point has to finally end-up in one of finitely many sets Uϕ = {x|cϕ(x) <
|f(x)| < Cϕ(x)}, C, c > 0, ϕ being a characteristic function. This
holds under the assumption |∇f | ≥ 1, that can be always achieved by
replacing f by Ψ ◦ f without affecting the trajectories of the gradient.
Subsequently the function F (x) = f(x)

ϕ(r) is used as a control function
in the sense of Thom. The estimates along trajectories are carried out
in sections 5 and 7. It is convenient, for each characteristic function,
to make another change of target coordinate , that is to replace f by
a function of the from Φ ◦ f , so that the corresponding characteristic
function ϕ becomes equivalent to the distance to the origin r. This
simplifies many formulae. After such a change we show not only that
F = f

ϕ is bounded from zero and infinity on the trajectory but also
that it approaches a fixed value and only finitely many such values are
allowed. These values, called asymptotic critical values, are studied in
section 6. As application we show in section 8 the o-minimal gradient
conjecture for n = 2 and in section 9 for the polynomially bounded
structures.

The result of the first section has been obtained independently by
W. Paw�lucki [21]. During the redaction of this paper we also learned
that some other of the results proven is this paper were obtained during
a workshop at the Fields Institute (Toronto) by M. Aschenbrenner, S.
Kuhlmann, C. Miller, D. Novikov, P.Speisseger, and S. Starchenko. In
particular, we were informed that the gradient conjecture holds in the
polynomially bounded o-minimal structures. The case n = 2 was stated
as an open problem at this meeting.

Notation and convention.

We often write r instead of |x| which is the Euclidean norm of x.
We use the standard notation ϕ = o(ψ) or ϕ = O(ψ) to compare the
asymptotic behavior of ϕ and ψ, usually when we approach the origin.
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Sometimes we write ϕ 
 ψ instead of ϕ = o(ψ). We write ϕ ∼ ψ if
ϕ = O(ψ) and ψ = O(ϕ), and ϕ � ψ if ϕ

ψ tends to 1.

Erratum to [14]:

The formula on the line -6 on page 783 should be replaced by:

dF

ds̃
=

|∇′f |
rl−1

+
|∂rf |
rl−1

|∂rf |
|∇′f |O(r2ω) = O(rη) +

|∂rf |
|∇′f |O(r2ω).

§1. L-regular cells

Consider Rn equipped with the canonical scalar product. We say
that A ⊂ Rn verifies the Whitney property with constant M > 0, if any
two points x, y ∈ A can be joined in A by a piecewise smooth arc of
length ≤ M |x − y|. Following M. Gromov [6] one could also say that
A is quasi-convex, or more precisely that A is M -quasi-convex. Any
bounded semianalytic set can be covered by a finite number of quasi-
convex (and semianalytic) sets as proven by the second named author
[19] using the regular projections of T. Mostowski [18]. The construction
proposed in [19] (extended in [20] to subanalytic sets) does not allow to
estimate the constant M . Next the first named author [10] proved,
by a different argument, that any bounded subanalytic subset can be
decomposed (more precisely stratify) into a finite union of M -quasi-
convex (and subanalytic) sets, with the constant M depending only on
n - the dimension of the ambient space. This result was improved in
[12], where it is shown that for any M > 1 such a finite decomposition
into M -quasi-convex sets exists.

The construction from [10] can be adapted for o-minimal structures
and actually can be done with parameters (which we need in the sequel).
We shall explain it in this section.

We define, by induction on n, a class of subsets of Rn. For any
x ∈ Rn let us write x = (x′, xn) ∈ Rn−1 × R. We say that A ⊂ Rn is
a standard L-regular cell in Rn with constant C, if A = {0} for n = 0,
and for n > 0 the set A is of one of the following forms:

(graph) A = {(x′, xn) ∈ R
n−1 × R; xn = h(x′), x′ ∈ A′}
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(we write often h instead of A), or
(band)

A = {(x′, xn) ∈ R
n−1 × R; f(x′) < xn < g(x′), x′ ∈ A′} = (f, g)

where A′ is a standard L-regular cell in Rn−1 with constant C, f, g, h :
A′ → R are C1 functions such that f(x′) < g(x′) for x′ ∈ A′. Moreover
we require that

(1.1) ‖df(x′)‖ ≤ C, ‖dg(x′)‖ ≤ C, ‖dh(x′)‖ ≤ C

for all x′ ∈ A′. We call A′ the base of the cell A, and in the case of band
the graphs of f and g the horizontal part of the boundary of A.

By induction, we obtain that A is a C1 submanifold of Rn (not
closed in general). So it make sense to define df , dg, dh and also their
norms (with respect to the norm induced on tangent space to A′ at x′).
If in the above we drop the condition (1.1), but we still assume that the
functions f, g, h are C1 we say that the set A is a standard C1 cell in
Rn. If the functions f, g, h are only continuous we shall say that A is a
standard cell in Rn.

Finally we say that B ⊂ Rn is an L-regular cell in Rn with constant
C, if there exists an orthogonal change of variables ϕ : Rn → Rn such
that ϕ(B) is a standard L-regular cell (with constant C) in R

n. By
convention the empty set is an L-regular set (with any constant), also it
will be convenient not to distinguish between function and its graph.

It is easily seen by induction that

Lemma 1.1. Any L-regular cell in Rn with constant C is M -quasi-
convex, where M = (C + 1)n−1. Moreover A is also M -quasi-convex.

As a piece of terminology we recall that by a decomposition we al-
ways understand a disjoint union. We say that a decomposition RN =⋃
i∈I B

i is compatible with a collection Ak ⊂ R
N , k ∈ K, if Bi ∩Ak = ∅

or Bi ⊂ Ak for any i ∈ I, k ∈ K. We also say that a decomposi-
tion RN =

⋃
i∈I B

i is a stratification if each Bi is a C1 submanifold
and dim(Bi \ Bi) < dimBi, and moreover that this decomposition is
compatible with the collection Bi, i ∈ I.

Notation. For B ⊂ Rn × Rp and t ∈ Rp we write Bt = {x ∈ Rn :
(x, t) ∈ B}.

Now we state the main result on a decomposition of a definable set
into a finite number of quasi-convex sets.
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Theorem 1.2. There exists M = M(n) > 0 such that any set
A ⊂ R

n×R
p definable in an o-minimal structure can be decomposed into

a finite (and disjoint) union A =
⋃
i∈I B

i, such that for each t ∈ Rp,
every set Bit has the Whitney property with constant M (i.e. is M -quasi-
convex). So, in particular, At =

⋃
i∈I

Bit for each t ∈ Rp.

Corollary 1.3. Let A ⊂ Rn ×Rp be a family of definable sets such
that each At, t ∈ T ⊂ Rp, is connected. Then there is a constant C > 0
such that for every t ∈ T and x, x′ ∈ At there is a definable continuous
curve ξ joining x and x′ in At such that

length(ξ) ≤ C diam(At),

where diam(At) stands for the diameter of At.

What we actually prove below is more precise than theorem 1.2,
namely we have:

Proposition 1.4. Let Ak ⊂ Rn × Rp, k ∈ K, be a finite collection
of definable sets in an o-minimal structure. Then there exists finitely
many disjoint definable sets Bi ⊂ Rn ×Rp, i ∈ I, and linear orthogonal
mappings ϕi : Rn → Rn, i ∈ I, such that:

a) for every t ∈ Rp, each ϕi(Bit) is a standard L-regular cell in
Rn with constant C. The constant C = Cn depends only on n.

b) For every t ∈ R
p, the family Bit ⊂ R

n, i ∈ I, is a stratification
of Rn.

c) For any k ∈ K there exists Ik ⊂ I such that Akt =
⋃
i∈Ik

Bit, for

every t ∈ R
p.

Remark 1.5. Clearly, for a fixed t ∈ R
p some of Bit may be empty.

Proposition 1.4 will be proved at the end of this section. Before we
give some preliminaries on the distances between linear subspaces and
we recall some basic facts on cell decompositions in o-minimal structures.
We establish also the definability of tangent mapping (with parameters).

1.1. Distances between linear subspaces

In this subsection by a line or a hypersurface in Rn we mean a
linear subspace of dimension 1 and n − 1 respectively. First we recall
the definition of the angle (or the distance) between linear subspaces. If
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P, S are (vector) lines we denote by δ(P, S) the sine of the angle between
P and S, in other words δ(P, S) =

√
1 − 〈p, s〉2, where |p| = |s| = 1,

p ∈ P and s ∈ S.
Let X be a linear subspace in Rn, let P be a line in Rn. We define

the angle between P and X as

δ(P,X) = inf{δ(P, S);S is a line in X}

Finally, if Y is a linear subspace in Rn we put

δ(Y,X) = sup{δ(P,X);P is a line in Y }

Let us denote by Gd,n the grassmanian of all d-dimensional linear sub-
spaces of Rn equipped with the natural structure of real algebraic variety.
Then, it is easily seen by the Tarski-Seidenberg theorem that:

Lemma 1.6. The function Gd,n×Ge,n � (Y,X) �−→ δ(Y,X) ∈ R is
continuous and semialgebraic. Moreover, if d = e, then δ is a distance
on Gd,n, compatible with the standard topology on Gd,n.

Remark 1.7. Let X be a linear subspace and P a line in Rn. De-
note by P⊥ the orthogonal complement of P and by π the orthogonal
projection on P⊥. Let c > 0. Assume that δ(P,X) > c, then X is the
graph of a linear mapping

ξ : P⊥ ∩ π(X) → P

satisfying ‖ξ‖ ≤ C < +∞, where C =
√

1−c2
c .

Given a finite system X1, ...Xr of hyperplanes of R
n. Then we may

find, in a uniform way, a line P transverse ot each Xi. More precisely
we have the following fact of metric-combinatorial nature that will be
crucial in the proof of proposition 1.4.

Lemma 1.8. For any two positive integers r, n there exist constants
τ = τ(r, n) > 0 and c = c(r, n) > 0 such that for given X1, ...Xr hyper-
planes in Rn, there exists a line P such that, if Y1, ..., Yr are hyperplanes
verifying δ(Yi, Xi) < τ , i = 1, ...r, then

(1.2) δ(P, Yi) > c for each i = 1, ..., r.

Proof. We fix n, and consider the metric d on the sphere Sn−1

induced by δ i.e. d(p, q) = δ(Rp,Rq) for p, q ∈ Sn−1. Let us denote
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Xτ
i = {p ∈ Sn−1 : dist(p,Xi∩Sn−1) < τ}, where as usually dist(p, Z) =

inf{d(p, q) : q ∈ Z}. Note that δ(Yi, Xi) < τ means that Yi∩Sn−1 ⊂ Xτ
i

and δ(P, Yi) > c means that B(p, c)∩Yi∩Sn−1 = ∅, where p ∈ P ∩Sn−1.

Claim 1.9. For any r ∈ N, there exists τr > 0 and cr > 0 such that
the complement of

⋃r
i=1X

τ
i in Sn−1 contains a ball of radius cr (in the

metric d).

The claim implies lemma 1.8. Indeed, the line passing by the center
of the ball has the property desired in (1.2). We show the claim by
induction on r. The case r = 1 is obvious. Let us denote τr and cr
corresponding constants in the claim for r hyperplanes. Let B(p, cr)
be a ball in Sn−1 which is disjoint with each Xτr

i , i = 1, ...r. Put
τr+1 = cr+1 = min{τr, cr}/3, then the set B(p, cr) \ Xτr+1

r+1 contains a
ball of radius cr+1. Q.E.D.

1.2. Cell decompositions in families

Recall that a finite decomposition RN =
⋃
i∈I B

i is called a cell
decomposition (resp. a C1 cell decomposition) if each Bi is a standard
(resp. a C1 standard) cell in RN , and the collection π(Bi), i ∈ I, is a
cell decomposition of RN−1, where π : RN → RN−1 is the projection
parallel to the xN -axis. We say that a decomposition is definable if all
its members are definable (in some fixed o-minimal structure). We have
the following fundamental result in the theory of o-minimal structures
due to Steinhorn, Pillay and Knight [22],[8] ( see also [4], [3]):

Theorem 1.10 (Cell decomposition). For any finite collection Ak,

k ∈ K, of definable sets in RN there exists a definable C1 cell decompo-
sition RN =

⋃
i∈I B

i compatible with the collection Ak, k ∈ K.

Remark 1.11. The basic result (proved in [22],[8]) is the existence of a
cell decomposition (without any smoothness assumption). The existence
of C1 decomposition is due to van den Dries and is valid in the Ck class
for any finite k (cf. [4]). Moreover this decomposition can be refined to
a stratification (loc.cit.).

What we need in the sequel is a decomposition with parameters (we
rather say in a family). We say that that a definable set A ⊂ Rn×Rp is
a definable family of standard cells in Rn if: each At is either empty or
is a standard cell in Rn and the type of At does not depend on t ∈ Rp.
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(We say that two cells A1, A2 ⊂ Rn are of the same type if they are both
graphs or both bands over their bases which are of the same type.)

Clearly if A ⊂ Rn+p is a standard cell in Rn+p = Rp×Rn then A is
a definable family of standard cells in Rn (cf. eg. [4] chap 3 ). Hence all
claims of existence of decomposition into a definable family of standard
cells (or C1 cells) in Rn follows from theorem 1.10.

We shall often use the following construction of cell decomposition
in an o-minimal structure.

The CD (cell decomposition) construction:
Let Ak ⊂ Rn+1 × Rp, k ∈ K, be a finite collection of disjoint defin-

able sets. Denote by π : Rn+1 → Rn the projection which forgets the
coordinate xn+1. Suppose that for each t ∈ Rp every Akt (if nonempty)
is a C1 submanifold of Rn+1 of dimension d and moreover that π re-
stricted to Akt is an immersion. Each π−1(x)∩Akt is discrete, so it must
be finite, by o-minimality. Now, for every r ∈ N and k ∈ K the set

Σkr = {(x, t) ∈ R
n × R

p; π−1(x) ∩Akt has r elements}
is definable, moreover Σkr = ∅ for r larger than some r0. This is due
to the fundamental property of o-minimal structures; if the fibers of a
definable mapping have only isolated points, then there exists a uniform
bound for the number of points in each fiber (cf. eg. [4],[3]).

Let Bl ⊂ Rn × Rp, l ∈ L, be a finite collection of definable families
of standard C1 cells in Rn compatible with the family Σkr ; r ≤ r0, k ∈
K, and such that, for each t ∈ Rp, the collection Blt; l ∈ L, is a cell
decomposition of R

n. Fix l ∈ L such that Blt is non-empty and hence is
a C1 submanifold of Rn. We claim that all connected components of

π−1(Blt) ∩Akt , k ∈ K

are the graphs of C1 functions f jt : Blt → R, 1 ≤ j ≤ r. Indeed,
Γ = π−1(Blt) ∩ Akt is a C1 submanifold of R

n+1 and the projection
π|Γ : Γ → Blt is a local diffeomorphism. Since Blt ⊂ Σkr for some r ∈ N,
the number of points in the fiber is constant, and it follows that π|Γ
is a finite (r-sheeted) covering. Moreover, it is a diffeomorphism on
each connected component of Γ, because Blt is simply connected (in fact
homeomorphic to a ball). So the family

π−1(Blt) =
⋃

1≤j≤r
f jt ∪

⋃
0≤j≤r

(f jt , f
j+1
t ),
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form a (standard) C1 cell decomposition of π−1(Blt). We shall call
this collection subordinate to the collection Ak, k ∈ K. (Recall that
(f jt , f

j+1
t ) = {(x, xn+1) ∈ Rn × R; f jt (x) < xn+1 < f j+1(x), x ∈ Blt}.)

The functions are ordered in the way that f jt < f j+1
t and f0

t ≡ −∞, f r+1
t

≡ +∞. Moreover each function (or rather its graph) f jt , 1 ≤ j ≤ r, is
contained in some Akt , where k may depend on t. Subdividing, if neces-
sary, the set Bl, we may assume that f jt ⊂ Akt , where k = k(j) does not
depend on t ∈ Rp. Of course for some t the set Akt may be empty and
then by convention we set f jt = ∅, 1 ≤ j ≤ r.

Remark 1.12. Note that by construction the horizontal parts of
boundaries of cells are also cells.

1.3. Controlling tangents

First let us observe that each C1 cell has a definable tubular neigh-
borhood. More precisely

Lemma 1.13 (Definable tubular neighborhoods). Let A ⊂ Rn×Rp

be a definable family of standard C1 cells of dimension d. Then there is
a definable family of submersions

ρt : Ωt → At, t ∈ R
p

such that Ωt ⊂ Rn is an open neighborhood of At and each ρt is the
identity on At.

Proof. We sketch the construction only in the case without pa-
rameters. The reader may easily check that it works also with parame-
ters. Let A ⊂ R

n be a standard C1 cell of dimension d < n. We proceed
by induction on n. Let ρ′ : Ω′ → A′ be a definable tubular neighborhood
(in Rn−1) of the base A′ of cell A. In the case A is a band

A = {(x′, xn) ∈ R
n−1 × R; f(x′) < xn < g(x′), x′ ∈ A′}

we put ρ(x′, xn) = (ρ′(x′), xn) for x′ ∈ Ω′, xn ∈ R, and Ω = ρ−1(A).
In the case of graph

A = {(x′, xn) ∈ R
n−1 × R; xn = h(x′), x′ ∈ A′}

we set ρ(x′, xn) = (ρ′(x′), h(ρ′(x))) for x′ ∈ Ω′, xn ∈ R, and Ω =
ρ−1(A) = Ω′ × R. Q.E.D.
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Lemma 1.14 (Definability of the tangent map). Let A ⊂ Rn × Rp

be a definable family of standard C1 cells of dimension d. Then the
mapping

σ : A � (x, t) �→ TxAt ∈ Gd,n

is definable, where TxAt stands for the tangent space to At at x.

Proof. We proceed by induction on n. We may suppose that
n > 0 and d < n. We construct (by induction) a definable family of
mappings

ϕt : Ωt → R
n−d, t ∈ R

p

such that Ωt is an open neighborhood of At, ϕ−1
t (0) = At and ϕt is

submersive on Ωt.
The case of graph; each non empty At is the graph of a C1 function

ht : A′
t → R, where A′ =

⋃
A′
t ⊂ Rn−1 × Rp is a definable family

of C1 cells (of dimension d) in R
n−1. By lemma 1.13 each ht can be

extended to C1 function in an open neighborhood Ω′
t of A′

t, moreover
this can be done in a definable family. By induction we have family
ϕ′
t : Ω′

t → Rn−d−1, t ∈ Rp, corresponding to A′ . Clearly we may
suppose that ϕ′

t and ht are defined on the same Ω′
t. We put

ϕt(x′, xn) = (ϕt(x′), xn − ht(x′))

for (x′, xn) ∈ Ω′
t × R = Ωt.

The case of band is similar and is left to the reader.
The derivative of ϕt i.e. the mapping

ϕ(1) : (x, t) �→ dϕt(x) ∈ L∗(Rn,Rn−d)

is definable (cf. eg. [4] Chap 7.). (Here by L∗(Rn,Rn−d) we mean
the space of linear epimorphisms from Rn to Rn−d.) The mapping
L∗(Rn,Rn−d) � φ �→ kerφ ∈ Gd,n is semialgebraic, hence definable
in any o-minimal structure. So our σ is definable as a composition of
definable maps. Q.E.D.

Our next goal is to control the variation of tangent spaces to cells.
Recall that we have the metric δ on the grasmannian Gd,n. Let ε > 0,
we say that Γ, a d-dimensional C1 submanifold of Rn, is ε-flat if for any
x, y ∈ Γ we have

δ(Tx, Ty) ≤ ε.
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For each ε > 0 we fix a finite covering Gd,n =
⋃

Θε
ν , where each

Θε
ν is an open ball of diameter (with respect to δ) less then ε. Let At

be a definable C1 submanifold in Rn, of dimension d and let σ : At →
Gd,n denote the tangent mapping. Then each nonempty σ−1(Θε

ν) is ε-
flat. Moreover, by lemma 1.14, it is a definable set. Indeed each Θε

ν

is semialgebraic (cf. lemma 1.6) and the inverse image of a definable
set, by a definable map, is definable. Having this observation it is now
routine to prove the following:

Proposition 1.15. Given ε > 0, and let Ak ⊂ Rn × Rp, k ∈ K,

be a finite collection of definable sets. Then there exists finitely many
disjoint definable sets Bi ⊂ R

n × R
p, i ∈ I, such that:

a) for each i ∈ I, (Bit) is a definable family of ε-flat standard
C1 cells of dimension d. More precisely; for every i ∈ I there
exists νi such that

TxB
i
t ∈ Θε

νi
, (x, t) ∈ Bi;

b) For every t ∈ Rp the collection Bit ⊂ Rn, i ∈ I ′, is a stratifica-
tion of Rn;

c) For any k ∈ K there exists Ik ⊂ I such that Akt =
⋃
i∈Ik

Bit, for

every t ∈ Rp.

1.4. Proof of Proposition 1.4

We proceed by induction on n. The case n = 0 is trivial. Suppose
that Proposition 1.4 holds for n− 1. We argue now by induction on d =
max{dimAkt }. For the sake of clarity we prove only the decomposition
part, i.e. statements a) and c). The refinement to a stratification is
routine (cf. [4]). At first we deal with the non-open cells, that is d < n,
then we decompose the open ones.

Case of non-open cells.
Fix an ε < 1/2 and assume that we are given Ak ⊂ Rn×Rp, k ∈ K,

a finite collection of definable sets. Let Bi be one of the sets given by
proposition 1.15, let d < n be the dimension of nonempty Bit. We shall
prove that:

Lemma 1.16. There exists a finite collection of definable families
of cells Dl ⊂ Rn−1 × Rp, l ∈ Λ, and linear orthogonal mappings ϕl :
Rn−1 → Rn−1, l ∈ Λ, such that:
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(1) for every l ∈ λ each (nonempty) ϕλ(Dl
t) is a standard L-regular

cell in R
n−1;

(2) For every i ∈ I there is Λi ⊂ Λ such that Bit =
⋃
λ∈Λi

π−1(Dλ
t ),

for every t ∈ R
p.

(Here π : Rn → Rn−1 denotes the projection on the first n− 1 variables.
)

Proof. Since all tangent spaces to Bit are in a ball of diameter less
than ε < 1/2 there exists a line P and c = c(ε) > 0 such that

δ(P, T(x,t)B
i
t) > c, (x, t) ∈ Bi.

Let ϕi : Rn → Rn be an orthogonal mapping which sends P to xn-axis
and P⊥ to Rn−1 (the first n − 1 coordinates). According to remark
1.7, the set ϕi(Bi) is locally the graph of a C1 function defined on a
submanifold in Rn−1. Moreover, there exists C < ∞ (depending only
on c) such that the norm of the differential of this function is bounded
by C. Now it is enough to apply the induction hypothesis and the CD
construction to obtain lemma 1.16. Q.E.D.

Case of open cells.
The main difficulty is to decompose an open cell into finitely many

L-regular cells. This will be done in two steps: in the first one, using
proposition 1.15, we construct a decomposition into C1 cells such that
the boundary of each open cell is contained in a union of at most 2n
ε-flat submanifolds of dimension n − 1. Then, in the second step, we
apply to each such cell lemma 1.8. If ε ≤ τ(2n, n) then there exists a line
P that makes angle with any tangent space to the boundary of the cell
larger than some c > 0. After changing the coordinates in the way that
P becomes the xn-axis we apply the CD construction. This will give us
C1 cells with the horizontal parts of the boundary that are graphs of
C1 functions with differential of norm smaller than C < ∞ (cf. remark
1.7). Now by induction we may subdivide (in Rn−1) the base of each
above cell into L-regular cells. Hence the proof will be achieved. Now
we explain the details.

Step 1. Let us fix ε = τ(2n, n) of lemma 1.8. Let Ak ⊂ Rn × Rp,
k ∈ K, be a finite collection of definable sets. By proposition 1.15,
theorem 1.10, and the CD construction there exists a finite collection
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of disjoint definable families Bl ⊂ Rn × Rp, l ∈ Λ, with properties we
explain below.

Fix l ∈ Λ such that each (nonempty) cell B = Blt is open (we skip
l, t for a moment to simplify the notation), that is of the form:
(1.3)
B = Bn = {(x′, xn) ∈ R

n−1 × R; fn(x′) < xn < gn(x′), x′ ∈ Bn−1}
and by induction:

(1.4) Bi = {(x′i, xi) ∈ R
i−1 × R; fi(x′i) < xi < gi(x′i), x

′
i ∈ Bi−1},

i = 1, . . . , n−1. We may assume that each Bi, i = 1, . . . , n−1, is open in
Ri and every fi, gi, i = 1, . . . , n− 1, is a C1 function such that its graph
(in Ri) is ε-flat. More precisely; independently of t ∈ Rp, there exist Θ̃f

i ,
Θ̃g
i two open balls, of diameter ε, in the grasmannian Gi−1,i, such that

the tangent spaces to the graph of fi (resp. gi) belong to Θ̃f
i (resp. Θ̃g

i ).
Note that if X̃, Ỹ ∈ Gi−1,i and X = X̃ × Rn−i, Y = Ỹ × Rn−i, then

(1.5) δ(X,Y ) = δ(X̃, Ỹ ),

since Ri × 0 and 0 × Rn−i are orthogonal. This implies that there exist
Θf
i , Θg

i two open balls of diameter ε, in the grasmannian Gn−1,n such
that independently of t ∈ Rp we have
(1.6)
{X = X̃ × R

n−i; X̃ ∈ Θ̃f
i } ⊂ Θf

i , {X = X̃ × R
n−i; X̃ ∈ Θ̃g

i } ⊂ Θg
i .

Denote by ∂B the boundary of B. Then clearly, by (1.3) and (1.4),

(1.7) ∂B ⊂
n⋃
i=1

fi × R
n−i ∪

n⋃
i=1

gi × R
n−i

Hence the tangent spaces to ∂B belong to the union of balls Θf
i , i =

1, . . . , n, and Θg
i , i = 1, . . . , n. Indeed we can take the decomposition

(1.7) of the boundary of B.
So we have proved the following:

Lemma 1.17. For every l ∈ Λ such that Blt is open there exist 2n
balls of diameter ε in the grassmanian Gn−1,n such that for each t ∈ Rp

any tangent space to the boundary of Blt belongs to one of these balls.

Step 2. Recall ε ≤ τ(2n, n) of lemma 1.8 and we work with a fixed
definable family Bl such that for each t ∈ Rp the set Blt is open (possibly
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empty) in Rn, and Blt satisfies lemma 1.17. By lemma 1.8 there exist
a line P and c > 0 such that if Y ∈ Gn−1,n is a tangent space to the
boundary of Bly, then δ(P, Y ) > c. After a linear orthogonal change of
variables in Rn we may assume that P is the xn-axis. Applying the CD
construction to ∂Blt, decomposed as in (1.7), we obtain finitely many
disjoint definable families Ds ⊂ Rn−1 × Rp, s ∈ S, and such that Blt,
t ∈ R

p, is a union of the sets of the form

(f, g) = {(x′, xn) ∈ R
n−1 × R; f(x′) < xn < g(x′), x′ ∈ Ds

t }
and

h = {(x′, xn) ∈ R
n−1 × R; xn = h(x′), x′ ∈ Ds

t},
with C1 functions f, g, h : Ds

t → R. By remark 1.7 the norm of differ-
ential of each f, g, h is bounded by a constant C which depends only
on n. On the other hand we may assume by induction, that after an
orthogonal change of coordinates in Rn−1 (independent of t ∈ Rp), each
Ds
t is an L-regular cell in Rn−1, with constant C. So h and (f, g) are

standard L-regular cells in Rn, with constant C.
This ends the proof of proposition 1.4.

§2. Definable Functions of One Variable

First we shall recall some elementary properties of germs at 0 of
definable functions. We denote R≥0 = {r ∈ R; r ≥ 0} and the variable
in R≥0 will be usually denoted by r.

Lemma 2.1. Let ϕ(r) and ψ(r) be two continuous definable func-
tions (R≥0, 0) → (R≥0, 0), not identically equal to 0. Suppose ψ ≥ ϕ.
Fix c > 1. Then for r sufficiently small

ψ′(r) ≥ ϕ′(r)(2.1)

c
ϕ′(r)
ϕ(r)

≥ ψ′(r)
ψ(r)

.(2.2)

Proof. Since ψ − ϕ ≥ 0 and (ψ − ϕ)(0) = 0, ψ − ϕ is increasing
for small r and the first inequality follows. Similarly, ρ(r) = (ϕ(r))c

ψ(r) is
non-negative and ρ(r) → 0 as r → 0. Hence ρ has to be increasing and

0 ≤ ρ′ =
cϕc−1ϕ′ψ − ϕcψ′

ψ2
=
ϕc

ψ

(cϕ′

ϕ
− ψ′

ψ

)
,
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as claimed. Q.E.D.

Remark 2.2. If, moreover, ϕ(r)/ψ(r) → 1 as r → 0, then ϕ(r)/ψ(r)
is decreasing and

c
ϕ′

ϕ
≥ ψ′

ψ
≥ ϕ′

ϕ
.

Definition 1. Let ϕ(r) be the germ at 0 of a continuous definable
function (R≥0, 0) → (R, 0). We shall say that ϕ is small if there is a
continuous definable function ψ : (R≥0, 0) → (R≥0, 0), such that

(2.3)
|ϕ|
r

≤ ψ′.

In particular, if ϕ is small then ϕ
r is integrable and ϕ(r) → 0 as r → 0.

We shall say that ϕ is unitlike if there is a continuous function
ψ : (R≥0, 0) → (R≥0, 0), C1 for r > 0, such that

(2.4) ϕ =
rψ′

ψ
.

Clearly in a polynomially bounded o-minimal structure all continu-
ous definable ϕ : (R≥0, 0) → (R, 0) are small. This is not the case for
the other o-minimal structures, see example 1 below.

Lemma 2.3. Let ψ : (R≥0, 0) → (R≥0, 0) be continuous definable.
Then rψ′

ψ is bigger than any small function.
Let ϕ1(r) and ϕ2(r) be two continuous definable functions (R≥0, 0) →

(R, 0), not identically equal to 0. Suppose ϕ2(r) ≥ r. Then the function

(2.5)
ϕ′

1ϕ2

ϕ1ϕ′
2

is bigger than any small function.

Proof. Let ψ : (R≥0, 0) → (R≥0, 0) be definable. Then (logψ)′ =
ψ′

ψ is not integrable and hence rψ′

ψ is bigger than any small function. By

lemma 2.1, ϕ
′
2

ϕ2
≤ 2 1

r , and hence ϕ′
1ϕ2

ϕ1ϕ′
2

is bigger than any small function.
Q.E.D.

We have a more precise result that, however, we do not use in this
paper.
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Proposition 2.4. Each continuous definable ϕ : (R≥0, 0) → (R≥0, 0)
is either small or unitlike. Moreover, ϕ is small iff ϕ

r is integrable and
then there is ψ : (R≥0, 0) → (R≥0, 0) such that

(2.6)
ϕ

r
= ψ′.

The functions ψ of (2.6) and (2.4) belong to the Pfaffian closure of the
o-minimal structure containing ϕ.

Proof. Let ϕ : (R≥0, 0) → (R≥0, 0). Fix a > 0 small and consider

(2.7) f(r) =
∫ r

a

ϕ(t)
t

dt.

By [23], f is definable in the Pfaffian closure of the o-minimal structure
containing ϕ. If f(r) is bounded then ϕ is small and we may take in
(2.3), ψ(r) = f(r) − f(0).

Suppose f(r) is not bounded that is f(r) → −∞ as r → 0. Then
the structure is not polynomially bounded and hence contains the ex-
ponential and the logarithmic functions, see [17]. Then we may take in
(2.4), ψ = ef . Q.E.D.

Example 1. Let α(r) = (− ln r)−1 for r > 0 and α(0) = 0. Then,
α(r) satisfies

(2.8) rα′(r) = α2(r).

In particular, α2 is small and α = rα′
α is unitlike.

§3. �Lojasiewicz Inequalities in o-minimal Structures

We recall the main result of [9].

Theorem 3.1. Let f : U → R be a differentiable definable function
defined in an open bounded U ⊂ Rn. Then there exist c > 0, ρ > 0, and
a continuous definable change of target coordinate Ψ : (R, 0) → (R, 0)
such that

(3.1) |∇(Ψ ◦ f)(x)| ≥ c,

for x ∈ U and f(x) ∈ (−ρ, ρ).
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Let us recall briefly after [9] the construction of Ψ. We suppose for
simplicity that f ≥ 0. Choose a definable curve γ(t) : (R≥0, 0) → Ū ,
such that γ(t) ∈ U for t > 0, f(γ(t)) = t, and that

(3.2) |∇f(γ(t))| ≤ 2 inf{|∇f(x)|; f(x) = t},
in Ū . Such a curve exists by the o-minimal version of the curve selec-
tion lemma and the fact that the right hand side of (3.2) is a definable
function strictly bigger than 0 for t > 0 and sufficiently small, see [9].
Change the parameter by γ(s) = γ(s(t)) so that |dγds (0)| = 1 and γ(s) is
definable of class C1 (for instance we may use the distance to γ(0) as the
parameter). Then we define Ψ as the inverse function of s → f(γ(s))
that is

Ψ(f(γ(s))) = s.

Hence for arbitrary x ∈ U , t = f(x) close to 0, and s = s(t),
(3.3)
|∇(Ψ ◦ f)(x)| ≥ 1

2 |∇(Ψ ◦ f)(γ(t))| ≥ 1/4〈∇(Ψ ◦ f)(γ(s)), γ′(s)〉 = 1/4,

as required.

Corollary 3.2. ([9], Theorem 2) Let f : U → R be a C1-definable
function defined in an open bounded U ⊂ Rn. Then there exists a con-
stant A such that all the trajectories of ∇f have length bounded by A.
In particular, each trajectory x(t) has a unique limit point x0 ∈ U , that
is there is t0 ∈ R ∪ {∞} such that

lim
t→t0

x(t) = x0

and ∇f(x0) = 0 if x0 ∈ U .

We have as well an o-minimal version of Bochnak-�Lojasiewicz In-
equality [2].

Proposition 3.3. Let f : U → R be a differentiable definable func-
tion defined in an open U ⊂ Rn. Suppose 0 ∈ Ū and f(x) → 0 as
x → 0. Then there exists a continuous definable change of target coor-
dinate Φ : (R, 0) → (R, 0) and constants cΦ > 0, ρ > 0, such that

(3.4) |x||∇(Φ ◦ f)| ≥ cΦ|Φ ◦ f |,
for x ∈ U , close to the origin, and f(x) ∈ (−ρ, ρ).
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Proof. Again we suppose f ≥ 0 leaving the general case to the
reader. Define ϕ0(r) = sup|x|=r f(x). Let Φ be the inverse function of
ϕ0. Then

(3.5) (Φ ◦ f)(x) ≤ r.

Let γ be a definable curve going to the origin and parameterized by r.
Then |γ′(r)| → 1 as r → 0. By the choice of parameterization and (3.5),
(Φ ◦ f)(γ(r)) ≤ r. Denote ψ(r) = (Φ ◦ f)(γ(r)). By Lemma 2.1, for any
c > 1,

(3.6) c
ψ′(r)
ψ(r)

≥ 1
r
.

On the other hand

(3.7) ψ′(r) = 〈∇(Φ ◦ f), γ′(r)〉 ≤ 2|∇(Φ ◦ f)|.

The proposition follows from (3.6) and (3.7) by the curve selection
lemma. Q.E.D.

The actual constants in both (3.1) and (3.4) can be made arbitrarily
small. For instance for (3.4) it suffices to replace Φ ◦ f by its power
(Φ ◦ f)α.

Remark 3.4. Unlike in the analytic case, in general, it is not pos-
sible to find a definable change of target coordinate which gives both
�Lojasiewicz type inequalities. We may take as example f : (R2, 0) →
(R, 0) given in polar coordinates by

f(r, θ) = α(r) sin θ,

where α is the function of example 1. Indeed, suppose Φ : (R, 0) → (R, 0)
is the change of target coordinate such that Φ ◦ f satisfies both inequal-
ities. In what follows we suppose Φ increasing and restrict ourselves to
the set (Φ ◦ f) ≥ 0. Then

|∇(Φ ◦ f)| = (Φ′ ◦ f)|(α′(r) sin θ, r−1α(r) cos θ)|
= (Φ′ ◦ f)r−1|(α2(r) sin θ, α(r) cos θ)|.

For sin θ = 1, cos θ = 0, the Bochnak-�Lojasiewicz Inequality gives

r|∇(Φ ◦ f)| = (Φ′ ◦ f)α2 = r(Φ ◦ α)′(r) ≥ c̃(Φ ◦ α)(r)
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that is
(Φ ◦ α)′

Φ ◦ α ≥ c̃

r
.

and by integration (or Lemma 2.1)

(3.8) rc ≥ (Φ ◦ α)(r),

for c < c̃. Since c̃ > 0 may choose c > 0 as well.
On the other hand, consider the set {θ < r}. Then sin θ → 0 and

cos θ → 1 as r → 0. By �Lojasiewicz Inequality (3.1)

(3.9) r−1α(r)Φ′(α(r) sin θ) ≥ c.

Define γ(r, θ) by α(r) sin θ = α(γ(r, θ)). Then (3.9) is equivalent to

α(r)(Φ ◦ α)′(γ(r, θ)) ≥ c1rα
′(γ(r, θ)),

that gives by (3.8)

cα(r)(γ(r, θ))c−1 ≥ c1rα
′(γ(r, θ)).

Equivalently
cα(r)/r ≥ c1α

′(γ(r, θ))/(γ(r, θ))c−1

that is impossible since the right hand side α′(γ(r, θ))/(γ(r, θ))c−1 =
α2(γ(r, θ))/(γ(r, θ))c tends to ∞ as θ → 0 and r is fixed and the left
hand side does not depend on θ.

Remark 3.5. Suppose that there is a positive exponent a and a con-
stant c > 0 such that ra ≥ |f(x)| ≥ cr. Then f itself, without any
change of target coordinate , satisfies both inequalities. Indeed, by con-
struction, it suffices to check these inequalities on a definable curve and
in this case they are obvious.

§4. Characteristic Functions

In this section we suppose that f : U → R is a differentiable definable
function defined in an open U ⊂ Rn, 0 ∈ Ū . We shall assume f bounded.
The gradient ∇f of f splits into its radial component ∂f

∂r
∂
∂r and the

spherical one ∇′f = ∇f − ∂f
∂r

∂
∂r . Fix ε > 0 and consider

V ε = {0 ≤ |x| ≤ r0; f(x) �= 0, |f(x)| ≥ εr|∇′f(x)|},
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where r0 > 0 is small. By the local conical structure of definable sets we
may suppose that, for r0 > 0 sufficiently small, V ε � x → |x| ∈ (0, r0]
is a topologically trivial fibration. In particular for 0 < r ≤ r0, the
inclusion S(r) ∩ V ε ⊂ V ε, where S(r) = {x; |x| = r}, is a homotopy
equivalence. Let V be a connected component of V ε. Denote

(4.1) ϕ(r) = ϕV (r) = inf{|f(x)|;x ∈ V ∩ S(r)}.

Proposition 4.1. There exists C > 0 such that

(4.2) ϕ(|x|) ≤ |f(x)| ≤ Cϕ(|x|), for x ∈ V.

In particular ϕ(r) > 0 for r > 0.

Proof. By corollary 1.3 there exists a constant M > 0 such that
for every x, x′ ∈ V , that satisfy |x| = |x′| = r, there is a continuous
definable curve ξ(t) joining x and x′ in V ∩ S(r) and of length ≤ Mr.
Then, by the definition of V ε,

| d
dt
f(ξ(t))| = |〈∇′f, ξ′(t)〉| ≤ |∇′f ||ξ′(t)| ≤ ε−1 |f |

r
|ξ′(t)|.

Hence

| d
dt

ln |f(ξ(t))|| ≤ ε−1

r
|ξ′(t)|.

Finally, by integration of both sides along curve ξ(t), | ln |f(x)|−ln |f(x′)||
≤M ′ = Mε−1, which gives

| f(x)
f(x′)

| ≤ eM
′
.

The proposition follows by the curve selection lemma. Q.E.D.

We shall call the (finite) set of functions ϕV defined by (4.1), where
V goes over the connected components of V ε, the characteristic functions
of f . They depend on the choice of ε though it may be shown that the
number of connected components of V ε at the origin stabilizes as ε→ 0.
Each of these connected components give rise to a family of characteristic
functions ϕε,V . It can be shown that they can be compared as follows:
if ε′ < ε then there exists C = C(ε′, ε) such that ϕε′,V ≤ ϕε,V ≤
C(ε′, ε)ϕε′,V . In what follows shall consider ε fixed and small and we
will be interested mostly in those connected components V of V ε such
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that ϕV (r) → 0 as r → 0. Let V be such a component and let γ(t), t ≥ 0
be a definable curve such that γ(t) → 0 as t → 0 and γ(t) ∈ V for t �= 0.
In order to simplify the notation we reparametrize γ by the distance to
the origin, that is to say |γ(t(r))| = r. Write in spherical coordinates
γ(r) = rθ(r), |θ(r)| ≡ 1. Then r|θ′(r)| → 0 as r → 0. Moreover, r|θ′(r)|
is small in sense of definition 1. Denote ψ(r) = |f(γ(r))|. Then

df(γ(r))
dr

=
|f |
r

rψ′

ψ
≥ ε|∇′f |rψ

′

ψ
� r|θ′(r)||∇′f |,

since, by lemma 2.3, rψ
′

ψ is much bigger than r|θ′(r)|. In particular,

(4.3)
df(γ(r))
dr

= ∂rf + 〈∇′f, rθ′(r)〉 � ∂rf.

We shall consider as well

W ε = {x; f(x) �= 0, |∂rf | ≥ ε|∇′f |}.
Unlike V ε, the sets W ε do not change if we replace f by Ψ ◦ f , for any
definable change of target coordinate Ψ at 0 ∈ R.

Proposition 4.2.

(4.4) W ε ∩ {x; |f(x)| ≥ |x|} ⊂ V ε
′ ∩ {x; |f(x)| ≥ |x|} if ε′ < ε.

Let W be a connected component of W ε ∩ {x, |f(x)| ≥ |x|} and define
ϕ(r) = inf{|f(x)|;x ∈ W ∩ S(r)}. There exists C > 0 such that

(4.5) ϕ(|x|) ≤ |f(x)| ≤ Cϕ(|x|), for x ∈W.

Proof. It suffices to check (4.4) on definable curves. Fix a defin-
able curve γ(r) in W ε∩{x||f(x) ≥ |x|} parameterized by the distance to
the origin. Denote ψ(r) = |f(γ(r))|. Suppose first ψ(r) → 0 as r → 0.
Then ψ ≥ r and hence by lemma 2.1, ψ ≥ crψ′, where we may take
1 > c > ε′

ε . Then, by (4.3),

ψ ≥ crψ′ ≥ ε′r|∇′f |,
as claimed. The proof for the curves on which |f(γ(r))| → c0 > 0 is
similar since (4.3) holds for the curves in W ε.

The last claim of the proposition follows from (4.4) and proposition
4.1. Q.E.D.
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§5. Estimates on a trajectory. I

Let f : U → R be a C1 definable function defined in an open and
bounded U ⊂ Rn and let x(t) be a trajectory of ∇f with limit point
x0 ∈ U , cf. corollary 3.2. We shall suppose, for simplicity of notation,
that x0 = 0 and usually we parameterize x(t) by its arc-length s, starting
from point p0 = x(0). Then

ẋ =
dx

ds
=

∇f
|∇f | .

By corollary 3.2 the length of x(s) is finite. Denote it by s0. Then

x(s) → 0 as s→ s0.

Our purpose is to study the geometric behavior of x(s) as it approaches
its limit point. We shall also assume that

f(x(s)) → 0 as s→ s0.

Note that it means in particular, as being increasing, that f has negative
along the trajectory.

By theorem 3.1 we may assume that |∇f | ≥ 1 that we shall do.
Then

(5.1) |f(x(s))| ≥ length{x(s′); s ≤ s′ < s0} ≥ |x(s)|.

Fix a definable ϕ(r) : (R≥, 0) → (R≥, 0) and consider F = f
ϕ(r) .

Then

dF (x(s))
ds = 〈 ∇f

|∇f | ,
∇′f
ϕ

+
(∂rf
ϕ

− ϕ′f
ϕ2

)
∂r〉(5.2)

=
1

|∇f |ϕ
(
|∇′f |2 + |∂rf |2 − ∂rf

ϕ′f
ϕ

)

=
1

|∇f |ϕ
(
|∇′f |2 + |∂rf |2

(
1 − ϕ′f

ϕ∂rf

))

Lemma 5.1. Let ϕ(r) ≥ r and let F = f
ϕ(r) . Suppose ε < 1. Then

in the complement of V ε = {x; |f | ≥ εr|∇′f |}

(5.3)
dF (x(s))

ds
≥ 1

2

|∇f |
ϕ

.
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Proof. By (5.2), it is sufficient to show that

|∇f |2 ≥ 2f∂rf
ϕ′

ϕ

on the complement of V ε. Since ϕ ≥ r we have by lemma 2.1

(5.4) ε
ϕ′

ϕ
≤ 1
r
.

Consequently, since we are away of V ε,

|∇f |2 ≥ 2|∇′f ||∂rf | ≥ 2ε−1 |f |
r
|∂rf | ≥ 2f∂rf

ϕ′

ϕ

as required. Q.E.D.

Corollary 5.2. The trajectory x(s) passes through V ε in any neigh-
borhood of the origin.

Proof. Let q > 0 and consider ϕ(r) = r1+q . Then rϕ
′
ϕ = 1+q (5.4)

is satisfied for ε < (1 + q)−1. Consequently the statement of lemma 5.1
holds for F = f

ϕ . Suppose, contrary to our claim, that x(s) stays away
of V ε. Then, by lemma 5.1, F = f

r1+q is increasing on the trajectory.
Hence it is bounded (recall f(x(s)) is negative). That is there exists a
constant C > 0 such that

|f(x(s))| ≤ C|x(s)|1+q ,
which contradicts (5.1). Q.E.D.

Fix ε < 1. By Proposition 4.1 there is a finite family of functions of
one variable {ϕ(r)} such that

(5.5) V ε =
⋃
V εϕ ,

so that V εϕ ⊂ Uϕ = {x|cϕ < |f | < Cϕ}. We regroup together the ϕ’s
with the same asymptotic behavior at 0, that is in the same equivalence
classe of relation ϕ1(r) ∼ ϕ2(r). Thus we may actually assume that the
Uϕ’s are mutually disjoint and so is the union in (5.5).

Fix one of such ϕ satisfying ϕ(r) ≥ r and consider F = f
ϕ . Recall

that F is negative on the trajectory. Define

∂−Uϕ = {x;F (x) = −C}, ∂+Uϕ = {x;F (x) = −c}.
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Then, by lemma 5.1, F (x(s)) is strictly increasing on ∂−Uϕ ∪ ∂+Uϕ.
That is to say, the trajectory may enter Uϕ only through ∂−Uϕ and
leave it only through ∂+Uϕ. If the latter happens then the trajectory
leaves Uϕ definitely and never enters it again. Hence, by corollary 5.2,

Corollary 5.3. The trajectory x(s) has to end up in one of Uϕ =
{x|cϕ < |f | < Cϕ}.

Note that ϕ(r) ≥ r by (5.1). We shall fix such ϕ. Now we have the
following strenghtened versions of lemma 5.1 and corollary 5.2.

Lemma 5.4. Let F = f
ϕ . Then for any ε > 0 there is c′ > 0 such

that in the complement of W ε in Uϕ

(5.6)
dF (x(s))

ds
≥ c′

|∇f |
ϕ

≥ c′

ϕ
.

Proof. Fix ε > 0. By (5.2), it is sufficient to show that there is
c > 1 such that

(5.7) |∇f |2 ≥ cf∂rf
ϕ′

ϕ

on Uϕ \ W ε. This we show on an arbitrary definable curve γ(r) in
Uϕ \W ε. Again we denote ψ(r) = |f(γ(r))| and write in the spherical
coordinates γ(r) = rθ(r). Then,

(5.8) ψ′(r) = |∂rf + 〈∇′f, rθ′(r)〉| ≤ |∂rf | + |∇′f ||rθ′(r)|,

where rθ′(r) → 0.
Suppose first that |∂rf | � |∇′f ||rθ′(r)| as r → 0. Then, since we

are away of W ε,

(5.9) |∇f |2 ≥ (1 + ε−2)|∂rf |2 ≥ (1 + ε̃−2)|∂rf |ψ′,

for any ε̃ > ε. An even stronger bound holds if |∂rf | � |∇′f ||rθ′(r)|
fails. Indeed, then |∂rf | 
 |∇′f | and |∇f |2 � |∇′f |2 � |∂rf |ψ′.

On the other hand, by lemma 2.1, for any c > 1 and on Uϕ

cψ′ ≥ ψ
ϕ′

ϕ
.

This and (5.9) show (5.7). The proof is complete. Q.E.D.
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Corollary 5.5. The trajectory x(s) passes through W ε in any neigh-
borhood of the origin.

Proof. Suppose, contrary to our claim, that x(s) stays away of
W ε. Let ϕ(r) be such that x(s) stays in Uϕ for s close to s0. Then,
there exists a constant c̃ > 0, such that

dF (x(s))
ds

≥ c′
|∇f |
ϕ

≥ c̃
df

ds
|f |−1 = c̃

d(− ln |f |)
ds

.

But this is impossible since F is bounded and − ln |f | is not on x(s).
Q.E.D.

Let W be the union of those connected components of W ε such
that the trajectory x(s) passes through them in any neighborhood of
the origin. W is non-empty by corollary 5.5. Denote

ϕ(r) = inf
W∩S(r)

|f(x)|.

Let Φ be the inverse function of ϕ and consider

(5.10) f̃(x) = −Φ(−f(x)).

Then, by the definition of ϕ,

(5.11) |f̃(x)| ≥ |x|, for x ∈W.

Proposition 5.6. There is a C > 0 such that on the trajectory x(s)
and for x(s) sufficiently close to the origin

(5.12) −Cr ≤ f̃(x(s)) ≤ −r.
Proof. By definition of ϕ, F = f

ϕ ≤ −1 on W and by lemma 5.4,
F (x(s)) is strictly increasing in the complement of W . If F (x(s)) > −1
for one s then it rests bigger than −1 which contradicts the fact that
the trajectory crosses W in any neighborhood of the origin. Thus, on
the trajectory,

|f(x(s))| ≥ ϕ(|x(s)|).
This implies r ≤ |f̃(x(s))|.

By proposition 4.2 applied to W and f̃ , |f̃ | ≤ Cr on W . Now
the second inequality of (5.12) follows from (5.11) and the fact that
F (x(s)) = f

ϕ is increasing in the complement of W . Q.E.D.
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§6. Asymptotic critical values

Let F be a C1 definable function F defined on an open definable set
U such that 0 ∈ U . We say that a ∈ R is an asymptotic critical value of
F at the origin if there exists a sequence x→ 0, x ∈ U , such that

(a) |x||∇F (x)| → 0 ,
(b) F (x) → a .

Proposition 6.1. (see also [1])
The set of asymptotic critical values is finite.

Proof. Let X = {(x, t);F (x)−t = 0} be the graph of F . Consider
X and T = {0}×R as a pair of strata in Rn×R. Then the (w)-condition
of Kuo-Verdier at (0, a) ∈ T reads

1 = |∂/∂t(F (x) − t)| ≤ C|x||∂/∂x(F (x) − t)| = Cr|∇F |.
In particular, a ∈ R is an asymptotic critical value if and only if the
condition (w) fails at (0, a). The set of such a’s is finite by the genericity
of (w) condition, see [15] or [1]. Q.E.D.

Remark 6.2. Suppose x(s) is a trajectory of ∇f and let a =
lims→s0 f(x(s)). Then a is an asymptotic critical value of f . Indeed,
suppose contrary to our claim that r|∇f(x)| ≥ c > 0 for f(x) close to
a and we may assume a = 0. By corollary 5.5, x(s) passes through W ε

in any neighborhood of the origin. Let γ(r) be a definable curve in W ε

such that f(γ(r)) → 0 as r → 0. Denote, as before, ψ(r) = f(γ(r)).
Then, by (4.3) and since we are in W ε,

r|ψ′(r)| � r|∂rf | ≥ ε′r|∇f | ≥ ε′c > 0

that is impossible since the left-hand side is small.
In particular, only finitely many values of f are allowed as limits

along the trajectories of the gradient.

One may ask whether we have an analogue of �Lojasiewicz Inequal-
ity (3.1) for asymptotic critical values. More precisely, whether for an
asymptotic critical value a there exists a continuous definable change of
target coordinate Ψ : (R, a) → (R, 0) such that

(6.1) r|∇(Ψ ◦ F )| ≥ c > 0,



On the gradient conjecture in o-minimal structures 165

at least if F (x) is close to a. This is not the case in general, but it holds
if we approach the singularity ”sufficiently slowly”.

Proposition 6.3. Let F be as above and let a ∈ R. Let η(r) be
small in sense of definition 1. Then there exists a continuous definable
change of parameter Ψ : (R, a) → (R, 0) and a constant ca > 0 such that
(6.1) holds on {x ∈ U ; |∂rF | ≤ η(r)|∇′F |, |F (x) − a| ≤ ca}.

Proof. The proof follows the main ideas of the proof of �Lojasiewicz
Inequality (3.1). We may assume that a is an asymptotic critical value
of F . Choose first ca > 0 so that there is no other asymptotic critical
value in {t ∈ R; |t−a| ≤ ca}. For simplicity of notation we suppose also
a = 0, ca = c0. We may also suppose F ≥ 0, otherwise we replace F by
F 2.

Denote U0 = {x ∈ U ; |∂rF | ≤ η(r)|∇′F |, |F (x) − a| ≤ ca}. Choose
a definable curve γ(t) �≡ 0 such that F (γ(t)) = t, and

r|∇F (γ(t))| ≤ 2 min{r|∇F (x)|;F (x) = t},

in U0. Such a curve exists by the o-minimal version of curve selection
lemma.

Let x0 = limt→0 γ(t). Suppose first that x0 �= 0. By [9] there exists
Ψ such that ∇(Ψ ◦ F ) ≥ 1. Therefore, by the choice of γ,

(6.2) r|∇(Ψ ◦ F )(x)| ≥ 1
2r|∇(Ψ ◦ F )(γ(F (x))| ≥ c|x0| > 0.

So suppose x0 = 0. In this case we may use r as the parameter on γ,
γ(r) = γ(t(r)), and write as before γ(r) = rθ(r) in spherical coordinates.
Define ψ(r) = F (γ(r)). Then

(6.3) |ψ′(r)| = |∂rF + 〈∇′F, rθ′〉| ≤ η̃(r)|∇′F |,

where η̃ = η + r|θ′| is small. In particular there exists a germ of contin-
uous definable function h : (R, 0) → (R, 0) such that

(6.4) η̃(r) ≤ r|h′(r)|.

Then Ψ := h ◦ ψ−1 satisfies the statement. Indeed, by (6.3) and (6.4),

r|∇(Ψ ◦ F )(γ(r)| = r
h′(r)
ψ′(r)

|∇F (γ(r))| ≥ 1.
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Hence for x close to the origin, t = f(x),

r|∇(Ψ ◦ F )(x)| ≥ 1
2r|∇(Ψ ◦ F )(γ(t)| ≥ 1

2 ,

as required. Q.E.D.

Consider F of the form F = f
ϕ(r) . Then

(6.5) ∂rF =
∂rf

ϕ(r)

(
1 − fϕ′

ϕ∂rf

)
, ∇′F =

∇′f
ϕ(r)

.

Proposition 6.4. Suppose that there is an exponent N > 0 such
that rN ≤ ϕ(r) ≤ r1/N . Then a �= 0 is an asymptotic critical value of
F = f

ϕ(r) if and only if there exists a sequence x→ 0, x �= 0, such that

(a’) |∇′f(x)|
|∂rf(x)| → 0 ,

(b’) F (x) → a

Proof. The proof is similar to that of Proposition 5.3 of [14] and
is left to the reader. Q.E.D.

§7. Estimates on a trajectory. II

Let x(s) be a trajectory and let W the union of connected compo-
nents of W ε (for any fixed ε > 0) such that x(s) passes through them in
any neighborhood of the origin. Restricting ourselves to a smaller neigh-
borhood of the origin, if necessary, we may suppose that the trajectory
stays away of W ε \W . Recall after proposition 5.6 that we may assume
that

(7.1) x(s) ∈ UC = {x; −Cϕ(r) ≤ f̃(x) ≤ −cϕ(r)},
0 < c < C < ∞ and ϕ(r) ∼ r, and f̃(x) is given by (5.10). (Ac-
tually by propostion 5.6 we may assume c = 1 and ϕ(r) = r but we
do not need it.) In particular f̃ on UC satisfies both �Lojasiewicz and
Bochnak-�Lojasiewicz Inequalities, see remark 3.5. In order to simplify
the notation we shall write f for f̃ . Define

(7.2) F (x) =
f(x)
ϕ(r)

,
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Then

dF (x(s))
ds

=
1

ϕ(r)|∇f |
(
|∇′f |2 + |∂rf |2

(
1 − fϕ′

ϕ(r)∂rf
))

By lemma 5.4

(7.3)
dF (x(s))

ds
≥ c′

|∇f |
ϕ(r)

≥ c′′
1
r

on UC \W .

Lemma 7.1. There exists a continuous definable function ω̃, ω̃(r) →
0 as r → 0, such that

(7.4) |1 − fϕ′

ϕ∂rf
| ≤ 1

2 ω̃(r) on W.

Moreover, ω̃ may be chosen small in sense of definition 1.

Proof. Let γ(r) be a definable curve such that |(1− fϕ′
ϕ∂rf

)(γ(r)| ≥
1
2 supW∩S(r) |(1 − fϕ′

ϕ∂rf
)|. Denote ψ(r) = f(γ(r)). Then, by (4.3)

(7.5) ψ′(r) = ∂rf+ < ∇′f, rθ′(r) >,

and r|θ′(r)| is small. Consequently, since recall |∇′f | ≤ ε−1|∂rf | on W ,

(7.6) (1 − fϕ′

ϕ∂rf
) =

ϕ∂rf − ϕ′f
ϕ∂rf

=
ϕψ′ − ϕ′ψ

ϕψ′ + τ(r),

and

(7.7) |τ(r)| ≤ 2
|∇′f |
|∂rf | r|θ

′| ≤ 2ε−1r|θ′|

is small. Note that ψ′(r) ∼ 1. Hence

(7.8)
ϕψ′ − ϕ′ψ

ϕψ′ =
(ψ
ϕ

)′ ϕ
ψ′

is small. This ends the proof of lemma. Q.E.D.

We list below some other properties of f on W which follows from
(4.3). By (4.3), we get ∂rf � ϕ′ ∼ 1 on any definable curve in W . Thus,
by the curve selection lemma, for any constant c1 < 1, and some positive
constants C′, c′

(7.9) −C′ ≤ −c−1
1 ϕ′ ≤ ∂rf ≤ −c1ϕ′ ≤ −c′ < 0 on W.
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In particular, ∂rf is negative on W .
We shall show in the proposition below that F (x(s)) has a limit

as s → 0. For this we use an auxiliary function g = F − α(r) where
α : (R≥0, 0) → (R≥0, 0) satisfies ω̃ ≤ C′−1

ϕα′. Such an α exists since ω̃
is small.

Proposition 7.2. Let α : (R≥0, 0) → (R≥0, 0) be a continuous
definable function and suppose ω̃ ≤ C′−1

ϕα′. Then the function g(x) =
F (x) − α(r) is strictly increasing on the trajectory x(s). In particular
F (x(s)) has a nonzero limit

(7.10) F (x(s)) → a0 < 0, as s→ s0.

Furthermore, a0 has to be an asymptotic critical value of F at the origin.

Proof. First we show that g(x(s)) is increasing for x(s) ∈ UC \W .
Recall that on UC \W , |∂rf | < ε|∇′f | and (7.3) holds. On the other
hand

(7.11) |dα
ds

| = |α′(r)
∂rf

|∇f | | ≤ ε|α′(r)| 
 r−1.

Consequently, in this case,

dg

ds
(x(s)) ≥ c′r−1.

This shows that g is increasing on UC \W as claimed.
In general we have

(7.12)
dg

ds
(x(s)) =

1
ϕ|∇f |

(
|∇′f |2 + |∂rf |2

(
1 − fϕ′

ϕ∂rf

)) − α′(r)
∂rf

|∇f | .

Now we consider x(s) ∈W . By (7.9) and by the choice of α

α′(r)
|∂rf |
|∇f | ≥ C′ϕ−1ω̃

|∂rf |
|∇f | ≥

1
ϕ|∇f |

(
|∂rf |2

(
1 − fϕ′

ϕ∂rf

))
,

and hence the right-hand side expression in (7.12) is positive (recall ∂rf
is negative on W ).

Thus, since g(x(s)) is increasing, negative, and bounded from zero
on UC , it has a limit a0 < 0. We shall show that a0 is an asymptotic
critical value of F .
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Suppose, by contradiction, that F (x(s)) → a and a is not an asymp-
totic critical value of F at the origin. Then, by Proposition 6.4, there is
c̃ > 0 such that

|∇′f(x(s))| ≥ c̃|∂rf(x(s))|,
for s close to s0. Hence on W

(7.13)
dF

ds
=

|∇′f |2
ϕ|∇f | +

|∂rf |2
ϕ|∇f |

(
1 − fϕ′

ϕ∂rf

) ≥ c′
1
r
.

A similar bound holds on UC \W by (7.3).
But (7.13) is not possible since |drds | ≤ 1. Indeed, (7.13) implies

dF
dr ≥ c 1

r with the right-hand side not integrable which contradicts the
fact that F is bounded on the trajectory. This ends the proof. Q.E.D.

Corollary 7.3. Let σ(s) denote the length of the trajectory between
x(s) and the origin. Then

σ(s)
|x(s)| → 1 as s→ s0.

Proof. The proof follows from Proposition 7.2 and is similar to
the one of Corollary 6.5 of [14]. Q.E.D.

§8. Gradient Conjecture on the Plane

In this section we show the following finiteness result.

Theorem 8.1. Let f : U → R be a differentiable definable function,
where U ⊂ R

2 is open definable and 0 ∈ Ū . Let x(t) be a trajectory of
∇f such that x(t) → 0, f(x(t)) → 0 as t→ 0−. Given a definable curve
Γ ⊂ U . Then, there is ε > 0 such that the set {x(t);−ε < t < 0} either
lies entirely in Γ or does not intersect Γ at all.

Proof. By a standard argument, see the proof of Proposition 2.1
of [14], it suffices to show that the trajectory cannot spiral, that is the
statement of theorem holds for at least one curve Y , 0 ∈ Y . Indeed,
consider an arbitrary definable curve Γ ⊂ U parameterized in polar
coordinates (r, θ) by γ(r) = rθ(r). Write

f(r, θ) = f(r cos θ, r sin θ).
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Denote ∂θf = ∂f/∂θ. Then |∂θf | = r|∇′f | and ∂θf is positive if and
only if ∇′f is directed anti-clockwise. If Γ is not a trajectory itself, that
is if ∇f is not tangent to Γ, then, near the origin, the trajectories of
∇f cross Γ only in one direction. Fix a point x0 = γ(r) = rθ(r) and
the orthonormal basis of R2 with the first vector being xo

‖xo‖ = θ(r).
Comparing in this basis the tangent vector (1, rθ′(r) to the curve Γ
and the gradient (∂rf, r−1∂θf) of f we see that the trajectories cross Γ
anti-clockwise if and only if

(8.1) ∂θf > r2θ′(r)∂rf(r).

Thus if the trajectory does not spiral and is not contained in Γ then, in a
small neighborhood of the origin, it may cross Γ only once. In particular
if U does not contain a punctured disc of the form {0 < r < r0} then
any trajectory going to the origin cannot spiral otherwise it would hit
the boundary of U . Thus we may suppose that U contains a punctured
disc centered at the origin.

Divide U into two pieces

U+ = {∂θf ≥ 0}, U− = {∂θf ≤ 0}.

Both of them are non-empty as germs at the origin since f(r, θ) is pe-
riodic for r fixed. On U− the trajectory moves clockwise and on U+

anti-clockwise. It is clear that the trajectory cannot spiral if each U±
contains a non-empty sector of the form {θ1 < θ < θ2}. This is the case
for f analytic, see [14]. But for f definable in an o-minimal structure or
even for f subanalytic it may happen that one of U± does not contain
a sector, see the picture below.
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(One may construct such example easily by choosing two definable curves
r = γ1(θ), r = γ2(θ) and definable f(r, θ), periodic in θ, and such that
∂θf(r, θ) ≥ 0 exactly on γ1(θ) ≤ r ≤ γ2(θ).)

In what follows we shall assume that U− contains a non-empty sector
but U+ not necessarily. If we show that U+ contains a definable curve
which x(t) crosses anti-clockwise then we are done.

Lemma 8.2. Let Γ ∈ U+ be a germ at the origin of a definable
curve parameterized by γ(r). If

r → λγ(r) =
|∇′f(γ(r))|
|∂rf(γ(r))|

is not small then the trajectories of ∇f cross Γ anti-clockwise.

Proof. Let γ(r) = rθ(r). It suffices to show (8.1). By lemma 2.3
λγ(r) � rθ′(r) and hence we have

∂θf = λγ(r)r|∂rf | � r2θ′(r)∂rf,

as required. Q.E.D.

Thus in what follows it suffices to suppose that

(8.2) λ(r) = sup
x∈S(r)∩U+

|∇′f |
|∂rf |

is small. Then, in particular, λ(r) → 0 as r → 0. Thus U+ ⊂ W ε for
any ε > 0.

Suppose, contrary to our claim, that there exists a trajectory x(t)
of ∇f which spirals. By the previous sections we may suppose that

F (x(t)) =
f(x(t))
|x(t)|

goes to −1 as t → 0. The trajectory x(t), since it spirals, has to cross
infinitely many times any component of W ε. Thus on W ε, and hence
on U+ ⊂W ε, f � r and, by (7.9), ∂rf � −1.

Denote

ψ(r) = min
x∈S(r)

f(x) = min
x∈S(r)∩U+

f(x)(8.3)

ϕ(r) = max
x∈S(r)

f(x) = max
x∈S(r)∩U+

f(x).(8.4)
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Lemma 8.3. Under the above assumptions ϕ(r)−ψ(r)
r is small.

Proof. ∂rf � −1 on U+. Hence |∂θf | = r|∇′f | � rλ(r). By
integration in U+,

|f(r, θ1) − f(r, θ2)| = |
∫ θ2

θ1

∂θf dθ| ≤ C(θ2 − θ1)rλ(r).

Therefore
ϕ(r) − ψ(r)

r
≤ C̃λ(r),

and the right-hand side is small by assumption. Q.E.D.

Lemma 8.4. Suppose ϕ(r)−ψ(r)
r small and assume that U− contains

a non-empty sector {θ1 ≤ θ ≤ θ2}. Then the set

{x ∈ U−; |∂θf | ≤ 3(ϕ(r) − ψ(r))
θ2 − θ1

}

contains a non-empty sector.

Proof. Otherwise

|f(r, θ1) − f(r, θ2)| = −
∫ θ2

θ1

∂θf dθ ≥ 2(ϕ(r) − ψ(r))

that contradicts the definition of ϕ and ψ. Q.E.D.

Let U0 be a sector satisfying the statement of lemma 8.4. On this
sector |∇′f | is bounded by 3(ϕ(r)−ψ(r))

r(θ2−θ1) that is small and hence |∇′f | → 0
as r → 0. Therefore, by remark 3.5, |∇f | � |∂rf | ∼ 1. This means that
U0 is contained in W ε for any ε > 0. Consider the part of the trajectory
that is in U0. Since the trajectory spirals we may find such a part in any
neighborhood of the origin. Since U0 ⊂ W ε, ∂rf < 0 and r is strictly
decreasing on the trajectory. Parameterizing the trajectory by r

dθ

dr
=

|∇′f |
r|∂rf | �

|∂θf |
r2

≤ C
1
r

ϕ(r) − ψ(r)
r

and the right-hand side is integrable by lemma 8.3. This means that
the trajectory cannot cross U0 if it remains in a small neighborhood of
the origin {0 < r < r0}. Indeed, by integrability, on the part of the
trajectory that is in U0 ∩ {0 < r < r0} the difference of the maximum
and the minimum of θ goes to 0 as r0 → 0.

This ends the proof. Q.E.D.
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Corollary 8.5. If f is defined in an o-minimal structure R̃ then
the trajectory x(t) is definable in the pfaffian closure of R̃.

Proof. This follows directly from [23]. Indeed, it suffices to show
that the image L of x(t) is a Rolle leaf. For this we fix U a definable
”horn” neighborhood of that contains L \ 0, that is divided by L \ 0 into
two connected components, and f is C1 on U . The existence of such U

follows from theorem 8.1. Clearly, L \ 0 is a Rolle leaf of

ω =
∂f

∂y
dx − ∂f

∂x
dy

by the Rolle-Khovanskii Lemma [7]. Q.E.D.

§9. Gradient Conjecture for Polynomially Bounded o-minimal
Structures

In this section we place ourselves in the situation described in section
7. We may suppose that ϕ ≡ r which we shall do just for simplicity of
notation. We shall also make the following additional assumption:

Assumption. There exists a continuous definable function ω, small
in sense of definition 1, such that

(9.1) |1 − f

r∂rf
| ≤ 1

2ω
2(r) on W.

By lemma 7.1 such ω exists for any polynomially bounded o-minimal
structure. Indeed, in this case it suffices to take ω =

√
ω̃. On the other

hand example 1 shows that, in an o-minimal structure which is not
polynomially bounded, ω̃ small does not imply necessarily that

√
ω̃ is

small.

Theorem 9.1. Let x(s) be a trajectory of ∇f
|∇f | , x(s) → 0 as s→ s0.

Denote by x̃(s) the projection of x(s) onto the unit sphere, x̃(s) = x(s)
|x(s)| .

Then x̃(s) is of finite length.

Proof. Let F = f
r be given by section 7. Then we may suppose

that the trajectory is contained in UC = {x; −C ≤ F (x) ≤ −1} and, by
proposition 7.2, that (7.10) holds, and that lims→s0 F (x(s)) → a0 ≤ −1.
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We use the arc-length parameterization s̃ of x̃(s) given by

(9.2)
ds

ds̃
=
r|∇f |
|∇′f | ,

Reparametrize x(s) using s̃ as parameter. Then

(9.3)
dF

ds̃
=

1
|∇′f |

(
|∇′f |2 + |∂rf |2

(
1− f

r∂rf

))
= r|∇′F |+ r∂rF

∂rf

|∇′f | ,

where ∇′F = ∇′f
r .

Lemma 9.2. There exists a continuous definable change of param-
eter Ψ : (R, a0) → (R, 0) and a constant c′ > 0 such that

(9.4)
dΨ(F (x(s)) − a0)

ds̃
≥ c′

holds on {x ∈ UC ; ω ≤ |∇′f |
|∂rf | }.

Proof. On the set {x ∈ UC ;ω ≤ |∇′f |
|∂rf | }, by formulae (6.5),

|∂rF | = |∂rf
r

(
1 − f

r∂rf

)| ≤ ω2|∂rf |
r

≤ ω|∇′F |.

By assumption ω is small and we may use Proposition 6.3. Thus there
is Ψ such that (6.1) holds. We shall show that Ψ satisfies the statement
of lemma.

First we suppose that we are also in W that is in the set {x ∈
W ;ω ≤ |∇′f |

|∂rf | }. Then, by (9.1)

|∂rf |2
|∇′f |

(
1 − f

r∂rf

) ≤ 1
2ω

2 |∂rf |2
|∇′f | ≤ 1

2 |∇′f |.

Consequently

dF

ds̃
≥ |∇′f | +

|∂rf |2
|∇′f |

(
1 − f

r∂rf

) ≥ 1
2r|∇′F |,

and the lemma follows from (6.1).
A similar argument works on UC \W since, by (7.3),

dF

ds̃
≥ c′r|∇′F | = c′|∇′f | ≥ const > 0.

This ends the proof. Q.E.D.
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Given α : (R≥0, 0) → (R≥0, 0) such that

(9.5) ω ≤ c̃−1rα′,

where c̃ will be specified later. Define α̃ = Ψ ◦ α. We consider g =
Ψ(F − a0) − α̃(r) as a control function. Then

(9.6)
dg

ds̃
(x(s)) = Ψ′|∇′f | +

∂rf

|∇′f |Ψ
′
(
∂rf

(
1 − f

r∂rf

) − rα̃′(r)
)
.

We may also suppose that Ψ′ ≥ 1.

Lemma 9.3. There is a constant c′ > 0 such that

(9.7)
dg

ds̃
≥ c′

holds on {x ∈ UC ; ω ≤ |∇′f |
|∂rf | }.

Proof. On W , ∂rf is negative and hence

(9.8) −dα̃
ds̃

= −rα̃′(r)
∂rf

|∇′f | ≥ 0.

Thus the statement follows from lemma 9.2.
On UC \W

|dα̃
ds̃

| = |rα̃′(r)
∂rf

|∇′f | | ≤ ε|rα̃′(r)| = o(1)

and the lemma follows again from lemma 9.2. Q.E.D.

It remains to show that (9.7) holds on UC \ {x ∈ UC ; ω ≤ |∇′f |
|∂rf | }

that is contained in W . We denote it by W (ω) that is W (ω) = {x ∈
W ;ω > |∇′f |

|∂rf | }. Firstly we note that on W (ω)

(9.9) −dα̃
ds̃

= rα̃′(r)
|∂rf |
|∇′f | | ≥ Ψ′ rα

′(r)
ω

≥ c̃Ψ′ ≥ c̃.

On the other hand

(9.10) rα′ ≥ c̃ω � 1
2ω

2∂rf
(
1 − f

r∂rf

)

This shows that − dα̃
ds̃ = − ∂rf

|∇′f |Ψ
′rα̃′(r) dominates in the second term

of the right hand side of (9.6). Since the first part cannot be negative
we get, by (9.9), (9.7) as required.

This ends the proof of the theorem. Q.E.D.
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Département de Mathématiques, UMR 6093 du CNRS, Université d’Angers,
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Anatoly Libgober∗

Abstract.

Homotopy groups of the complements to divisors with ample
components on non-singular projective varieties are considered as the
modules over the fundamental group. We prove a vanishing theorem
and consider the calculation of supports of these modules by relating
them to the cohomology of local systems. We review previous work on
the local study of isolated non-normal crossings. As an application,
we obtain information about the support loci of homotopy groups of
arrangements of hyperplanes.

§1. Introduction

An interesting problem in the study of the topology of algebraic va-
rieties is to understand the fundamental group of the complement to a
divisor on a non-singular algebraic variety in terms of the geometry of
the divisor. Works of Abhyankar ([1]) and Nori ([31]) show that, if C
is an irreducible curve on a non-singular algebraic surface X , then for
some effective constant F (C) depending on the local type of singulari-
ties of C, the inequality C2 > F (C) implies that the kernel of the map
π1(X − C) → π1(X) belongs to the center of π1(X − C). For example,
if X is simply connected, then π1(X − C) is abelian. Historically, such
results were originated in the so-called Zariski problem and we refer to
[16] for a survey. The case of non-abelian fundamental groups of com-
plements, notably when X = P2, is also very interesting. The geometric
information, such as the dimensions of the linear systems defined by sin-
gularities of the curve, becomes essential in descriptions of fundamental
groups and their invariants (cf. [37], [21] [24]). Recently, analogous ques-
tions about fundamental groups of the complements in the case when X
is symplectic began to attract attention as well (cf. [4]).
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180 A. Libgober

In the present work, we shall show that, in appropriate settings, the
relationship between the topology of the complement and the geometry
of the divisor can be extended to some higher homotopy groups. Some
work in this direction already was done. In [22], we show that if V is
a hypersurface in Cn+1 with isolated singularities whose compactifica-
tion in Pn+1 is transversal to the hyperplane at infinity, then the first
homotopy groups of the complement are the following:

(1) π1(Cn+1 − V ) = Z, πi(Cn+1 − V ) for 2 ≤ i ≤ n − 1

Moreover, the next homotopy group πn(Cn+1 − V ) depends on the lo-
cal type of the singularities and also on the geometry of a collection of
singularities as a finite subset in Cn+1. It can also be described via a
generalization of the van Kampen procedure in terms of pencils of hyper-
plane sections (cf. [22], [8]). Recently, homotopy groups of arrangements
were considered in [13] and [32].

Below, we shall extend these results in two directions. On the one
hand, we shall consider complements on arbitrary algebraic varieties
rather than just in projective space. The latter case, however, appears
to be the most important one due to a variety of interfaces with other
areas – e.g. the study of arrangements of hyperplanes. On the other
hand, we do not assume here that V has isolated singularities, but rather
that the divisor D has normal crossings except for finitely many points.
The effect of this is that the fundamental group, which plays the key
role in the description of higher homotopy, may be abelian rather than
cyclic, as is the case in (1), and the theory which we obtain is abelian
rather than cyclic.

In the next section, we prove the triviality of the action of the funda-
mental group on higher homotopy groups in certain situations (cf. The-
orem 2.1). This implies that all information about homotopy groups
in these cases is homological (π1 in these situations is automatically
abelian). In some instances, as result of homological calculations, one
obtains a vanishing of homotopy groups in certain range. In particular if
D is a divisor in Pn+1 having only isolated non normal crossings and the
number of components greater than n+1 then πi(Pn+1 −D) = 0 in the
range 2 ≤ i ≤ n− 1. The results of section 2 also isolate first non-trivial
homotopy group in the sense that it is a non-trivial π1-module.

In Section 3 we define our main invariant of the homotopy group, i.e.
a sub-variety of the spectrum of the group ring of the fundamental group
which is the support of the first non trivial homotopy group considered
as the module over π1. We call these sub-varieties characteristic and
show that they are related to the jumping loci for the cohomology of
local systems. The latter have a very restricted structure (cf. [2]),– i.e.
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they are unions of translated by points of finite order subgroups which
also suggest the numerical data that describe these varieties completely.

The methods of obtaining numerical data specifying the character-
istic varieties from the geometry of the divisor are discussed in the Sec-
tion 6. This is done by using the Hodge theory of abelian covers, which
is studied in section 5, and relies on our local study of the isolated non
normal crossings in [26] and [14]. The results of these papers are dis-
cussed in the Section 4 where, among other things, we compare cyclic
theory of isolated singularities with abelian theory of isolated-non nor-
mal crossings having more than one components. In Section 7, we review
cases to which the results of Section 6 can be applied. In particular, the
Kummer configuration yields an arrangement of planes in P3 with non-
trivial π2 of the complement which we calculate. In the final section,
we show the relationship between the invariants of the homotopy groups
and the motivic zeta function of Denef-Loeser.

Part of this work was done during my visit to University of Bordeaux
to which I wish to express my gratitude. I particularly want to thank
Alex Dimca and Pierrette Cassou-Nogues for their hospitality. I also
want express my gratitude to the organizers of the Sapporo meeting
on Singularities where parts of the results of this paper were presented
and Alex Dimca for careful reading of the manuscript and his useful
comments.

§2. Action of the fundamental group on homotopy groups.

In this section we discuss homotopy groups, in a certain range of
dimensions, for a class of quasi-projective varieties. This is done in
two steps. Firstly, we show that these varieties support a trivial action
of π1 (in particular are nilpotent in certain range). Secondly, we use
homological calculations to determine these homotopy groups and to
describe cases when homotopy groups vanish.

Recall that homotopy groups πn(X, x) of a topological space X are
π1(X, x)-modules, with the action given by the “change of the base
point” (cf. [34]). In the case when πi(X) = 0 for 1 < i < n, this
action on πn(X), which is isomorphic to Hn(X̃) where X̃ is the univer-
sal cover of X , coincides with the action of the fundamental group on the
homology of the universal cover via deck transformations. A topological
space is called k-simple if the action of the fundamental group on πi(X)
is trivial for i ≤ k (cf. [34]).

Examples of k-simple spaces appearing naturally in algebraic geom-
etry are the following. Locally, they come up when one looks at the
complement to a union of germs of divisors in Cn+1 forming an isolated
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non-normal crossing. This situation was studied in [26]. More gener-
ally (cf. [14]), instead of divisors in Cn+1, one can look at the union of
germs of divisors in a germ of a complex space Y having a link which
is (dim Y − 2)-connected. Examples of such local singularities are pro-
vided by the cones over a normal crossings divisor in Pn

C, in particular by
cones over generic arrangements of hyperplanes. These k-simple spaces
(k = dimY − 2) are, of course, Stein spaces and their theory will be re-
viewed in Section 4. Global k-simple examples are given by the following
quasi-projective varieties:

Theorem 2.1. Let X be a simply connected projective manifold and
D =

⋃
Di be a divisor with normal crossings such that its all components

Di are smooth and ample. Then π1(X −D) is abelian and its action on
πi(X − D) is trivial for 2 ≤ i ≤ dim X − 1.

The proof is similar to the one presented in the local case in [26]. It
uses the reduction to the case of normal crossings divisors using Lefschetz
hyperplane section theorem and then surjectivity of πi(Di−

⋃
j �=i Dj) →

πi(X − D) which follows from ampleness of the components Di.
This theorem reduces the calculation of the homotopy group to the

calculation of homology of the complements. The latter can be done
using the exact sequence:

(2) H2(X) → H2(X, X−D) → H1(X−D) → H1(X) → H1(X, X−D)

and the isomorphisms

Hj(X, X − D) = H2n+2−j(D)

We obtain hence:

Corollary 2.2. Let H = ZN be a free abelian group generated by
components of the divisor D. Let

h : H2(X,Z) → H

given by a →
∑

(a, Di)Di where a ∈ H2(X), Di ∈ H2(X) and (a, D)
is the Kronecker pairing. Then π1(X − D) = Cokerh. For example, if
X = Pn+1 and one of the components Di (i = 1, .., r+1) is a hyperplane,
then π1(X − D) = Zr. Let X be a hypersurface in Pn+1 and D be a
union of r + 1-hyperplanes. Then H1(X − D) = Zr.

The following result can be used for the calculation of the homology
of some branched covers of X :
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Corollary 2.3. Let Di ∈ |Lmi

i |(i = 1, ..., r) such that Di are divisors
on X having isolated non-normal crossings and Di is the zero set of fi ∈
H0(X,O(Di)). Let si ∈ H0(X,Li) �= 0. Then Ūm1,..,mr given in the
total space of ⊕Li by smi

i = fi is the cover corresponding the surjection:
φ : H1(X − D) → G = ⊕i=1Z/miZ The projection Ūm1,..,mr → X
induces the isomorphism: Hi(Ūm1,...,mr) → Hi(X) for i ≤ n − 1.

The next theorem is an abelian version of the result in [22] and
identifies “the first non-trivial homotopy group” in the sense of [22].

Theorem 2.4. (a) Let X = Pn+1 and D be an arrangement of r+1
hypersurfaces as in Corollary 2.2 (i.e., such that one of the hypersurfaces
has degree 1) and having finitely many non-normal crossings. Then
πi(Pn+1 − D) = 0 for 2 ≤ i ≤ n − 1. If all intersections are the normal
crossings, then the πn(Pn+1 − D) = 0.
(b) Let V be a complete intersection in PN and dimV = n + 1. Let
D be the arrangement of r + 1 hyperplane sections of V having isolated
non-normal crossings. Then π1(V − D) = Zr and πi(V − D) = 0 for
2 ≤ i ≤ n − 1.

Proof. Consider first (a). The claimed vanishing is a consequence of the
Lefschetz hyperplane section theorem (cf. [18]) and the second part of
(a). The first part follows by induction, with the inductive step being the
vanishing of πn(Pn+1 −D) where D is an arrangement of hypersurfaces
with normal crossings. Taking into account the triviality of the action
of π1(Pn+1−D) on πn, the claim is a consequence of the exact sequence
(cf. [6]):

(3) Hn+1(Pn+1 − D) → Hn+1(Zr) → πn(Pn+1 − D)Zr →

→ Hn(Pn+1 − D) → Hn(Zr) → 0

and the calculation of the homology of Pn+1 − D. The latter can be
done using Mayer Vietoris spectral sequence (cf. [26]). The proof of (b)
is similar.

§3. Characteristic varieties of homotopy groups

In this section, we study the support of the first homotopy group of
quasi-projective varieties from Section 2 on which the action of π1 fails to
be trivial. This support is a subvariety of SpecC[π1], which we call the
characteristic variety. We show that in the range 2 ≤ i ≤ k−1, in which
the action of π1 on πi is trivial, the homology Hi of the local systems,
corresponding to the points of the algebraic group SpecC[π1] different
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from the identity, is trivial. Moreover, the first homotopy group outside
this range, i.e. πk, determines the homology Hk of the local systems.
Vice versa, the (co)homology of local systems determines the support of
πk ⊗ C as π1-module. This yields, in the algebro-geometric context, a
“linear” structure of the characteristic varieties.

Theorem 3.1. Let X be a topological space such that its fundamen-
tal group π1(X) = A is abelian. Assume that for an ideal ℘ in C[A] the
localization of the homotopy groups is trivial for 2 ≤ i < k: πi(X)℘ = 0.
Then Hi(X̃)℘ = 0 for 1 ≤ i < k and Hk(X̃)℘ = πk(X)℘

Sketch of the proof. The universal cover X̃ of X is a simply connected
space on which A acts freely. For such a space, the group A acts on
Hj(X̃,C) for any j and on the homotopy groups πj(X̃, x̃0) = πj(X, x0)
(j ≥ 2) so that the Hurewicz map: πj(X̃) → Hj(X̃) is π1(X)-equivariant
(cf. [34] Ch.7, Cor. 3.7).

Let us consider a simply connected CW-complex Y on which an
abelian group A acts freely. The group A then acts on the homotopy
groups via composition of the map πn(Y, x) → πn(Y, a(x)) and the iden-
tification πn(Y, a(x)) and πn(Y, x), which is independent of the choice
of a path connecting x and a(x) due to π1(Y ) = 0. The claim is that,
if πi(Y )℘ = 0 for 1 < i ≤ n − 1, then πn(Y )℘ = Hn(Y )℘. The theorem
above will follow for Y = X̃ and G = π1(X).

The claim can be obtained by induction over n as follows. Consider
the fibration of path space Maps(I, Y ) → Y × Y . This fibration is
equivariant (where the action on Y ×Y is diagonal). Space Maps(I, Y )
is homotopy equivalent to Y . We have the spectral sequence:

E2
p,q : Hp(Y × Y, Hq(ΩY )) → Hp+q(Y )

This spectral sequence is equivariant. The action on the homology of
fiber is given by av = p∗a∗(v) where a∗ : Hi(ΩxY ) → Hi(ΩgxY ) and
p∗ is the natural identification of the homology of different fibers in a
fibration with a simply-connected base. Localizing at ℘, due to inductive
assumption on Y , we obtain that the terms with 0 < p ≤ n − 1 and
0 < q ≤ n − 2 are zeros. In localized spectral sequence we can identify
the map Hn(Y )℘ → En,0

∞ = Kerdn
n,0 : Hn(Y × Y )℘ → Hn−1(ΩY )℘ with

the map iΔ : Hn(Y )℘ → Hn(Y × Y )℘ corresponding to the diagonal
embedding. Moreover, dn,0

n is surjective (since Hn−1(Y )℘ = 0). Hence
we have an exact sequence:

0 → Im(iΔ)℘ → Hn(Y × Y )℘ → Hn−1(ΩY )℘ → 0
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and since cokernel of Hn(Y )℘ → Hn(Y ×Y )℘ = Hn(Y )℘⊕Hn(Y )℘ is iso-
morphic to Hn(Y )℘, due assumed vanishing, we obtain that Hn(Y )℘ =
Hn−1(ΩY )℘ = πn(Y )℘.

We shall apply this theorem to (n − 1)-simple spaces. For such
a space the support of πi(X) ⊗Z C as a C[π1(X)] module belongs
for 2 ≤ i ≤ n − 1 to the maximal ideal of the identity of the group
SpecC[π1(X)] = Char[π1(X)]. This maximal ideal is just the augmen-
tation ideal of the group ring. Hence the localization at a prime ideal not
belonging to the maximal ideal of the identity satisfies (after tensoring
with C) the assumption of Theorem 3.1. This allows, for (n− 1)-simple
spaces, to express the homology of the local systems in terms of the
homotopy groups πn(X):

Theorem 3.2. Let ρ ∈ Charπ1(X) be a character of the funda-
mental group different from the identity and let Cρ be C considered as
C[π1(X)] module via the character ρ. Then

Hi(X, ρ) = 0 (i ≤ n − 1) Hn(X, ρ) = πn(X) ⊗C[π1(X)] Cρ

Proof. The proof is similar to the one in the case when X is a complement
to a plane curve (cf. [24]) and the local case (cf. [26]). Consider the
spectral sequence (cf. [7], ch.XVI, th.8.4):

Hp(π1(X), Hq(X̃)ρ) ⇒ Hp+q(X, ρ)

where H∗(X̃)ρ is the homology of the complex C(X̃)⊗ZC with the action
of π1(X) given by g(e⊗α) = g ·e⊗ρ(g−1)α. We can localize this spectral
sequence at the maximal ideal ℘ρ of Spec C[π1(X)] corresponding to the
character ρ. The resulting spectral sequence has Ei,j

2 = 0 for 1 ≤ j ≤
n − 1. The exact sequence of low degree terms yields: Hn(X, ρ) =
Hn(X̃)⊗C[π1(X)] Cρ which together with Theorem 3.1 proves the claim.

Now we are ready to define the main invariant.

Definition 3.3. The k-th characteristic variety Vk(πn(X)) of the
homotopy group πn(X) is the zero set of the k-th Fitting ideal of πn(X),
i.e. the zero set of minors of order (n − k + 1) × (n − k + 1) of Φ in a
presentation

Φ : C[π1(X)]m → C[π1(X)]n → πn(X) → 0

of π1(X) module πn(X) via generators and relations. Alternatively
(cf. Theorem 3.2) outside of ρ = 1, Vk(πn(X)) is the set of characters
ρ ∈ Char[π1(X)] such that dim Hn(X, ρ) ≥ k.

Theorem 3.2 combined with the results of [2] yields the following
strong structure property (for possibly non-essential characters):
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Theorem 3.4. The characteristic variety Vk(πn(X−D)) is a union
of translated subgroups Sj of the group Charπ1(X −D) by unitary char-
acters ρj:

Vk(πn(X − D)) =
⋃

ρjSj

This is an immediate consequence of the interpretation 3.2 and the
following theorem applied to a resolution X̂ of non-normal crossings of
D:

Theorem 3.5 (Arapura [2]). Let X̂ be a projective manifold such
that H1(X̂,C) = 0. Let D̂ be a divisor with normal crossings. Then
there exists a finite number of unitary characters ρj ∈ Charπ1(X̂ − D̂)
and holomorphic maps fj : X̂−D̂ → Tj into complex tori Tj such that the
set Σk(X̂−D̂) = {ρ ∈ Charπ1(X̂−D̂) | dimHk(X̂−D̂, ρ) ≥ 1} coincides
with

⋃
ρjf

∗
i H1(Tj ,C∗). In particular, Σk is a union of translated by

unitary characters subgroups of Charπ1(X − D).

The components of Σ1 can all be obtained using the maps X −
D onto the curves with negative Euler characteristics (cf. [2]). In the
case k > 1, maps onto quasi-projective algebraic varieties with abelian
fundamental group and vanishing πi for 2 ≤ i ≤ k − 1 allow one to
construct components of V (πk) (cf. Example 7.4 below).

§4. Review of local theory of isolated non-normal crossings

Local theory of isolated singularities of holomorphic functions pro-
vides a beautiful interplay between algebraic geometry and topology
and in particular the topology of (high dimensional) links (cf. [30]). The
main structure is the Milnor fibration ∂Bε − V 0

f ∩ ∂Bε → S1, where
V 0

f is the zero set of a holomorphic function f(x1, .., xn+1) and Bε is a
ball of a small radius ε about O (the fibration exist even in the non-
isolated case). If the singularity of f at O is isolated, then the fiber Mf

of this fibration (the Milnor fiber) is homotopy equivalent to a wedge
of spheres: Sn ∨ ... ∨ Sn. Going around the circle, which is the base of
Milnor’s fibration, yields the monodromy: Hn(Mf ) → Hn(Mf ). It has
as its eigenvalues only the roots of unity exp(2πiκ) (κ ∈ Q). Moreover,
there are several ways to pick a particular value of the logarithm κ of an
eigenvalue of the monodromy so that the corresponding rational number
will have some geometric significance. One of the ways to do this de-
pends on the existence of a Mixed Hodge structure (cf. [35]) on Hn(Mf ).
The value of the logarithm is selected so that its integer part is deter-
mined by the degree of the component of GrF

∗ Hn(Mf ) (graded space
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associated with the Hodge filtration) on which particular eigenvalue of
the semi-simple part of the monodromy appears.

Some of the data above can be obtained by considering the infinite
cyclic cover of ∂Bε −V 0

f ∩ ∂Bε instead of Milnor fibration. Such a cover
is well-defined since H1(∂Bε−V 0

f ∩∂Bε,Z) = Z for n > 1. For example,
the universal cyclic cover is diffeomorphic to the product Mf ×R. The
monodromy can be identified with the deck transformation of the infinite
cover.

With such reformulation, the Milnor theory can be extended to the
case of germs of isolated non-normal crossings in Cn+1 (cf. [26]), i.e.
germs of functions f1 · ... · fr such that the intersection points of divisors
f1 = 0, ..., fr = 0 are normal crossings except for the origin O (more
general case of germs of complex spaces with isolated singularities con-
sidered in (cf. [14]). The results, using infinite covers as a substitute
for the Milnor fiber, are parallel to the above mentioned results in the
isolated singularities case. Notice, however, that though the theory of
Milnor fibers is applicable to germs of INNC, much less detailed informa-
tion can be obtained since these singularities are not isolated for n > 1.
For example, the Milnor fiber is not even simply-connected (cf., below
however, where quite a bit of information about the Milnor fiber can be
obtained as a consequence of the present approach).

Let D be a germ of INNC which belongs to a ball Bε about O
and which has r irreducible components. We have the isomorphism
H1(∂Bε −D,Z) = Zr and hence the universal abelian cover of ∂Bε −D
has Zr as the covering group. The replacement of the Milnor fiber in
this abelian situation is the universal abelian cover ˜∂Bε − D. Notice
that a locally trivial fibration of ∂Bε − D over a torus does not exist
in general since typically ˜∂Bε − D has the homotopy type of an infinite
complex. We have the following (cf. [26]):

Theorem 4.1. For n > 1, the fundamental group π1(∂Bε − D) is
free abelian. The universal (abelian) cover ˜∂Bε − D is (n−1)-connected.
In particular, Hn( ˜∂Bε − D,Z) is isomorphic to the homotopy group
πn(∂Bε−D). The latter isomorphism is the isomorphism of Z[π1(∂Bε−
D)]-modules where the module structure on the homology is given by
the action of π1(∂Bε − D) on the universal cover via deck transforma-
tions and the action on the homotopy is given by the Whitehead product
(cf. [34]).

Notice that the case when D is a divisor with normal crossings is “a
non-singular” case since the universal cover is contractible. The simplest
example of INNC is given in Cn+1 by the equation l1 · ... · lr = 0, where
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li are generic linear forms (i.e. a cone over a generic arrangement of
hyperplanes in Pn). Since the complement to a generic arrangement of
r hyperplanes in Pn has a homotopy type of n-skeleton of the product of
r−1-copies of the circle S1 (in minimal cell decomposition in which one
has

(
r−1

i

)
cells of dimension i) one can calculate the module structure

on the πn of such skeleton. Its universal cover is obtained by removing
the Zr−1 orbits of all open faces of a dimension greater than n in the
unit cube in Rr−1. Hence πn(∂Bε − D) = Hn( ˜∂Bε − D,Z) ( ˜∂Bε − D
is the universal cover). The chain complex of the universal cover of
(S1)r−1 can be identified with the Koszul complex of the group ring
of Zr−1 = Zr/(1, ..., 1) (so that the generators of Zr correspond to the
standard generators of H1(∂Bε − D) ). The system of parameters of
this Koszul complex is (t1 − 1, .., tr − 1). Hence Hn( ˜∂Bε − D,Z) =
KerΛnR → Λn−1R where R = Z[t1, .., tr]/(t1 · ... · tr − 1). As a result,
one has the following presentation:

(4) Λn+1(Z[t1, t−1
1 , ..., tr, t

−1
r ]/(t1..., tr − 1)r) →

Λn(Z[t1, t−1
1 , ..., tr, t

−1
r ]/(t1..., tr − 1)r) → πn(Cn+1 −

⋃
Di) → 0

In particular, the support of the πn is the subgroup t1 · ... · tr = 1.
We summarize the similarities between the case of hypersurfaces

with isolated singularities and INNC in the table 1 in the next page
(with 4.1 justifying the first three rows):

In the case of isolated singularities one has the isomorphism: πn(∂Bε−
D) = Hn( ˜∂Bε − D) as Z[t, t−1]-modules, where the module structure on
the right is given by the monodromy action. In particular, it is a torsion
module and its support is a subset of CharZ = C∗ consisting of the
eigenvalues of the monodromy of Milnor fibration. Monodromy theo-
rem ([30]) is equivalent to the assertion that eigenvalues are the torsion
points of C∗. A generalization of this is the following:

Conjecture 4.2. The support of πn(∂Bε − D) is a union of trans-
lated subgroups of Charπ1(∂Bε − D) by points of finite order.

4.2 is a local analog of the result 3.4 in the quasi-projective case.
Now let us describe a partial result in the direction of 4.2 describing some
components of a characteristic variety which satisfy 4.2, and which also
will explain last two rows in the above table.

As already was mentioned, the cohomology group of the Milnor fiber
Hn(Mf ,C) of an isolated singularity support a Mixed Hodge structure
(cf. [35]). The monodromy splits into the product of the semi-simple and
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Isolated singularities INNC

Milnor Infinite
fiber abelian cover

Homology of πn

Milnor fiber

Monodromy π1 − module structure
on πn

Eigenvalues Characteristic
of monodromy varieties of πn

Monodromy Translated
theorem subgroup Property

Multiplier Multivariable Ideals of
Ideals Quasiadjucntion

Spectrum Polytopes of
quasiadjunction

Table 1

the unipotent part. The semi-simple part leaves the Hodge filtration
invariant. The latter allows one to split the eigenvalues into groups
corresponding to the components of GrF Hn(Mf ,C), depending on the
graded piece on which the eigenvalue appears. As a consequence, one
can assign a rational number to each eigenvalue, i.e., its logarithm so
that its integer part is determined by the group to which the eigenvalue
belongs (we refer to [35] for the exact description). In other words, we
obtain a lift of the support of the homotopy group of the Milnor fiber
into the universal cover of the subgroup of unitary characters of Z (the
eigenvalues of the monodromy having a finite order are unitary).

In the abelian (local) case, we have the following. Let us consider
the universal cover of the subgroup Charu(π1(∂Bε−D)) of unitary char-
acters. It is isomorphic to Rr and one can take the unit cube as the
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fundamental domain of the covering group (i.e. Zr). We assign an ele-
ment in the fundamental domain to a unitary character χ having finite
order using the following interpretation of the unitary characters from
Vk(πn(∂Bε − D)) (cf. [26] Prop. 4.5).

Proposition 4.3. Let G = ⊕i=r
i=1Z/miZ be a finite quotient of

π1(∂Bε − D) and let χ ∈ Char(π1(∂Bε − D)) which is the image of
a character of G. Then the link Xm1,..,mr of the isolated complete inter-
section singularity:

(5) zm1
1 = f1(x1, ..., xn+1), ..., zmr

r = fr(x1, ..., xn+1)

is a n − 1-connected 2n + 1-manifold, which is a cover of ∂Bε branched
over INNC D. The condition: χ ∈ Vk(πn(∂Bε − D)) and χ is essential
(cf. 5.3) is equivalent to

k = dim{v ∈ Hn(Xm1,...,mr) | gv = χ(g)v∀g ∈ G}

Note that the covering map Xm1,..,mr → ∂Bε is just a projection
(z1, ..., zr, x1, .., xn+1) → (x1, ..., xn+1). Next, we shall use the Mixed
Hodge structure on the cohomology of the link (5) (cf. [36]). The Hodge
filtration

F 0Hn(Xm1,...mr) ⊃ ... ⊃ FnHn(Xm1,...mr) ⊃ 0

is preserved by the group G. The logarithms of characters which appear
on the subspace FnHn(Xm1,...mr) (i.e., the vectors log χ = (ξ1, .., ξr)
with 0 ≤ ξi < 1, ∀i such that exp(2πiξ1), ..., exp(2πiξr) is a character χ
of H1(∂Bε − D) in coordinates given by the generators H1(∂Bε − D))
form a polytope in the sense of the following

Definition 4.4. A polytope in the unit cube U = {x = (x1, ..., xn) |
0 ≤ xi ≤ 1∀i} is a subset of U formed by the solutions of a system of
inequalities ak · x ≤ ck for some constants ck (resp. vectors ak) such
that ak = (a1

k, ..., ai
k, ..., an

k ), 0 ≤ ai
k ∈ Q and 0 ≤ ck ∈ Q, ∀i, k. A face of

a polytope P is a subset of its boundary ∂P which has the form ∂P ∩H
for a hyperplane H different from one of 2n hyperplanes xi = 0, 1.

We have the following:

Theorem 4.5. To each germ of INNC D and l, 0 ≤ l ≤ n corre-
sponds a collection Pl of polytopes Pk,l ∈ Pl such that a vector log χ ∈
Qr in unit cube belongs to one of the polytopes Pk,l if and only if dim{v ∈
F l/F l+1Hn | gv = χ(g)v} = k. In particular, Vk(πn(∂Bε − D)) =⋃

k expPk,l where Rr → Charu H1(∂Bε − D) is the exponential map.
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In the cyclic case, each of Pk,l is a rational number ξ such that
exp(2πiξ) is an eigenvalue of the monodromy having a multiplicity k
which appears on F l/F l+1Hn(Mf ), i.e. is an element of the spectrum
having a multiplicity k (in the case l = n one obtains the constant of
quasi-adjunction from [20]).

Remark 4.6. In the case n = 1, i.e., the case of reducible plane
curves, we have the polytopes of quasi-adjunction studied in [25]. In
particular, these polytopes are related to the multi-variable log-canonical
thresholds and multiplier ideals (cf. remark 2.6 and section 4.2 respect.
in [25]). Similar relations exist in the case of INNC discussed here. In
particular, to each face F of a polytope of quasiadjunction for INNC cor-
responds the ideal of quasiadjunction AF in the local ring of the singular
point of INNC used below (cf. (6.3)).

In the case of isolated singularities, there are very explicit and beau-
tiful calculations of the eigenvalues of the monodromy and spectrum of
singularities. We would like to pose the following problem:

Problem 4.7. Calculate the characteristic varieties of INNC with
C∗-actions and in the case when Di are generic for their Newton poly-
topes. What are the polytopes described in Theorem 4.5?

This should be a generalization of the case, discussed above, of the
cone over a generic arrangement and the example in [26] of the cone over
a divisor with normal crossings in Pn.

§5. Homology of abelian covers

In this section, we return to the global case of divisors with ample
components having only isolated non-normal crossings.

5.1. Topology of unbranched covers
The characteristic varieties Chari(πn(X − D)) contain information

about both branched and unbranched abelian covers.

Lemma 5.1. Let G be a finite abelian quotient of π1(X−D) and let
UG be corresponding unbranched covers of X−D. Let χ ∈ Char(π1(X−
D)) be a pull back of a character of G (we shall considered it as a char-
acter of the latter). Let Hn(UG)χ = {v ∈ Hn(UG) | g · v = χ(g)v(g ∈
G)} Then Hn(X − D,Lχ) = Hn(UG)χ. In particular, χ ∈ CharG ⊂
Chari(πn) if and only if Hn(UG)χ ≥ i.

A proof can be obtained, for example, from the exact sequence of
low degree non-vanishing terms in the spectral sequence of the action of
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the group K = Kerπ1(X − D) → G on the universal cover ˜X − D (for
which we have ˜X − D/K = UG):

Hp(K, Hq( ˜X − D)) ⇒ Hp+q(UG)

(cf. [7]). This is a spectral sequence of C[π1(X − D)]-modules where
the C[π1(X − D)]-module structure on C[G] module Hp+q(UG) comes
via surjection: C[π1(X − D)] → C[G]. The localization of this spectral
sequence at a point χ of CharG ⊂ Charπ1(X−D) yields the claim using
3.2, since the localization of Hn(UG) at χ has the same χ-eigenspace as
Hn(UG).

Now, let us consider the effect of adding (ample) components to D.

Lemma 5.2. Let D′ an ample divisor such that D∪D′ is a divisor
with isolated non-normal crossings. Then the homomorphism of π1(X−
D) modules: πi(X − D ∪ D′) → πi(X − D) is surjective for 1 ≤ i ≤
dimX−1. In particular, if one considers SpecC[π1(X−D)] as a subset
in SpecC[π1(X −D∪D′)], then the intersection of Vk(πn(X −D∪D′))
with Spec C[π1(X − D)] contains Vk(πn(X − D)).

Sketch of the proof. Let T (D′) be a small neighborhood of D′ in
X . Then by the Lefschetz theorem, πi(T (D′) − D′ ∩ D) surjects onto
πi(X−D). On the other hand, this map can be factored through πi(X−
D ∪ D′) which yields the claim.

Lemma 5.2 suggests the following definition:

Definition 5.3. The components of Vk(X − D̄) where D̄ is a union
of a proper collection of Di’s forming D and which are considered as
subsets in Spec C[π1(X − D)] called the non-essential components of
Vk(X − D). The remaining components are called essential.

A character χ is called essential if χ(γ) �= 1 for each element γ ∈
π1(X − D) which is a boundary of a small 2-disk transversal to one of
irreducible components of D.

We shall see in the next section that only essential characters con-
tribute to the homology of branched covers.

5.2. Hodge theory of branched covers.
The relationship between the homology of branched and unbranched

covers is more subtle in the present case than in the case of plane curves
considered in [24] and the local case of Section 4. One of the reasons is
that there is no prefer non-singular model for the abelian global case.
Only the birational type of branched cover is an invariant of X − D,
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and hence the Betti numbers of branched covers depend upon compact-
ification of the unbranched cover. However, the Hodge numbers hi,0 are
birational invariants (in the case dimX = 2, they determine the rele-
vant part of homology of branched cover completely due to the relation
b1 = 2h1,0) and one can expect a relation between the Hodge numbers
hi,0 and the homology of unbranched covers.

Recall that the cohomology of unitary local systems supports a
mixed Hodge structure (cf. [38]). We shall denote

hp,q,k(L) = dimGrp
F Grq

F̄
GrW

p+q(H
k(L))

the dimension of the corresponding Hodge space. In the case of a rank
one local system having a finite order, one has the following counterpart
of 5.1:

Theorem 5.4. Let, as in 5.1, χ ∈ Char(π1(X −D)) be a character
of a finite quotient G of π1(X − D). Let ŪG be a G-equivariant non-
singular compactification of UG and let Hp,q(ŪG)χ be the χ-eigenspace
of G acting on Hp,q(ŪG). Then

hn,0,n(Lχ) = hn,0(ŪG)χ

Sketch of the Proof. The functoriality of the Hodge structure on coho-
mology of local systems yields that the isomorphism in 3.2 is compatible
with the Hodge structure: hn,0,n(X−D,Lχ) = hn,0,n(UG)χ where in the
RHS are the Hodge numbers of the Deligne’s MHS on the cohomology
of non-singular quasi-projective manifold (cf. [11]). Let E = ŪG − UG,
which we assume is a divisor with normal crossings. In the exact se-
quence of MHS: Hn(ŪG, UG) → Hn(ŪG) → Hn(UG), which splits into
corresponding sequences of χ-eigenspaces, the image of right homomor-
phism is WnHn(UG) (cf. [11] 3.2.17). This result is a consequence of the
identity: KerHn(ŪG) → Hn(UG) ∩ Hn,0 = 0 To see the latter, notice
that using the duality Hn+2(E) × Hn(ŪG, UG) → C(−n − 1) (C(−k)
is the Hodge-Tate) we obtain hn,0,0(ŪG, UG) = hn+1,1,n+2(E). On the
other hand, for each smooth component Ei of E one has hi,j,n+2 �= 0
only when 0 ≤ i, j ≤ n and the Mayer Vietoris sequence of MHS yields
the same conclusion for E. Hence Hn(ŪG) → Hn(UG) is injective on
Hn,0 and the result follows.

§6. Conjecture and results on the structure of characteristic
varieties.

Now we return to the situation discussed in Section 2 and consider
the complements to divisors D with isolated non-normal crossings on
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projective manifolds X (dimX = n + 1). Our goal is to calculate the
components of Vi(πn(X − D)). The procedure described below is a
generalization of the one outlined in [24].

Let us assume that H1(X−D) = Zr (i.e., to avoid mainly notational
complications, assume that H1(X − X,Z) is torsion free) and consider
the covering corresponding to the homomorphism H1(X − D) → G =
⊕i=r

i=1Zmi . Let ki be the order in G of the element of H2n(D) correspond-
ing to Di so that we have the surjective map H2n(D) → ⊕i=1,..NZki and
also the surjection G′ → G where G′ = ⊕Zki . Let K = ker G′ → G. We
have the following diagram (the left column is the part of the sequence
(2)):

0 0
↑ ↑

H1(X − D,Z) → G
↑ ↑

H2n(D,Z) → G′

↑ ↑
Im H2(X,Z) → K

↑ ↑
0 0

Dualizing, we obtain:

(6)

0 0 0
↓ ↓ ↓

H1(X − D,R) → CharH1(X − D) ← CharG
↓ ↓ ↓

H2n(D,R) → CharH2n(D) ← CharG′

↓ ↓ ↓
Hom(ImH2(X),R) → Char ImH2(X) ← CharK

↓ ↓ ↓
0 0 0

with the maps from the left to the middle column on (6) induced by the
universal covering map R → S1. The left column itself is the part of
the cohomology sequence of the pair (X, X − D).

Consider the preimage of CharG′ ⊂ CharH2n(D,Z) under the map
H2n(D,Q) → H2n(D, S1) and select the fundamental domain for the
action of the kernel of the latter map i.e. the action of H2n(D,Z) on
H2n(D,Q). We shall assume that this domain is the unit cube U :
{(j1, ..., jN ) | 0 ≤ ji < 1} in QN (N = rkH2n(D,Q)) with coordinates
corresponding to the components of D. Selection of the fundamental
domain allows to attach to each χ ∈ CharG′ unique element in U . The
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preimage of CharG is a subgroup of H2n(D,R). The image of this
subgroup in Char ImH2(X,Z) is trivial and hence belongs to

Hom(Im H2(X,Z),Z) ⊂ H2(X,Z).

In particular, any character χ of G determines the element Lχ of Pic(X).
These bundles satisfy: Lχ ⊗Lχ−1 = ⊗O(Ds) where Ds is the collection
of irreducible components of D such that χ(γDs) �= 1 (γDs is the image
in H1(X−D) of the generator of the summand of H2n(D) corresponding
to Ds). One can show that if X̃G → X is a branched cover then the
divisorial components of f∗(OX̃G

) are ⊕χL∗
χ. We have: f∗(Ωn+1

X̃G
) =

⊕χΩn+1
X ⊗ Lχ−1 . Also, for a given D ∈ Pic(X) the collection of lifts of

characters χ ∈ CharH2n(D) to H2n(D,R) such that Lχ−1 = D form an
affine subspace LD of H2n(D,R).

Example 6.1. Let X = Pn+1 and let D be an arrangement of r+1
hyperplanes Hi, i = 1, ..., r (i.e., H1(Pn+1−D,Z) = Zr). The characters
of H2n(D,Z) which factor through (Z/nZ)r correspond to the collections
xi ∈ Z, i = 1, , , , r+1, 0 ≤ xi < n such that

∑
xi ≡ 0 mod n. Let us con-

sider a covering XG with the Galois group G = (Z/nZ)r corresponding to
the homomorphism H1(Pn+1 − D,Z) → Z/nZr+1

/(Z/nZ) (quotient by
the diagonally embedded cyclic subgroup K of G′ = (Z/nZ)r+1) sending
the boundary of a small disk transversal to Hi to a generator of the i-th
summand. We have f∗(OXG) = ⊕Lχ with Lχ = O((−

∑ xi

n )H). More-
over, Lχ−1 = O(

∑
(1 − xi

n ))H. Taking ramification into account, the
assignment the characters of H1(X − D,Z) to elements of H2n(D) can
be done so that to (x1, ..., xr+1) corresponds the character exp(

∑
(1 −

xi+1
n )) and so that: f∗(Ωn+1) = ⊕x1,..,xr+1Ω

n+1
Pn+1 ⊗ O((1 − x1+1

n )H)
for (x1, ..., xr+1), 0 ≤ xi < n selected so that

∑ xi+1
n ∈ Z. We have

Pic(X) = Z and the preimage of O(l) ∈ Pic(X) is the hyperplane in
H2n(X,R) corresponding to the latter lift. It is given by x1+1

n + ... +
xr+1

n = l where xi’s are the coordinates corresponding to the basis of
H2n(X,Z) given by the cycles dual to Di’s

Now, with each S ∈ S, we associate a polytope in the unit cube
in Rr as follows. For any S ∈ S, one has the map H1(Bε − D) →
H1(X − D) and hence the map CharH1(X − D) → CharH1(Bε − D).
The latter lifts to the map of universal covers: Rr → Rs where s
is the number of components of D containing S. This can be de-
scribed in coordinates as follows. A vector Ξ : (κ1, .., κr) ∈ Qr(0 ≤
κi < 1) for any collection (j1, ..., js) determines the vector: Ξj1,..,js =
({

∑
ai,j1κi}, ...., {

∑
ai,j1κi}) ∈ Qr ({}̇ is the fractional part of a ratio-

nal number). For each S ∈ S, we consider subsets Pgl
S consisting of
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vectors Ξ = (κ1, .., κr) such that Ξj1,..,js ∈ PS where Dj1 , ., Djs are the
components of D passing through S ∈ S and PS ∈ Qs is a face of a
polytope of quasi-adjunction of INNC formed by Dj1 , .., Djs .

Definition 6.2. Let S ⊂ X be the collection of non-normal cross-
ings of the divisor D. Global polytope of quasi-adjunction corresponding
to S is

⋂
S∈S Pgl

S . A global face of quasi-adjunction is a face of a global
polytope of quasiadjunction. A divisor D =

∑
αiDi ∈ PicX, αi ∈ Q is

called contributing if the corresponding subset LD of the elements of the
universal cover (cf. definition before Example 6.1) contains a global face
of quasi-adjunction F and H1(AF ⊗ Ωn+1

X ⊗ D) �= 0. Here AF is the
ideal of quasiadjunction corresponding to the face F (cf. Remark 4.6). A
global face of quasi-adjunction F is contributing if there is a contributing
divisor such that the corresponding subspace LD contains F .

Conjecture 6.3. Zariski closure of exp(F) ⊂ CharH1(U,Z) is a
component of characteristic variety Vk where k = dimH1(AF ⊗Ωn+1

X ⊗
D) if F is a contributing face of a polytope of quasiadjunction.

I don’t know if such components are all essential components of the
characteristic variety.

The supporting evidence is the following. This conjecture is shown
in [24] in the case of curves and in the case X = Pn+1 and D is a
hypersurface with isolated singularities in [23]. Both of these results can
be generalized as follows (the proof, based on the methods used in these
two papers will appear elsewhere).

Theorem 6.4. Let D ⊂ Pn+1 be a union of hypersurfaces D0,
D1,..., Dr of degrees 1, d1, ..., dr respectively, which is a divisor with
isolated non-normal crossings. Let F be a face of global polytope of
quasi-adjunction, i.e. a face of an intersection of polytopes of quasi-
adjunction corresponding to a collection S of non-normal crossings of
D. Let d1x1 + ... + drxr = l be a hyperplane containing the face of
quasiadjunction F . If H1(AF ⊗O(l − 3)) = k, then the Zariski closure
of exp(F) ⊂ CharH1(Pn+1 − D) is a component of Vk(πn(X − D)).

A consequence of the conjecture is the corollary.

Conjecture 6.5. Let χ ∈ Charπ1(X−D) be a character of a finite
quotient of G of the fundamental group. Let, as in Lemma 5.4, ŪG

be a G-equivariant compactification of the unbranched cover of X − D
with the Galois group G and let hn,0

χ (ŪG) be the χ-eigenspace of the G

acting on Hn,0(UG). Then hn,0
χ (ŪG) = 0 unless the lift of χ belongs to

a contributing global face of quasi-adjunction F and in which case one
has:

hn,0
χ (ŪG) = dimH1(AF ⊗ Ωn

X ⊗O(D))
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where D ∈ Pic(X) is the divisor corresponding to the lift of character χ.

In the case when there are bundles Li such that Lni

i = O(Di) and
the cover corresponds to the group Zn1 × ...×Znr , using the arguments
similar to those used in [39], one obtains (in agreement with the con-
jecture) the following: the eigenspace of the action of G corresponding
to the dimension of the eigenspace corresponding to (e2πi

p1
n1 , ..., e2πi pr

nr )
is dimH1(AF ⊗ Ωn+1

X ⊗ Lp1
1 ⊗ ... ⊗ Lpr

r ). In the case when r = 1 the
condition that ( p1

n1
, ..., pr

nr
) belongs to the face of quasi-adjunction be-

comes the condition that p
n is an element of the spectrum of one of the

singularities of the divisor D and one obtains the result from [39].

§7. Examples

7.1. Local examples
Example 7.1. Germs of curves.

In the case of curves, the support of H1( ˜∂Bε − D,C) is the zero set
of the Alexander polynomial. There are extensive calculations of this
invariant using knot-theoretical methods (cf. [15]). Hodge decomposition
is considered in [25]. For example, for the singularity xr − yr = 0, the
characteristic variety is t1 · · · tr = 1 (cf. the calculation for the cone over
the generic arrangement in Section 4). The faces of the polytopes of
quasi-adjunction are the hyperplanes x1 + ... + xr = l, (l = 1, .., r − 2).

Example 7.2. Cones.

A generalization of the example of arrangements of hyperplanes con-
sidered in Section 4 is given by a union of non-singular hypersurfaces in
Pn which form a divisor with normal crossings (cf. [26]). If the degrees
of hypersurfaces are d1, .., dr respectively then V1 = Supp(πn(Cn+1 −
D) ⊗ C) is given by td1

1 · ... · tdr
r − 1 = 0.

7.2. Global examples
Example 7.3. Plane curves

We refer to [24] for examples of characteristic varieties for pencils
quadrics (Ceva arrangement of four lines) and pencils of cubics (arrange-
ment of nine lines dual to inflection points of a non-singular cubic and
the arrangement of 12 lines containing its inflection points). Papers [27],
[28] and [10] describe a combinatorial method to detect components of
characteristic variety and in [9] a generalization to arrangements of ra-
tional curves is considered. Papers [3] and [5] contain applications of
characteristic varieties to geometric problems.
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Example 7.4. Arrangement in P3 with isolated non-normal cross-
ings for which π2 of the complement which support has non-trivial es-
sential components.

Consider the arrangement D8,4 of hyperplanes in P3 which is an
(8,4) configuration (cf. [17]). It includes a plane containing 4 generic
points Q1, ..., Q4, six generic planes Hi,j each passing through the line
QiQj and also the plane containing the four coplanar (by Desargue the-
orem) points Hi,j ∩ Hj,k ∩ Hi,k. Recall (cf. [17]) that this configuration
contains eight planes and eight points such that every plane contains four
points and every point belongs to exactly four planes. Denoting eight
points by 1, 2, 3, 4, 1′, 2′, 3′, 4′ and eight planes by 1,2,3,4,1′,2′,3′,4′

the incidence relation is given by the diagram:

1 1′ 1 1′

2 2′ 2 2′

3 3′ 3 3′

4 4′ 4 4′

where the plane in position (i, j) contains all points in row i and column
j except for the point in position (i, j).

This arrangement of eight hyperplanes has only isolated non-normal
crossings. From 2.2, we infer that H1(P3 − D8,4) = Z7. Moreover we
have the rational map:

Π : P3 → P(H0(P3, I(2)))∗ = P2

where I is the ideal sheaf of the collection of eight points in P3 forming
this configuration. The indeterminacy points are the eight points of
configuration. In order to calculate the Π-image of the hyperplanes of the
arrangement, notice that the points in the target of the map correspond
to the pencils of quadrics in the web, the image of a point is the pencil
of quadric in the web containing this point and the lines correspond to
quadrics in H0(P3, I(2)) i.e. are the collections of pencils containing a
quadric. In particular, the image of a point P in a hyperplane H ∈ D8,4

is a pencil of quadrics from H0(P3, I(2)) containing P . This pencil
contains the quadric among the four quadrics containing P , mentioned
earlier. Hence the image of P belongs to the union L of four lines in
P(H0(P3, I(2)))∗ corresponding to above four quadrics. Therefore we
have a regular map: Π : P3 − D8,4 → P2 − L.

Let us calculate the cohomology of local systems Π∗(L), where L
is a local system on P2 − L. We have the Leray spectral sequence:
Hp(P2 − L, RΠq

∗(Π∗L)) ⇒ Hp+q(P3 − D8,4, Π∗L). Using RΠq
∗(L) =

L⊗Rq
∗(C) and looking at the critical set of Π, one checks that H0(P2 −
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L,L ⊗ RΠ1
∗(C)) = H1(P2 − L,L ⊗ RΠ1

∗(C)) = 0 for a Zariski dense
set of local systems. Hence this spectral sequence degenerates for those
local systems L on P2 − L. This yields that H2(P3 − D8,4, Π∗(L)) =
H2(P2−L,C) = C3 for a Zariski dense set of local systems L on P2−L.

The above calculation shows that, since

π2(P2 − L) ⊗ C = C[t1, t,2 , t3, t4]/(1 − t1t2t3t4)

the support of the homotopy group: π2(P3−D8,4)⊗C has a 3-dimensional
component. Projections from each of eight vertices of this configuration
yield linear maps of P3 − D8,4 onto the complement in P2 to four lines
in a general position and hence a 3-dimensional component. We obtain
hence in SpecC[H1(P3 − D8,3)] nine 3-dimensional components of the
support of π2(P3 − D8,3) ⊗ C.

The component corresponding to the web of quadrics can be de-
tected using Theorem 6.4. Indeed local face of quasiadjucntion has the
form xi1 + xi2 + xi3 + xi4 = 1 where xij correspond to the planes con-
taining one of the above 8 points. The intersection of these hyperplanes
in R8 has dimension 3 and belongs to the hyperplane x1 + .... + x8 = 2
since adding relations xi1 + xi2 + xi3 + xi4 = 1 for all 8 points yield the
relation 4x1 + ... + 4x8 = 8 since each point belongs to 4 hyperplanes.
This intersection will be contributing iff dimH1(J (8− 4− 2) �= 0 where
OP3/J has support at the above 8 points and and the stalk of J at each
of those is the maximal ideal of OP3 . The sheaf J has Koszul resolution:

0 → OP3(−6) → OP3(−4)3 → OP3(−2)3 → J → 0

which yields dimH1(P3,J (2)) = 1 i.e. the above face of quasiadjunction
is contributing.

§8. Betti and Hodge realizations of multi-variable motivic zeta
function

The purpose of this section is to relate the motivic zeta function of
Denef and Loeser in the case of local INNC to the invariants considered
in Section 4.

Recall that, to a smooth variety X over C and r holomorphic func-
tions fi : X → C, one associates a multi-variable motivic zeta-function
Zf1,...,fr(T1, .., Tr) which is a formal series in MX0×Gr

m
[[T1, ..., Tr]]. Here,

as in [12], X0 =
⋂

i f−1
i (0), Gm is the multiplicative group of the field

C and for a variety S the ring MS is obtained from the Grothendieck
group K0(V arS) of varieties over S by inverting the class L of A1

k ×S ∈
K0(V arS). More precisely, denote L(X) (resp. Ln(X)) the arc space of
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X (resp. arc space mod n) whose points are the maps SpecC[[t]] → X
(resp. SpecC[[t]]/(tn+1) → X). Let

Xn1,...,nr = {φ ∈ Ln(X), n =
∑

nj | ordtφ
∗(fj) = nj j = 1, ..., r}

and ac(f) = (ac(f1), ..., ac(fr)) : Xn1,..,mr → Gr
m assigns to an arc in

Xn1,..,nr the vector which j-th component is the coefficient of tnj in
φ∗(fj). Together with π0 : Xn1,..,nr → X which assigns to an arc the
image in X of its closed point SpecC → SpecC[[t]], this makes Xn1,..,nr

into Gr
m × X0-manifold. Then

(7)
Zf1,...,fr(T1, .., Tr) =

∑

n1,..,nr,ni∈N

[Xn1,...,nr/X0×Gr
m]L(d

P

ni)T n1
1 · · ·T nr

r

One has the canonical maps (resp. Betti and Hodge realizations): etop :
K0(V arC) → Z and eh : K0(V arC) → Z[u, v] induced by the maps
assigning to a variety V its topological euler characteristic and the E-
function

∑
i(−1)i dimGrp

F GrW
p+qH

i(V )upvq (both F and W filtration
are coming from Deligne’s Mixed Hodge structure on V ). We also will
use the equivariant refinement of etop and eh defined for V ∈ V arC sup-
porting an action of a finite group G via biholomorphic transformations.
For χ ∈ CharG, those refinements pick the corresponding eigenspaces:
(8)
etop,χ(V ) =

∑
(−1)i dim Hi(V )χ and em

h,χ(V ) =
∑

i

(−1)iGrm
F Hi(V )χ

The function (7) can be expressed in terms of a resolution of singular-
ities of f1, , , , fr as follows (cf. [12]). Let Y → X be a resolution of
singularities of D, i.e. the union of the exceptional set

⋃
i∈J Ei and

the proper preimage of an INNC D is a normal crossings divisor. For
I ⊂ J , let E◦

I = ∩i∈IEi − ∪j∈J−IEj , ai,k (resp. ck) is the order along
the exceptional component of the pull-back on Y of function fi (resp.
the order of the pull back of the differential dx1 ∧ ... ∧ dxn+1). Let Ui

be the complement to the zero section of the normal bundle to Ei in Y ,
and UI is the fiber product of Ui|E◦

I
over EI . Then:

(9)

Zf1,..fr (T1, .., Tr) =
∑

I⊂J

[UJ/Gr
m × X0]Πi∈I

L−ci−1T
ai,1
1 · · · T ai,r

r

1 − L−ci−1T
ai,1
1 · · · T ai,r

r

We have the following:

Theorem 8.1. Betti realization of Zf1,...,fr(T1, ..., Tr) determines
the essential components of the characteristic variety V1. More precisely,
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for an essential χ:

(10) V1 = {χ | etop,χ lim
Ti→∞

Zf1,...,fr(T1, ..., Tr) �= 0}

Proof. One can deduce this from C. Sabbah’s results in [33] similarly
to [19] since, due to the vanishing theorem 4.1, the multi-variable zeta
function studied in [33] determines the support of the π1(Bε−D) module
πn(Bε − D).

In the cyclic case, the Hodge realization of the motivic zeta function
is equivalent to the spectrum (cf. [12]). At least in the case of curves,
one has the Hodge version in the abelian case as well (as was suggested
in [29]):

Theorem 8.2. For n = 1, the Hodge realization of (7) determines
the polytopes of quasiadjunction.

Proof. Let Xm1,...,mr be the link of an abelian cover Vm1.,,.,mr

given by the equations (5) with n = 1. A resolution of this com-
plete intersection singularity in the category of spaces with quotient
singularities (in the case of surfaces with ADE singularities) can be
obtained as the normalization ˜Vm1,..,mr of Vm1,..,m+r ×Bε YD, where
YD → Bε is an embedded resolution of the singularities of D. The ex-
ceptional locus Ẽ of the resolution of (5) supports the action of the group
G = Zm1 × ...×Zmr . We have the following sequence of MHS (cf. [36]):
0 → H1

E( ˜Vm1,..,mr) → H1(E) → H1(Xm1,...,mr) → 0, which in the case
n = 1 yields the equivariant isomorphism H1(Xm1,...,mr) = H1(Ẽ) of
MHSs. Since the MHS on H2(Ẽ) is pure, we have:

(11) dim F 1H1(Xm1,..,mr)χ = dimGr1
F H1(L)χ = e1

h,χ(Ẽ)

The latter is determined by the Hodge realization of (9), since the pull-
back of [Ui] via the map MGr

m×X0 → MGr
m×X0 corresponding to the

map Gr
m × X0 → Gr

m × X0 given by zi = umi

i is equivalent to the un-
branched cover of ∂Bε − D, which is preimage of Gr

m ⊂ Cr for the
projection of (5) onto the space of z-coordinates. In particular, it de-
termines the class of the exceptional set Ẽi in MC. It follows from (11)
that dimF 1H1(Xm1,..,mr)χ ≥ 1 iff e1

h,χ(Ẽ) ≥ 1. QED.
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Massey products of complex hypersurface

complements

Daniel Matei 1

Abstract.

It was shown by Kohno that all higher Massey products in the ra-
tional cohomology of a complex hypersurface complement vanish. We
show that in general there exist non-vanishing triple Massey products
in the cohomology with finite field coefficients.

§1. Introduction

The study of the topology of hypersurface complements is a classical
subject in algebraic geometry. Most of what is known about these spaces
is related to invariants of their rational homotopy type. In this paper, we
attempt to show that their Fp-homotopy type captures in general more
information than the Q-homotopy type, where Fp is the prime field of p
elements.

Let X be the complement to a hypersurface S in CP d. Then we
have the following results due to Kohno [12, 13]: Massey products in
H∗(X, Q) of length ≥ 3 vanish. Moreover, the Malcev Lie algebra of
π1(X) and the completed holonomy Lie algebra of H≤2(X, Q) are iso-
morphic. Thus, the Q-completion of π1(X) is completely determined by
the Q-cohomology algebra of X . In the case when S is a hyperplane ar-
rangement X is Q-formal by Morgan [17], that is the entire Q-homotopy
type of X is determined by the algebra H∗(X, Q). In this context, it
seems natural to pose the following questions: Are there non-vanishing
Massey products in H∗(X, Fp) for all primes p? Is X a Fp-formal space,
particularly when X is a hyperplane arrangement complement?

Massey products are known to be obstructions to formality, see [5, 7].
So, if the answer to the first question was yes, then the space X would

Received April 2, 2004.
Revised November 12, 2004.
1 The research was carried out while the author was visiting the University

of Tokyo in 2003.
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not be Fp-formal. For compact Kähler manifolds the above questions
were answered by Ekedhal in [6] by constructing such manifolds M with
non-vanishing triple products in H∗(M, Fp). Thus, a compact Kähler
manifold although is Q-formal by [5], in general it may not be Fp-formal.
The case of non-compact complex algebraic varieties is already different
over Q from the compact case. As pointed out by Morgan in [17] such
varieties may not be Q-formal.

The main result of this paper settles in affirmative the existence of
non-vanishing Massey products in the Fp-cohomology of a hyperplane
arrangement complement for all odd primes p, thus showing that ar-
rangement complements are not Fp-formal in general.

Theorem 1.1. For every odd prime p, the complement X to the
complex reflection arrangement A in C3 associated with the unitary re-
flection group G(p, 1, 3) has, modulo indeterminacy, non-vanishing Massey
products in H2(X, Fp).

The cohomology operations that came to be known as Massey prod-
ucts were introduced by W. S. Massey in [14]. Since then, they became
important tools in algebraic topology, being especially used as means of
distinguishing spaces with the same cohomology but different homotopy
type. In general they are rather complicated objects, since they are in
fact sets of cohomology classes. But, in certain cases, they turn out to
be cosets as shown by May in [16], the simplest instance being that of
the Massey products of three cohomology classes. In this paper we will
only consider triple Massey products of cohomology classes of degree 1
in the cohomology algebra in degrees at most 2. In fact all the com-
putations will take place in the group cohomology of the fundamental
group π1(X) of our hypersurface complement. By the Lefschetz-Zariski
classical theorem a generic 2-dimensional section of X captures all that
topological information.

The hypersurfaces S that we will be our main focus are the hyper-
plane arrangements. Firstly because their complements are Q-formal
as discussed above. Secondly because the integral cohomology of their
complements is known to be torsion-free, see [19]. In general, for a hy-
persurface S consisting of non-linear irreducible components, H∗(X, Z)
will have torsion, and thus, at least conceptually, the chances of get-
ting non-vanishing Massey products in H∗(X, Fp) are already greater.
However, it is possible for a non-linear hypersurface to have torsion-free
H∗(X, Z) as long as sufficiently many components of it are hyperplanes.
We will briefly consider an example of such a non-linear hypersurface
that nevertheless has triple non-vanishing Massey products.
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The arrangement A of Theorem 1.1 is the full monomial arrange-
ment A(r, 1, 3) in C3, with r = p ≥ 3. These arrangements are members
of a series of complex reflection arrangements, A(r, 1, d), associated to
the full monomial reflection group G(r, 1, d), see [1, 4, 19]. For r ≥ 1
and d ≥ 2 let A(r, 1, d) be defined by the polynomial

Q = z1 · · · zd ·
∏

1≤i<j≤d

(zr
i − zr

j ).

Note that the arrangements A(1, 1, d) and A(2, 1, d) are the Coxeter
arrangements of type A and respectively B.

For A a complex hyperplane arrangement in Cd, with complement
X and group G = π1(X), it is known that the rings H∗≤2(X, K) and
H∗≤2(G, K) are isomorphic for K a field or Z, see for example [15].
Moreover, the complement to A(r, 1, d) is a K(π, 1) with π the pure
braid group P (r, 1, d) associated to G(r, 1, d), see Orlik and Solomon [18].
Taking advantage of this, we use the cochains of G rather than those of
X to compute Massey products. We will use a presentation of P (r, 1, d)
obtained by Cohen [2].

A key rôle in the computations is played by the so-called resonance
varieties of the arrangement, see [8, 15]. The resonance variety R(A, K)
over a field K of an arrangement A is the subvariety of H1(X, K) encod-
ing the vanishing cup products:

R(A, K) =
{
λ ∈ H1(X, K) | ∃μ �∈ Kλ such that λ ∪ μ = 0} .

The knowledge of the classes in H1(X, K) that cup zero is especially
needed for calculating a triple Massey product 〈α, β, γ〉 as that is well-
defined only when α ∪ β = β ∪ γ = 0. In [8], Falk gives a combinatorial
recipe to detect posible essential components of R(A, K). For A =
A(r, 1, 3), the classes used to define the non-vanishing Massey products
belong to such components arising when K = Fp, for the special primes
p dividing r. It can be shown that A(r, 1, 3) presents non-vanishing Fp-
Massey products for all primes p and all multiples r of p (multiples of 4
if p = 2). Here only the case r = p is treated.

The paper is organized as follows. In Section 2 we define the triple
Massey products of a 2-complex associated to a finitely presented group,
and explain how they can be computed from the presentation. In Sec-
tion 3 we introduce the monomial arrangements and give presentations
by generators and relators of the fundamental groups of their comple-
ments. In Section 4 we exhibit non-vanishing triple Massey products
in the Fp-cohomology of the complements to 3-dimensional monomial



208 D. Matei

arrangements, for p an odd prime. We also present a non-linear ar-
rangement of curves in CP 2 whose complement has non-vanishing triple
Massey products over F2. In the last section we pose some further ques-
tions that we intend to explore elsewhere.

§2. Massey products of CW -complexes

The results on Massey products that we need may be found in the
works of Porter [20], Turaev [21], and Fenn and Sjerve [9, 10]. In these
papers the Massey products of 1-cohomology classes are computed in
terms of the so-called Magnus coefficients, via the free calculus of Fox.
Unless otherwise specified, all the homology and cohomology groups will
have coefficients in Fp, the integers modulo a prime p.

Definition 2.1. Let X be a space of the homotopy type of a CW -
complex. If α, β, γ in H1(X) are such that α ∪ β = β ∪ γ = 0 then the
triple Massey product 〈α, β, γ〉 is defined as follows: Choose representa-
tive 1-cocycles α′, β′, γ′ and cochains x, y in C1(X) such that dx = α′∪β′

and dy = β′∪γ′. Then z = α′∪y+x∪γ′ is a 2-cocycle. The cohomology
classes z ∈ H2(X) constructed in this way are only determined up to
α ∪ H1(X) + H1(X) ∪ γ, and they form a set denoted by 〈α, β, γ〉.

As pointed out by May [16], the indeterminacy is a vector space, and
so 〈α, β, γ〉 can be thought of as a coset modulo α∪H1(X)+H1(X)∪γ.
The triple Massey product 〈α, β, γ〉 is said to be vanishing if this coset
is trivial.

In this paper X will always be a K(G, 1) for G a finitely presented
group. We will identify from now on the cohomology of X with that of
G.

Let G = 〈x1, . . . , xn | R1, . . . , Rm〉 be a presentation for G = π1(X).
Assume that Rl is a commutator and that the presentation is minimal.
By Hopf’s formula the homology classes of the relators Rl form a basis
in H2(G, Z) = Zm. Morover, the generators xi determine a basis of
H1(G, Z) = Zn. Let ei be the dual basis in H1(G, Z) = Zn.

Let F be the free group on x1, . . . , xn. If w is a word in F then
its Fox derivative ∂j(w) is computed by the following rules: ∂j(1) =
0, ∂j(xi) = δi,j , and ∂j(uv) = ∂j(u)ε(v) + u∂j(v), where ε : ZF → Z is
the augmentation of the group ring ZF .

Let I = (i1, . . . , iq) be a multi-index with ij taking values in 1, . . . , n.
The Magnus I-coefficient of a word w is defined by ε

(0)
I (w) = ε∂I(w),

where ∂I(w) = ∂i1 . . . ∂iq (w). The Fp-valued Magnus coefficients ε
(p)
I (w)

of w are defined simply by taking integers modulo the prime p. Most
of the time we will drop the reference to it and simply write εI(w) for
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ε
(p)
I (w). We will usually refer to εi,j(w) and εi,j,k(w) as a double, and

respectively triple Magnus coefficient.
The following result [9, 10, 20, 21] will be used to compute triple

Massey products. Let α, β, γ be cohomology classes in H1(G) such that
α ∪ β = β ∪ γ = 0. Denote by (·, ·) the Kronecker pairing between
cohomology and homology. Then we have:

Theorem 2.2. The Massey product 〈α, β, γ〉 of α =
∑

αiei, β =∑
βjej, γ =

∑
γkek contains ξ, where:

(ξ, Rl) =
∑

1≤i,j,k≤n

αiβjγk · εi,j,k(Rl).

From now on by 〈α, β, γ〉 we will understand the coset of the class ξ
modulo the indeterminacy α∪H1(G)+H1(G)∪γ. The Massey product
〈α, β, γ〉 = ξ is functorial with respect to maps of spaces, as shown by
Fenn and Sjerve in [9, 10].

The following formulae can readily deduced from the definitions and
they will be used to compute the Magnus coefficients of a commutator
word.

(2.1) εk,l([u, v]) = εk(u)εl(v) − εk(v)εl(u), where [u, v] = uvu−1v−1.

εk,l,m([u, v]) =εk(u)εl,m(v) − εm(u)εk,l(v) + εk,l(u)εm(v) − εk(v)εl,m(u)+
(2.2)

(εk(v)εl(u) − εk(u)εl(v)) · (εm(u) + εm(v)) .

We will also need formulae for products of conjugated generators:

(2.3) εk(xw1
i1

· · ·xwj

ij
) =

j∑
a=1

εk(xia) =
j∑

a=1

δk,ia .

(2.4)

εk,l(xw1
i1

· · ·xwj

ij
) =

j∑
a=1

(εk(wa)δl,ia − εl(wa)δk,ia) +
∑

1≤a<b≤j

δk,iaδl,ib
,

where xa = axa−1 and δi,j is Kronecker’s delta.
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§3. Monomial arrangements and their groups

We introduce in this section our main examples of hypersurfaces
whose complements have non-vanishing Massey products in the Fp-
cohomology. They are the complex reflection arrangements A(r, 1, d)
associated with the monomial reflection group G(r, 1, d). Their comple-
ments are K(π, 1) spaces and for all practical purposes we will identify
their cohomology with that of their fundamental groups. We will de-
scribe here the group presentations that will be used in the Massey
products computation.

3.1. Arrangements groups

We start with a brief overview of the fundamental group of hy-
perplane complements. Let A be a hyperplane arrangement in the
affine space Cd and X its complement. Let us recall now the most
salient features of the fundamental group G = π1(X) as a finitely pre-
sentable group. For all the details see [19]. First G is generated by
the meridians γH around each hyperplane H ∈ A. Each codim 2 inter-
section Hi1 ∩ · · · ∩ Hin of hyperplanes in A determines n − 1 relations:
g1g2 · · · gn = g2 · · · gn · g1 = · · · = gn · g1 · · · gn−1, where gj is some con-
jugate of the generator xj = gHj . We denote by [g1, . . . , gn] the family
of commutator relators [g1 . . . gi, gi+1 . . . gn], with 1 ≤ i < n.

Thus we are lead to compute the Magnus coefficients of relators in
families of the form:

[
xw1

i1
, . . . , xwn

in

]
. Note that the indices ij are all

distinct. Denote by Rj
I,w the commutator

[
xw1

i1
. . . x

wj

ij
, x

wj+1
ij+1

. . . , xwn

in

]
.

The Magnus coefficients of order 2 of Rj
I,w are given by:

(3.1) εk,l

(
Rj

I,w

)
=

j∑
a=1

n∑
b=j+1

(δk,iaδl,ib
− δk,iaδk,ib

).

It is easily seen that:

εk,l

(
Rj

I,w

)
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if k = ia and l = ib,
for some 1 ≤ a ≤ j and j + 1 ≤ b ≤ n

−1 if k = ib and l = ia,
for some 1 ≤ a ≤ j and j + 1 ≤ b ≤ n

0 otherwise.

The Magnus coefficients of order 3 of Rj
I,w are given by:
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(3.2)

εk,l,m

(
Rj

I,w

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εm(wb) if k = ia,
l = ib, m �∈ I

−εm(wa) if k = ib,
l = ia, m �∈ I

εl(wb) + εk(wa′) − εl(wa) + δa≤a′ if k = ia,
l = ia′ , m = ib

εl(wa) + εk(wb′) − εl(wb) + δb≤b′ if k = ib,
l = ib′ , m = ia

εk(wb) − εm(wb) − 1 if k = ia,
l = ib, m = ia′

εl(wb′ ) − εl(wa) − εm(wb) + δb≤b′ − 1 if k = ia,
l = ib, m = ib′

εk(wa) − εm(wa) + 1 if k = ib,
l = ia, m = ib′

εl(wa′ ) − εl(wb) − εm(wa) + δa≤a′ + 1 if k = ib,
l = ia, m = ia′

0 otherwise.

where always 1 ≤ a, a′ ≤ j and j + 1 ≤ b, b′ ≤ n.

3.2. Monomial arrangements

We introduce now our main class of examples. For r ≥ 1 and d ≥ 2
let A(r, 1, d) be the arrangement defined by:

Q = z1 · · · zd ·
∏

1≤i<j≤d

(zr
i − zr

j ).

The complement of A(r, 1, d) is a K(π, 1) with π the pure braid
group P (r, 1, d) associated to the full monomial complex reflection group
G(r, 1, d), see [1, 18]. The group P (r, 1, d) admits an iterated semidirect
product structure: P (r, 1, d) = Fnl

� · · · � Fn1 , where ni = (i − 1)r + 1
for 1 ≤ i ≤ r, as shown in [1].

A presentation for P (r, 1, d) was obtained by Cohen in [2]. Following
that paper, let us first describe the codim 2 intersections among the
hyperplanes of A(r, 1, d):
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Hi ∩ H
(1)
i,j ∩ · · · ∩ H

(r−1)
i,j ∩ Hj ∩ H

(r)
i,j(3.3)

Hk ∩ H
(q)
i,j , if k �= i or k > j(3.4)

H
(q)
i,j ∩ H

(s)
k,l , if i, j, k, l distinct,(3.5)

H
(q)
i,j ∩ H

(s)
j,k ∩ H

(t)
i,k , if t = q + s (mod r),(3.6)

where Hi = {zi = 0}, 1 ≤ i ≤ 3, and H
(q)
i,j = {zi = ζqzj}, where

ζ = exp(2πi/r), 1 ≤ i < j ≤ 3 and 1 ≤ q ≤ r.
We focus now on the case d = 3. In [2] a presentation of P (r, 1, 3)

is given having 3r + 3 generators, say x1, . . . , x3r+3, and 2r2 + 6r + 3
relators. We group these relators in nine families corresponding to the
types of the codimension 2 intersections.

A =
[
x3r+1, x1, . . . , xr−1, x3r+2, xr

]
,

(3.7)

B =
[
x3r+1, x2r+1, . . . , x3r−1, x3r+3, x3r

]
,

(3.8)

C =
[
x3r+2, x

xrx3r+1x1x2···xr−1x−1
3r+1

r+1 , . . . , x
xrx3r+1x1x−1

3r+1
2r−1 , x3r+3, x2r

]
,

(3.9)

D1,s =
[
x3r+1, xr+i

]
, 1 ≤ s ≤ r,

(3.10)

D2,s =
[
x3r+3, xi

]
, 1 ≤ s ≤ r,

(3.11)

D3,s =
[
x

xixi+1···xr−1
3r+2 , xx2r

2r+i

]
, 1 ≤ s ≤ r,

(3.12)

Ts =
[
xs, x2r+s, x2r

]
, 1 ≤ s ≤ r,

(3.13)

Ut,s =
[
xs, x2r−t, x

x2r−t+1···x2r−1
2r+s−t

]
, 1 ≤ t < s ≤ r,

(3.14)

Vs,t =
[
xx3r+1

s , x2r−t, x
x2r−t+1···x2r−1
3r+s−t

]
, 1 ≤ s ≤ t < r.

(3.15)

Now, recall that the notation R = [xw1
i1

, . . . , xwn

in
] stands for the fol-

lowing set of commutators: {Rj = [xw1
i1

. . . x
wj

ij
, x

wj+1
ij+1

. . . , xwn

in
] | 1 ≤ j <
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n}. Thus, in agreement with the notations of (3.7)-(3.15), the relators
in P (r, 1, 3) will be denoted by: Aj , Bj , Cj , where j = 1, . . . , r + 1, and
D1,s, D2,s, D3,s, where j = 1 and is omitted, and finally T j

s , U j
t,s, V

j
s,t,

where j = 1, 2.

§4. Non-vanishing triple Massey products

In this section we will present non-vanishing triple Massey products
in the Fp cohomology of certain hypersurface complements. All such
products will be of the form 〈α, α, β〉 with α and β linearly independent.
The main example will consist of the monomial arrangements introduced
in the previous section. We will also give an example of a non-linear
arrangement of curves with the desired non-vanishing property.

4.1. Resonance varieties
We first determine the vanishing cup products in H2(X, Fp), for

X the complement of a monomial arrangement A, using an invariant
of a cohomology ring introduced by Falk in [8]. The resonance variety
R(A, Fp) of an arrangement A is the subvariety of H1(X, Fp) defined
by:

R(A, Fp) =
{
λ ∈ H1(X, K) | ∃μ �∈ Kλ such that λ ∪ μ = 0} .

In [8] it is shown how one can construct components of R(A, Fp)
from the so-called neighborly partitions of the arrangement A. The
neighborly partitions of the monomial arrangements A = A(r, 1, 3) have
been determined in [4]. The most interesting for us is the partition
Π = (H3, H

(i)
12 | H2, H

(j)
13 | H1, H

(k)
23 ) giving rise to a component CΠ of

R(A, Fp) having the following equations:

λ1 + · · · + λr = λr+1 + · · · + λ2r−1 = λ2r+1 + · · · + λ3r−1 = 0
λi + λ2r + λ2r+i = 0, 1 ≤ i ≤ r,

λi + λ2r−j + λ2r+i−j = 0, 1 ≤ j < i ≤ r,(4.1)
λi + λ2r−j + λ3r+i−j = 0, 1 ≤ i ≤ j < r,

λ3r+1 = λ3r+2 = λ3r+3 = 0

It is easily seen that dimCΠ = 3 if p divides r (or 4 divides r, if
p = 2), and dimCΠ = 2, otherwise.

4.2. Massey products of monomial arrangements
We prove here the main result, showing that, in general, Massey

products in the positive characteristic cohomology of a hypersurface
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complement may not vanish modulo indeterminacy, although over the
rationals they always do so.

Theorem 4.1. For every odd prime p the complement X of the
arrangement A(p, 1, 3) in C3 of degree 3p + 3 has non-vanishing triple
Massey products in H2(X, Fp).

Proof. We will show that a certain triple product 〈α, α, β〉 does not
vanish modulo its indeterminacy. The cohomology classes α and β are
given in coordinates by

a : αi = 1, αr+i = −1, α2r+i = α3r+1 = α3r+2 = α3r+3 = 0,

and respectively by

β : βi = 0, βr+i = 1, β2r+i = −1, β3r+1 = β3r+2 = β3r+3 = 0,

where 1 ≤ i ≤ r. Clearly the points α and β satisfy the equations (4.1),
so they belong to CΠ, and moreover α ∪ β = 0. Using (3.2) we can
express 〈α, α, β〉 in the basis of H2(X, Fp) given by the duals of the
relators (3.7)-(3.15), abusing the notation for the sake of simplicity.

〈α, α, β〉 =
p∑

j=1

(j − 1)Cj + (p − 1)Cp+1 −
p∑

s=1

T 2
s +

∑
1≤t<s≤p

t U1
t,s+

(4.2)

∑
1≤t<s≤p

U2
t,s +

∑
1≤s≤t<p

t V 1
s,t +

∑
1≤s≤t<p

V 2
s,t.

Next, using (3.1), we obtain the indeterminacy α∪H1(X)+H1(X)∪
β. If a =

∑
aiei and b =

∑
biei are arbitrary classes in H1(X) then we
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find the following expression for α ∪ a + b ∪ β:

 

p
X

s=1

as + a3p+1 + a3p+2

! 

p
X

j=1

(j − 1)Aj + (p − 1)Ap+1

!

+

 

p
X

s=1

b2p+s + b3p+1 + b3p+3

! 

p
X

j=1

(j − 1)Bj + (p − 1)Bp+1

!

−

 

p
X

s=1

(ap+s + bp+s) + a3p+2 + a3p+3 + b3p+2 + b3p+3

!

 

p
X

j=1

(j − 1)Cj + (p − 1)Cp+1

!

+ (a3p+1 + b3p+1)

p
X

s=1

D1,s−

a3p+3

p
X

s=1

D2,s − b3p+2

p
X

s=1

D3,s +

p
X

s=1

(as + a2p+s + a2p)
`

T 1
s + T 2

s

´

+

(4.3)

p
X

s=1

(bs + b2p+s + b2p)T 2
s +

X

1≤t<s≤p

(as + a2p−t + a2p+s−t)U1
t,s−

X

1≤t<s≤p

(bs + b2p−t + b2p+s−t) U2
t,s +

X

1≤s≤t<p

(as + a2p−t + a3p+s−t) V 1
s,t−

X

1≤s≤t<p

(bs + b2p−t + b3p+s−t) V 2
s,t.

We want to show that the triple Massey product 〈α, α, β〉 does not
vanish modulo indeterminacy. Suppose that it does vanish, and so there
exist a and b in H1(X) such that 〈α, α, β〉 is of the form α ∪ a + b ∪ β.
This leads to the following set of equations over Fp:

p∑
s=1

as + a3p+1 + a3p+2 =
p∑

s=1

b2p+s + b3p+1 + b3p+3 = 0,(4.4)

p∑
s=1

(ap+s + bp+s) + a3p+2 + a3p+3 + b3p+2 + b3p+3 = −1,(4.5)

a3p+1 + b3p+1 = a3p+3 = b3p+2 = 0,(4.6)

as + a2p+s + a2p = 0, bs + b2p+s + b2p = −1,(4.7)

as + a2p−t + a2p+s−t = t, bs + b2p−t + b2p+s−t = −1,(4.8)

as + a2p−t + a3p+s−t = t, bs + b2p−t + b3p+s−t = −1,(4.9)

where the ranges of the indices in (4.7), (4.8), and (4.9) are those in (4.3).
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Now from (4.7), (4.8), and (4.9) we can readily see that we must
have:

p∑
s=1

as =
p∑

s=1

ap+s =
p∑

s=1

a2p+s = 0 and
p∑

s=1

bs =
p∑

s=1

bp+s =
p∑

s=1

b2p+s = 0.

From these equations combined with (4.4), (4.5) and (4.6) we obtain:

a3p+1+a3p+2 = b3p+1+b3p+3 = a3p+1+b3p+1 = 0, a3p+2+b3p+3 = −1.

But this system of equations clearly has no solution.
Q.E.D.

Remark 4.2. We will show elsewhere that in fact any triple Massey
product in H2(P, Fp) of the form 〈α, α, β〉 with α and β (not propor-
tional) in CΠ ⊂ R(P, Fp) ⊂ H1(P, Fp) does not vanish modulo the
indeterminacy α∪H1(P, Fp) + H1(P, Fp)∪ β, if p | r (or 4 | r, if p = 2),
where P = P (r, 1, 3). Thus it will follow that for every prime p and
multiple N ≥ 3 of p (of 4 if p = 2) there exists a line arrangement A
in C2 of degree 3N + 3 whose complement X has non-vanishing triple
Massey products in H2(X, Fp).

4.3. Curves with non-linear components

Let C = Q2∪T1∪T2∪T3 be the curve in CP 2 of degree 5, consisting
of a smooth irreducible curve Q2 of degree 2 and three lines T1, T2, T3

tangent to Q2. As explained by Kaneko, Tokunaga and Yoshida in [11],
this curve is related with the discriminant of a certain crystallographic
group, thus is of the same nature as the above reflection arrangements.
In [11] a presentation for the fundamental group of the complement to
C in CP 2 is determined:

π1(CP 2 \ C) = 〈x1, x2, x3 | [x3xix3, xi], i = 1, 2, [x3x1x
−1
3 , x2]〉.

An easy computation with double Magnus coefficients shows that all
F2 cup products ei∪ej vanish except for e1∪e2. Moreover, by computing
triple Magnus coefficients we can see that the Massey products 〈α, α, β〉
over F2 do not vanish, if α �∈ F2 · (e1 + e2 + e3).

Remark 4.3. It is possible to generalize this example to a curve
C = Qd ∪T1 ∪ · · · ∪Tn of degree d + n, where Qd is a smooth irreducible
curve of degree d ≥ 2 and T1 . . . Tn are n ≥ d+1 tangent lines to Q. Then
the complement X of C will have non-vanishing triple Massey products
of the form 〈α, α, β〉 in H2(X, Fp), for every prime p dividing d.
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§5. Further questions

We end the paper by raising a few questions:
(1) Note that the above arrangements exhibiting non-vanishing

Massey products do not admit linear equations over the re-
als! Is it true that real complexified arrangements never have
non-vanishing Massey products? Computational evidence sug-
gest that in this case Massey products in H2(X, Fp) indeed all
vanish.

(2) All non-orientable matroids realizable over some Q(α) lead to
complex arrangements with non-vanishing Massey products?

(3) Is there an analogue of Kohno’s result over Fp? Is it true that
non-vanishing of higher Massey products over Fp implies that
the Fp-completion of π1(X) is not isomporhic to the completed
holonomy algebra of H≤2(X, Fp)?

(4) Do non-linear curves (with enough cohomology) always present
non-vanishing Massey products?

(5) Are there any good criteria for Fp-formality of X? In this
context, what is the rôle played by the lower p-central series of
π1(X)?
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On degree of mobility for complete metrics

Vladimir S. Matveev

Abstract.

The degree of mobility of a Riemannian metric g is the dimension
of the space of Riemannian metrics sharing the same geodesics with
g. We prove that the degree of mobility of an irreducible Riemann-
ian metric on a closed manifold is at most two, unless the sectional
curvature is positive constant.

§1. Introduction

1.1. Main question
Let (Mn, g) be a Riemannian manifold.

Definition 1. A BM-structure on (Mn, g) is a smooth self-adjoint
(1, 1)-tensor L such that, for every point x ∈ Mn, for every vectors
u, v, w ∈ TxMn, the following equation holds:

g((∇uL)v, w) =
1
2
g(v, u) · dtraceL(w) +

1
2
g(w, u) · dtraceL(v),

where traceL is the trace of L.

Definition 2. Let g, ḡ be Riemannian metrics on Mn. They
are projectively equivalent, if they have the same (unparameterized)
geodesics.

The relation between BM-structures and projectively equivalent met-
rics is given by

Theorem 1 ([9]). Let g be a Riemannian metric. Suppose L is a
self-adjoint positive-definite (1, 1)-tensor. Consider the metric ḡ defined
by

(1) ḡ(ξ, η) =
1

det(L)
g(L−1ξ, η)

Received March 28, 2004.
Revised March 11, 2005.
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(for every tangent vectors ξ and η with the common foot point.)
Then, the metrics g and ḡ are projectively equivalent, if and only if

L is a BM-structure on (Mn, g).

The set of all BM-structures on (Mn, g) will be denoted by B(Mn, g).
It is a linear vector space. The dimension of B(Mn, g) is called the
degree of mobility of the metric. It is at least one, since B(Mn, g)
contains the identity tensor Id def= diag(1, 1, 1, ..., 1).

Main question: How big can be the dimension of the space B(Mn, g)?

In other words, how big is the space of the metrics projectively
equivalent to the given one?

1.2. History of the question

The history of the theory of projectively equivalent metrics goes back
to works of Beltrami [2], Dini [16], Levi-Civita [29] and Weyl [61, 62].
The question how big is the space of the metrics projectively equivalent
to the given one was considered by Lie [31] and Fubini [18, 19].

It is known that, locally, the degree of mobility of a metric is less
than (n+1)(n+2)

2 + 1, and is equal to (n+1)(n+2)
2 for spaces of constant

curvature only, see [65, 53, 28]. The most power tools in the local
study of the degree of mobility are the theory of concircular vector fields
developed in Yano [65], and the theory of V (K) spaces developed in
Solodovnikov [54, 55, 56, 57]. Combining these two theories, Shandra
[52] obtained that, locally, if the dimension n of the manifold is greater
than two, the degree of mobility of a metric of nonconstant curvature
can take the values

m(m + 1)
2

+ l

only, where 1 ≤ m ≤ n and 1 ≤ l ≤
[

n+1−m
3

]
. For every such “ad-

missible” value Dmobility there exists a metric on the disk such that the
degree of mobility is precisely Dmobility . For dimension two, it follows
from [28, 33] that the degree of mobility can take the values 1, 2, 3, 4, 6.

A more detailed historical overview of the local side of the question
can be found in the surveys [1, 50].

The goal of this paper is to study the degree of mobility globally,
i.e. when the manifold is closed or complete. Most results on the degree
of mobility of closed manifolds require additional geometric assumptions
written as a tensor equation. A typical result is that, under certain ten-
sor assumptions, the degree of mobility is precisely 1, see, for example,
[14, 63, 64, 20, 51].
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1.3. Main Result

Theorem 2. Let (Mn, g) be a connected complete Riemannian man-
ifold of dimension greater than one. Suppose dim(B(Mn, g)) ≥ 3.

Then, if a complete Riemannian metric ḡ is projectively equivalent
to g, then g has positive constant sectional curvature, or ḡ is affine
equivalent to g.

Recall that two metrics are said to be affine equivalent, if their
Levi-Civita’s connections coincide.

All assumption in the theorem are important: we can construct
counterexamples, if one of the assumptions is omitted.

It is easy to understand whether a complete metric admits affine
equivalent one which is not proportional to it. In this case, the holonomy
group of the manifold must be reducible [30, 25], which implies that the
universal cover of the manifold with the lifted metric is the Riemannian
product of two Riemannian manifolds. Thus, a direct consequence of
Theorem 2 is the following

Corollary 1. Let (Mn, g) be a closed connected Riemannian man-
ifold with irreducible holonomy group. Suppose dim(B(Mn, g)) ≥ 3.
Then, g has constant positive sectional curvature.

In dimension 2, in view of Theorem 3, Corollary 1 follows from
results of [26, 27, 24].

It is worse to mention that the converse of Corollary 1 is not always
true. Of cause, the space B is huge for the round sphere. But for certain
quotients of the round sphere, the space B can have dimension one. This
phenomena appears already in dimension 3, see [42].

In the present paper we will prove Theorem 2 assuming that the
dimension n of the manifold is greater than 2. If n = 2, in view of The-
orem 3, under the assumption that the manifold is closed, Theorem 2
follows from [27, 24]. Without this assumption, Theorem 2 (for dimen-
sion 2) is nontrivial. It is announced in [44, 45]. Its proof uses methods
from the global theory of Liouville metrics developed in [7, 8, 22], and
can be found in [47, 48].

Our prove of Theorem 2 (for dimension ≥ 3) uses the following
methods:

• The classical one is the local theory of projectively equivalent
metrics. It is due to Beltrami [2], Dini [16], Levi-Civita [29],
Fubini [18], Eisenhart [17], Cartan [13] , Weyl [61, 62] and
Solodovnikov [54]. We will formulate a part of their results in
Theorems 4, 5, 6, 7, 8.
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• The newer one were introduced in [32, 58, 59, 36, 35]: the
main observation is that, for a given Riemannian metric g,
the existence of a projectively equivalent metric allows one to
construct commuting integrals for the geodesic flow of g, see
Theorem 3 in Section 2.1. This technique has been used quite
successfully in finding topological obstruction that prevent a
closed manifold from possessing (nontrivial) BM-structure, see
[34, 39, 40, 37, 42, 43, 46, 49], and for the study of the degree
of mobility for the metric of ellipsoid, see [41].

• And the general idea came from the singularity theory. The
role of singularities play the points where the eigenvalues of the
BM-structure bifurcate. In Section 3.1, we describe behavior
of the metric near the simplest singular points. In Sections 3.2
and 4, we will show that the simplest singular points always
exist. In Section 3.3, we will explain how the structure near
singular points can be extended to the whole manifold.
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Forschung und Kunst Baden-Württemberg (Eliteförderprogramm Post-
docs 2003) for partial financial support.

§2. New and classical instruments of the proof

2.1. Integrals for geodesic flows of metrics admitting BM-
structure.

The relation between BM-structures and integrable geodesic flows
is observed on the level of geodesic equivalence in [32] and is as follows:

Let L be a self-adjoint (1, 1)-tensor on (Mn, g). Consider the family
St, t ∈ R, of (1, 1)-tensors

(2) St
def= det(L − t Id) (L − t Id)−1

.

Remark 1. Although (L − t Id)−1 is not defined for t lying in the
spectrum of L, the tensor St is well-defined for every t. Moreover, St is
a polynomial in t of degree n − 1 with coefficients being (1,1)-tensors.

We will identify the tangent and cotangent bundles of Mn by g. This
identification allows us to transfer the natural Poisson structure from
T ∗Mn to TMn.
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Theorem 3 ([58, 32, 59]). If L is a BM-structure, then, for every
t1, t2 ∈ R, the functions

(3) Iti : TMn → R, Iti(v) def= g(Sti(v), v)

are commuting integrals for the geodesic flow of g.

Remark 2. Integrable systems of slightly less general type were re-
cently studied in [3, 4, 5, 21, 15]).

Since L is self-adjoint, its eigenvalues are real. At every point x ∈
Mn, let us denote by λ1(x) ≤ ... ≤ λn(x) the eigenvalues of L at the
point.

Corollary 2 ([43, 59, 38]). Let (Mn, g) be a connected Riemannian
manifold such that every two points can be connected by a geodesic. Sup-
pose L is a BM-structure on (Mn, g). Then, for every i ∈ {1, ..., n− 1},
for every x, y ∈ Mn, the following statements hold:

(1) λi(x) ≤ λi+1(y).
(2) If λi(x) < λi+1(x), then λi(z) < λi+1(z) for almost every point

z ∈ Mn.

At every point x ∈ Mn, denote by NL(x) the number of different
eigenvalues of the BM-structure L at x.

Definition 3. A point x ∈ Mn will be called typical with respect to
the BM-structure L, if

NL(x) = max
y∈Mn

NL(y).

Corollary 3 ([36]). Let L be a BM-structure on a connected Rie-
mannian manifold (Mn, g). Then, almost every point of M is typical
with respect to L.

2.2. Results of Beltrami, Levi-Civita and Solodovnikov
Theorem 4. Let Riemannian metrics g and ḡ on Mn be projectively

equivalent. If g has constant sectional curvature, then ḡ has constant
sectional curvature as well.

For dimension two, Theorem 4 was proven by Beltrami [2]. For
dimension greater than two, a proof can be found in Eisenhart [17].

Corollary 4. Let projectively equivalent metrics g and ḡ on Mn

(of dimension n > 1) be complete. If g has constant negative sectional
curvature, ḡ is proportional to g. If g is flat, ḡ is affine equivalent to g.
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This statements is a folklore, in the sense that we did not find a
classical reference for it, although certain authors use it as a known fact.
We will be grateful if anybody gives us this reference.

Let us explain a proof of Corollary 4 by using newer methods. If
both metrics are flat, Corollary 4 is equivalent to the statement that
every diffeomorphism of R

n that takes straight lines to straight lines is
a composition of linear transformation and translation. Its proof can be
found in almost every advanced textbook on linear algebra and analytic
geometry.

If g has constant negative sectional curvature, it is sufficient to prove
Corollary 4 in dimension two only, since in every two-dimensional direc-
tion there exists a totally geodesic complete submanifold. If ḡ is flat,
the statement is trivial, since in the Euclidean space the parallel postu-
late of Euclid holds, and in the hyperbolic space not. If both metrics
have constant negative curvature, Corollary 4 was proven in [10], see his
lemma on page 59. The geometric idea behind the proof of Bonahon is
the nontrivial observation from metric geometry (see [11, 12, 23] for the
proof of this observation) that, for hyperbolic 2-spaces, the only isom-
etry that preserves the boundary at infinity is the identity. Since the
boundary at infinity can be defined by using unparameterized geodesics,
Corollary 4 becomes to be trivial.

In view of Theorem 1, the next theorem is equivalent to the classical
Levi-Civita’s Theorem from [29].

Theorem 5 (Levi-Civita’s Theorem). The following statements hold:

(1) Let L be a BM-structure on (Mn, g). Let x ∈ Mn be typical.
Then, there exists a coordinate system x̄ = (x̄1, ..., x̄m) (in
a neighborhood U(x) containing x), where x̄i = (x1

i , ..., x
ki

i ),
(1 ≤ i ≤ m), such that L is diagonal

(4) diag(φ1, ..., φ1︸ ︷︷ ︸
k1

, ...., φm, ..., φm︸ ︷︷ ︸
km

),

and the quadratic form of the metric g have the following form:

g( ˙̄x, ˙̄x) = P1(x̄)A1(x̄1, ˙̄x1) + P2(x̄)A2(x̄2, ˙̄x2) + · · · +
+ Pm(x̄)Am(x̄m, ˙̄xm),(5)

where Ai(x̄i, ˙̄xi) are positive-definite quadratic forms in the ve-
locities ˙̄xi with coefficients depending on x̄i,

Pi
def= (φi − φ1) · · · (φi − φi−1)(φi+1 − φi) · · · (φm − φi),
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and 0 < φ1 < φ2 < ... < φm are smooth functions such that

φi =
{

φi(x̄i), if ki = 1
constant, otherwise.

(2) Let g be a Riemannian metric and L be a (1,1)-tensor. If in a
neighborhood U ⊂ Mn there exist coordinates x̄ = (x̄1, ..., x̄m)
such that g and L are given by formulae (4, 5), then the re-
striction of L to U is a BM-structure for the restriction of g
to U .

Corollary 5 ([9],[39]). The Nijenhuis torsion of a BM-structure
vanishes.

Remark 3. In Levi-Civita’s coordinates from Theorem 5, the metric
ḡ given by (1) has the form

ḡ( ˙̄x, ˙̄x) = ρ1P1(x̄)A1(x̄1, ˙̄x1) + ρ2P2(x̄)A2(x̄2, ˙̄x2) + · · ·+
+ ρmPm(x̄)Am(x̄m, ˙̄xm),

where

ρi =
1

φk1
1 ...φkm

m

1
φi

The metrics g and ḡ are affine equivalent if and only if all functions φi

are constant.

Let p be a typical point with respect to the BM-structure L. Fix
i ∈ 1, ..., n and a small neighborhood U of p. At every point of U ,
consider the eigenspace Vi with the eigenvalue φi. If the neighborhood
is small enough, it contains only typical points and Vi is a distribution.
Denote by Mi(p) the integral manifold containing p.

Levi-Civita’s Theorem says that the eigenvalues φj , j �= i, are con-
stant on Mi(p), and that the restriction of g to Mi(p) is proportional
to the restriction of g to Mi(q), if it is possible to connect q and p by
a line orthogonal to Mi. We will need the second observation later and
formulate it as

Corollary 6. Let L be a BM-structure for connected (Mn, g). Sup-
pose the curve γ : [0, 1] → Mn contains only typical points and is or-
thogonal to Mi(p) at every point p ∈ Image(γ). Let the multiplicity
of the eigenvalue φi at every point of the curve be greater than one.
Then, the restriction of the metric to Mi(γ(0)) is proportional to the re-
striction of the metric to Mi(γ(1)). (i.e. there exists a diffeomorphism
of a small neighborhood Ui(γ(0)) ⊂ Mi(γ(0)) to a small neighborhood
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Ui(γ(1)) ⊂ Mi(γ(1)) taking the restriction of the metric g to Mi(γ(0))
to a metrics proportional to the restriction of the metric g to Mi(γ(1))).

Definition 4. Let (Mn, g) be a Riemannian manifold. We say
that the metric g has a warped decomposition near x ∈ Mn, if a
neighborhood Un of x can be split in the direct product of disks Dk0 ×
... × Dkm , k0 + ... + km = n, such that the metric g has the form

(6) g0 + σ1g1 + σ2g2 + ... + σmgm,

where the ith metric gi is a Riemannian metric on the corresponding
disk Dki , and functions σi are functions on the disk Dk0 . The metric

(7) g0 + σ1dy2
1 + σ2dy2

2 + ... + σmdy2
m

on Dk0 × R
m is called the adjusted metric.

We will always assume that k0 is at least 1.
Comparing formulae (5,6), we see that if L has at least one simple

eigenvalue at a typical point, Levi-Civita’s Theorem gives us a warped
decomposition near every typical point of Mn: the metric g0 collects all
PiAi from (5) such that φi has multiplicity one, the metrics g1,...,gm

coincide with Aj for multiple φj , and σj = Pj .

Definition 5 ([54, 55]). Let K be a constant. A metric g is called
a V (K)-metric near x ∈ Mn (n ≥ 3), if there exist coordinates in a
neighborhood of x such that g has the Levi-Civita form (5) such that the
adjusted metric has constant sectional curvature K.

The definition above is independent of the choice of the presentation
of g in Levi-Civita’s form:

Theorem 6 ([54, 55]). Suppose g is a V (K)-metric near x ∈ Mn.
Assume n ≥ 3. The following statements hold:

(1) If there exists another presentation of g (near x) in the form
(5), then the sectional curvature of the adjusted metric con-
structed for this other decomposition is constant and is equal
to K.

(2) Consider the metric (5). For every i = 1, ..., m, denote

(8)
g(grad(Pi), grad(Pi))

4 Pi
+ KPi

by Ki. Then, the metric (6) has constant sectional curvature
if and only if for every i ∈ 0, ..., m such that ki > 1 the metric
Ai has constant sectional curvature Ki. More precisely, if the
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metric (6) is a V (K)-metric, if k1 > 1 and if the metric A1 has
constant curvature K1, then the metric g0 +P1A1 has constant
curvature K.

(3) For a fixed presentation of g in the Levi-Civita form (5), for
every i such that ki > 1, Ki is a constant.

Since the papers [54, 55] are not widely accessible, we will comment
the proof of this theorem. The first statement of Theorem 6 is proven
in §3 of [54]. In the form sufficient for our paper, it appeared already in
[60]; although it is hidden there.

The second statement is in §8 of [54]. One can understand the second
statement with the help of projective Weyl tensor from [62]. We will give
the definition in Section 3.3, see formula (16) there. It is known [62], that
(in dimension ≥ 3) the projective Weyl tensor vanishes if and only if the
metric has constant sectional curvature. Now, it is possible to show by
direct calculations that the projective Weyl tensor vanishes for a metric
of form (5), if and only if the sectional curvatures of all Ai are equal to
the corresponding Ki. In Section 3.3, we will do these calculations for
one component of the projective Weyl tensor; the calculations for the
other components are similar.

The third statement can be found in §8 of [54]. Its proof is similar
to the standard proof of the fact that (for dimensions ≥ 3) if a metric
has constant sectional curvature at every point, then the constant does
not depend on the point.

The relation between V (K)-metrics and BM-structures is given by

Theorem 7 ([54, 56, 57]). Let (Dn, g) be a disc of dimension n ≥ 3
with two BM-structures L1 and L2 such that every point of the disc is
typical with respect to both structures and the BM-structures Id, L1, L2

are linearly independent. Then, g is a V (K)-metric near every point.

Its corollary is

Theorem 8 (Fubini’s Theorem). Let (Dn, g) be a disc of dimension
n ≥ 3 with two BM-structures L1 and L2 such that NL1 = NL2 = n at
every point. If the BM-structures Id, L1, L2 are linearly independent,
then g has constant sectional curvature.

For dimension 2, Fubini’s Theorem is wrong. First counterexamples
can be found in [28]. We will give new counterexamples in [47]. Fubini’s
Theorem was proven by Fubini [18] for dimension 3, and was announced
there and in [19] for arbitrary dimension ≥ 3. One can check that
Fubini’s proof for dimension 3 can be applied to every dimension ≥ 3
without essential changes.
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In Section 3.4, we will explain how Solodovnikov’s Theorem 7 follows
from Fubini’s Theorem 8.

§3. Singularity theory for BM-structures

We will need the following technical lemma. For every fixed v =
(ξ1, ξ2, ..., ξn) ∈ TxMn, the function (3) is a polynomial in t. Consider
the roots of this polynomial. From the proof of Lemma 1, it will be clear
that they are real. We denote them by

t1(x, v) ≤ t2(x, v) ≤ ... ≤ tn−1(x, v).

Lemma 1. Suppose λ is an eigenvalue of L of multiplicity k at
x ∈ Mn. Then, for every v ∈ TxMn, λ is a root of It(v) of multiplicity
at least k − 1.

Proof: By definition, the tensor L is self-adjoint with respect to g.
Then, for every x ∈ Mn, there exist ”diagonal” coordinates in TxMn

where the metric g is given by the diagonal matrix diag(1, 1, ..., 1) and
the tensor L is given by the diagonal matrix diag(λ1, λ2, ..., λn). Then,
the tensor (2) reads:

St = det(L − tId)(L − tId)(−1)

= diag(Π1(t), Π2(t), ..., Πn(t)),

where the polynomials Πi(t) are given by the formula

Πi(t)
def= (λ1 − t)(λ2 − t)...(λi−1 − t)(λi+1 − t)...(λn−1 − t)(λn − t).

Hence, for every v = (ξ1, ..., ξn) ∈ TxMn, the polynomial It(x, v) is given
by

(9) It = ξ2
1Π1(t) + ξ2

2Π2(t) + ... + ξ2
nΠn(t).

We see that, if λ is an eigenvalue of multiplicity k, every Πi contains the
factor (λ − t)k−1. Lemma is proven.

3.1. Behavior of BM-structure near simplest non-typical
points.

Within this section we assume that L is a BM-structure on a con-
nected (Mn, g). As in Section 2.1, we denote by λ1(x) ≤ ... ≤ λn(x) the
eigenvalues of L, and by NL(x) the number of different eigenvalues of L
at x ∈ Mn.
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Theorem 9. Suppose the eigenvalue λ1 is not constant, the eigen-
value λ2 is constant and NL = 2 in a typical point. Let p be a non-typical
point. Then, the following statements hold:

(1) The spheres of small radius with center in p are orthogonal to
the eigenvector of L corresponding to λ1, and tangent to the
eigenspace of L corresponding to λ2. In particular, the points
where λ1 = λ2 are isolated.

(2) The restriction of the metric to the spheres has constant sec-
tional curvature.

Proof: Since λ1 is not constant, it is a simple eigenvalue in every
typical point. Since NL = 2, the roots λ2, λ3, ..., λn coincide at every
point and are constant. We denote this constant by λ. By Lemma 1,
at every point (x, ξ) ∈ TxMn, the number λ is a root of multiplicity at
least n − 2 of the polynomial It(x, ξ). Then,

I ′t(x, ξ) :=
It(x, ξ)

(λ − t)n−2

is a linear function in t and, for every fixed t, is an integral of the geodesic
flow of g. Denote by Ĩ : TM → R the function

Ĩ(x, ξ) := I ′λ(x, ξ) := (I ′t(x, ξ))|t=λ .

Since λ is a constant, the function Ĩ is an integral of the geodesic flow
of g. At every tangent space TxMn, consider the coordinates such that
the metric is given by diag(1, ..., 1) and L is given by diag(λ1, λ, ..., λ).
By direct calculations we see that the restriction of Ĩ to TxMn is given
by (we assume ξ = (ξ1, ξ2, ..., ξn))

Ĩ|TxMn(ξ) = (λ1(x) − λ)(ξ2
2 + ... + ξ2

n).

Thus, for every geodesic γ passing through p, the value of Ĩ(γ(τ), γ̇(τ))
is zero. Then, for every typical point of such geodesic, since λ1 < λ, the
components ξ2, ..., ξn of the velocity vector vanish. Then, the velocity
vector is an eigenvector of L with the eigenvalue λ1.

Then, the points where λ1 = λ are isolated: otherwise we can pick
two such points p1 and p2 lying in a ball with radius less than the radius
of injectivity. Then, for almost every point q of the ball, the geodesics
connecting this point with the points p1 and p2 intersect transversally at
q. Then, the point q is non-typical; otherwise the eigenspace of λ1 con-
tains the velocity vectors of geodesics and is no more one-dimensional.
Finally, almost every point of the ball is not typical, which contradicts
Corollary 3. Thus, the points where λ1 = λ are isolated.
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It is known (Lemma of Gauß), that the geodesics passing through
p intersect the spheres of small radius with center in p orthogonally.
Since the velocity vectors of such geodesics are eigenvectors of L with
eigenvalue λ1, then the eigenvector with eigenvalue λ1 is orthogonal to
the spheres of small radius with center in p. Since L is self-adjoint,
the spheres are tangent to the eigenspaces of λ. The first statement of
Theorem 9 is proven.

The second statement of Theorem 9 is trivial, if n = 2. In order
to prove the second statement for n ≥ 3, we will use Corollary 6. The
role of the curve γ from Corollary 6 plays the geodesic passing through
p. We put i = 2. By the first statement of Theorem 9, Mi(x) are
spheres with center in p. Then, by Corollary 6, for every sufficiently
small spheres Sε1 and Sε2 with center in p, the restriction of g to the
first sphere is proportional to the restriction of g to the second sphere.
Since for very small ε the metric in a ε-ball is very close to the Euclidean
metric, the restriction of g to the ε-sphere is close to the round metric of
the sphere. Thus, the restriction of g to every (sufficiently small) sphere
has constant sectional curvature. Theorem 9 is proven.

Theorem 10. Suppose NL = 3 at a typical point and there exists a
point where NL = 1. Then, there exist points p1, pn such that λ1(p1) <
λ2(p1) = λn(p1) and λ1(pn) = λ2(pn) < λn(pn).

Proof: Suppose λ1(p2) = λ2(p2) = ... = λn(p2) and the number
of different eigenvalues of L at a typical point equals three. Then, by
Corollary 2, the eigenvalues λ2 = ... = λn−1 are constant. We denote
this constant by λ. Take a ball B of small radius with center in p2. We
will prove that this ball has a point p1 such that λ1(p1) < λ2 = λn(p1);
the proof that there exists a point where λ1 = λ2 < λn is similar. Take
p ∈ B such that λ1(p) < λ and λ1(p) is a regular value of the function
λ1. Denote by M̌1(p) the connected component of {q ∈ Mn : λ1(q) =
λ1(p)} containing the point p. Since λ1(p) is a regular value, M̌1(p) is
a submanifold of codimension 1. Then, there exists a point p1 ∈ M̌1(p)
such that the distance from this point to p2 is minimal over all points
of M̌1(p).

Let us show that λ1(p1) < λ = λn(p1). The inequality λ1(p1) < λ is
fulfilled by definition, since p1 ∈ M̌1(p). Let us prove that λn(pn) = λ.

Consider the shortest geodesic γ connecting p2 and p1. We will
assume γ(0) = p1 and γ(1) = p2. Consider the values of the roots
t1 ≤ ... ≤ tn−1 of the polynomial It at points of the geodesic orbit
(γ, γ̇). Since It are integrals, the roots ti are independent of the point of
the orbit. Since the geodesic pass through the point where λ1 = ... = λn,
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by Lemma 1, we have

(10) t1 = ... = tn−1 = λ.

Since the distance from p1 to p2 is minimal over all points of M̌1, the
velocity vector γ̇(0) is orthogonal to M̌1. In view of Corollary 5, the sum
of eigenspaces of L corresponding to λ and λn is tangent to M̌1. Hence,
the vector γ̇(0) is an eigenvector of L with eigenvalue λ1.

At the tangent space Tp1M
n, choose a coordinate system such that

L is diagonal diag(λ1, ..., λn) and g is Euclidean diag(1, ..., 1). In this
coordinate system, It(ξ) is given by (we assume ξ = (ξ1, ..., ξn))

(λ − t)n−3
(
(λn − t)(λ − t)ξ2

1 + (λn − t)(λ1 − t)(ξ2
2 + ... + ξ2

n−1)
+(λ1 − t)(λ − t)ξ2

n

)
.

Since γ̇(0) is an eigenvector of L with eigenvalue λ1, the last n − 1
components of γ̇(0) vanish, so that tn−1 = λn. Comparing this with
(10), we see that λn(p1) = λ. Theorem 10 is proven.

3.2. Splitting Lemma
Definition 6. A local-product structure on Mn is the triple (h, Br,

Bn−r), where h is a Riemannian metrics and Br, Bn−r are transversal
foliations of dimensions r and n − r, respectively (it is assumed that
1 ≤ r < n), such that every point p ∈ Mn has a neighborhood U(p) with
coordinates

(x̄, ȳ) =
(
(x1, x2, ...xr), (yr+1, yr+2, ..., yn)

)
such that the x-coordinates are constant on every leaf of the foliation
Bn−r∩U(p), the y-coordinates are constant on every leaf of the foliation
Br ∩ U(p), and the metric h is block-diagonal such that the first (r × r)
block depends on the x-coordinates and the last ((n− r)× (n− r)) block
depends on the y-coordinates.

A model example of manifolds with local-product structure is the
direct product of two Riemannian manifolds (M r

1 , g1) and (Mn−r
2 , g2).

In this case, the leaves of the foliation Br are the products of M r
1 and

the points of Mn−r
2 , the leaves of the foliation Bn−r are the products

of the points of M r
1 and Mn−r

2 , and the metric h is the product metric
g1 + g2.

Below we assume that
(a) L is a BM-structure for a connected (Mn, g).
(b) There exists r, 1 ≤ r < n, such that λr < λr+1 at every point

of Mn.
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We will show that (under the assumptions (a,b)) we can naturally
define a local-product structure (h, Br, Bn−r) such that (the tangent
spaces to) the leaves of Br and Bn−r are invariant with respect to L,
and such that the restrictions L|Br

, L|Bn−r
are BM-structures for the

metrics h|Br
, h|Bn−r

, respectively.
At every point x ∈ Mn, denote by V r

x the subspaces of TxMn

spanned by the eigenvectors of L corresponding to the eigenvalues λ1, ...,
λr. Similarly, denote by V n−r

x the subspaces of TxMn spanned by the
eigenvectors of L corresponding to the eigenvalues λr+1, ..., λn. By as-
sumption, for every i, j such that i ≤ r < j, we have λi �= λj so that
V r

x and V n−r
x are two smooth distributions on Mn. By Corollary 5, the

distributions are integrable so that they define two transversal foliations
Br and Bn−r of dimensions r and n − r, respectively.

By construction, the distributions Vr and Vn−r are invariant with
respect to L. Let us denote by Lr, Ln−r the restrictions of L to Vr

and Vn−r, respectively. We will denote by χr, χn−r the characteristic
polynomials of Lr, Ln−r, respectively. Consider the (1,1)-tensor

C
def= ((−1)rχr(L) + χn−r(L))

and the metric h given by the relation

h(u, v) def= g(C−1(u), v)

for every vectors u, v. (In the tensor notations, the metrics h and g are
related by gij = hiαCα

j ).

Lemma 2 (Splitting Lemma). The following statements hold:
(1) The triple (h, Br, Bn−r) is a local-product structure on Mn.
(2) For every leaf of Br, the restriction of L to it is a BM-structure

for the restriction of h to it. For every leaf of Bn−r, the re-
striction of L to it is a BM-structure for the restriction of h to
it.

Proof: First of all, h is a well-defined Riemannian metric. Indeed, take
an arbitrary point x ∈ Mn. At the tangent space to this point, we can
find a coordinate system such that the tensor L and the metric g are
diagonal. In this coordinate system, the characteristic polynomials χr,
χn−r are given by

(11)
(−1)rχr = (t − λ1)(t − λ2)...(t − λr)
χn−r = (λr+1 − t)(λr+2 − t)...(λn − t).

Then, the (1,1)-tensor

C = ((−1)rχr(L) + χn−r(L))
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is given by the diagonal matrices

(12) diag

⎛
⎝ n∏

j=r+1

(λj − λ1), ...,
n∏

j=r+1

(λj − λr),

r∏
j=1

(λr+1 − λj), ...,
r∏

j=1

(λn − λj)

⎞
⎠ ,

We see that the tensor is diagonal and that all diagonal components are
positive. Then, the tensor C−1 is well-defined and h is a Riemannian
metric.

By construction, Br and Bn−r are well-defined transversal foliations
of supplementary dimensions. In order to prove Lemma 2, we need to
verify that, locally, the triple (h, Br, Bn−r) is as in Definition 6, that the
restriction of L to a leaf is a BM-structure for the restriction of h to the
leaf.

It is sufficient to verify these two statements at almost every point of
Mn. More precisely, it is known that the triple (h, Br, Bn−r) is a local-
product structure if and only if the foliations Br and Bn−r are orthogonal
and totally geodesic. Clearly, if the foliations and the metric are globally
given and smooth, if the foliations are orthogonal and totally-geodesic
at almost every point, then they are orthogonal and totally-geodesic at
every point.

Similarly, since the foliations and the metric are globally-given and
smooth, if the restriction of L satisfies Definition 1 at almost every point,
then it satisfies Definition 1 at every point.

Consider Levi-Civita’s coordinates x̄1, ..., x̄m from Theorem 5. As
in Levi-Civita’s Theorem, we denote by φ1 < ... < φm the different
eigenvalues of L. In Levi-Civita’s coordinates, the matrix of L is diagonal

diag

⎛
⎜⎝φ1, ..., φ1︸ ︷︷ ︸

k1

, ..., φm, ..., φm︸ ︷︷ ︸
km

⎞
⎟⎠ = diag(λ1, ..., λn).

Consider s such that φs = λr (clearly, k1 + ... + ks = r). Then, by
constructions of the foliations Br and Bn−r, the coordinates x̄1, ..., x̄s are
constant on every leaf of the foliation Bn−r, the coordinates x̄s+1, ..., x̄m

are constant on every leaf of the foliation Br. The coordinates x̄1, ..., x̄s

will play the role of x-coordinates from Definition 6, and the coordinates
x̄s+1, ..., x̄m will play the role of y-coordinates from Definition 6.
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Using (12), we see that, in Levi-Civita’s coordinates, C is given by

diag

⎛
⎜⎜⎜⎜⎝

m
Y

j=s+1

(φj − φ1)kj , ...,
m
Y

j=s+1

(φj − φ1)kj

| {z }

k1

, ...,
m
Y

j=s+1

(φj − φs)kj , ...,
m
Y

j=s+1

(φj − φs)
kj

| {z }

ks

,

s
Y

j=1

(φs+1 − φj)
kj , ...,

s
Y

j=1

(φs+1 − φj)
kj

| {z }

ks+1

, ...,
s
Y

j=1

(φm − φj)
kj , ...,

s
Y

j=1

(φm − φj)
kj

| {z }

km

⎞
⎟⎟⎟⎟⎠ .

Thus, h is given by

(13) h( ˙̄x, ˙̄x) = P̃1A1(x̄1, ˙̄x1) +...+ P̃sAs(x̄s, ˙̄xs)

(14) + P̃s+1As+1(x̄s+1, ˙̄xs+1) +...+ P̃mAm(x̄m, ˙̄xm),

where the functions P̃i are as follows: for i ≤ r, they are given by

P̃i
def
= (φi − φ1)...(φi − φi−1)(φi+1 − φi)...(φs − φi)

s
Y

j = 1
j �= i

|φi − φj |kj−1.

For i > r, the functions P̃i are given by

P̃i
def
= (φi − φs+1)...(φi − φi−1)(φi+1 − φi)...(φm − φi)

m
Y

j = s + 1
j �= i

|φi − φj |kj−1.

Clearly, |φi−φj |kj−1 can depend on the variables x̄i only; moreover,
if φi is multiple, |φi − φj |kj−1 is a constant. Then, the products

s∏
j = 1
j �= i

|φi − φj |kj−1

can be hidden in Ai, so that the the restriction of the metric to the
leaves of Br has the form from Levi-Civita’s Theorem, and, therefore,
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the restriction of L is a BM-structure for it. We see that the leaves of
Br are orthogonal to leaves of Bn−r, and that the restriction of h to Br

(Bn−r, respectively) is precisely the first row of (13) ( second row of (14),
respectively) and depends on the coordinates x̄1, ..., x̄s (x̄s+1, ..., x̄m, re-
spectively) only. Lemma 2 is proven.

Let p be a typical point for g with respect to BM-structure L. Fix
i ∈ 1, ..., n. At every point of Mn, consider the eigenspace Vi with the
eigenvalue λi. Vi is a distribution near p. Denote by Mi(p) its integral
manifold containing p.

Remark 4. The following statements hold:
(1) If λi(p) is multiple, the restriction of g to Mi(p) is proportional

to the restriction of h to Mi(p).
(2) The restriction of L to Br does not depend on the coordinates

yr+1, ..., yn (which are coordinates x̄s+1, ..., x̄m in the notations
in proof of Lemma 2). The restriction of L to Bn−r does
not depend on the coordinates x1, ..., xr (which are coordinates
x̄1, ..., x̄s in the notations in proof of Lemma 2).

Combining Lemma 2 with Theorem 9, we obtain

Corollary 7. Let L be BM-structure on connected (Mn, g). Suppose
there exist i ∈ 1, ..., n and p ∈ Mn such that:

• λi is multiple (with multiplicity k ≥ 2) at a typical point.
• λi−1(p) = λi(p) < λi+k(p),
• The eigenvalue λi−1 is not constant.

Then, for every typical point q ∈ Mn which is sufficiently close to p,
Mi(q) is diffeomorphic to the sphere and the restriction of g to Mi(q)
has constant sectional curvature.

Indeed, take a small neighborhood of p and apply Splitting Lemma 2
two times: for r = i + k − 1 and for r = i − 1. We obtain a metric h
such that locally, near p, the manifold with this metric is the Riemann-
ian product of three discs with BM-structures, and BM-structure is the
direct sum of these BM-structures. The second component of such de-
composition satisfies the assumption of Theorem 9; applying Theorem 9
and Remark 4 we obtain what we need.

Arguing as above, combining Lemma 2 with Theorem 10, we obtain

Corollary 8. Let L be a BM-structure for connected (M, g). Sup-
pose the eigenvalue λi has multiplicity k at a typical point. Suppose there
exists a point where the multiplicity of λi is greater than k. Then, there
exists a point where the multiplicity of λi is precisely k + 1.
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Combining Lemma 2 with Corollary 2, we obtain

Corollary 9. Let L be a BM-structure for connected (Mn, g). Sup-
pose the eigenvalue λi has multiplicity ki at a typical point and multi-
plicity ki + d at a point p ∈ Mn. Then, there exists a point q ∈ Mn

in a small neighborhood of p such that the eigenvalue λi has multiplicity
ki + d in p, and such that

NL(q) = max
x∈Mn

(NL(x)) − d.

We saw that under hypotheses of Theorems 9,10, the set of typical
points is connected. As it was shown in [34], in dimension 2 the set of
typical points is connected as well. Combining these observations with
Lemma 2, we obtain

Corollary 10. Let L be a BM-structure on connected (Mn, g).
Then, the set of typical points of L is connected.

3.3. If φi is not isolated and if dim (B(Mn, g)) ≥ 3, then Ai

has constant sectional curvature Ki.
In this section we assume that (Mn, g) is connected and complete

and L is a BM-structure for Mn. As usual, we denote by λ1(x) ≤ ... ≤
λn(x) the eigenvalues of L at x ∈ Mn.

Definition 7. An eigenvalue λi is called isolated, if λi(p1) = λj(p1)
implies λi(p2) = λj(p2) for every point p2.

As in Section 3.2, at every point p ∈ Mn, we denote by Vi the
eigenspace of L with the eigenvalue λi(p). Vi is a distribution near every
typical point; by Corollary 5, it is integrable. We denote by Mi(p) the
connected component containing p of the intersection of the integral
manifold with a small neighborhood of p.

Theorem 11. Suppose λi is a non-isolated eigenvalue. Then, for
every typical point p, the restriction of g to Mi(p) has constant sectional
curvature.

It could be easier to understand this Theorem using the language
of Levi-Civita’s Theorem 5: denote by φ1 < φ2 < ... < φm the differ-
ent eigenvalues of L at a typical point. Theorem 11 says that, if φi is
non-isolated, then Ai from Levi-Civita’s Theorem has constant sectional
curvature.
Proof of Theorem 11: If eigenvalue λi is simple at a typical point, Mi

is one dimensional and the statement is trivial; below we assume that
λi is multiple. Let ki > 1 be the multiplicity of λi at a typical point.
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Then, λi is constant. Take a typical point p. We assume that λi is not
isolated; without loss of generality, we can suppose λi(p1) = λi+ki−1(p1)
for some point p1. By Corollary 8, without loss of generality, we can
assume λi−1(p1) = λi(p1) < λi+ki (p1). By Corollary 9, we can also
assume that NL(p1) = NL(p) − 1.

Consider a geodesic γ : [0, 1] → Mn connecting p1 and p, γ(0) = p
and γ(1) = p1. Since it is sufficient to prove Theorem 11 at almost every
typical point, arguing as in proof of Corollary 2 in [43], without loss of
generality, we can assume that p1 is the only non-typical point of the
geodesic segment γ(τ), τ ∈ [0, 1].

Take a point q := γ(1 − ε) of the segment, where ε > 0 is small
enough. By Corollary 7, the restriction of g to Mi(q) has constant
sectional curvature.

Let us prove that the geodesic segment γ(τ), τ ∈ [0, 1− ε] is orthog-
onal to Mi(γ(τ)) at every point.

Indeed, consider the function

Ĩ : TMn → R; Ĩ(x, ξ) :=
(

It(x, ξ)
(λi − t)ki−1

)
|t=λi

.

Since the multiplicity of λi at every point is at least ki, the function(
It(x,ξ)

(λi−t)ki−1

)
is polynomial in t of degree n − ki and is an integral for

every fixed t; since λi is a constant, the function Ĩ is an integral.
At the tangent space to every point of geodesic γ consider the co-

ordinates such that L = diag(λ1, ..., λn) and g = diag(1, ..., 1). In this
coordinates, It(ξ) is given by (9). Then, the integral Ĩ(ξ) is the sum (we
assume ξ = (ξ1, ..., ξn))⎛

⎜⎜⎜⎜⎝
i+ki−1∑

α=i

⎛
⎜⎜⎜⎜⎝ξ2

α

n∏
β = 1

β �= i, i + 1, ..., i + ki − 1

(λα − λi)

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠(15)

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

n∑
α = 1

α �= i, i + 1, ..., i + ki − 1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ξ2
α

n∏
β = 1

β �= i + 1, ..., i + ki − 1
β �= α

(λα − λi)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Since the geodesic passes through the point where λi−1 = λi = ... =
λi+ki−1, all products in the formulae above contain the factor λi − λi,
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and, therefore, vanish, so that Ĩ(γ(0), γ̇(0)) = 0. Since Ĩ is an integral,
Ĩ(γ(τ), γ̇(τ)) = 0 for every τ . Let us show that it implies that the
geodesic is orthogonal to Mi at every typical point, in particular, at
points lying on the segment γ(τ), τ ∈ [0, 1].

Clearly, every term in the sum (16) contains the factor λi −λi, and,
therefore, vanishes. Then, the integral Ĩ is equal to (15).

At a typical point, we have

λ1 ≤ ... ≤ λi−1 < λi = ... = λi+ki−1 < λki ≤ ... ≤ λn.

Then, all products

n∏
β = 1

β �= i, i + 1, ..., i + ki − 1

(λα − λi)

have the same sign and are nonzero. Then, all components ξα, α ∈
i, ..., ki − 1 vanish. Thus, γ is orthogonal to Mi at every typical point.

Finally, by Corollary 6, the restriction of g to Mi(p) is proportional
to the restriction of g to Mi(q) and, hence, has constant sectional cur-
vature. Theorem is proven.

Theorem 12. Suppose dim(B(Mn, g)) ≥ 3. Let φi be a non-isolated
eigenvalue of L such that its multiplicity at a typical point is at least two.
Then, the sectional curvature of Ai is equal to Ki.

Recall that the definition of Ki is in the second statement of Theo-
rem 6.
Proof of Theorem 12: Let us denote by K̄i the sectional curvature
of the metric Ai. By assumptions, it is constant in a neighborhood of
every typical point. Since by Corollary 10, the set of typical points is
connected, K̄i is independent of a typical point. Similarly, since Ki is
locally-constant by Theorem 6, Ki is independent of a typical point.
Thus, it is sufficient to find a point where K̄i = Ki.

Without loss of generality, we can suppose that there exists p1 ∈ Mn

such that λr(p1) = λr+1.
By Corollary 9, without loss of generality we can assume that the

multiplicity of λr+1 is ki + 1 in p1, and that NL(p1) = m − 1. Take a
typical point p in a small neighborhood of p1.

Then, by Corollary 7, the submanifold Mr+1(p) is homeomorphic to
the sphere. Since it is compact, there exists a set of local coordinates
charts on it such that there exist constants const and CONST such that,
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in every chart (x1
i , ..., x

ki

i ), for every β ∈ {1, .., ki}, the entry (Ai)ββ lies
between const and CONST, (i.e. CONST ≥ Ai( ∂

∂xβ
i

, ∂

∂xβ
i

) ≥ const.)

By shifting these local coordinates along the vector fields ∂
∂xk

j

, where

j �= i, for every typical point p′ in a neighborhood of p1, we obtain
coordinate charts on Mr+1(p′) such that CONST ≥ (Ai)ββ ≥ const.

Let us calculate the projective Weyl tensor W for g in these local
coordinate charts. Recall that the projective Weyl tensor is given by the
formula

(16) W i
jkl := Ri

jkl −
1

n − 1
(
δi
l Rjk − δi

k Rjl

)

We will be interested in the components (actually, in one compo-
nent) of W corresponding to the coordinates x̄i. In what follows we
reserve the Greek letter α, β for the coordinates from x̄i, so that, for
example, gαβ will mean the component of the metric staying on the
intersection of column number r + β and row number r + α.

As we will see below, the formulae will include only the components
of Ai. To simplify the notations, we will not write subindex i near Ai,
so for example, gαβ is equal to Pi Aαβ .

Let calculate the component Wα
ββα. In order to do it by formula (16),

it is necessary to calculate Rα
ββα and Rββ. These was done in §8 of [54].

Rewriting the results of Solodovnikov in our notations, we obtain

Rα
ββα =

(
K̄i − (Ki − K Pi)

)
Aββ,

Rββ =
(
(ki − 1) K̄i + K (n − 1)Pi − (ki − 1)Ki

)
Aββ .

Substituting these expressions in (16), we obtain

Wα
ββα = (K̄i − Ki)

n − ki

n − 1
Aββ .

We see that, if K̄i �= Ki, the component Wα
ββα is bounded from zero.

Now if we consider a sequence of typical points converging to p1, the
component Wα

ββα converge to zero, since the length of ∂

∂xβ
i

goes to zero.

Finally, K̄i = Ki. Theorem is proven.

3.4. Geometric sense of the adjusted metric

Consider the metric (7) on the product

Dk0 × ... × Dkm .
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Take a point P = (p0, ..., pm) ∈ Dk0 × ... × Dkm . At every disk Dki ,
i = 1, ..., m, consider a geodesic segment γi ∈ Dki passing through pi.
Consider the product

MA := Dk0 × γ1 × γ2 × ... × γm

as a submanifold of Dk0×...×Dkm . As it easily follows from Definition 4,
• MA is a totally geodesic submanifold.
• The restriction of the metric (7) to MA is (isometric to) the

adjusted metric.
Now let us explain how one can proof Theorem 7. Our proof is

slightly different from the original proof of Solodovnikov [54] (which is
correct and very good written).

If the dimension of MA is one, Theorem 7 follows from Definition 4.
Suppose the dimension of MA is two. Consider two BM-structures L1

and L2 such that L1, L2 and Id are linearly independent, and such that
the number of different eigenvalues of each BM-structure at each point
is precisely two. Then, without loss of generality, locally there exists a
coordinate system (x1, ..., xn) such that

L = diag(λ1(x1), λ2, ..., λ2︸ ︷︷ ︸
n−1

),

and g is given by the formula

(17) (λ1(x1) − λ2)(dx2
1 + A2),

where A2 is a metric on the disk of dimension (n − 1) with coordinates
(x2, ..., xn), λ2 is a constant, and λ1 is a function of x1. Consider the
Ricci-tensor Ri

j of the metric (17). By direct calculation, it is possible
to see that

• At every point, Ri
j has at most two different eigenvalues.

• If Ri
j has two eigenvalues, one eigenvalue has multiplicity 1.

The corresponding eigenvector is ∂
∂x1

.
• If Ri

j has precisely one eigenvalue in a neighborhood of a point,
then the sectional curvature of the adjusted metric is constant
near the point.

Combining these three observation, we see that the sectional curvature
of the adjusted metric is constant, or L1 and L2 are diagonal in the same
coordinate system. In the latter case, the formula (17) for the metric
shows that L1, L2 and Id are linear dependent. Theorem 7 is proven
under the assumption that MA is two-dimensional.
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Now let the dimension of MA be greater than 2. Consider two BM-
structures L1 and L2 such that L1, L2 and Id are linearly independent
and have only typical points on (Dn, g). Without loss of generality, since
Id is also a BM-structure, we can think that L1 and L2 are positive-
definite. If NL1 = n, Theorem 7 follows from Theorem 8. Suppose
NL1 < n. Then, as we already explained after Definition 4, Theorem 5
applied to the BM-structure L1 gives us a warped decomposition Dn =
Dk0 × ... × Dkm . Consider the constructed above submanifold

MA := Dk0 × γ1 × γ2 × ... × γm

for this warped decomposition.
By construction, every tangent space to MA is invariant with respect

to L1. By the second part of Levi-Civita’s Theorem 5, the restriction of
L1 to MA is a BM-structure for the restriction g|MA

of g to MA. The
number of its different eigenvalues at P coincides with the number of
different eigenvalues of L1 and, therefore, equals the dimension of MA.

Let us show that L2 generates one more BM-structure on MA. Since
L2 is positive-definite, by Theorem 1, it generates a metric g2 projec-
tively equivalent to g. Since MA is totally geodesic, g2|MA

is geodesically
equivalent to g|MA

. Then, by Theorem 1, it generates one more BM-
structure for g|MA

. We denote this BM-structure by L̄2.
Thus, in view of Fubini’s Theorem 8, our goal is to prove that, for a

certain choice of geodesic segments γ1, ..., γm, these two BM-structures
(on MA) and the trivial BM-structure Id are linearly independent.

By construction, the metric g1|MA
does not depend on the choice

of geodesic segments γk: the results are isometric. Suppose the BM-
structures L1|MA

, L̄2 and Id are linearly dependent for every choice of
the geodesic segments. Then, for every choice of the geodesic segments,
L̄2 is a linear combination of L1|MA

and Id. Clearly, the coefficients of
the linear combination do not depend on the choice of geodesic segments
γk. (To see it, it is sufficient to consider the length of the integral curve of
the eigenvector vi corresponding to a nonconstant λi. The integral curve
lies in MA and its length does not depend on the choice of the geodesic
segments γk.) Then, the eigenspaces of L are invariant with respect to
the BM-structure L2. Hence, the metrics g1, g2 have the form from
Remark 3 in the same coordinate system. Then, L2 is linear dependent
of L1 and Id. We obtained a contradiction. Thus, the adjusted metric
has constant sectional curvature. Theorem 7 is proven.
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§4. Proof of Theorem 2

Assume dim(B(Mn, g)) ≥ 3, where (Mn, g) is a connected complete
Riemannian metric of dimension n ≥ 3. Suppose a complete Riemannian
metric ḡ is projectively equivalent to g. Denote by L the BM-structure
from Theorem 1. By Theorem 7, for every typical point, the sectional
curvature of the adjusted metric is constant.

Denote by m the number of different eigenvalues of L in a typical
point. The number m does not depend on the typical point. If m = n,
Theorem 2 follows from Fubini’s Theorem 8 and Corollary 4.

Thus, we can assume m < n. Denote by m0 the number of simple
eigenvalues of L at a typical point. By Corollary 2, the number m0 does
not depend on the typical point. Then, by Levi-Civita’s Theorem 5,
the metric g has the following warped decomposition near every typical
point p:

(18) g = g0 +

∣∣∣∣∣
m0∏
i=1

(φm0+1 − φi)

∣∣∣∣∣ gm0+1 + ... +

∣∣∣∣∣
m0∏
i=1

(φm − φi)

∣∣∣∣∣ gm.

Here the coordinates are (ȳ0, ..., ȳm), where ȳ0 = (y1
0 , ..., ym0

0 ) and for
i > 1 ȳi = (y1

i , ..., yki

i ). For i > 0, every metric gm0+i depends on the
coordinates ȳi only. Every function φi depends on yi

0 for i ≤ m0 and is
constant for i > m0.

Let us explain the relation between Theorem 5 and the formula
above. The term g0 collects all one-dimensional terms of (5). The co-
ordinates ȳ0 = (y1

0 , ..., y
m0
0 ) collect all one-dimensional x̄i from (5). For

i > m0, the coordinate ȳi is one of the coordinates x̄j with kj > 1. Every
metric gm0+i for i > 1 came from one of the multidimensional terms of
(5) and is proportional to the corresponding Aj . The functions φi are
eigenvalues of L; they must not be ordered anymore: the indexing can
be different from (4). Note that, by Corollary 2, this re-indexing can be
done simultaneously in all typical points.

Since the dimension of the space B(Mn, g) is greater than two, by
Theorem 7, g is a V (K) metric.

According to Definition 7, a multiple eigenvalue φi of L is isolated,
if there exists no nonconstant eigenvalue φj such that φj(q) = φi at
some point q ∈ Mn. If every multiple eigenvalue of L is non-isolated,
then applying Theorems 11,12,6 we obtain that g has constant sectional
curvature.

Thus, we can assume that there exist isolated eigenvalues. With-
out loss of generality, we can assume that (at every typical point) the
re-indexing is made in such a way that the first multiple eigenvalues
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φm0+1, ..., φm1 are non-isolated and the last multiple eigenvalues φm1+1,
..., φm are isolated. By assumption, m1 < m.

We will prove that in this case all eigenvalues of L are constant. By
Remark 3, it implies that the metrics g, ḡ are affine equivalent.

Let us show that the sectional curvature of the adjusted metric g is
nonpositive. We suppose that it is positive and will find a contradiction.

At every point q of Mn, denote by V0 ⊂ TqM
n the direct product of

the eigenspaces of L corresponding to the eigenvalues φ1, ..., φm1 . Since
the eigenvalues φm1+1, ..., φm are isolated by the assumptions, the di-
mension of V0 is constant, and V0 is a distribution. By Corollary 5, V0 is
integrable. Take a typical point p ∈ Mn and denote by M0 the integral
manifold of the distribution containing this point. The restriction g|M0

of the metric g to M0 is complete.
Consider the direct product M0 × R

m−m1 with the metric

(19) g|M0 +

∣∣∣∣∣
m0∏
i=1

(φm1+1 − φi)

∣∣∣∣∣ dt2m1+1 + ... +

∣∣∣∣∣
m0∏
i=1

(φm − φi)

∣∣∣∣∣ dt2m,

where (tm1+1, ..., tm) are the standard coordinates on R
m−m1 . Since the

eigenvalues φm1+1, ..., φm are isolated, (19) is a well-defined Riemannian
metric. Since g|M0 is complete, the metric (19) is complete. By defi-
nition, the metric is the adjusted metric for the warped decomposition
(18). Hence, the sectional curvature of the adjusted metric is positive
constant. Then, the product M0 × R

m−m1 must be compact, which
contradicts the fact that R

m−m1 is not compact. Finally, the sectional
curvature of the adjusted metric is not positive.

Now let us prove that all eigenvalues of L are constant. With-
out loss of generality, we can assume that the manifold is simply con-
nected. We will construct a totally geodesic submanifold MA, which
is a global analog of the submanifold MA from Section 3.4. At every
point x ∈ Mn, consider Vm1+1, ..., Vm ⊂ TxMn, where Vm1+i is the
eigenspace of the eigenvalue φm1+i. Since the eigenvalues φm1+i are
isolated, Vm1+1, ..., Vm are distributions. By Corollary 5, they are in-
tegrable. Denote by Mm1+1, Mm1+2, ..., Mm the corresponding integral
submanifolds.

Since the manifold is simply connected, then, by [6], it is homeo-
morphic to the product M0 ×Mm1+1 ×Mm1+2 × ...×Mm. Clearly, the
metric g on

Mn 
 M0 × Mm1+1 × Mm1+2 × ... × Mm
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has the form

(20) g|M0 +

∣∣∣∣∣
m0∏
i=1

(φm1+1 − φi)

∣∣∣∣∣ gm1+1 + ... +

∣∣∣∣∣
m0∏
i=1

(φm − φi)

∣∣∣∣∣ gm,

where every gk is a metric on Mk. Take a point

P = (p0, pm1+1, ..., pm) ∈ M0 × Mm1+1 × Mm1+2 × ... × Mm.

On every Mm1+k, k = 1, ..., m−m1, pick a geodesic γm1+k (in the metric
gm1+k) passing through pk. Denote by MA the product

M0 × γm1+1 × ... × γm.

MA is an immersed totally geodesic manifold. More precisely, the nat-
ural immersion of M0 × R

m−m1 (endowed with the metric (19)) into
Mn is isometric and totally geodesic. Locally, in a neighborhood of ev-
ery point, MA coincides with MA from Section 3.4 constructed for the
warped decomposition (20). The restriction of the metric g to MA is iso-
metric to the adjusted metric and, therefore, has nonpositive constant
sectional curvature. Then, by Corollary 4, the restriction of ḡ to MA is
affine equivalent to the restriction of g to MA. Then, by Remark 3, all
φi are constant. Then, the metric g is affine equivalent to the metric ḡ.
Theorem 2 is proven.
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Abstract.

Goursat distributions are subbundles in the tangent bundles to mani-
folds having the flag of consecutive Lie squares of ranks not depending
on a point and growing always by 1. It is known that moduli of
the local classification of these objects (distributions determine their
flags, and vice versa) are not functional, only continuous numeric, and
appear in codimensions two and higher; singularities of codimension
one are all simple. In the present work we show that most of the
codimension-two singularities of Goursat flags is not simple. As to
the precise modalities of those singularities, we give them at paper’s
end in the conjectural mode.

§1. Introduction, main result, and infinitesimal symmetries

A distribution D of corank r ≥ 2 on a smooth or analytic manifold
M (a codimension–r subbundle of TM) is Goursat when its Lie square
[D, D] is a distribution of constant corank r−1, the Lie square of [D, D]
is of constant corank r − 2, and so on until reaching the full tangent
bundle TM . A Goursat flag of length r is any such D together with the
nested sequence of its consecutive Lie squares through TM inclusively.
(Without loss of generality, it could have been assumed that D is of rank
2. Locally it would lead to the same theory, for in any general Goursat
distribution D there locally splits off an integrable subdistribution of
rank rkD − 2.)

Those distributions appear naturally, among others, as the outcome
of series of so-called Cartan prolongations (see [1, 6] for details) of rank-
2 distributions on different manifolds, starting from the full tangent
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bundle of a 2-dimensional surface. They generalize the well-known, also
Cartan’s, distributions on the jet spaces of functions R −→ R (sometimes
also called contact systems) in that they admit singularities, discovered
in 1978 by Giaro-Kumpera-Ruiz – see their exceptional model (1) – and
started to be systematically investigated in [5], while they retain the
basic flag property of Cartan’s distributions.

In fact, original Cartan structures are obtained in the prolongation
procedures when at each prolongation step one avoids the vertical direc-
tions. And the vertical directions – that can be chosen in prolongations
at will, either in row or intermittently with non-vertical ones – account
for a rich pattern of singularities hidden in flags. Upon closer inspec-
tion there emerges, [4, 6], Jean-Montgomery-Zhitomirskii stratification
of germs of flags into geometric classes, with strata encoded by words
(of length equal to flag’s length) over the alphabet {G, S, T}: Generic,
Singular, Tangent.

1.1. Geometric classes of Goursat flags.

The canonical geometric definition of them deals with a given Goursat
flag

TM = D0 ⊃ D1 ⊃ D2 ⊃ · · · ⊃ Dr−1 ⊃ Dr = D

([Dj , Dj ] = Dj−1) around a fixed point p ∈ M and firstly precises which
members of it (excepting D1 and D2) are at p in singular positions.
Namely, Dj is at p in singular position when it coincides at p with the
Cauchy characteristics L(Dj−2) of Dj−2: Dj(p) = L(Dj−2)(p).
(In general, for any distribution D, L(D) is the module, or sheaf of mod-
ules, of such vector fields v with values in D that preserve D, [v, D] ⊂ D.
And one of first observations, see [6] for inst., is that for D – Goursat,
L(D) is a regular corank two subdistribution of D, rkL(D) = rkD − 2.
Thus, needless to say, Dj and L(Dj−2) in the definition above have the
same ranks.)
At this moment it is very useful to have under eyes the so-called sandwich
diagram excerpted from [6]:

D1 ⊃ D2 ⊃ D3 ⊃ · · · ⊃ Dr−1 ⊃ Dr

∪ ∪ ∪ ∪
L(D1) ⊃ L(D2) ⊃ · · · ⊃ L(Dr−2) ⊃ L(Dr−1) ⊃ L(Dr) .

All direct inclusions in this diagram are of codimension one. The squares built
by [drawn] inclusions can be perceived as certain ‘sandwiches’: for instance, in
the utmost left sandwich L(D1) and D3 are as if fillings, while D2 and L(D2)
constitute the covers (of different dimensions, one has to admit).
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For instance, the [Lie] square of the [Lie] square, i. e., D1, of the Goursat
object D3 described on R

5(x1, . . . , x5) by the Pfaffian equations

(1) dx2 − x3dx1 = dx3 − x4dx1 = dx1 − x5dx4 = 0 ,

is given by dx2 − x3dx1 = 0, and its Cauchy characteristics are span(∂4, ∂5).
This 2–plane coincides with D3 at 0, and – more generally – at all points of
the hypersurface {x5 = 0}. Therefore, this D3 is in singular position by far
not at isolated points, but in codomension 1.
In general D3, D4, . . . , Dr can be in singular positions at a point (in different
sandwiches on the diagram above) one independently of another and it gives
rise to 2r−2 rough invariant classes of flag’s germs (termed ‘Kumpera–Ruiz
classes’ in [6] ). Thus, at this moment, the local behaviour at p is encoded by
a word of length r over {∗, S} starting with two ∗, possibly having more ∗’s,
and having S as the j-th letter (3 ≤ j ≤ r) precisely and only when Dj is at
p in singular position.

Secondly, heading towards geometric classes and labels over {G, S,T},
one plainly replaces all ∗ before the first S (if any) by letters G and then turns
to strings of ∗ standing behind, or past, letters S (if there are such strings).
Let us depart from a given letter S, being the j-th letter in the word and
having a string of ∗’s past it. In the eventual label [of the geometric class of
the flag’s germ at p] this S is followed by T when Dj+1(p) is tangent to the
locus (always being a regular hypersurface in M , as in the example above)
of the previous singularity ‘Dj in singular position’, while it is followed by G
when Dj+1(p) is not tangent to that locus (and, as a matter of course, not in
the singular position at p – see the detailed discussion below).

At this point it is important to explain that this tangent position of Dj+1

with respect to the hypersurface

(2) H = { q ∈ M : Dj(q) = L(Dj−2)(q) },

when materializing at p, implies that Dj+1(p) itself is not in the singular
position. Or, in other words, that the presently being defined meaning of
‘ST’ does not conflict with the previously introduced meaning of ‘SS’. Indeed,
choosing any fixed local vector field V with values in L(Dj−1) and independent
of L(Dj), L(Dj−1) = (V ) ⊕ L(Dj), the flow ϕt

V of V preserves Dj−1, hence
also Dj−2 and L(Dj−2):

`

ϕt
V

´

∗L(Dj−2) = L(Dj−2) for small |t| > 0. On the

other hand, recalling, V takes values in Dj (⊃ L(Dj−1)) but not in L(Dj).
Consequently,

`

ϕt
V

´

∗D
j �= Dj for |t| > 0 small and, altogether, the flow of V

does not preserve the defining equation (2) of H . In fact, upon analyzing more
carefully the speed of

`

ϕt
V

´

∗D
j deviating from Dj , V is not tangent to H at

p. Hence, H being of codimension one, V is transverse, and all the more so is
L(Dj−1)(p). A new singular position at p (i. e., the second S in row in a code)
would then imply the transversality to the locus (H) of the previous singular
position, while the [(j + 1)-st member’] position encoded by T is tangent to
H .



254 P. Mormul

In turn, T can follow ST, further selecting the germs with Dj+2(p) tangent

to the locus eH (now being regular of codimension 2 in M) of the geometry
. . . ST. Such a new STT does not conflict with a hypothetical STS – because

the latter would imply the relative (within H) transversality of Dj+2(·) to eH.
When there are sufficiently many ∗’s after the reference letter S, another T can
follow . . . STT, again causing no conflict with a potential . . . STTS in view of
another tangency as opposed to relative transversality, and so on. Since the
moment of interruption of such sequence of tangencies, one plainly replaces
all remaining ∗’s by G’s, till the next letter S.

All thus emerging labels are geometrically realizable; the only restriction
in them, clear from the geometric behaviours being encoded, are the two nec-
essary G’s in the beginning and that T cannot go directly after G. Therefore,
for length 2 there is but one class GG, for length 3 – only GGG and GGS
(the latter having as a unique local model (1) ), for length 4 – GGGG, GGSG,
GGST, GGSS, GGGS. A straightforward recurrence yields that there exist
u2r−3 (Fibonacci number) geometric classes of the germs of flags of length r.
They are, obviously, pairwise disjoint and invariant under the action of local
diffeomorphisms between manifolds. The class GG. . . G is the fattest single
orbit,1 as established in now classical papers [2, 13] (those contributions were
widely popularized in the 1920s by Goursat in his book Leçons sur le problème
de Pfaff ). The well-known local representative is, for the length r, the chained
model of that length – the germ at 0 of

(3) dx2 − x3dx1 = dx3 − x4dx1 = · · · = dxr+1 − xr+2dx1 = 0 ,

still actively in use in control theory and differential geometry.

Clearly, the geometric classes approximate from above orbits of the local
classification of Goursat germs. As a matter of record, we just note that this
approximation is 100% precise for lengths ≤ 6, but too rough from length
7 onwards ([7]). Before passing to finer issues, let us note one remarkable
property of geometric classes’ stratification.

Namely, the materialization of any given stratum is, if non-empty, an
embedded submanifold of codimension equal to the number of letters S and
T in its code. For inst., without these letters, there comes the unique open
stratum of generic germs; all of them, recalling, equivalent to the relevant
chained model (3).

Notwithstanding so regular a definition, there exist continuous numerical
moduli of the local classification of Goursat distributions. In the first turn,
in [12, 7], such moduli were found in codimension three. Later, in [11], real
invariants were produced already in codimension two. While they are absent in
codimension one, for it turns out, [8], that the codimension-one strata, i. e., all
GG. . . GSG..G, are single orbits of the local classification. Moreover, because

1 and the only one open, cf. a remark on codimensions below



Valuations, and moduli of Goursat distributions 255

these strata are adjacent only to the generic stratum, the codimension-one
singularities of Goursat are all simple.

The present work extends substantially [11] and, at the same time, con-
tributes to a vast project (first stated in 1999 by the authors of [6]) of finding
all simple singularities of Goursat flags.

1.2. Codimension–two singularities of Goursat.

Codimension-two singularities are of two essentially different types.

• Either precisely two different members of a flag are simultaneously in sin-
gular positions at the same point; this is the concatenation SGG. . . GS of two
singularities S separated by a number j ≥ 0 of intermediate flag’s members
being in generic positions G.

•• Or else only one flag’s member, say of corank k, is at a point in singular
position, and its ‘Lie square root’ of corank k + 1 is tangent at that point to
the locus (a hypersurface in M) of the corank–k member being in singular
position. Those latter singularities, as we know from sec. 1.1, are labelled ST.
In virtue of [9], the ST singularities are simple, possibly modulo subvarieties
of codimension three.

Passing to the class •, it is generally conjectured that the singularities SS
(that is, with j = 0 letters G in between the S’s) are all simple, too. However,
the situation in geometric classes having two singularities S really separated
by a number of G’s, is different. The results presented in this paper, together
with those of [11], justify that, excepting possibly the classes with the first S at
the earliest admissible position No 3, for all positive numbers j of intermediate
positions G, a modulus hides already in the flag’ member three steps past the
second singularity S. In fact, we are going to prove that

Theorem 1. Fix any segment [G. . . G] of j ≥ 1 letters G. Except-
ing (possibly) only the geometric classes starting with exactly two G’s before
that segment, in each geometric class GG. . . GS[G. . . G]SGGG. . . with at least
three G’s in the end, there sits at least one modulus of the local classification.
Therefore, such classes’ modalities are all not smaller than one.

Therefore, in codimension two there are but few simple geometric classes:
only ‘ST’, conjecturally ‘SS’, GG. . . GS[G. . . G]S... with at most two G’s past
the second S, and plausibly all GGS[G. . . G]S..., with, this time, any number
of G’s at the end.
This statement becomes more precise when one fixes flag’s length r. Then
the number of these simple and supposedly simple classes is 2(r − 3) + (r −
7)4 +3 +2+ 1 = 6r− 28, while the number of all codimension-two geometric

classes of length r is (r − 3) + (r − 3) + (r − 4) + · · · + 2 + 1 = r2−3r
2

. The
remaining codimension-two classes, that assuredly are not simple by Theorem
1, constitute therefore the

1 − (6r − 28)2

r2 − 3r
=

r2 − 15r + 56

r2 − 3r
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fraction of all codimension-two classes in that length, an overwhelming ma-
jority.

Remark 1. The assertions of Thm. 1 can be equivalently stated in terms of
the mentioned systematization of prolongations of Goursat germs from [6]. In
the language of that reference work these reformulations go as follows.

For any k ≥ 4, j ≥ 1, and any germ, at a point p, of a Goursat flag

(4) · · · ⊃ Dk+1+j ⊃ Dk+2+j ⊃ Dk+3+j ⊃ Dk+4+j

sitting in the class Gk−1SGjSGGG, firstly, the prolongation pattern
of the germ of Dk+2+j at p is 1: there is only one fixed point L(Dk+1+j)(p)/

L(Dk+2+j)(p) on the circle S1(Dk+2+j)(p), and only two orbits in it: this fixed
point and all the remaining of the circle; the prolonged germ Dk+3+j sits in
that second orbit (this corresponds to all values b in (5) below being equivalent,
hence equivalent to the value 0). And secondly – the main property being
established in the present paper – the prolongation pattern of the germ at p
of Dk+3+j is either 2c or 3, and, consequently, there appears a modulus in
the local classification of the one-step prolongations of Dk+3+j (the value c
cannot be moved by flows of symmetries of (5) understood not as a germ).

1.3. Basic preliminaries needed in the proof.

It follows from the works [5, 6] and previous contributions by the author
that any Goursat germ Dk+4+j sitting in the geometric class Gk−1SGjSG3 can
be written down in certain Kumpera-Ruiz coordinates x1, x2, . . . , xk+6+j , . . . , xn

as the germ at 0 ∈ Rn of a system of Pfaffian equations

dx2 − x3dx1 = 0 ,

dx3 − x4dx1 = 0 ,

∗ ∗
dxk − xk+1dx1 = 0 ,

dx1 − xk+2dxk+1 = 0 ,

dxk+2 −
`

1 + xk+3´ dxk+1 = 0 ,

dxk+3 − xk+4 dxk+1 = 0 ,(5)

∗ ∗
dxk+1+j − xk+2+jdxk+1 = 0 ,

dxk+1 − xk+3+jdxk+2+j = 0 ,

dxk+3+j −
`

1 + xk+4+j´ dxk+2+j = 0 ,

dxk+4+j −
`

b + xk+5+j´ dxk+2+j = 0 ,

dxk+5+j −
`

c + xk+6+j
´

dxk+2+j = 0 ,

with certain real constants b and c. (In these constants resides much of
the difficulty and geometric complication of Dk+4+j , and we will cope with



Valuations, and moduli of Goursat distributions 257

them rather heavily.) The directions of the remaining, invisible in (5) vari-
ables xk+7+j , . . . , xn−1, xn do span the Cauchy-characteristic subdistribution
L(Dk+4+j) (see sec. 1.1 for the definition) by which one can always factor out.

In all the sequel we assume this done; in other words, in what follows, n =
k + 6 + j. This factoring out simplification, that loses – this is critical –
no local geometry of a Goursat flag, amounts to saying that, without loss of
generality, we assume the smallest member Dk+4+j of a flag to be of rank
two. The ambient dimension after factoring out (k + 6 + j) exceeds then just
by two the flag’s length (k + 4 + j).

We will strive to move the parameters b, c. That is, to conjugate germs
(5) displaying different values of b and c. The work [7] shows how involved
it is to do on the level of finite symmetries. Only after that contribution
we realized that the level of infinitesimal symmetries, of a non-local object
encompassing nearby germs, was more promising.

How to describe the vector fields infinitesimally preserving a given Goursat
distribution like Dk+4+j above ? And so, each rank two Goursat germ is
equivalent to the result of a sequence of certain projective extensions (called
Cartan prolongations, described in detail in [1, 6]) started from the differential
system (a contact structure) ω1 = dx2 − x3dx1 = 0 living on R3(x1, x2, x3).
And the infinitesimal symmetries of ω1 = 0 are generated by all C∞ (or
analytic, depending on the chosen category) functions f(x1, x2, x3) – a deep
and basic thing observed long time ago by S. Lie. Those generating functions
are nowadays called contact hamiltonians.

In view of the mentioned stepwise extensions yielding Dk+4+j , the i. s.’s
of Dk+4+j turn out, fortunately if not unexpectedly, to be sequences of fairly
simple parallel prolongations of the i. s.’s of the relevant sequence of Car-
tan prolongations of that Darboux structure. Consequently, they inherit the
property of being locally 1–1 parametrized by C∞ or C ω functions in three
variables.

However, the parametrization depends sensitively on the distribution of inver-
sions of differentials in the pseudo-normal form for D (i. e., depends on the
word over {∗, S} preliminarily encoding the germ’ local geometry – see sec. 1.1
– or still else, depends on which members of the flag of D are in singular po-
sitions at the reference point). Therefore, one has to deal in general with a
vast binary tree of different parametrizations. This is a disadvantage, yet for
Dk+4+j in a concrete pseudo-normal form as above one can advance rather
far.

These ‘infinitesimal’ tools are given in more detail in, for inst., [8] or [9].
Here we just recapitulate that, having a D of rank two, in a Kumpera-Ruiz
pseudo-normal form (originating from [5]) in the ambient dimension r+2, one
denotes by Yf its infinitesimal symmetry induced by a function f(x1, x2, x3)
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and deliberately puts in relief in Yf the first three components,

(6) Yf = A∂1 + B∂2 + C∂3 +

r+2
X

l=4

F l∂l

– because, understandingly, the vector field A∂1+B∂2+C∂3 is an infinitesimal
symmetry of dx2 − x3dx1 = 0. Hence the classical expressions of Lie: A =
−f3 , B = f − x3f3 , C = f1 + x3f2.

Prior to write the infinitesimal symmetries of Dk+4+j in our situation, we need
the following three vector fields

y = ∂1 + x3∂2 + x4∂3 + · · · + xk+1∂k ,

Y = xk+2y + ∂k+1 + Xk+3∂k+2 + xk+4∂k+3 + · · · + xk+2+j∂k+1+j ,

(7)
bY = xk+3+jY + ∂k+2+j + Xk+4+j∂k+3+j + Xk+5+j∂k+4+j + Xk+6+j∂k+5+j .

With these notations, the first group of components of Yf contains, on top of
functions A, B, C,

(8) F 4 = yC − x4yA , F l = yF l−1 − xlyA for 5 ≤ l ≤ k + 1 .

In the second group of components,

(9) F k+2 = xk+2`yA − Y F k+1´ , F k+3 = Y F k+2 − Xk+3 Y F k+1 ,

F l = Y F l−1 − xl Y F k+1 for k + 4 ≤ l ≤ k + 2 + j;

F k+3+j = xk+3+j`Y F k+1 − bY F k+2+j´ ,

F k+4+j = bY F k+3+j − Xk+4+j
bY F k+2+j ,

F k+5+j = bY F k+4+j − Xk+5+j
bY F k+2+j ,

F k+6+j = bY F k+5+j − Xk+6+j
bY F k+2+j .

These formulas confirm and re-establish a basic property of Kumpera-Ruiz co-
ordinates (for whatever local Goursat object of corank r) that, in such coordi-
nates, for 4 ≤ ν ≤ r+2, the component F ν depends only on x1, x2, . . . , xν−1, xν .
In our situation, they also help to quickly find the first k + 3 components of
Yf at zero,

(10) Yf |0 = −f3∂1 + f∂2 +
k+1
X

j=3

f1j−2∂j −
`

2f2 + (2k − 1)f13

´

∂k+3 + · · ·

(the ∂k+3 component is also standard, cf., for inst., the formula (5) in [11]).
Note the absence of the ∂k+2 component in (10), explained by the fact that
the hypersurface xk+2 = 0 is invariant under all symmetries of Dk+4+j , let
alone those embeddable in flows (for the same reason, cf. the proof of Prop. 1
below, each such i. s. Yf |0 has no ∂k+3+j component as well). The next
component ∂k+4 at 0 is computationally more delicate (albeit simple in the
outcome).
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1.4. Computation of F k+4 |0.
During all the computation we use the recursive formulas (9):

F k+4 |0 = Y F k+3 − xk+4 Y F k+1 |0 = Y 2F k+2 − Xk+3Y 2F k+1 |0

= 2Xk+3Y
“

yA − Y F k+1
”

− Xk+3Y 2F k+1 |0

= 2Xk+3Y yA − 3Xk+3Y 2F k+1 |0 .(11)

To proceed, an operational expression for F k+1 is needed,

Lemma 1. F k+1 = yk−2C − (k − 2)xk+1yA mod (xk, xk−1, . . . , x4) .

This lemma follows from the following formula than can easily be proved by
induction on k, departing from F 4, already expressed in (8):

F k+1 = yk−2C−
 

k − 2

1

!

xk+1yA−
 

k − 2

2

!

xky2A−· · ·−
 

k − 2

k − 2

!

x4yk−2A .

Differentiating the RHS in Lem. 1 twice with respect to Y ,

Y 2F k+1 = Y 2yk−2C − 2(k − 2)Y yA mod (xk+2, xk+1, . . . , x4) .

After evaluating the RHS here at 0 and substituting to (11),

(12) F k+4 |0 =
`

2 + 6(k − 2)
´

Xk+3Y yA − 3Xk+3Y 2yk−2C |0 .

The first summand on the RHS in (12) is being made transparent immediately,

Y yA |0 =

(

− f33 |0 when k = 3 ,

0 when k ≥ 4 .

As for the second summand, a more careful approach is needed, because the
derivative yk−2C consists, for k big, of a rich array of terms.2 Trying to see
through them, we note that, in C, there clearly is the term f1, in yC there
is f11 (cf. Ex. 1 below) and likewise there is f1k−1 in yk−2C. In fact, the

structure of terms building up yk−2C, together with the particular form of
the vector field Y , imply that the exemplified term f1k−1 is the only one that

contributes under Y 2 to the value of Y 2yk−2C at 0,

f1k−1
Y−→ xk+2f1k + · · · Y−→ Xk+3f1k + · · · ,

2 A deeper analysis of yk−2C is given in sec. 6.1 of the preprint No
39, Simple codimension–two singularities of Goursat flags, I, available at
http://www.mimuw.edu.pl/english/research/reports/imat
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with the last · · · vanishing at 0. Thus Y 2yk−2C |0 = Xk+3f1k |0. Substituting
all these data to (12),

(13) F k+4 |0 =

(

− 3
`

Xk+3
´2

f1k − 8Xk+3f33 |0 when k = 3 ,

− 3
`

Xk+3
´2

f1k |0 when k ≥ 4 .

This information will be instrumental later in the proof of Thm. 1.

§2. Annihilation of the constant b

For transparency reasons it is useful to work, instead of the object (5),
with a ‘universal’ distribution, E, that displays no constants shifting the last
two variables, E =

`

dx2 − x3dx1, dx3 − x4dx1, . . . , dxk − xk+1dx1, dx1 − xk+2dxk+1,

dxk+2 − Xk+3dxk+1, dxk+3 − xk+4dxk+1, . . . , dxk+1+j − xk+2+jdxk+1,

dxk+1 − xk+3+jdxk+2+j, dxk+3+j − Xk+4+jdxk+2+j,

dxk+4+j − xk+5+jdxk+2+j , dxk+5+j − xk+6+jdxk+2+j
´

,

(14)

Xk+3 = 1 + xk+3, Xk+4+j = 1 + xk+4+j . The reason is that the symmetries
under consideration will keep all but the last two coordinates of 0 ∈ Rk+6+j ,
while the two last ones will be moved.

In the annihilation of b there will be used certain concrete contact hamilto-
nians. Namely, f(x1, x2, x3) =

`

x1
´l

x2 when j = 2l is even, and f =
`

x1
´k+l

when j = 2l + 1 is odd. This dependence on the parity of a distance pa-
rameter j should not be surprising, comparing, for inst., with the arguments
in the codimension-one situation (Sec. 4 in [8]). We are going to reduce the
constant b to 0, changing also – this is inevitable, cf. [11] – the value of c, but
preserving the normalizations already achieved in (5). The value of b will be
moved to 0 gradually, using the indicated flow of symmetries of the non-local
object (14).

An important auxiliary question is why this would not perturb the zero
constants standing by xk+5, xk+6, . . . , xk+2+j, as well as the constants one
standing by xk+3 and xk+4+j . It is so because

Proposition 1. In either case of j even or odd, the corresponding in-
finitesimal symmetry Yf , with f proposed above, has at 0 the first k + 4 + j
components zero.

Most of the present section is devoted to a proof of this statement. Concern-
ing the first k + 4 components of Yf , it is clear, in view of (10) and (13).

Concerning F k+3+j |0, it is also clear, for the (k + 1 + j)-th letter in the code
is S and the hypersurface xk+3+j = 0 is, naturally, invariant. Likewise, as
regards F k+4+j |0, this component corresponds to a place in the code going
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directly after a letter S and, as such, is a multiple of the additive constant one
standing by the variable xk+4+j. (In the absence of that constant, the germ
would represent an ‘ST’ singularity that should be preserved by all symmetries
of any its representative, and thus the (k+4+j)-th component would vanish.)
It equals 1 times an integer combination of the basic partials f2 |0 and f13 |0.
In fact, after a straightforward computation like in [8, 10],

(15) F k+4+j |0 = (2j + 3)f2 +
`

2 + (k − 1)(2j + 3)
´

f13 |0 .

Yet, trapped in between, there are j − 2 remaining components and one
should cope with them, too. In order to avoid many separate (and labori-
ous) formulas, we propose a particular valuation w(·) assigning integer values,
or multiplicities, to all Kumpera-Ruiz variables3 and allowing to assign in-
teger abstract weights to all terms in the polynomial expansion for F ν(f),
whichever is ν. In such a way, moreover, that each F ν(f), a polynomial in
x3, x4, . . . , xk+2, Xk+3, . . . with coefficients – integer combinations of partials
of f , gets its own abstract weight; cf. also sec. 2.3 in [10].
For it turns out that all terms of a given polynomial expansion have the same
weights. Such is a surprising ‘additional value’ brought in by that valua-
tion. There is, however, a price to it: the polynomials are to be understood
particularly: variables shifted by a constant, like Xk+3, should be treated as
indivisible entities; a valuation is assigned to a letter, irrespectively of its being
small or capital.
In the proof of Prop. 1, upon getting the abstract weights of F k+5 through
F k+2+j , we will be in a position to rule out the presence of certain terms in
their expansions, and that will do.

2.1. Definition of the valuation w.

An algebraic machinery underlying this definition concerns the auxiliary

vector fields y, Y, bY defined in (7) that are crucial in the formulas for the
components of Yf . Not entering into details, roughly speaking we stipulate
their being quasihomogeneous of order −(2j + 3), −2, and −1, respectively.
We underline, however, that it is rather an algebraic, not analytic, quasiho-
mogeneity; this is constantly being reminded of in the adjective ‘abstract’
(abstract weights). Here is that instrumental valuation.

w(x1) = 2j + 3 , w(x2) = 2 + (k − 1)(2j + 3) , w(x3) = 2 + (k− 2)(2j + 3) ,

w(x4) = 2 + (k − 3)(2j + 3) , . . . . . . , w(xk) = 2 + 2j + 3, w(xk+1) = 2 ,

w(xk+2) = 2j + 1, w
`

Xk+3
´

= 2j − 1, w(xk+4) = 2j − 3, . . . , w(xk+1+j) = 3,

w(xk+2+j) = 1 , w(xk+3+j) = 1 , w
`

Xk+4+j´ = 0 ,

3 not to be confused with nonholonomic orders of variables as functions!
These arithmetic, not analytic, tools are in use since 1999.
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w(xk+5+j) = −1 , w(xk+6+j) = −2 .

Having these multiplicities of letters, to each formal monomial xIXJfK (mul-
tiindices vary within their pertinent ranges; for J it is {k + 3, k + 4 + j}, for
K it is {1, 2, 3}, etc.) we attach its abstract weight

(16) w
`

xIXJfK

´ def
=

X

k∈K

w(xk) −
X

j∈J

w(Xj) −
X

i∈I

w(xi) .

Note that these abstract weights are attached irrespectively of the concrete
nature of f which could even be, say, identically zero.

Example 1. F 4 = yC − x4yA = y(f1 + x3f2) − x4y(−f3) =

f11 + 2x3f12 + 2x4f13 +
`

x3
´2

f22 + 2x3x4f23 +
`

x4
´2

f33

has, as one instantly checks, all displayed monomial terms of abstract weight
2(2j + 3).

Example 2. Let us analyze the terms appearing on the RHS of (13). The

monomial
`

Xk+3
´2

f1k has weight kw(x1)−2w(Xk+3) = k(2j +3)−2(2j−1).

The auxiliary monomial appearing for k = 3, Xk+3f33, has weight 2(2 + (3−
2)(2j + 3)) − (2j − 1) = 3(2j + 3) − 2(2j − 1) coinciding, for this value of k,
with the previous one.

These examples are instances of a more general, already invoiced, fact.

Proposition 2. All monomials building up each fixed F ν have one and
the same abstract weight that becomes, by definition, the abstract weight w(F ν)

of that F ν. In particular, w(F k+4+ν) = w(F k+4) + 2ν = k(2j + 3) − 2(2j −
1) + 2ν for ν = 1, 2, . . . , j − 2.

Moreover, w(F k+3+j) = w(x2) − 1, w(F k+4+j) = w(x2), w(F k+5+j) =
w(x2) + 1, w(F k+6+j) = w(x2) + 2.

One proves this proposition constantly using the recursive formulas (9) for the

components of an i. s., plus the quasihomogeneity of the fields y, Y, bY . For
the indicated particular j − 2 components, in the recurrences there appears
uniquely the field Y which is quasihomogeneous of order −2, whence that
arithmetical progression with step 2 on the level of abstract weights. ˜

2.2. Proof of Proposition 1.

Assume first j = 2l even. In view of Prop. 2, it is a matter of arithmetics
that, for ν = 1, 2, . . . , j − 2,

w
`

F k+4+ν
´

= w
`

f1l2

´

− (l + 1)(2j − 1) − (2j − 2 − 2ν) .

Note that 2j − 2 − 2ν takes values in the set {2, 4, . . . , 2j − 4}. Therefore,
no term

`

Xk+3
´μ

f1l2, having its abstract weight equal to w
`

f1l2

´

−μ(2j − 1),

may appear in the expansion of F k+4+ν.
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Assume now j = 2l + 1 odd. It is also only simple arithmetics that, for
ν = 1, 2, . . . , j − 2,

w
`

F k+4+ν
´

= w
`

f1k+l

´

− (l + 2)(2j − 1) − (2j − 2 − 2ν) .

And, this time, no term
`

Xk+3
´μ

f1k+l , having its abstract weight

w
`

f1k+l

´

− μ(2j − 1), appears in the expansion of F k+4+ν .

The proof of Prop. 1 is now complete. ˜

2.3. The reduction at work.

Recalling, we are going to analyze F k+5+j(f) |0 in two different situations.

Firstly for j = 2l, when f =
`

x1
´l

x2, and later for j = 2l + 1, when f =
`

x1
´k+l

. The value at 0 is important, but we will also need the values of this

component of the infinitesimal symmetry at all points of the xk+5+j–axis (as
it was the case in codimension one in [8], and codimension two in ([9]) ).

Observation 1. In either case of j even or odd, F k+5+j(f) |0 is a posi-
tive integer N(k, j).

Idea of proof. In the even j = 2l case, one directly indicates, in the formal

polynomial F k+5+j(f), a term (·)
`

Xk+3
´l+1`

Xk+4+j
´2

f1l 2, with (·) being a
positive integer. Moreover, as one can also check, this is the only term in
F k+5+j(f) using this concrete partial of f . And, clearly, only this partial
does not vanish at 0, when evaluated on the proposed contact hamiltonian.
Whence the statement with N(k, j) = l!(·) .

In the odd j = 2l + 1 case, in the polynomial in question there is a term

(·)
`

Xk+3
´l+2`

Xk+4+j
´2

f1k+l with, again, a positive integer (·), and this is
the unique term displaying this partial of f – the only partial sensitive to (or:
not-vanishing on) the proposed hamiltonian, implying the statement with, this
time, N(k, j) = (k + l)!(·) . ˜

Dealing with the infinitesimal symmetries of (14), we need to know the

values of F k+5+j not only at 0, but also at all points of the xk+5+j-axis. Yet
this causes no complications. It is a matter of course that this function is affine
in xk+5+j. In fact, after standard computations that we omit here (compare
with (15) ),

F k+5+j(0, 0, . . . , 0, xk+5+j) =

F k+5+j(0) +
`

(3j + 4)f2 +
`

3 + (k − 1)(3j + 4)
´

f13

´

(0) · xk+5+j(17)

= N(k, j)

by Obs. 1, for f in either case: the coefficient standing by xk+5+j vanishes
because so do f2 |0 and f13 |0 (the partial f13 vanishes identically; f2 vanishes

identically in the odd case, and equals
`

x1
´l

in the even case).

Moreover, with our final objective being the next variable xk+6+j (supposed
to conceal a modulus) we need to know the next, and last, component F k+6+j
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at all its arguments of the form (0, 0, . . . , 0, xk+5+j , xk+6+j), similarly to the
situation j = 1 discussed in [11]. Much like in that reference, nearly repeating
the arguments from there, one sees that the latter function does not depend
on xk+6+j and is just affine in xk+5+j,

F k+6+j(0, 0, . . . , 0, xk+5+j , xk+6+j) = A(k, j) + B(k, j)xk+5+j ,

for certain real (even integer) constants A, B (in the present work, unlike in
[11], we are not interested in their precise values). Let us recapitulate our
informations. With the above chosen f , we have the first k + 4 + j com-
ponents of Yf vanishing at 0, the next component effectively known on the
xk+5+j–axis, and the still next effectively known on the (xk+5+j, xk+6+j)-
plane. Therefore, the integral curve γ(·) of Yf passing at time t = 0 through
(0, 0, . . . , 0, b, c) ∈ Rk+6+j is easily tractable. Indeed, it reads

(18) γ(t) =
“

0, 0, . . . , 0, b + N t, c +
`

A + bB
´

t +
BN

2
t2
”

and is defined for all values of t. We are interested in the time t = − b
N

when
the one before last coordinate of γ vanishes. This point on the curve equals,
after a short computation,

γ
“

− b

N

”

=
“

0, 0, 0, . . . , 0, 0, c − 2bA + b2B

2N

”

.

Retreating now from the universal object E back to the Goursat germs (5),
we summarize the present section in

Corollary 1. It is possible to annihilate the constant b in (5) at the
expense of passing from the value c of the next (and, in the occurrence, last)

constant to a new value c − 2bA+b2B
2N

, with A, B, and N > 0 depending only
on k and j.

Attention. For the sake of simplicity, we will use the same letter c for the last
constant in (5) also after the annihilation of b.

§3. Proof of Theorem 1

From now on we assume that j ≥ 2, since the geometric classes with the
segment ‘SGS’ (j = 1) have already been treated in the work [11]. We assume
also, cf. the wording of Theorem, that the first letter S in the class’ code has
number k ≥ 4; the second S has thus number k + j + 1. It is very important
that the cases k = 3 are put aside.
The moduli emerging in the situations with j = 1 are understood to the end:
it is known that they are of the type 3 of the systematization of [6], cf. Rem. 1.
Recalling after that remark, in the classes with j ≥ 2 we will only show that
the modulus’ type is either 2c or 3.
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We will explore the possibility of changing only the last constant c in
(5) when keeping previously secured simplifications and having, after Sec. 2,
b = 0. Prior to that, however, we are to work more with the distribution E
given by (14). Recalling, that object has no additive constant next to xk+6+j ,
and the only variables in its description that are shifted by constants are Xk+3

and Xk+4+j . This is advantageous; to the distribution that does display the
constant c we will come back only in sec. 3.3.

Lemma 2. Concerning the infinitesimal symmetries of E, for any con-

tact hamiltonian f, F k+6+j(f) |0 = (·)Xk+3
`

Xk+4+j
´2

f1k |0 = (·)f1k |0,
where (·) is a certain integer.

This lemma is critical for the paper and its proof will be long. Starting it
now, one notes that only the terms of the form

`

Xk+3
´μ`

Xk+4+j
´ν

fK , with

certain μ, ν ≥ 0, can contribute to the value of F k+6+j at 0. It is also
clear that K �= {3} (because w(F k+6+2) = w(x2) + 2 > w(f3)), and that
any possible 2 ∈ K is arithmetically equivalent to 1 and 3 taken together, as
w(x2) = w(x1) + w(x3), and the same will hold for the other valuation, v, to
be defined below in sec. 3.1, see (21) ).
Therefore, without loss of generality, one can assume that either

• K contains uniquely d ≥ 1 integers 1, or else

•• K contains one 3 and d ≥ 1 integers 1, or else

• • • K contains d ≥ 0 integers 1 and e ≥ 2 integers 3.

The alternative • is the easiest one and we can handle it right now. Sup-
pose that such a term shows up in the polynomial expansion of F k+6+j and
look at the difference w(f1d)−w(F k+6+j) which has to be non-negative, hence

necessarily d ≥ k, and which has to be a multiple of w
`

Xk+3
´

= 2j − 1, that
is to say,

(19) (d − k + 1)(2j + 3) − 4 ≡ 0 mod (2j − 1) .

For d1 = k we get a first solution, yielding the associated-to-it value μ1 = 1.
What are the subsequent solutions? For d = k+1 the LHS of (19) is congruent
to 4 · 1, for d = k + 2 — congruent to 4 · 2, and so on. Since 4 and 2j − 1 are
coprime, not sooner than for d2 = k + 2j − 1 we get the second solution, with
the associated to it μ2 = 2j + 4. Such value of μ is far too high, the highest

theoretically conceivable power of Xk+3 being j + 4: it is only
`

Xk+3
´1

in

F k+3, it is at most
`

Xk+3
´2

in F k+4, and so on, at most
`

Xk+3
´j+4

(or, only

in terms contributing at 0, a lower power of Xk+3) in F k+6+j . The subsequent
solutions have still bigger μ’s, and we thus end • with the unique possibility

(20) d = k , μ = 1 , ν = ? .

Before tackling (and, in the outcome, disposing of) the alternative • • • we
need to introduce another valuation. Its necessity is felt already in (20): the
valuation w is sensitive to Xk+3, but insensitive to Xk+4+j , attributing it the



266 P. Mormul

multiplicity zero. Because of that its weak point, at this moment we do not
know the value(s) of ν in (20). Our next valuation v, not surprisingly, will be

sensitive to Xk+4+j and insensitive to Xk+3.

3.1. Definition of the valuation v.

This new valuation is entirely abstract, or: algebraic; it was found much
time after the valuation w. Together with w, it allows to catch the moduli of
the geometric classes ‘SG...GS’ in a crossing fire.

v(x1) = −2 , v(x2) = −2k + 1 , v(x3) = −2k + 3 ,

v(x4) = −2k + 5 , . . . . . . , v(xk) = −3, v(xk+1) = −1 ,

v(xk+2) = −1, v
`

Xk+3
´

= 0, v(xk+4) = 1, v(xk+5) = 2 . . . ,

v(xk+2+j) = j − 1 , v(xk+3+j) = −j , v
`

Xk+4+j´ = −2j + 1 ,

v(xk+5+j) = −3j + 2 , v(xk+6+j) = −4j + 3 .

With this valuation, the vector fields y, Y, bY are quasihomogeneous of orders,
respectively, 2, 1, and −j + 1. Note also the fundamental property

(21) v(x2) = v(x1) + v(x3) ,

as well as the fact that the analogue of Prop. 2 holds. That is, the v-abstract
weights of the components of infinitesimal symmetries are well-defined. In
particular, v(F k+4+j) = 2j − 2k, v(F k+5+j) = 3j − 2k − 1,

(22) v(F k+6+j) = 4j − 2k − 2 .

3.2. Dispensing with the alternatives • • • and •• – the end of
proof of Lemma 2.

The alternative • • • becomes now tractable, modulo an elementary (if
not completely trivial)

Observation 2. Any term
`

Xk+3
´μ`

Xk+4+j
´ν

fK that contributes to

the value F k+6+j |0 has the exponent ν < 3.

Idea of proof. What is needed, is just to express the function F k+6+j recur-
sively back via F k+4+j (the first component with the factor Xk+4+j present)

and F k+2+j , and then analyze carefully all the appearing terms, focusing on
those contributing at 0.

Let us suppose now the presence in F k+6+j of a term
`

Xk+3
´μ`

Xk+4+j
´ν

f1d 3e , with d ≥ 0 and e ≥ 2. This term has its v-abstract
weight equal to (22),

− 2d − 2ek + 3e − ν(−2j + 1) = 4j − 2k − 2 ,



Valuations, and moduli of Goursat distributions 267

or else

(23) − 2d − 2(e − 1)k + 3e = (2 − ν)(2j − 1) .

The RHS of this equation is, in view of Obs. 2, non-negative, whereas the LHS
is negative, for 3e < 8(e − 1) ≤ 2(e − 1)k. This contradiction shows that the
alternative • • • is void.

Remark 2. The LHS of (23) is often negative also for e = 1 (and not only
for e ≥ 2). It equals then −2d + 3 and is negative for d ≥ 2, while the RHS is
always non-negative in virtue of Obs. 2.

In turn, passing to the alternative ••, suppose that such a term
`

Xk+3
´μ`

Xk+4+j
´ν

f1d 3 is being present and look at the ‘old’ quantity w(f1d 3)−
w(F k+6+j) which must be a non-negative multiple of w

`

Xk+3
´

= 2j−1. That
is,

2 + (k + d − 2)(2j + 3) − 4 − (k − 1)(2j + 3) ≡ 0 mod (2j − 1) ,

or else

(24) (d − 1)(2j + 3) − 2 ≡ 0 mod (2j − 1) .

For d = 1 the LHS of this congruence is −2. For d = 2 it is congruent to
2 · 1, for d = 3 — congruent to 2 · 3, for d = 4 — to 2 · 5, and so on. Since 2
and 2j − 1 are coprime, it is straightforward to see that the smallest natural
integer solution of (24) is d = j + 1; the LHS of (24) is then congruent to
2(2j − 1), that is congruent to 0. In view of Rem. 2 above, this, and all the
remaining (bigger) solutions of (24) lead to no contributing term in F k+6+j |0.
The alternative •• is void.

Knowing that much, we are now in a position to find the unknown ν in (20).
Indeed, the v-abstract weights say that, for a term Xk+3

`

Xk+4+j
´ν

f1k to

appear in the polynomial F k+6+j , there must hold 4j − 2k − 2 = −2k −
ν(−2j + 1), yielding ν = 2. At long last, Lemma 2 is proved. ˜

3.3. The end of proof of Theorem 1.

Now that the last component at 0 of the infinitesimal symmetries of the
distribution E, (14), is known, we ask the same question for the specific D
written down in (5) and, recalling, having the constant b = 0. That is, differing
from E only by the constant c standing in the last Pfaffian equation.
The situation is similar to those leading earlier to the formulas (15) and (17).
To the value ascertained in Lem. 2 one should add a correction term involving
only the partials f2 |0 and f13 |0. The computation of that correction is fully
algorithmized and yields

(25) F k+6+j(f) |0 = (·)f1k + c
`

(4j + 5)f2 +
`

4 + (k − 1)(4j + 5)
´

f13

´

|0 .

Consider now any infinitesimal symmetry, of a non-local object given by the
equations (5) now with b = 0, such that its first k + 5 + j components vanish
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at 0. That is, on the level of germs, stipulated is the preservation of all nor-
malizations made until now save, hypothetically, the preservation of the value
of c: the finite symmetries that emerge by integration preserve all but the last
coordinate of the point 0 ∈ Rk+6+j . ‘But the last’ is in the hypothetical mode
and we will instantly see that this possibility is void.

In fact, we consider the contact hamiltonians f such that all but the last
components of Yf |0 vanish and look at the formulas (10) and (15). The
RHS in the latter is zero and so is the coefficient standing next to ∂k+3 in
the former. On top of that, the matrix of integer coefficients creating the
mentioned expressions is invertible,

˛

˛

˛

˛

˛

˛

−2 −(2k − 1)

2j + 3 2 + (k − 1)(2j + 3)

˛

˛

˛

˛

˛

˛

= 2j − 1 .

Hence f2 |0 = f13 |0 = 0. In view of (13), also f1k |0 = 0. By (25), therefore,

F k+6+j(f) |0 = 0. The preservation of all but the last coordinates of 0 implies
the same for the last one – the preservation of the point 0 as such!

It is impossible to perturb the value of c in (5) by means of the embeddable
symmetries of (5) understood as a finite object. The prolongation pattern
at the last step No k + 4 + j, visualised in (4), is thus – out of the five
alternatives of [6] – either 2c or 3, meaning the emergence of a modulus of the
local classification. Theorem 1 is now proved. ˜

§4. Conjectured precise modalities of the ‘SG. . .GS’ classes

In this section, in contradistinction to the preceding part, j ≥ 1 (we
merge now with the domain of [11]. That is, in the codes of codimension-two
geometric classes of Goursat flags there stand j ≥ 1 letters G in between the
two letters S.) The classes with the two S just neighbouring are consequently
not discussed in the present work.

We conjecture since long, and recently even more so in the light of
partially related to this field works [14, 3, 15] of Ishikawa and Zhitomirskii,
that [but see also Rem. 3 below]

� the modality of all classes GGSGjSGl, l ≥ 1, is zero — they are all simple;

� the modality of classes GGGSGjSGl is one from l = 3 onwards;

� the modality of classes GGGGSGjSGl is one for l = 3, 4, 5, 6, and is two
from l = 7 onwards;

� the modality of classes GGGGGSGjSGl is one for l = 3, 4, 5, 6, is two for
l = 7, 8, 9, 10, and is three from l = 11 onwards ,

and so on.

Remark 3. Precisely speaking, not 100% of these statements is in the con-
jectural mode. Namely, these for l = 3, with at least three G’s at the code’
beginning, are proved: for j = 1 in [11] and for j ≥ 2 in the present work.



Valuations, and moduli of Goursat distributions 269

The moduli exemplified in [11] are of type 3/[6], and the same we suppose for
those of Thm. 1 related to j ≥ 2. Yet, by the infinitesimal methods alone, it
is not possible to distinguish between the module types 2c and 3 of [6] (cf. in
this respect also Sec. 4 in [10]).
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Semidifférentiabilité et version lisse de la
conjecture de fibration de Whitney

C. Murolo et D. J. A. Trotman

Abstract.

For controlled stratified maps f : X → X ′ between two strati-
fied spaces, we define what it means for f to be semi-differentiable,
horizontally-C1 and F-semi-differentiable (where F is a foliation).

When X ′ is a smooth manifold, f is always semi-differentiable.
In general, semi-differentiability is equivalent to f being horizon-

tally-C1 with bounded differential.
Horizontally-C1 regularity depends on the existence of (a)-

regular horizontal stratified foliations of X and X ′, which gives a
smooth version of the stratified fibration whose existence was con-
jectured by Whitney for analytic varieties in 1965, and implies a
horizontally-C1 version of Thom’s first isotopy theorem.

We obtain finally the corresponding theorems for the finer prop-
erty of F-semi-differentiability.

§1. Introduction

Dans [MT]1,2, nous avons considéré le problème de l’extension con-
tinue contrôlée d’un champ de vecteurs, donné sur une (ou plusieurs)
strate(s) d’une stratification régulière, à toutes les strates supérieures.

Le cas d’un relèvement (extension) contrôlé est classique, et il est
bien connu [Ma], [GWPL] que les flots relevés sur une stratification au
moins (b)-régulière, définissent à tout instant t ∈ R des homéomorphismes
stratifiés qui sont lisses sur chaque strate, mais qui ne donnent pas en
général une application C1 (exemple de la famille des quatre droites:
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[Wh], [GWPL]). C’est la raison pour laquelle les principaux théorèmes
de la théorie des stratifications régulières sont des résultats de nature
topologique et non différentiable. Le premier théorème d’isotopie de
Thom, donnant la stabilité topologique de la fibre d’une submersion
stratifiée contrôlée f : X → M à valeurs dans une variété, en est
l’exemple le plus célèbre; il est obtenu par la technique “standard” de
relèvement contrôlé de champs de vecteurs vi qui donne des flots globaux
φi qui ne sont pas toujours C1.

Nous avons considéré dans [MT]1,2 des extensions de champs qui de
plus sont continues; notre question devient alors: “quel type de régularité
(en plus de la continuité [Ma]) obtient-on pour les flots relevés ?”.

Cet article est consacré à ce problème.
Quand on relève un champ ζX défini sur une strate X de dimen-

sion 1, les trajectoires du flot du champ relevé définissent un feuilletage
“horizontal” de dimension 1, F = {Fβ} de type C0,∞ : i.e. des courbes
lisses dont les espaces tangents, en cöıncidant avec ceux de la distribu-
tion canonique DX(y) = {DXY (y)}Y ≥X [MT]2, tendent vers TxX quand
y → x. En considérant alors un relèvement continu ζ = {ζY }Y ≥X du
champ ζX , comme nous le montrons au §4 (théorème 4 et corollaires),
une régularité de type C1-affaibli :

“ lim
(yn,vn)→(x,v)

φY ∗yn(vn) = φX∗x(v) , ∀ Y > X ”

reste valable au moins pour les suites de vecteurs vn ∈ DX(yn).
Cette observation est la motivation cruciale de cet article où nous

donnons des réponses aux questions suivantes :

– Quand dim X > 1 quel est l’analogue du feuilletage horizontal
F = {Fβ}β ?

– Peut-on obtenir que ses feuilles tendent vers TxX de manière C1

quand y→x ?
– Que peut-on dire de la différentiabilité du flot relevé (à l’instant

t) φY : Y → Y (Y > X) le long de la “direction horizontale” ?

Ce problème rappelle une conjecture de H. Whitney [Wh] pour des
stratifications (b)-régulières d’une variété analytique. Whitney conjec-
ture pour toute strate X et pour tout x0 ∈ X l’existence d’un feuilletage
{Fβ}β de même dimension que X vérifiant la condition limz→x TzFβ =
TxX . Au §2.3, nous définissons cette propriété pour des stratifications
réelles (définition 6), comme la (a)-régularité (autour de x0) du feuil-
letage horizontal {Fβ}.

Pour des stratifications réelles (b)-régulières, l’existence d’un tel
“bon” feuilletage a été conjecturée par le deuxième auteur en 1993 ;
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nous montrons au §5 qu’elle est une condition nécessaire et suffisante
pour que les flots des champs relevés soient horizontalement-C1, et plus
généralement qu’elle est nécessaire pour que d’autres morphismes hori-
zontalement-C1 puissent exister. Nous réinterpretons alors la conjecture
de Trotman comme la version lisse de la conjecture de fibration de Whit-
ney ([Wh], §9, remarque 3). On peut voir [MT]1,3 pour plus de détails
concernant les autres travaux sur les conjectures de Whitney et Trot-
man, et une indication de leurs multiples conséquences. Nous préparons
actuellement (décembre 2006) avec A. du Plessis une étude approfondie
de ces conjectures (lesquelles semblent bien être vraies).

Dans le §2, nous introduisons les notions de semidifférentiabilité,
de régularité horizontalement-C1 et de F -semidifférentiabilité pour un
morphisme stratifié f : X → X ′ ; on précise les relations entre elles
(théorème 1) et on montre que la réciproque d’un homéomorphisme
horizontalement-C1 est encore horizontalement-C1 (théorème 2).

Une question importante reste ouverte :
– Quand est-ce qu’un morphisme stratifié est horizontalement-C1 ?
Toute la théorie développée dans la suite est dédiée à ce problème.

Dans le §3 nous analysons le cas particulier où le morphisme considéré

est le flot stratifié φ = {φY : Y → Y }Y ≥X d’un champ de vecteurs
ζ = {ζY }Y ≥X obtenu par relèvement continu contrôlé d’un champ ζX

défini sur une strate X .

Dans le §4.1 nous supposons l”involutivité d’une distribution cano-
nique DX = {DXY }Y ≥X relative à la strate X [MT]1,2

1 et montrons
que les flots (à l’instant t) φ = {φY : Y → Y }Y ≥X du champ ζ relevé
continu contrôlé du champ ζX sont horizontalement-C1 en tout point x0

autour duquel DX est involutive (théorèmes 3 et 4).
On remarque que si dimX ∈ {1, dimA − 1}, le flot φ est toujours

horizontalement-C1 en tout point de X (corollaires 4 et 5).
Dans le §4.2 on donne les résultats correspondants concernant la

F -semidifférentiabilité de φ = {φY : Y → Y }Y ≥X (théorèmes 5 et 6).
Dans le §4.3 nous donnons quelques caractérisations de l’involutivité

de la distribution canonique DX en termes du feuilletage H induit par
la trivialisation topologique locale H : Rl × π−1

X (x0) → π−1
X (Ux0) d’une

projection πX : TX → X (théorème 7).

Dans le §5 nous considérons le cas général où la distribution canon-
ique n’est pas nécessairement intégrable. Dans le §5.1, après avoir énoncé

1D. Trotman et A. du Plessis ont vérifié en 1994 qu’en général une distri-
bution canonique DX n’est pas involutive. M. Field [Fi] avait remarqué cette
difficulté à D. Trotman, sous une forme équivalente, dans une lettre de 1976.
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la version lisse de la conjecture de fibration de Whitney (i.e. la con-
jecture du feuilletage (a)-régulier), nous remplaçons l’intégrabilité de
DX par l’hypothèse plus faible de (a)-régularité d’un feuilletage hori-
zontal H (transverse aux fibres de la projection πX) et qui équivaut à
l’involutivité d’une nouvelle distribution canonique. On retrouve ainsi
les mêmes théorèmes qu’au §4, et en particulier que les flots des champs
relevés sont horizontalement-C1 (théorème 8).

On donne ensuite des conditions suffisantes en termes de ces feuil-
letages pour qu’un morphisme stratifié arbitraire f : X → X ′ soit
horizontalement-C1 (théorème 9) et on conclut la section en énonçant
une version horizontalement-C1 du premier théorème d’isotopie de Thom
(théorème 10). Dans le §5.2 on établit enfin les versions F -semidifféren-
tiable des théorèmes 8, 9 et 10 du §5.1 (théorèmes 11, 12, 13).

Les démonstrations des théorèmes 10 et 13 du §5 omises, seront
publiées séparément.

§2. Régularités de morphismes stratifiés.

Dans ce paragraphe, nous introduisons et étudions différentes con-
ditions de régularité pour un morphisme stratifié f : X → X ′.

On introduit d’abord la notion de semidifférentiabilité, qui dans le
cas de deux strates X < Y signifie que la différentielle fX∗∪ fY ∗ : TX ∪
TY → TX ′ ∪ TY ′ d’un morphisme stratifié fX ∪ fY : X ∪ Y → X ′ ∪ Y ′

soit continue.
Le contrôle par rapport aux deux systèmes de données de contrôle

(S.D.C.) de X et X ′ est supposé par définition2, et implique qu’un mor-
phisme stratifié f : X → M à valeurs dans une variété lisse M est
toujours semidifférentiable.

La semidifférentiabilité se préserve par composition, mais ne se
préserve pas par application réciproque. Nous introduisons alors la
notion de morphisme horizontalement-C1 et démontrons que la semid-
ifférentiabilité de f équivaut à ce que f soit horizontalement-C1 et
ait des dérivées bornées (théorème 1) et que la réciproque f−1 d’un
homéomorphisme stratifié f : A → A′ horizontalement-C1 est horizon-
talement-C1 (théorème 2).

On conclut la section en introduisant la notion plus fine de F -
semidifférentiabilité (le long un feuilletage F) de f .

2On ne sait pas en général s’il est possible de construire deux S.D.C. par
rapport auxquels f : X → X ′ soit contrôlée ; mais ceci est bien connu quand
f est une submersion et X ′ = M est une variété [Ma].
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2.1. Morphismes semidifférentiables.
Dans tout le paragraphe X = (A, Σ) et X ′ = (A′, Σ′) seront deux

stratifications (a)-régulières de A ⊆ Rn et A′ ⊆ Rm au sens de Whitney
[Wh].

Une variété et/ou une application entre deux variétés sera dite “lisse”
quand elle est de classe C1.

Définition 1. Un morphisme stratifié est une application continue
f : A → A′, stratifiée, i.e. qui envoie chaque strate X de A dans une
unique strate X ′ de A′ et telle que la restriction fX : X → X ′ de f est
lisse (non nécessairement une submersion).

Grâce à la condition de frontière X ⊆ Y et la continuité de f , pour
toutes strates X < Y de A, f(X) ⊆ f(Y ) ⊆ f(Y ). Donc les strates X ′

et Y ′ vérifient aussi X ′ ⊆ Y ′ , i.e. X ′ ≤ Y ′.

Les stratifications X et X ′ de cette section seront munies de
deux systèmes de données de contrôle T = {(TX , πX , ρX)}X∈Σ et
T ′ = {(TX′ , πX′ , ρX′)}X′∈Σ′ [Ma] et tout morphisme stratifié f sera
contrôlé par rapport aux systèmes T et T ′, i.e. :

∀X < Y , ∃ ε > 0 tel que :

∀ y ∈ T ε
XY = TX(ε) ∩ Y on ait :

{
πX′fY (y) = fXπX(y)
ρX′fY (y)) = ρX(y).

Si la stratification est seulement (a)-régulière et le système T se
réduit à la famille des projections, alors la condition de contrôle devient
πX′fY (y) = fXπX(y) ([MT]2, §3 remarque 1). Remarquons que ∀X <
Y , la condition de frontière et la (a)-régularité de X et X ′ impliquent
que TX ⊆ TY et TX ′ ⊆ TY ′ dans R2n et R2m.

Définition 2. Un morphisme stratifié f : X → X ′ sera dit semid-
ifférentiable en x ∈ X (resp. en (x, v) ∈ TX), si pour toute strate
Y > X (et donc Y ′ ≥ X ′) l’application différentielle fX∗ ∪ fY ∗ : TX ∪
TY → TX ′ ∪ TY ′ est continue en tout point (x, v) ∈ {x} × TxX ⊆ TX
(resp. en (x, v)), i.e. la condition de limite est vérifiée :

∀ {(yn, vn)}n ⊆ TY ,

lim
n→∞

(yn, vn) = (x, v) ∈ TX ⇒ lim
n→∞

fY ∗ yn
(vn) = fX∗x(v).

On dira que f est semidifférentiable sur X si f est semidifférentiable
en tout x ∈ X et que f est semidifférentiable (sur X ) si f est semid-
ifférentiable sur toute strate X ∈ Σ.
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Des exemples élémentaires montrent que la semidifférentiabilité en
un point x (sur une strate X ou sur A tout entier) d’un morphisme
stratifié f : X → X ′ est en général plus faible que la C1-régularité de
f en x (sur X ou sur A). Si la stratification X ′ se réduit à une variété
lisse, la semidifférentiabilité découle de la condition de contrôle :

Proposition 1. Toute application f : X → M à valeurs dans une
variété M et π-contrôlée par rapport à la famille des projections d’un
S.D.C. est semidifférentiable.

Preuve. Pour tout couple de strates adjacentes X < Y de X , soit
{(yn, vn)}n une suite dans TY telle que limn(yn, vn) = (x, v) ∈ TX .

La stratification but de f : X → M , se réduisant à une variété
X ′ = (M, {M}), la condition de π-contrôle se réduit à fY = fX ◦ πXY .
Donc fY ∗ = fX∗ ◦ πXY ∗ et la relation limn fY ∗yn(vn) = fX∗x(v) découle
immédiatement de la propriété que

lim
n

fX∗xn(πXY ∗yn(vn)) = fX∗x(v) où xn = πXY (yn)

valable pour les applications lisses fX : X → M et πXY : TXY → X .
Q.E.D.

Les stratifications (b) et (c)-régulières admettent toujours des S.D.C.
dont les projections et les fonctions distance sont lisses [Ma], [Be]. Cepen-
dant quand une projection πX : TX → X n’est pas C1, comme elle est
π-contrôleé par définition de S.D.C., on a :

Remarque 1. Toute projection πX :TX →X du S.D.C. est semid-
ifférentiable sur X.

Les remarques 2 et 3 qui suivent sont élémentaires :

Remarque 2. Si f : X → X ′ est une application semidifférentiable
il existe une application “différentielle” f∗ de f , continue sur le “fibré
tangent généralisé” TX = ∪X∈ΣTX à la stratification X :

f∗ = ∪XfX∗ : TX = ∪X∈ΣTX −→ TX ′ = ∪X′∈Σ′TX ′ .

Remarque 3. Si f : X → X ′ et g : X ′ → X ′′ sont semidifféren-
tiables alors g ◦ f : X → X ′′ l’est aussi.

La proposition 3 anticipe des observations sur la convergence de
f∗ le long des directions des fibres des projections du S.D.C. qu’on
développera à la section 2.2.
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Proposition 2. Pour qu’un morphisme stratifié f : X → X ′ soit
semidifférentiable en un point x ∈ X il faut que pour toute strate Y > X
la restriction fY ∗y| ker πXY ∗y

: kerπXY ∗y → kerπX′Y ′∗y′ soit de norme

gXY (y) := ||fY ∗y | ker πXY ∗y
|| bornée autour de x dans X ∪ Y .

Preuve. S’il existe une suite {yn} ⊆ Y convergente vers x ∈ X , telle
que la suite ||fY ∗yn| ker πXY ∗yn

|| soit divergente, il existe alors une suite
de vecteurs vn ∈ kerπXY ∗yn = Tynπ−1

XY (xn) ⊆ TynY (xn = πXY (yn))
telle que :

i) ||fY ∗yn| ker πXY ∗y
(vn)|| = ||fY ∗yn| ker πXY ∗yn

|| · ||vn|| ;
ii) ||vn|| = ||fY ∗yn| ker πXY ∗y

||− 1
2 .

Comme {||fY ∗yn| kerπXY ∗yn
||}n est une suite divergente, de ii) on a

limn vn = 0 ∈ TxX et limn(yn, vn) = (x, 0) ∈ TX .
Or limn ||vn|| = 0, mais grâce à i) et ii) on trouve :

||fY ∗yn| ker πXY ∗y
(vn)|| = ||fY ∗yn| ker πXY ∗yn

|| · ||vn||

= ||fY ∗yn| ker πXY ∗y
|| 12 → ∞

ce qui implique que f n’est pas semidifférentiable en x. Q.E.D.

De la proposition 2, par des exemples élémentaires on a facilement :

Remarque 4. L’application réciproque f−1 : X ′ → X d’un homéo-
morphisme semidifférentiable f : X → X ′ n’est pas en général semidif-
férentiable.

2.2. Morphismes horizontalement-C1.
La proposition 2 suggère de séparer l’analyse de la convergence le

long de “la direction verticale” (celle du sous-fibré kerπX∗) et celle le
long d’une “direction horizontale”.

Pour une stratification (c)-régulière [Be], les auteurs du présent ar-
ticle ont montré le théorème suivant ([MT]2 théorème 4, §5) et donné la
définition qui suit (voir aussi [MT]1, théorèmes 1 et 2) :

Théorème. Soient X un espace stratifié (c)-régulier dans une
variété C1 M et F = {(πX , ρX) : TX → X × [0,∞[ }X∈Σ un système de
données de contrôle de X .

Pour toute strate X de X , il existe une distribution stratifiée con-
tinue DX : T ε

X → Gl
n où l = dimX, DX = {DXY }Y ≥X et ∀Y ≥ X,

DXY = DX |TXY
avec TXY = TX ∩ Y , telle que :
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i) ∀Y ≥ X la restriction DXY est un sous-fibré de ker ρXY ∗;
ii) DXX(x) = TxX , ∀x ∈ X;
iii) TyY = DXY (y) ⊕ kerπXY ∗y est une somme directe ∀ y ∈ T ε

XY ;
iv) la restriction πXY ∗y| : DXY (y) → TxX où x = πXY (y) est un

isomorphisme;
v) pour tout champ de vecteurs C1 ξX sur X,la formule :

ξY (y) = DXY (y) ∩ π−1
XY ∗y(ξX(x)) , x = πX(y)

définit un relèvement stratifié continu contrôlé ξ = {ξY }Y ≥X de ξX sur
T ε

X = ∪Y ≥XT ε
XY .

Définition. Toute distribution DX = {DXY }Y ≥X vérifiant les con-
ditions i), . . . , v) dans le théorème précédent est dite une distribution
canonique (relative a la strate X).

Définition 3. Un morphisme stratifié f : X → X ′ sera dit horizon-
talement-C1 en un point x d’une strate X ∈ Σ s’il existe une distribution
canonique locale DX = {DXY }Y ≥X autour de x dans A ([MT]1,2, [Mu])
telle que :

lim
(yn,vn)→(x,v)

fY ∗yn(vn) = fX∗x(v) , ∀ (x, v) ∈ TX

soit vérifiée pour chaque suite {(yn, vn)} ⊆ Y convergente vers (x, v)
avec vn ∈ DXY (yn). On appellera horizontaux les vecteurs vn ∈ DX(yn)
et verticaux les vn ∈ kerπXY ∗yn .

Un morphisme stratifié f est donc horizontalement-C1 en x ∈ X ssi
∀ Y > X

fX∗ ∪ fY ∗|DXY
: TX ∪ DXY → TX ′ ∪ TY ′

est continue en x.
On dira que f est horizontalement-C1 sur une strate X (resp. sur

(A, Σ)) si f est horizontalement-C1 en tout point x ∈ X (resp. ∀x ∈ X
et ∀X ∈ Σ).

Remarque 5. Tout morphisme stratifié semidifférentiable f est
horizontalement-C1.

Théorème 1. Un morphisme stratifié contrôlé f : X → X ′ est
semidifférentiable en un point x ∈ X si et seulement s’il est horizontale-
ment-C1 en x et s’il existe un voisinage Ux de x dans A tel que pour
toute strate Y > X, la fonction gXY (y) = ||fY ∗y | ker πXY ∗y

|| est bornée
dans Ux ∩ Y .
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Preuve. La remarque 5 et la proposition 2 montrent l’implication
“seulement si”.

Pour toute strate Y > X et pour toute suite {(yn, vn)} ⊆ TY telle
que limn(yn, vn) = (x, v) ∈ TX , décomposons [MT]1,2 tout vecteur vn ∈
TynY = DXY (yn) ⊕ kerπXY ∗yn en une somme directe vn = vh

n + vv
n de

ses composantes horizontale et verticale de sorte que:

lim
n→∞

vh
n = v ∈ TxX et lim

n→∞
vv

n = 0 ∈ TxX .

Comme f est horizontalement-C1 en x, on a limn fY ∗yn(vh
n) = fX∗x(v).

D’autre part, comme les différentielles le long des fibres des projec-
tions sont bornées autour de x, on peut écrire

0 ≤ ||fY ∗yn(vv
n)|| ≤ ||fY ∗yn | ker πXY ∗yn

|| · ||vv
n|| ≤ M · ||vv

n||

et en déduire que limn fY ∗yn(vv
n) = 0. En décomposant via f∗ les images

fY ∗yn(vn) nous concluons que f est semidifférentiable en x :

lim
n→∞

fY ∗yn(vn) = lim
n→∞

fY ∗yn(vh
n) + lim

n→∞
fY ∗yn(vv

n)

= fX∗x(v) + 0 = fX∗x(v) .

Q.E.D.

Remarque 6. Une projection πX d’un S.D.C., étant toujours semid-
ifférentiable sur X, est également horizontalement-C1 sur X.

Quand X est (c)-régulière sur X au sens de K. Bekka [Be] on a aussi
facilement :

Proposition 3. Soit X une stratification (c)-régulière munie d’un
S.D.C. T = {(πX , ρX) : TX → X×[0,∞[ }X∈Σ, tel que chaque voisinage
tubulaire TX est muni de la stratification induite de Σ et [0,∞[ est strat-
ifié par {0}∪]0,∞[. Alors toute fonction distance ρX : TX → {0}∪]0,∞[
est horizontalement-C1 sur X.

Preuve. Soit DX = {DXY }Y ≥X une distribution canonique obtenue
à partir du S.D.C. T auquel ρX appartient.

Rappelons que ∀Y > X , DXY est par définition un sous-fibré vec-
toriel de ker ρXY ∗.

Etant donnée une suite {(yn, vn)} ⊆ TY telle que limn(yn, vn) =
(x, v) ∈ TX et dont les vecteurs vn sont horizontaux vn ∈ DXY (yn),
à partir de l’inclusion DXY (yn) ⊆ kerρXY ∗yn on trouve que vn ∈
ker ρXY ∗yn , donc limn ρXY ∗yn(vn) = 0 = ρXX∗x(v). Q.E.D.
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Remarque 7. Une fonction ρX : TX → {0}∪]0,∞[ est semid-
ifférentiable sur X ssi ∀Y > X la fonction gXY (y) = ||ρY ∗y | ker πXY ∗y

||
est bornée.

Définition 4. Un homéomorphisme stratifié est un morphisme
stratifié contrôlé f : X = (A, Σ) → X ′ = (A, Σ) tel que f : A → A′

soit un homéomorphisme et ∀X ∈ Σ la restriction fX : X → X ′ soit un
difféomorphisme.

Dans ce cas f induit sur X ′ un S.D.C. T ′ = f∗(T ) (§3, [MTP]) pour
lequel f−1 : X ′ → X est un morphisme stratifié contrôlé.

Théorème 2. Si f : X → X ′ est un homéomorphisme stratifié
horizontalement-C1 sur un voisinage U de x dans X, alors ∀ z′ ∈ f(U)
tel que g(z′) = ||f−1

∗z′ || soit bornée dans un voisinage Vz′ de z′ dans A′,
l’homéomorphisme f−1 est horizontalement-C1 en z′.

La preuve du théorème 2 réside dans la proposition ci-dessous :

Proposition 4. Si DX = {DXY }Y ≥X est une distribution canon-
ique définie dans un voisinage W de x dans A et f : X → X ′ est
un homéomorphisme stratifié horizontalement-C1 par rapport à DX sur
un voisinage U ⊆ W ∩ X de x dans X, alors la distribution DX′ =
{DX′Y ′}Y ′≥X′ définie dans le voisinage W ′ = f(W ) de x′ = f(x) ∈ X ′

dans A′, par DX′Y ′(y′) = fY ∗y(DXY (y)) , ∀ y′ = f(y), est une distribu-
tion canonique locale dans le voisinage W ′ de x′.

Preuve. Comme f est un homéomorphisme stratifié contrôlé, il est
immédiat que :

i) ∀Y ′ ≥ X ′ , DX′Y ′ est un sous-fibré de ker ρX′Y ′∗ de même
dimension que TX ;

ii) DX′X′(z′) = Tz′X ′ pour tout z′ ∈ U ′ ⊆ X ′;
iii) Ty′Y ′ = DX′Y ′(y)⊕kerρX′Y ′∗y′ est une somme directe ∀y′ ∈ Y ′

dans V ′ = f(V );
iv) πX′Y ′∗y′| : DX′Y ′(y′) → Tz′X ′ où z′ = πX′Y ′(y′) est un isomor-

phisme;
v) pour tout champ de vecteurs ξX′ sur X ′, la formule

ξY ′(y′) := DX′Y ′(y′) ∩ π−1
X′Y ′∗y′(ξX′(z′)) , où z = πX′(y′) ,

définit un relèvement ξ′ = {ξY ′}Y ′≥X′ de ξX′ contrôlé par rapport à T ′.

Afin de montrer que DX′ est une distribution canonique autour de
x′, soit {y′

n} ⊆ W ′ = f(W ′) telle que limn y′
n = z′ et montrons que

limn DX′(y′
n) = Tz′X ′.
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L’application f étant bijective on peut écrire y′
n = f(yn) avec

limn yn = z, Tz′X ′ = fX∗z(TzX), et v′ = fX∗z(v) avec v ∈ TzX .
Comme DX est une distribution canonique et limn yn = z, il existe

une suite vn ∈ DXY (yn) telle que limn vn = v et d’autre part, f étant ho-
rizontalement-C1 en z′, on trouve limyn→z′ fY ∗yn(vn) = fX∗z′(v) = v′.

Alors la suite de vecteurs v′n = fY ∗yn(vn) ∈ fY ∗yn(DXY (yn)) =
DX′Y ′(y′

n) vérifie limn v′n = v′, donc Tz′X ′ = limn DX′Y ′(y′
n). Q.E.D.

Preuve (du théorème 2). Soit DX = {DXY }Y ≥X la distribution
canonique locale par rapport à laquelle f est horizontalement-C1 en
x. Considérons autour de x′ = f(x) la distribution canonique locale
DX′ = {DX′Y ′(y) = fY ∗y(DXY (y))}Y ′≥X′ et montrons que f−1 est
horizontalement-C1 autour de x′ par rapport à DX′ .

Fixons z′ ∈ U ′, v′ ∈ Tz′X ′, une strate Y ′ > X ′ et une suite
{(y′

n, v′n)} dans Y ′ telle que limn(y′
n, v′n) = (z′, v′) avec v′n ∈ DX′Y ′(y′

n).
Comme f est un homéomorphisme stratifié, nous pouvons écrire :

z′ = f(z), X ′ = f(X), Y ′ = f(Y )

z ∈ X, X, Y ∈ Σ, Y > X

v′ = fX∗z(v), y′
n = f(yn), v′n = fY ∗yn(vn)

v ∈ TzX, yn ∈ Y, vn ∈ DXY (yn)

de sorte que la condition “f−1 est horizontalement-C1 en z′” devient

lim
n→∞

f−1
Y ′∗y′

n
(v′n) = f−1

X′∗z′(v′) ⇔ lim
n→∞

vn = v .

Comme f−1
Y ′∗ est bornée dans Vz′ , la suite {vn} est également bornée

||vn|| ≤ ||f−1
Y ′∗y′

n
(v′n)|| ≤ ||f−1

Y ′∗y′
n
|| · ||v′n|| ≤ M · (||v′|| + 1) .

Montrons alors que {vn} s’accumule sur un point unique v =
f−1

X′∗z′(v′). En fait, ∀u ∈ TzX limite d’une sous-suite convergente {vnh
}h

de {vn}, comme f est horizontalement-C1 en z, on déduit de l’égalité
u = limh vnh

que :

fX∗z(u) = lim
h→∞

fY ∗yh
(vnh

) = lim
h→∞

v′nh
= v′

et donc que u = f−1
X′∗z′(v′) = v.

On conclut alors que {vn} a un unique point d’accumulation v, donc
limn vn = v et f−1 est horizontalement-C1 en z′ ∈ U ′ = f(U). Q.E.D.
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2.3. Morphismes F-semidifférentiables.
Nous introduisons maintenant pour des morphismes stratifiés une

notion de régularité, associée à un feuilletage, plus fine que la semi-
différentiabilité et que la régularité horizontalement-C1, et qui généralise
ces notions et la condition (af ) de Thom.

Nous noterons F = {Fβ}β un feuilletage en sous-variétés Fβ lisses
de dimension h (≤ dimX ) d’un sous-ensemble ouvert U du support A
de X = (A, Σ) et on supposera U stratifié par la stratification naturelle
ΣU = {Y ∩ U}Y ∈Σ induite par Σ sur U . Enfin, ∀ y ∈ U , Fy notera la
feuille de F qui passe par y ; on a alors F = {Fy}y∈U .

Définition 5. On dit que F est un feuilletage stratifié compatible
avec Σ (ou avec ΣU ) si toute feuille Fy de F est contenue dans la strate
Y de Σ qui contient y.

Les feuilletages que nous considérons seront toujours compatibles
avec la stratification Σ fixée au départ et on parlera donc simplement
de “feuilletage stratifié”.

Un feuilletage stratifié F de U détermine alors une famille de feuil-
letages {FY }Y ∈Σ où ∀Y ∈ Σ, FY = {Fy}y∈U∩Y est l’ensemble des
feuilles contenues dans la strate Y . F est dit de classe C0,1 si pour
toute Y le feuilletage FY est de classe C0,1 (les variétés C1 Fy, “varient
de manière C0”). On considérera toujours des feuilletages de classe C0,1.

Soient maintenant x un point de U et X ∈ Σ la strate contenant x.

Définition 6. Le feuilletage stratifié F sera dit (a)-régulier en x
si pour toute suite {yn} ⊆ U telle que limn yn = x et telle que la limite
limn TynFyn existe on a :

lim
n

TynFyn = τ ∈ Gn
h =⇒

⎧⎪⎨⎪⎩
τ ⊂ TxX si h < dim X

τ = TxX si h = dim X

τ ⊃ TxX si h > dim X.

Le feuilletage F sera dit (a)-régulier sur X s’il est (a)-régulier en
tout point x ∈ X. Enfin F sera dit (a)-régulier quand il est (a)-régulier
sur toute strate X.

Remarque 8. Si dimF = dim X = h, F est (a)-régulier en x ∈ X
(resp. sur X) si et seulement si (resp. ∀x ∈ X) lim

y→x
TyFy = TxX.

Dans le cas d’un feuilletage induit par une submersion stratifiée, la
notion de feuilletage (a)-régulier généralise la condition (af ) de Thom :
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Remarque 9. Une submersion stratifiée surjective, f : X → X ′,
de corang constant h, vérifie la condition (af ) de Thom en un point x
d’une strate X si et seulement si ∀Y > X le feuilletage stratifié F(f) =
{f−1(a′)}a′∈A′ est (a)-régulier en x.

Preuve. Comme f est une submersion stratifiée de corang constant
h, alors F(f) = {f−1(a′)}a′∈A′ est un feuilletage stratifié de variétés
lisses de dimension h.

Donc la condition (af ) de Thom en x ∈ X est valable si et seulement
si la limite lim

y→x
Tyf

−1(y′) = TxX , i.e. si F(f) est (a)-régulier en x.

Q.E.D.

Définition 7. Le fibré tangent TF à un feuilletage stratifié F est
le h-sous-fibré de TU des vecteurs tangents aux feuilles de F , i.e. :

TF = ∪y∈U{y} × TyFy .

Soit F un feuilletage stratifié (a)-régulier d’un voisinage ouvert U
d’un point x d’une strate X et soit f : X → X ′ un morphisme stratifié.

Définition 8. On dira que f est F-semidifférentiable en x si, pour
chaque (x, v) ∈ {x} × TxX ⊆ T (X ∩ U) et ∀ {(yn, vn)}n ⊆ TF telle que
limn(yn, vn) = (x, v), on a aussi limn fYn∗yn(vn) = fX∗x(v) où, ∀n ∈ N,
Yn désigne la strate de ΣU qui contient yn. De façon évidente on définit
la F-semidifférentiabilité sur X (ou sur X ∩ U) et sur X .

La F -semidifférentiabilité généralise la semidifférentiabilité et la
régularité horizontalement-C1. Si on note ∀Y ∈ Σ, {Y } le feuilletage
trivial de la strate Y on a évidemment:

Remarque 10. La stratification Σ est (a)-régulière (en x ∈ U ∩X)
si et seulement si chaque feuilletage trivial {U ∩ Y } est (a)-régulier (en
x ∈ U ∩ X).

Proposition 5. Un morphisme stratifié f : X → X ′ est semidiffé-
rentiable (en x ∈ X) si et seulement si pour toute strate Y > X il est
{Y }-différentiable (en x).

Preuve. Si F = {Y } alors TF = ∪y∈Y {y} × TyY = TY . Q.E.D.

Soient U un voisinage ouvert de x ∈ X dans A, F = {Fy}y∈U

un feuilletage (a)-régulier de dimension dimFy = dim X transverse aux
fibres de la projection πX du S.D.C. de X et D(F) = {DXY }Y ≥X la
distribution d’espaces tangents aux feuilles de F .
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Proposition 6. Un morphisme stratifié f : X → X ′ est horizontale-
ment-C1 en x par rapport à D(F) = {DXY }Y ≥X , si et seulement s’il
est F-semidifférentiable en x.

Preuve. Si dimF = dimX et si F est (a)-régulier alors la distribu-
tion D(F) := {DXY }Y ≥X définie ∀Y > X par DXY (y) := TyFy est une
distribution canonique sur U et le sous-fibré ∪y∈U{y}×DX(y) cöıncide
avec l’espace tangent TF au feuilletage F . Q.E.D.

§3. Le cas du flot d’un champ relevé.

A partir de ce paragraphe, nous étudierons la régularité d’un flot
continu contrôlé obtenu par relèvement aux strates supérieures d’un
champ de vecteurs défini sur un squelette de la stratification A.

Soient X une stratification (c)-régulière d’un sous-ensemble A ⊆ Rn,
ζX un champ de vecteurs sur une strate X de X ayant un flot global
ΦX , ζ = {ζY }Y ≥X le relèvement continu contrôlé de ζX [MT]1,2 sur un
voisinage stratifié TX et Φ = {ΦY }Y ≥X son flot.

Il est bien connu [Ma] que la seule hypothèse de contrôle de ζ = {ζY }
suffit pour que Φ : R × TX → TX soit un prolongement continu de
ΦX : R × X → X .

Remarque 11. Φ : R × TX → TX est C1 par rapport à t ∈ R.

Preuve. ζ étant continu sur X , ∂
∂tΦ = ζ ◦ Φ l’est aussi. Q.E.D.

Considérons le relèvement contrôlé ζ qui soit de plus continu [MT]2.
Quelle amélioration de la régularité de Φ∗=∪Y ≥XΦY∗ a-t-on par rapport
aux variables autres que t ∈ R ?

Fixons une strate X de X et le voisinage tubulaire TX stratifié par la
stratification ΣTX = {TXY }Y ≥X induite de Σ. Notons, pour simplifier
les notations, TX ≡ A, ΣTX ≡ Σ et donc tout TXY ≡ Y . Fixons t ∈ R.

L’homéomorphisme stratifié: Φt = ∪Y ≥XΦY t : TX → TX a pour
restriction à Y ≥ X une application lisse φY = ΦY t : Y → Y (Y ≡
TXY ) qui a priori, se prolonge de manière seulement continue sur le lieu
singulier X ⊆ Y .

Soit {yn}n ⊆Y une suite telle que limn yn = x ∈X et limn TynY =
τ . On va étudier la convergence de la suite des différentielles φY ∗yn

:
TynY → Ty′

n
Y où y′

n = φY (yn).
Soit πX : TX → X la projection du système de données de contrôle

et soit DX = {DXY }Y ≥X la distribution canonique relative à X [MT]1,2.
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Rappelons alors que le champ ζ = {ζY }Y ≥X relevé contrôlé continu est
défini sur toute strate Y > X par la formule:

ζY (y) = πXY
−1
∗y (ζX(x)) ∩ DXY (y) , où x = πXY (y).

Fixons x0 ∈ X . La stratification X étant (c)-régulière, la submersion
stratifiée πX : TX → X admet pour un voisinage Ux0 de x0 dans X une
trivialisation topologique locale, i.e. un homéomorphisme stratifié

H : Ux0 × πX
−1(x0) → πX

−1(Ux0)

lisse sur les strates et qui est “l’identité” sur Ux0 (H(p, x0) = p , ∀ (p, x0) ∈
Rl × x0 ≡ X . Ainsi, πX

−1(Ux0) est structuré par un feuilletage vertical
V dont les feuilles sont les fibres de la projection πX et par un feuilletage
horizontal H = Hx0 supplémentaire à V . Notons :

V =
{
Ny = πX

−1(πX(y))
}

y∈πX
−1(Ux0)

,

H =
{
My0 = H(Rl × y0)

}
y0∈πX

−1(x0)
.

Remarque 12. Le feuilletage Hx0 est compatible avec la stratifica-
tion de TX .

Remarque 13. L’application φ = {φY } est compatible avec le feuil-
letage vertical V :

φY (Ny) = Ny′ ∀ y, y′ ∈ Y avec y′ = φY (y) .

Preuve. Grâce à la condition de πX -contrôle, pour toute strate
Y > X et ∀ y ∈ Y , on a πXY ∗y(ζY (y)) = ζX(πXY (y)) ce qui équivaut
à πXY (φY (y)) = φX(πXY (y)) . Alors φY préserve les fibres de πXY :
TXY → X (feuilles verticales dans Y ) et on a : φY (Ny) ⊆ Ny′ . Par
symétrie, on a aussi φ−1

Y (Ny′) ⊆ Ny et donc φY (Ny) = Ny′ . Q.E.D.

L’étude de la convergence des applications φY ∗y : TyY → Ty′Y peut
alors être séparée selon les “composantes verticales”

φY ∗y|TyNy
: TyNy → Ty′Ny′

i.e.
φY ∗y| ker πXY ∗y

: kerπXY ∗y → kerπXY ∗y′

qui sont l’application différentielle de

φY | πXY
−1(x) : πXY

−1(x) → πXY
−1(x′)
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où x = πXY (y) et x′ = πXY (y′) et les “composantes horizontales”:

φY ∗y|DXY (y) : DXY (y) → Ty′Y .

Cependant ici deux précisions s’imposent :
i) On ne peut pas considérer la convergence des restrictions aux

feuilles horizontales de H, φY ∗y|TyMy
: TyMy → Ty′My′ , car H = {My}y

n’étant pas nécessairement (a)-régulier sur Ux0 , la H-semidifférentiabi-
lité de φ = {φY }Y pourrait ne pas avoir de sens.

ii) On ne peut pas écrire φY ∗y|DXY (y) : DXY (y) → DXY (y′), car on
n’a pas nécessairement φY ∗y(DXY (y)) ⊆ DXY (y′) ,

On verra au §4 que la propriété φY ∗y(DXY (y)) ⊆ DXY (y′) est équi-
valente à l’involutivité de la distribution canonique DX = {DXY }Y ≥X et
au §5 que la (a)-régularité du feuilletage H est la condition nécessaire et
suffisante pour que les flots des champs relevés soient horizontalement-
C1 et H-semidifférentiables. De plus, sous l’hypothèse d’involutivité de
DX on trouvera DXY (y) = TyMy ce qui unifie les deux choix ci-dessus
et permet d’obtenir la bonne régularité des flots stratifiés.

Depuis la proposition 2 §2 on a :

Corollaire 1. S’il existe une strate Y et une suite {yn}n con-
vergente en un point x ∈ Ux0 telles que les restrictions verticales
φY | πXY

−1(x) : πXY
−1(x) → πXY

−1(x′) aient des différentielles non-
bornées, alors le flot φY : Y → Y relevé de φX : X → X n’est pas
semidifférentiable en x (mais il peut être horizontalement-C1).

Une situation récurrente est par exemple celle de l’Escargot de Kuo
(ci-dessous) où le difféomorphisme φY | πXY

−1(x) transforme une fibre
πXY

−1(x), à courbure inférieurement bornée en une fibre πXY
−1(x′)

à courbure arbitrairement grande. Ceci entrâıne une divergence de la
norme des différentielles pour y → x [Wi] : pour toute suite {yn}n ⊆
πXY

−1(x), la suite des normes {||φY ∗yn|Nyn
||}n n’est pas bornée.

Example. (Escargot de Kuo). Soit A = X ∪ Y ⊆ R3 stratifié par
X = “l’axe des x” et une strate 2-dimensionelle Y contenant une surface
Y ′ obtenue à partir d’une spirale avec un enroulement infini autour de
l’axe des x d’équation en coordonnées polaires du type ρ = h(θ) (avec
limθ→∞ h(θ) = 0) dans un plan {x = 1} orthogonale à X en la réduisant
le long de Ox jusqu’à la contracter en un point x0 = (0, 0, 0) (figure 1).

En coordonnées cylindriques (x, ρ, θ), on peut représenter le morceau
enroulé de Y par Y ′ = {(x, ρ, θ) ∈ R3

∣∣ ρ = g(x) · h(θ), x ∈ [0, 1[ , θ ∈
[0,∞[ }. Selon les fonctions d’enroulement h(θ) et de contraction g(x)
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Fig. 1

on peut obtenir des escargots (c) ou (b)-réguliers (voir [Mu] pour plus
de détails) mais jamais (w)-réguliers [OT]1,2.

La “géométrie de la strate” Y a donc des conséquences im-
portantes sur la nature (des normes) d’une suite de restrictions
{||φY ∗yn| ker πXY ∗yn

||}n. Précisons aussi que la différentielle d’un flot
relevé φY peut être non bornée, même quand Y n’a pas de patholo-
gies de courbure (voir [Kuo] pour un exemple de calcul explicite).

Pour des stratifications Lipschitziennes, les relèvements des champs
peuvent être obtenus avec des flots à dérivées bornées [Pa] et grâce aux
propositions 4 et 6 :

Proposition 7. Si X est une stratification Lipschitzienne admet-
tant un S.D.C. alors φ = {φY }Y est semidifférentiable en x ∈ Ux0 si et
seulement si φ = {φY }Y est horizontalement-C1 en x ∈ Ux0 .

Dans les prochaines sections nous considérerons la convergence du
flot φ = {φY }Y ≥X relevé de φX le long des directions horizontales.

§4. Le cas où la distribution canonique est involutive.

Dès maintenant, toute extension contrôlée de champ de vecteurs
sera considéré obtenue par la méthode du relèvement continu dans la
distribution canonique DX [MT]1,2,3, ceci aussi pour les champs vi et
leurs flots φi qui définissent la trivialisation topologique H .

L’involutivité d’une distribution canonique locale DX = {DXY}Y≥X

est suffisante pour que le feuilletage horizontal

H = Hx0 = {My0 = H(Ux0 × y0) | y0 ∈ π−1
X (x0)}

soit (a)-régulier autour de x0 (proposition 8 et corollaire 2).



288 C. Murolo et D. J. A. Trotman

Dans ce cas nous démontrons alors que tout flot relevé Φt = {φY :
Y → Y }Y ≥X est horizontalement-C1 (théorèmes 3 et 4) sur Ux0 et même
H-semidifférentiable sur π−1

X (Ux0) (théorèmes 5 et 6).
Si dimX ∈ {1, dimA− 1}, l’involutivité de DX est toujours vérifiée

et donc les flots des champs relevés dans DX sont horizontalement-C1 sur
Ux0 (corollaires 3 et 4) et H-semidifférentiables sur π−1

X (Ux0) (corollaires
5 et 6).

4.1. φ = {φY : Y → Y } est horizontalement-C1 sur X.
Supposons qu’une distribution canonique DX soit involutive dans un

voisinage π−1
X (Ux0) dans A. A. du Plessis et D. Trotman ont construit

en 1994 un exemple montrant que ce n’est pas vrai en général.
Notre problème étant local, nous ne considérerons que la stratifica-

tion induite de TX sur le voisinage π−1
X (Ux0) de x0 dans A et identifierons

alors Ux0 avec X et π−1
XY (Ux0) = π−1

X (Ux0) ∩ Y avec Y > X .
D’autre part Ux0 ≡ X étant le domaine d’une carte on peut aussi

supposer Ux0 ≡ Rl × 0n−l et x0 ≡ 0n.
Rappelons que pour une stratification qui vérifie une des conditions

de régularité (c), (b), ou Lipschitz et dont les strates sont de classe Ck

(k ≥ 2), l’homéomorphisme H de trivialisation topologique locale de la
projection πX est obtenu de la manière suivante.

Soient E1, . . . , El les champs de vecteurs constants sur Rl × 0 = X
et v1, . . . , vl les champs relevés continus dans la distribution DX .

Les champs vi = vi(y) étant contrôlés, leurs flots φ1, . . . , φl existent
∀ t ∈ R, et l’application

H : Rl × π−1
X (x0) → π−1

X (Ux0) ,

H((t1, . . . , tl), y0) = φl(tl, . . . , φ1(t1, y0)..) = y

est un homéomorphisme stratifié lisse sur les strates.
DX étant involutive par hypothèse, il existe un feuilletage horizon-

tal H ′ = {M ′
y}y tel que les espaces tangents aux variétés intégrales

maximales sont précisément les espaces tangents à la distribution :

TyM
′
y = DX(y) , ∀ y ∈ π−1

X (Ux0) ≡ TX .

Lemme 1. Si la distribution canonique DX = {DXY }Y ≥X est invo-
lutive, ∀ i, j ≤ l, [vi, vj ] = 0 et en particulier les flots φi commutent entre
eux. Réciproquement il est évident que [vi, vj ] = 0 ∀i, j ≤ l entrâıne
l’involutivité de DX .
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Preuve. Fixons Y > X et soit y ∈ Y .
Par définition les relevés v1(y), . . . , vl(y) sont tangents à DXY (y), et

comme DX est involutive pour tout i, j ≤ l alors [vi, vj ](y) est tangent
à DXY (y). Donc [vi, vj ](y) cöıncide avec sa composante horizontale.

Les champs {vh}h étant des relèvements πX -contrôlés, πXY ∗(vh) =
Eh ∀h ≤ l, d’où:

πXY ∗[vi, vj ](y) = [πXY ∗(vi), πXY ∗(vj)](y) = [Ei, Ej ](y) = 0 ,

donc [vi, vj ](y) ∈ kerπXY ∗y, i.e. sa composante horizontale est nulle.
Q.E.D.

Proposition 8. Si DX est involutive, alors les champs relevés vi

sont les images des champs canoniques par la trivialisation H :

vi(y) = H∗(t1,...,tl,y0)(Ei) , ∀ i = 1, . . . , l .

De plus le feuilletage intégral H ′ tangent à DX cöıncide avec le feuilleta-
ge horizontal H = {My0 = H(Rl × y0)}y0∈πXY

−1(x0)
déterminé par H.

Preuve. Fixons une strate Y > X et un point y ∈ Y (≡ π−1
XY (Ux0)).

Il suffira de montrer que les espaces tangents aux feuilles TyMy et
TyM ′

y cöıncident.
Pour tout y = H(t1, . . . , tl, y0) ∈ Y la variété intégrale horizontale

My = My0 définie par H et passant par y passe aussi par y0 et donc
TyMy est engendré par les vecteurs {H∗(t1,...,tl,y0)(Ei) }i .

En notant wi(y) = H∗(t1,...,tl,y0)(Ei), ∀ i = 1, . . . , l on a :

TyMy = TyMy0 = TyH(Rl × y0)

= H∗(t1,...,tl,y0)(R
l × x0) =

[
w1(y), . . . , wl(y)

]
.

Par le lemme 1, les flots φi commutent, et on peut écrire (où φ̂
signifie “omission de φ”)

H(t1, . . . , tl, y0) = φi(ti, φl(tl, . . . , φ̂i(ti, . . . , φ1(t1, y0) . . . ) .

Alors pour tout i = 1, . . . , l on a :

wi(y) =
∂

∂τ

∣∣∣∣
τ=ti

φi(τ, φl(tl, . . . , φ̂i(ti, . . . , φ1(t1, y0) . . . ) =

vi(φi(ti, φl(tl, . . . , φ̂i(ti, . . . , φ1(t1, y0) . . . ) = vi(H(t1, . . . , tl, y0)) = vi(y)
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d’où

TyMy =
[
w1(y), . . . , wl(y)

]
=

[
v1(y), . . . , vl(y)

]
= DXY (y) = TyM ′

y .

Q.E.D.

Corollaire 2. Si DX est involutive, H est (a)-régulier sur X.

Preuve. De H = H ′ on déduit :

lim
y→x

TyM
′
y = lim

y→x
TyMy = lim

y→x
DXY (y) = TxX .

Q.E.D.

Théorème 3. Si la distribution canonique DX = {DXY }Y ≥X est
involutive, alors ∀Y > X le difféomorphisme φY préserve les variétés
intégrales du feuilletage horizontal H, et ∀ y ∈ Y , y′ = φY (y), l’isomorphi-
sme φY ∗y : TyY → Ty′Y vérifie φY ∗y(DXY (y) = DXY (y′) (i.e. préserve
la distribution DXY ), et se décompose en une somme directe :

φY ∗y = φh
y ⊕φv

y : DXY (y)⊕kerπXY ∗y

φh
y⊕φv

y−−−−→ DXY (y′)⊕kerπXY ∗y′ .

La matrice A(y) de l’isomorphisme φh
y : DXY (y) → DXY (y′) par

rapport aux bases σ = {vi(y) }l
i=1 et σ′ = {vi(y′) }l

i=1 cöıncide avec la
matrice A = A(x) de l’isomorphisme φX∗x : TxX → Tx′X (x = πXY (y))
par rapport à la base {Ei}l

i=1.

Preuve. Soient Y > X une strate, y ∈ Y et ζY le champ continu
relevé de ζX sur Y . Comme ζY est tangent à DXY , il est (proposition
1) tangent aux variétés du feuilletage H et chaque trajectoire de ζY est
contenue dans une unique variété intégrale maximale.

En particulier, My = My′ , car y′ = φY (y) = (ΦY )t(y).
La même propriété étant vérifiée pour tout couple de points z, z′ =

φY (z) correspondant par φY , pour tout z ∈ My on a Mz′ = Mz = My.
Alors,

φY (My) = ∪z∈My

{
φY (z)

}
⊆ ∪z∈My Mz′ = ∪z∈MyMy = My

et le difféomorphisme φY préserve les variétés intégrales du feuilletage
H = H ′.

De même en raisonnant sur φ−1
Y = (ΦY )−t on a φY (My) = My.
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Comme

φY ∗y(DXY (y)) = φY ∗y(TyMy) = Ty′ φY (My)

= Ty′My = Ty′My′ = DXY (y′)

les sous-espaces supplémentaires DXY (y′) et kerπXY ∗y′ de TyY se
préservent par φY ∗y : TyY → TyY , et on a la décomposition en somme
directe :

φY ∗y : DXY (y) ⊕ kerπXY ∗y
φh⊕φv

−−−−→ DXY (y′) ⊕ kerπXY ∗y′ .

Soit A(x) = A = (Ai
j) i≤l

j≤l
(i = indice de colonne, j = indice de

ligne), la matrice de l’isomorphisme ΦX∗x : TxX → Tx′X dans la base
canonique {Ei}l

i=1 de Rl × 0.
Pour démontrer la formule de transformation

(∗)Y : φY ∗y(vi(y)) =
l∑

j=1

Ai
jvj(y′) , ∀ i = 1, . . . , l

comme les deux membres sont (maintenant!) des vecteurs de DXY (y′)
et comme πXY ∗y′ : DXY (y′) → Rl × 0 = Tx′X est un isomorphisme
[MT]1,2, il suffit de vérifier que

πXY ∗y′(φY ∗y(vi(y))) = πXY ∗y

( l∑
j=1

Ai
jvj(y′)

)
.

En fait, on a

πXY ∗y′
( l∑

j=1

Ai
jvj(y′)

)
=

l∑
j=1

Ai
jπXY ∗y′(vj(y′)) =

l∑
j=1

Ai
jEj ,

et grâce à la condition de contrôle ce vecteur cöıncide avec

πXY ∗y′
(
φY ∗y(vi(y)

)
= φX∗x

(
πXY ∗y(vi(y))

)
= φX∗x(Ei) =

l∑
j=1

Ai
jEj .

Q.E.D.

Théorème 4. Si la distribution canonique DX = {DXY }Y ≥X est
involutive, alors le flot φ = {φY : Y → Y }Y ≥X (à l’instant t ∈ R) est
horizontalement-C1 sur X ≡ Ux0 .
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Preuve. Soit Y > X une strate et {(yn, vn) }n ⊆ TY une suite de
vecteurs vn sans composante verticale, i.e.

vv
n = 0 et vn = vh

n ∈ DXY (yn) .

Par continuité de l’application φ = ∪Y ≥XφY : ∪Y ≥XY → ∪Y ≥XY
on a φY (yn) = φX(x) , et il suffit de montrer que :

lim
n→∞

φY ∗yn
(vn) = φX∗x(v) .

Notons A(yn) =
[
φY ∗yn

]
la matrice du théorème 3 et utilisons les

notations analogues pour A(xn), xn = πXY (yn) ∈ X . Notons aussi
A(yn)i et A(xn)i leurs i−èmes colonnes.

Les relevés canoniques v1(yn), . . . , vl(yn) étant une base de DXY (yn)
on peut écrire vn =

∑l
i=1 λn

i vi(yn) pour des λn
i ∈ R convenables.

Pour v ∈ Rl × 0, notons v =
∑l

i=1 λiEi avec λ1, . . . , λl ∈ R. Les

champs de vecteurs vi étant des relevés continus de champs canoniques
Ei on a :

lim
n

vi(yn) = Ei et donc lim
n→∞

(λn
1 , . . . , λn

l ) = (λ1, . . . , λl).

En notant M · W =
∑k

i=1 μiwi par le produit d’un k-uplet de
scalaires M = (μ1, . . . , μk) et un k-uplet de vecteurs W = (w1, . . . , wk)
on peut écrire :

φY ∗yn
(vn) =

l∑
i=1

λn
i φY ∗yn

(vi(yn)) =
l∑

i=1

λn
i

[
φY ∗yn

]i·(v1(yn), . . . , vl(yn))

qui grâce au théorème 3 cöıncide avec

l∑
i=1

λn
i

[
φX∗xn

]i · (v1(yn), . . . , vl(yn))

et donc on déduit que :

lim
n→∞

φY ∗yn
(vn) = lim

n→∞

l∑
i=1

λn
i

[
φX∗xn

]i · (v1(yn), . . . , vl(yn)).
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Alors on peut conclure que :

lim
n→∞

φY ∗yn
(vn) =

l∑
i=1

λi

[
φX∗x

]i · (E1, . . . , El)

=
l∑

i=1

λiφX∗x(Ei) = φX∗x(v),

car limn φX∗xn
= φX∗x , lim

n→∞
(λn

1 , . . . , λn
l ) = (λ1, . . . , λl), et les champs

relevés canoniques v1, . . . , vl de E1, . . . , El vérifient

lim
n→∞

(v1(yn), . . . , vl(yn)) = (E1, . . . , El) .

Q.E.D.

Corollaire 3. Si dimX = 1, toute distribution canonique locale
ou globale DX est involutive. Donc tout relèvement continu contrôlé
ζ = {ζY }Y ≥X d’un champ de vecteurs ζX défini sur une strate X de
dimension 1 a un flot φ={φY :Y → Y }Y ≥X horizontalement-C1 sur X.

Corollaire 4. Si dimX = dim A − 1, la distribution canonique
globale DX est involutive. Donc tout relèvement continu contrôlé ξ =
{ξY }Y ≥X d’un champ de vecteurs ξX a un flot φ = {φY : Y → Y }Y ≥X

horizontalement-C1 sur X.

Preuve. Si dimX = dim A− 1, alors, par (c)-régularité de la strat-
ification, chaque système de donnée de contrôle T = {(TX , πX , ρX)} ad-
met une seule distribution canonique DX = {DXY }Y ≥X , qui s’obtient
en prenant DXY (y) = ker ρXY ∗y pour toute Y > X .

Une telle distribution canonique globale DX est nécessairement
intégrable sur TX tout entier, admettant comme variétés intégrales max-
imales les hypersurfaces de niveaux {ρ−1

XY (ρXY (y)}y de ρXY : TXY →
[0,∞[. Le résultat découle alors du théorème 4. Q.E.D.

4.2. H-semidifférentiabilité de φ = {φY }Y ≥X .
Dans cette section, nous améliorons les résultats du 4.1 en démon-

trant que le flot φ = {φY : Y → Y }Y ≥X d’un champ ξ = {ξY }Y ≥X

relevé continu contrôlé dans une distribution canonique DX involutive
est F -semidifférentiable par rapport au feuilletage horizontalH = {My =
H(y0 × Rl)}y∈π−1

X (x0)
de π−1

X (Ux0), i.e. il est H-semidifférentiable.
Ceci signifie qu’étant donnée une strate Z > X et une suite {(zn, vn)}n

⊆ TZ convergeant en un point (y, v) ∈ TY , où Y est une strate telle que
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Z > Y > X on a limn φZ∗zn(vn) = φY ∗y(v) , au moins pour les suites vn

“horizontaux par rapport à X” (X−horizontaux), i.e. : vn ∈ DXZ(zn).

Avec les mêmes hypothèses et notations qu’aux théorèmes 3 et 4 :

Théorème 5. Pour toutes Z > Y > X et ∀ z ∈ Z ≡ TXZ ∩TY Z en
notant z′ = φZ(z), y = πY Z(z) et y′ = πY (z′) = φY (y′), la matrice A(z)
de l’isomorphisme restriction φZ∗z| : DXZ(z) → DXZ(z′) par rapport
aux bases σz = {vi(z) }i et σ′

z′ = {vi(z′) }i cöıncide avec la matrice
A = A(y) de l’isomorphisme restriction φY ∗y| : DXY (y) → DXY (y′) par
rapport aux bases canoniques σy = {vi(y) }i et σ′

y′ = {vi(y′) }i.

Preuve. Grâce au théorème 4, DX = {DXY }Y ≥X étant involutive,
on a bien deux isomorphismes de restriction

φZ∗z| : DXZ(z) → DXZ(z′) et φY ∗y| : DXY (y) → DXY (y′) .

En notant A =
(
Ai

j

)
i≤l
j≤l

, la thèse s’obtient en démontrant la formule:

(∗)Z : φZ∗z(vi(z)) =
l∑

j=1

Ai
jvj(z′) , i = 1, . . . , l .

La distribution canonique DX est (par construction) multicompati-
ble avec une distribution canonique DY = {DY Z}Z≥Y ([MT]2, Proposi-
tion dans §5) , c.à.d. DXZ(z′) ⊆ DY Z(z′).

L’application πY Z∗z′ : DY Z(z′) → Ty′Y étant un isomorphisme,
DXZ(z′) se projette isomorphiquement sur un sous-espace vectoriel de
Ty′Y . Ce sous-espace est, grâce aux conditions de contrôle, précisément
DXY (y′), et donc on a l’isomorphisme de restriction

πY Z∗z′| : DXZ(z′) → DXY (y′) .

et la preuve de (∗)Z découlera l’égalité des deux images via πY Z∗z′ :

πY Z∗z′(φZ∗z′ (vi(z′))) = πY Z∗z′
( l∑

j=1

Ai
jvj(z′)

)
.

En fait, comme φZ est πY -contrôlé et vi(z) est le πY Z -relevé contrôlé
de vi(y) on a :

πY Z∗z′(φZ∗z(vi(z))) = φY ∗y(πY Z∗z(vi(z))) = φY ∗y(vi(y))
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et de façon analogue on trouve :

πY Z∗z′
( l∑

j=1

Ai
jvj(z′)

)
=

l∑
j=1

Ai
jπY Z∗z′

(
vj(z′)

)
=

l∑
j=1

Ai
jvj(y′) .

On conclut alors car l’involutivité de DX (théorème 1) entrâıne

(∗)Y : φY ∗y(vi(y)) =
l∑

j=1

Ai
jvj(y′) , i = 1, . . . , l .

Q.E.D.

Proposition 9. Si DX = {DXY }Y ≥X est involutive, le feuilletage
H = {My = H(y0 × Rl)} est (a)-régulier sur π−1

X (Ux0).

Preuve. Soit Y > X une strate et fixons une strate Z > Y .
Pour tout z ∈ Z ≡ TY Z , par l’involutivité de DX et la proposition

1 on a : TzH = TzMz = DXZ(z) .
La distribution canonique étant continue sur Y ≡ TXY , ∀ y′ ∈ TXY

on a
lim

z→y′
TzH = lim

z→y′
DXZ(z) = DXY (y′)

et comme DXY (y′) ⊆ Ty′Y , on déuit la (a)-régularité de H sur Y .
Q.E.D.

Théorème 6. Si DX = {DXY }Y ≥X est involutive et si H = Hx0 =
{My = H(y0×Rl)}y désigne le feuilletage défini sur le voisinage π−1

X (Ux0)
par la trivialisation topologique de la projection πX : TX → X, alors le
flot relevé φ = {φY : Y → Y } est H-semidifférentiable sur π−1

X (Ux0).

Preuve. Pour que la notion de H-semidifférentiabilité ait du sens
il faut que le feuilletage H soit (a)-régulier et ceci est assuré par la
proposition 9 ci-dessus.

En considérant alors une suite {(zn, vn)} ∈ TH (y, v) ∈ {y}×TyH ⊆
TyY , la preuve est analogue à celle du théorème 4. En fait, comme
vn ∈ TznH = TznMzn = DXZ(zn) et ce dernier est engendré par les
relevés canoniques v1(zn), . . . , vl(zn), nous pouvons écrire

vn =
l∑

i=1

λn
i vi(zn) pour des λn

1 , . . . , λn
l ∈ R convenables, ∀n ∈ N.



296 C. Murolo et D. J. A. Trotman

De même, comme v ∈ TyH = TyMy = DXY (y) et que ce dernier
est engendré par les vecteurs canoniques relevés v1(y), . . . , vl(y) on peut
également écrire :

v =
l∑

i=1

λivi(y) pour des λ1, . . . , λl ∈ R convenables.

Les relèvements vi(z) étant continus sur Y de lim
zn→y

vi(zn) = vi(z)
on a :

(1) : lim
n→∞

(λn
1 , . . . , λn

l ) = (λ1, . . . , λl).

En notant alors ∀n ∈ N, yn = πY Z(zn), et en utilisant des notations
analogues à celles du théorème 2 pour les matrices (et leurs i-colonnes)

A(zn) =
[
φZ∗zn|

]
, A(yn) =

[
φY ∗yn|

]
, A(y) =

[
φY ∗y|

]
A(zn)i =

[
φZ∗zn|

]i
, A(yn)i =

[
φY ∗yn|

]i
, A(y)i =

[
φY ∗y|

]i

on peut écrire :

φZ∗zn
(vn) =

l∑
i=1

λn
i φZ∗zn

(vi(zn)) =
l∑

i=1

λn
i

[
φZ∗zn|

]i·(v1(zn), . . . , vl(zn)) .

Par le théorème 3, les deux matrices suivantes cöıncident :

[φZ∗zn|] = A(zn) = A(yn) = [φY ∗yn|]

et on a :

φZ∗zn
(vn) =

l∑
i=1

λn
i

[
φY ∗yn|

]i · (v1(zn), . . . , vl(zn))

et

lim
n→∞

φZ∗zn
(vn) = lim

n→∞

l∑
i=1

λn
i

[
φY ∗yn|

]i · (v1(zn), . . . , vl(zn)) .

Finalement, par la continuité des relevés vi(zn) qui convergent vers
les champs vi(y) quand zn → y, la relation de limite (1) et la relation
limyn→y

[
φY ∗yn|

]
=

[
φY ∗y|

]
(car φY : Y → Y est lisse), on conclut que :

lim
n→∞

φZ∗zn
(vn) =

l∑
i=1

λi

[
φY ∗y

]i · (v1(y), . . . , vl(y))

=
l∑

i=1

λiφY ∗yvi(y) = φY ∗y(v) .
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Q.E.D.

Comme pour le cas horizontalement-C1, en améliorant les corollaires
3 et 4 on trouve:

Corollaire 5. Si dimX = 1, toute distribution canonique locale
ou globale DX est involutive. En particulier tout flot φ = {φY : Y →
Y }Y ≥X obtenu à partir d’un relèvement continu contrôlé d’un champ de
vecteurs ζX défini sur une strate X de dimension 1 est H-semidifférenti-
able sur X.

Corollaire 6. Si dimX = dim A − 1, la distribution canonique
globale DX est involutive. Donc tout relèvement continu contrôlé ξ =
{ξY }Y ≥X d’un champ de vecteurs ξX a un flot φ = {φY : Y → Y }Y ≥X

H-semidifférentiable.

Preuve. Si dimX = dimA − 1 la distribution canonique DX est
unique (comme on l’a vu au corollaire 3), globalement définie sur TX

et intégrable, car ∀Z > X elle cöıncide avec DXZ(y) = ker ρXZ∗y.
De plus, le feuilletage H a pour feuilles les hypersurfaces de niveaux
{ρ−1

XZ(ρXZ(y)}y de la fonction distance ρXY : TXZ → [0,∞[.
Comme dim X = dimA − 1 et Z > X , on a dimZ = dimA, et

donc il n’existe aucune strate Y vérifiant Z > Y > X . Le flot φ =
{φY : Y → Y } est alors H-semidifférentiable si et seulement s’il est
horizontalement-C1. Q.E.D.

4.3. Quelques caractérisations de l’involutivité de DX .
Le domaine de la trivialisation H de la projection πX : TX → X est

le produit Rl×π−1
X (x0) dont la projection (verticale) sur Rl corresponde

via H à πX . De même, l’homéomorphisme H induit une projection
horizontale π′ correspondant à la projection pr2 sur π−1

X (x0) :

Rl × π−1
X (x0)

H−−−−→ π−1
X (Ux0)

pr2

⏐⏐� ⏐⏐�π′

π−1
X (x0)

H|
π
−1
X

(x0)
=id

−−−−−−−−−→ π−1
X (x0).

Les deux feuilletages (horizontal et vertical) triviaux transverses
de Rl × π−1

X (x0) induisent via H deux feuilletages transverses dans
π−1

X (Ux0): le feuilletage horizontal que nous avons noté H et le feuil-
letage vertical, ayant pour variétés intégrales les fibres de la projection
πXY (H étant contrôlée), que nous avons précédemment noté V au §3.
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Sur toute strate Y > X , les traces de H et V induisent deux
feuilletages transverses, HY et VY , dont les feuilles (My, πXY

−1(x)) se
coupent en un unique point {yx} = My ∩πXY

−1(x). Ce point yx a pour
variété intégrale verticale la fibre de πXY passant par yx, et pour variété
intégrale horizontale la fibre My de π′.

Lemme 2. Pour tout Y > X, et y ∈ πXY (Ux0), la projection
horizontale π′ envoie la variété intégrale horizontale My sur le point où
elle rencontre la fibre πXY

−1(x0) :

π′ : π−1
X (Ux0) → π−1

X (x0) ,

π′(My) = My ∩ πXY
−1(x0) = y0 où y = H(t1, . . . , tl, y0).

Donc, les feuilles de H cöıncident avec les fibres de la projection
horizontale π′.

Définition 9. Un champ de vecteurs ζ sur Y sera dit contrôlé par
rapport à la projection π′ si pour tout y, y′ ∈ Y dans la même fibre de
π′, on a : π′

∗y(ζ(y)) = π′
∗y′(ζ(y′)).

Ceci est valable si et seulement si il existe un champ de vecteurs η
tangent à π−1

X (x0) tel que π′
∗y(ζ(y)) = η(π′(y)) , ∀ y ∈ π−1

X (Ux0).
Un tel champ sera alors noté par η(y0) = π′

∗y(ζ(y)), y étant un point
arbitraire de la fibre π′−1(y0).

Théorème 7. Les conditions suivantes sont équivalentes :
1) DX = {DXY }Y ≥X est une distribution involutive dans π−1

X (Ux0).
2) Pour tout relèvement continu contrôlé ζ = {ζY }Y ≥X d’un champ

de vecteurs ζX sur X, et ∀ Y > X,

φY ∗y(DXY (y)) = DXY (y′) , ∀ y, y′ = φY (y) ∈ Y

et en particulier on a la décomposition en somme directe φY ∗y = φh⊕φv.
3) Pour tout champ ζX sur X, le relèvement continu contrôlé ζ =

{ζY }Y ≥X du champ ζX dans DX est contrôlé par rapport à la projection
horizontale π′ et on a π′

∗(ζY ) = 0.
4) [vi, vj ] = 0 pour tout i, j = 1, . . . , l.

Preuve. (1 ⇔ 2). Voir les preuves des théorèmes 3 et 4 au §4.1.
(1 = 2 ⇒ 3). Soit Y > X .
Par hypothèse d’involutivité, ∀ y = H(t1, . . . , tl, y0) ∈ Y on a

DXY (y) = TyMy0 , par définition du relèvement canonique ζY (y) ∈
DXY (y), et alors ζY (y) ∈ TyMy0 = kerπ′

∗y. Donc π′
∗y(ζY (y)) = 0.
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(3 ⇒ 4). Par hypothèse, chaque relèvement vi (du champ canonique
Ei), est π′-contrôlé : π′

∗y(vi(y)) = π′
∗y0

(vi(y0)) = 0.
Donc π′

∗y([vi, vj ]) = [π′
∗y(vi), π′

∗y(vj)] = 0, i.e. les crochets de Lie
[vi, vj ](y) ∈ kerπ′

∗y sont tangents au feuilletage horizontal kerπ′
∗y.

D’autre part, par la condition de πX -contrôle on a :

πXY ∗y([vi, vj ]) = [πXY ∗y(vi), πXY ∗y(vj)] = [Ei, Ej ] = 0, ∀ i, j = 1, . . . , l

et donc [vi, vj ](y) ∈ kerπXY ∗y est un champ vertical.
Par transversalité et complémentarité de dimension on conclut alors:

[vi, vj ](y) ∈ kerπ′
∗y ∩ kerπXY ∗y = {0}

(4 ⇔ 1). C’est le lemme 1 au §4.1. Q.E.D.

§5. Cas général : DX non nécessairement involutive.

Notons π−1
X (Ux0) = W par simplicité.

Dans ce paragraphe, on montre que si la distribution canonique
DX = {DXY }Y ≥X n’est pas intégrable, la (a)-régularité du feuilletage
horizontal H = {My}y∈W (condition nécessaire mais pas suffisante pour
l’involutivité de DX) peut alors remplacer l’hypothèse d’involutivité de
DX en vue d’obtenir des flots relevés et de façon plus générale des mor-
phismes stratifiés horizontalement-C1 et H-semidifférentiables.

La distribution canonique DX introduite dans [MT]1,2 est “cano-
nique” dans le sens où elle vérifie des propriétés importantes obtenues
dans [MT]1,2, mais elle n’est pas univoquement déterminée et dépend
du S.D.C. considéré et d’une partition de l’unité.

La distribution D′
X = D(H) tangent au feuilletage H = {My}y∈W ,

i.e. :
D′

X(y) = TyHy = TyMy , ∀ y ∈ W = π−1
X (Ux0)

ne cöıncide pas en général avec DX (sauf quand DX est integrable) et
vérifie toutes ces conditions de [MT]1,2, sauf éventuellement la condition
de continuité. D’autre part, la (a)-régularité du feuilletage local H =
{My}y∈W équivaut à la continuité de D′

X sur W et donc, si H est (a)-
régulier, D′

X peut être réinterprétée comme une distribution canonique
locale définie dans le voisinage W de x0 dans X .

La différence par rapport aux résultats du §4, où DX est supposée
involutive, est que maintenant nous trouvons des flots de champs relevés
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qui sont horizontalement-C1, non plus par rapport à DX , mais par rap-
port à D′

X . Cela signifie en particulier que nous devons remplacer les
champs ζ = {ζY }Y ≥X et les flots φ = {φY }Y ≥X précédents (relevés
dans DX) respectivement par les champs ξ = {ξY }Y ≥X et les flots
ψ = {ψY }Y ≥X correspondants relevés sur le feuilletage H (i.e. sur
D′

X). Grâce à la (a)-régularité de H, le relevé ξ sera (de même que
ζ) un relèvement continu et contrôlé de ζX (mais, ne disposant pas de
l’involutivité de DX

3, ξ ne cöıncidera pas avec ζ, ni ψ avec φ).

5.1. Régularité horizontalement-C1.
Avant d’énoncer les théorèmes de régularité des morphismes strat-

ifiés soumis à l’existence d’un feuilletage (a)-régulier, précisons que A.
du Plessis et D. Trotman ont vérifié en 1994 que, même dans le cas
d’une stratification (b)-régulière, une distribution canonique n’est pas
nécessairement involutive.

Conjecture (D. Trotman, 1993). Toute stratification (b)-régulière
admet localement une distribution canonique involutive (et donc un feuil-
letage horizontal (a)-régulier).

Une telle propriété pourrait aussi avoir lieu pour des stratifications
(c)-régulières.

Théorème 8. Les conditions suivantes sont équivalentes :

1) Le relèvement contrôlé ξ = {ξY : Y → Y }Y ≥X tangent à H =
{My}y∈W de tout champ de vecteurs ξX sur X est continu sur Ux0 et a
un flot ψ = {ψt

Y }Y ≥X , horizontalement-C1 sur Ux0.
2) Les relèvements contrôlés wi tangents à H = {My}y∈W des

champs canoniques Ei sont continus sur Ux0 pour tout i = 1, . . . , l, et
ont des flots ψi = {ψt

iY : Y → Y }Y ≥X horizontalement-C1 sur Ux0.
3) L’homéomorphisme de trivialisation topologique de la projection

πX : TX → X,
H : Rl × π−1

X (x0) → π−1
X (Ux0)

est horizontalement-C1 sur Rl × {x0}.
4) lim

(t1,...,tl,y0)→x
H∗(t1,...,tl,y0)(Ei) = Ei , ∀x ∈ X ≡ Ux0 ≡ Rl , ∀ i =

1, . . . , l ;
5) Le feuilletage horizontal H = {My}y∈W induit par H est (a)-

régulier sur Ux0 (i.e. il vérifie la conjecture de Trotman sur Ux0) .

3Ce qui assurerait que DX = D′
X comme on l’a vu au §4.
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Le lemme suivant est nécessaire :

Lemme 3. Chaque champ wi(y) = H∗(t1,...,tl,y0)(Ei) est l’unique
relèvement controlé du champ canonique Ei tangent aux feuilles du feuil-
letage horizontal H.

Preuve. Les champs vj(y) étant les relèvements contrôlés dans
DXY (y) leurs flots φτ

j = {φτ
jY : Y → Y }Y ≥X sont aussi contrôlés et

vérifient ∀ j ≤ l :

πXY ∗y φτ
jY ∗y = φτ

jX∗x πXY ∗y où x = πXY (y)

et φτ
jX∗x = idTxX = idRl car chaque φjX est le flot “identique” du

champ Ej sur X .
La trivialisation H définie par compositions des φj est alors

contrôlée et on a

πXY ∗y

(
wi(y)) = πXY ∗yH∗(t1,...,tl,y0)(Ei)

= H∗xπXY ∗y(Ei) = idRl(Ei) = Ei .

Chaque wi(y) est donc πX -contrôlé et de manière similaire il est
ρX -contrôlé.

Pour tout y = H(t1, . . . , tl, y0), en considérant le difféomorphisme
restriction de H , H|Rl×y0 : Rl×{y0} 
−→ H(Rl×y0), à la variété intégrale
My = My0 = H(Rl × y0) on a :

wi(y) = H∗(t1,...,tl,y0)(Ei) =
[
H|Rl×y0

]
∗(t1,...,tl,y0)

(Ei)

et donc chaque wi(y) est tangent à la feuille horizontale My de H.
En conclusion, pour tout Y > X , si y ∈ Y on a

wi(y) ∈ πXY
−1
∗y (Ei) ∩ Ty H(Rl × y0)

où par transversalité et complémentarité de dimension dans TyY , l’inter-
section πXY

−1
∗yy(Ei) ∩ Ty H(Rl × y0) se réduit alors à un unique vecteur.

Q.E.D.

Preuve (du théorème 8). (3 ⇔ 4). Considérons le domaine de H
muni de la stratification produit de Rl et de π−1

X (x0):

Rl × π−1
X (x0) = Rl × {x0} ∪

[
∪Y >XRl × π−1

XY (x0)
]

et considérons sur Rl × π−1
X (x0) le S.D.C. induit par l’homéomorphisme

stratifié H .
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Si A = Rl × {x0}, alors toute strate B > A de Rl × π−1
X (x0) est du

type B = Rl ×π−1
XY (x0) avec Y > X , et on a une distribution canonique

évidente DA = {DAB}B≥A:

DAB(t1, . . . , tl, y0) = Rl × {y0} , ∀ (t1, . . . , tl, y0) ∈ B , ∀B > A

sur Rl × π−1
X (x0) relative à la strate A.

Alors DAB(t1, . . . , tl, y0) = [E1, . . . , El] et tout vecteur horizontal
tangent à B est une combinaison linéaires de E1, . . . , El et donc H est
horizontalement-C1 par rapport à DA si et seulement si :

(∗) : lim
(t1,...,tl,y0)→x

HB∗(t1,...,tl,y0)(Ei) = HA∗x(Ei) , ∀x ∈ A, ∀ i ≤ l .

Par l’identification Ux0 ≡ Rl × 0n−l, la restriction HA de H à A
cöıncide avec l’identité de la strate A = Rl×{x0}. Donc HA∗x(Ei) = Ei

et on conclut grâce à (*).
(4 ⇔ 5). Grâce au lemme 3, les champs de vecteurs images

HB∗(t1,...,tl,y0)(Ei) où y = H(t1, . . . , tl, y0) , ∀ i = 1, . . . , l

cöıncident avec les champs wi(y) relevés contrôlés sur le feuilletage H =
{My}y∈W .

Or, les feuilles My = H(Rl × y0) ont pour espaces tangents

TyHy = TyMy = H∗(t1,...,tl,y0)(R
l × 0)

=
[{

H∗(t1,...,tl,y0)(Ei)
}

i≤l

]
= [{wi(y)}i≤l ]

et donc 4) est valable si et seulement si ∀x ∈ A et ∀ i ≤ l :

lim
(t1,...,tl,y0)→x

H∗(t1,...,tl,y0)(Ei) = Ei ⇔ lim
y→x

wi(y) = Ei

⇔ lim
y→x

TyHy = Rl × 0 ,

i.e. si et seulement si H est (a)-régulier sur X ≡ Ux0 ≡ Rl × 0.
(4 = 5 ⇒ 1). Comme H est (a)-régulier sur Ux0 , D ′

X est alors
continue sur X ≡ Ux0 et une distribution canonique relative à la strate
X .

En admettant comme feuilletage H, D′
X est intégrable et donc par le

lemme 3 les relevés des champs canoniques Ei dans D′
X sont les champs

wi continus sur X .
De même, pour tout champ de vecteurs ξX sur X , son relevé ξ =

{ξY }Y ≥X tangent à H, cöıncide avec le relevé canonique de ξX dans D′
X

qui est continu sur X .
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On conclut alors, grâce au théorème 4 du §4.1, que son flot (à tout
instant t ∈ R) ψ = {ψt

Y : Y → Y }Y ≥X est horizontalement-C1 sur X .

(1 ⇒ 2). C’est évident en considérant wi(y) comme relèvement de
ξX = Ei, pour tout i = 1, . . . , l.

(2 ⇒ 4). Les champs de vecteurs w1, . . . , wl cöıncident (lemme 3)
avec les relèvements contrôlés tangents à H et

TyHy = TyMy = [w1(y), . . . , wl(y)] .

Par hypothèse, w1, . . . , wl étant continus sur X on a lim
y→x

wi(y) = Ei.

Donc : lim
y→x

TyHy = lim
y→x

[w1(y), . . . , wl(y)] = [E1, . . . , El] = TxX .

Q.E.D.

La remarque ci-dessous est élémentaire.

Remarque 14. Le feuilletage H est (a)-régulier sur X ≡ Ux0 si et
seulement si le morphisme stratifié de projection horizontale π′

π′ : π−1
X (Ux0) −→ π−1

X (x0) , π′(My0) = y0

vérifie la condition (af ) de Thom sur X ≡ Ux0 .

Nous introduisons maintenant la notion d’application π′-contrôlée
résumant les propriétés essentielles qui nous ont permis de démontrer les
théorèmes de régularité horizontalement-C1 et H-semidifférentiabilité
des flots des champs relevés du §4.1 et §4.2. Ceci permettra d’obtenir
des théorèmes analogues pour des morphismes stratifiés plus généraux.

Le feuilletage horizontal H = Hx0 n’est pas intrinsèque car il dépend
de x0 ∈ X “centre” de la trivialisation H et de l’ordre de composi-
tion des flots φ1, . . . , φl qui définissent H (mais si DX est involutive,
H devient intrinsèque !). Par conséquent, la projection horizontale
π′ : W = π−1

X (Ux0) → π−1
X (x0) n’est pas intrinsèque non plus.

Définition 10. Soient f = {fY }Y : X → X ′ un morphisme
stratifié, X ∈ Σ, x0 ∈ X, X ′ ∈ Σ′ la strate telle que f(X) ⊆ X ′,
x′

0 = fX(x0), W = π−1
X (Ux0) et W ′ = π−1

X′ (U ′
x′
0
).

On dira que f est π′-contrôlé (par rapport aux feuilletages horizon-
taux H = {My}y∈W de A et H ′ = {M ′

y}y′∈W ′ de A′) si pour toute
feuille My ∈ H, on a fY (My) ⊆ My′ où y′ = fY (y) (i.e. si f envoie
chaque feuille horizontale de H dans une feuille de H ′).
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D’après le lemme 2 du §4.3, My = π′−1
XY (π′

XY (y)) et donc f est π′-
contrôlé si et seulement s’il vérifie la condition de contrôle horizontale

fY

(
π′−1

XY

(
π′

XY (y)
))

⊆ π′−1
X′Y ′

(
π′

X′Y ′
(
fY (y)

))
, ∀ y ∈ Y et ∀ Y ≥ X .

Le théorème 9 étend à des morphismes stratifiés plus généraux les
résultats du §4.1.

Théorème 9. Soit f = {fY }Y ∈Σ : X → X ′ un morphisme stratifié
contrôlé entre deux espaces stratifiés (c)-réguliers X et X ′.

Soient H = {My}y∈W et H ′ = {My′}y′∈W ′ deux feuilletages strat-
ifiés respectivement du voisinage W = π−1

X (Ux0) de x0 ∈ X dans A et
du voisinage W ′ = π−1

X′ (U ′
x′
0
) de x′

0 = f(x0) ∈ X ′ dans A′.
Si H et H ′ sont (a)-réguliers sur Ux0 et U ′

x′
0

et si f est π′-contrôlé
par rapport à H et H ′, alors f est horizontalement-C1 sur Ux0 .

Preuve. Supposons A ⊆ Rn, A′ ⊆ Rm et considérons les distribu-
tions tangentes aux feuilletages H = {My}y∈W et H ′ = {My′}y′∈W ′ ,
définies localement sur W et W ′ par :

DX = D(H) , DX = {DXY }Y ≥X , DXY (y) = TyMy

DX′ = D(H ′) , DX′ = {DX′Y ′}Y ′≥X′ , DX′Y ′(y′) = Ty′My′ .

Comme H et H ′ sont deux feuilletages stratifiés de dimensions
dimH = dimX et dimH ′ = dimX ′, les feuilles My ∈ H et My′ ∈ H ′

sont transverses aux projections πX et πX′ , contenues dans les fibres
des fonctions distances ρX et ρX′ , et H et H ′ sont (a)-réguliers sur Ux0

et sur U ′
x′
0
, alors DX et DX′ définissent deux distributions canoniques

locales relatives respectivement aux strates Ux0 et U ′
x′
0

de W et W ′.

Fixons une strate Y ≥ X de Σ. Soit Y ′ ≥ X ′ la strate de Σ′

contenant fY (Y ), et pour tout y ∈ Y notons y′ = f(y) ∈ Y ′.
Comme f = ∪Z∈ΣfZ est π′-contrôlée par rapport aux feuilletages H

et H ′ nous avons fY (My) ⊆ My′ et donc pour tout y ∈ Y l’application
fY ∗y : TyY → Ty′Y ′ vérifie

fY ∗y(DXY (y)) = fY ∗y(TyMy) ⊆ Ty′My′ = DX′Y ′(y′) .

Or, f est π-contrôlée d’où fY (kerπXY ∗y) ⊆ kerπX′Y ′∗y′ et fY ∗y se
décompose en somme directe

fY ∗y = fh
y ⊕ fv

y : DXY (y) ⊕ kerπXY ∗y −→ DX′Y ′(y′) ⊕ kerπX′Y ′∗y′ .
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Soit p ∈ Ux0 et p′ = f(p).
Afin de montrer que f est horizontalement-C1 en p, Ux0 et U ′

x′
0

étant
des domaines des systèmes de coordonnées locales de X et X ′, on prend
Ux0 ≡ Rl × 0n−l et U ′

x′
0
≡ Rl′ × 0m−l′ .

Notons alors σ = (E1, . . . , El) le champ de repères constants coor-
données de Ux0 et σy = (v1(y), . . . , vl(y)) les champs de repères relevés
continus contrôlés dans DX .

De même considérons les champs de repères σ′ = (E′
1, . . . , E

′
l′) et

σy′ = (v′1(y
′), . . . , v′l′(y

′)) et pour tout y ∈ W notons x = πXY (y).
Comme f est π-contrôlée, on a l’égalité :

πX′Y ′∗y′fY ∗y = fX∗xπXY ∗y , ∀ y ∈ Y et ∀ Y > X

grâce à laquelle il est facile de vérifier que la matrice A(y) qui représente
fh

y : DXY (y) → DX′Y ′(y′) par rapport aux bases σy = {vi(y) }l
i=1 et

σy′ = {v′j(y′) }l′

j=1 cöıncide avec la matrice A = A(x) = (Ai
j)i,j qui

représente l’application linéaire fX∗x : TxX → Tx′X ′ par rapport aux
bases canoniques σ = (E1, . . . , El) et σ′ = (E′

1, . . . , E
′
l′).

Cela s’obtient, comme pour le théorème 3 dans le §4.1, en observant
que ∀ i = 1, . . . , l les deux vecteurs fY ∗y(vi(y)) et

∑l′

j=0 Ai
jv

′
j(y

′) appar-
tiennent à DX′Y ′(y′), qu’ils ont la même image via la restriction de la
projection πX′Y ′∗y′| : DX′Y ′(y′) → Tx′X ′ et que cette dernière est un
isomorphisme car DX′ est une distribution canonique.

La preuve suit alors d’une répétition formelle de celle du théorème
4 du §4.1 grâce à la continuité en p′ = f(p) des relèvements canoniques
(v′1, . . . , v′l′ ) dans DX′ . Q.E.D.

On a vu au §2 que si les projections d’un S.D.C. d’une stratification
(A, Σ) sont des applications C1, alors toute application contrôlée f :
(A, Σ) → M à valeurs dans une variété M est semidifférentiable. Si de
plus l’application est une submersion propre, le 1er Théorème d’isotopie
de Thom dit alors que l’application f est une fibration topologiquement
localement triviale (voir par exemple [Ma]).

Notons ∀ ε > 0, U ε
x0

= {x ∈ Ux0 | d(x, X − Ux0) > ε}.
Si δ note le diamètre de Ux0 , alors pour ε suffisamment petit et <

1/2δ, U ε
x0

est un ouvert vérifiant U ε
x0

⊆ Ux0 , qui est encore un voisinage
de x0 dans la strate X ∈ Σ et un domaine d’un système de coordonnées
locales autour de x0.

Les théorèmes 8 et 9 permettent de montrer que toute stratification
(c)-régulière vérifiant autour d’un point x0 la conjecture du feuilletage
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(a)-régulier admet un isomorphisme de trivialisation topologique locale-
ment horizontalement-C1 (pour la preuve ici omise voir [Mu]).

Théorème 10. (1er théorème d’Isotopie horizontalement-C1).
Soit X = (A, Σ) une stratification (c)-régulière, X ∈ Σ et x0 ∈ X

un point admettant un feuilletage H={My}y∈W , (a)-régulier sur Ux0 du
voisinage W=π−1

X (Ux0) de x0 dans A.
Soit f : (A, Σ) → M une submersion stratifiée propre à valeurs dans

une variété lisse. Pour tout m0 ∈ M , pour tout domaine d’un système
de coordonnées locales Um0 de m0 dans M et pour tout U ε

x0
⊆ Ux0 , il

existe alors un homéomorphisme stratifié

H : Um0 × f−1(m0) −→ f−1(Um0)

horizontalement-C1 sur Um0 ×
[
f−1(m0) ∩ U ε

x0

]
, et l’homéomorphisme

stratifié réciproque

G = H−1 : f−1(Um0) −→ Um0 × f−1(m0)

est horizontalement-C1 sur f−1(Um0) ∩ U ε
x0

.

5.2. H-semidifférentiabilité.
Dans les théorèmes 8, 9 et 10 de la section précédente, nous avons vu

que l’existence d’un feuilletage local H = {Mz}z∈W de W = π−1
X (Ux0),

(a)-régulier sur Ux0 implique la régularité horizontalement-C1 pour les
flots des champs relevés et pour d’autres morphismes stratifiés plus
généraux.

Dans cette section, nous précisons que si la (a)-régularité de H est
valable sur le voisinage W , les théorèmes analogues à la section §5.1 devi-
ennent valables en déduisant de plus la propriété de H-semidifférentiabilité.

Rappelons que la H-semidifférentiabilité donne, en plus de la
régularité horizontalement-C1, un contrôle des limites des restrictions
limz→y′ fZ∗z|TzMz

= fY ∗y′|Ty′My′ quand z tend vers un point y′ appar-
tenant à une strate Y supérieure à X (voir le §2.3 pour la définition et
le §4.2 pour quelques théorèmes). Nous avons alors :

Théorème 11. Les conditions suivantes sont équivalentes :
1) Le relèvement contrôlé ξ = {ξY }Y ≥X tangent à H = {Mz}z∈W de

tout champ de vecteurs ξX est continu sur W et a un flot ψ = {ψt
Y }Y ≥X

qui est H-semidifférentiable.
2) Pour tout i = 1, . . . , l, les relèvements contrôlés wi des champs

Ei tangents à H = {Mz}z∈W sont continus sur W et ont des flots
ψi = {ψt

iY : Y → Y }Y ≥X qui sont H-semidifférentiables.
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3) L’homéomorphisme stratifié de trivialisation de πX autour de x0,

H : Rl × π−1
X (x0) → π−1

X (Ux0) est F-semidifférentiable

par rapport au feuilletage trivial F = {Rl×y0}y0∈π−1
X (x0)

de Rl×π−1
X (x0).

4) lim
(t1,...,tl,z0)→y′

H∗(t1,...,tl,z0)(Ei) = wi(y′) , ∀ i , ∀ y′ ∈ Y, ∀Y ≥ X.

5) Le feuilletage horizontal H = {Mz}z∈W induit par H est (a)-
régulier sur W.

Preuve. La démonstration s’obtient de manière complètement ana-
logue à celle du théorème 8 au §5.1 en utilisant que la (a)-régularité du
feuilletage H sur W équivaut à ce que les champs w1(z), . . . , wl(z) tan-
gents à H soient continus sur les strates de W . Nous soulignons que
la conclusion de la preuve de (4 = 5 ⇒ 1) s’obtient en rappelant le
théorème 6 du §4. 2 au lieu du théorème 4 du §4.1. Q.E.D.

Pour un morphisme stratifié plus général on obtient :

Théorème 12. Soit f = {fY }Y ∈Σ : X → X ′ un morphisme strat-
ifié contrôlé entre deux espaces stratifiés (c)-réguliers X et X ′.

Soient H = {My}y∈W et H ′ = {My′}y′∈W ′ deux feuilletages strat-
ifiés respectivement du voisinage W = π−1

X (Ux0) de x0 ∈ X dans A et
du voisinage W ′ = π−1

X′ (U ′
x′
0
) de x′

0 = f(x0) ∈ X ′ dans A′.
Si H et H ′ sont (a)-réguliers et si f est π′-contrôlé par rapport à

H et H ′, alors f est H-semidifférentiable.

Preuve. On remarque (par rapport à la preuve du théorème 9, §5.1)
que, les feuilletages H et H ′ étant maintenant (a)-réguliers sur W et W ′,
les distributions canoniques DX et DX′ induites sont continues sur les
strates de W et W ′.

Si on fixe des strates Z > Y ≥ X , comme au théorème 9 du §5.1 on
trouve que pour tout z ∈ Z il existe une restriction de la différentielle
fZ∗z|DXZ(z) : DXZ(z) → DX′Z′(z′) avec laquelle, en utilisant la condi-
tion de contrôle πY ′Z′∗z′fZ∗z = fY ∗yπY Z∗z , ∀ z ∈ Z et ∀Z > Y ainsi
que le fait que la projection πY ′Z′ : TY Z → Y ′ induise un isomorphisme
de restriction πY ′Z′∗z′| : DX′Z′(z′) → DX′Y ′(y′), on peut conclure de
la même manière que dans le théorème 9 du §5.1 et le théorème 6 du
§4.2. Q.E.D.

De même que pour les théorèmes 9 et 10, le théorème 12 permet de
d’obtenir le suivant:
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Théorème 13. (1er théorème d’IsotopieF -semidifférentiable [Mu]).
Soient X un espace stratifié (c)-régulier, X une strate de Σ et x0 ∈

X tels qu’il existe un feuilletage (a)-régulier H = {My}y∈W , du voisi-
nage W = π−1

X (Ux0) de x0 dans A.
Soit f : (A, Σ) → M une submersion stratifiée propre à valeurs dans

une variété lisse.
Pour tout point m0 dans M et pour tout domaine Um0 d’un système

de coordonnées locales de m0 dans M et pour tout U ε
x0

⊆ Ux0 , il existe
un homéomorphisme stratifié

H : Um0 × f−1(m0) → f−1(Um0) qui est F-semidifférentiable

par rapport à F = Um0 ×H|f−1(m0)∩π−1
X (Uε

x0
) et dont l’homéomorphisme

réciproque

G = H−1 : f−1(Um0) → Um0 × f−1(m0)

est H|f−1(Um0)∩π−1
X (Uε

x0
)-semidifférentiable.
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Submanifolds with a non-degenerate parallel normal
vector field in euclidean spaces

Juan J. Nuño-Ballesteros

Abstract.

We consider the class of submanifolds M in an euclidean space
R

n which admit a non-degenerate parallel normal vector field ν. The
image of the associated Gauss map Gν : M → Sn−1 defines an
immersed hyperspherical submanifold Mν which has the following
property: if M has a contact of Boardman type Σi1,...,ik with a hy-
perplane, then Mν has the same contact type with the translated
hyperplane. In particular, for a space curve α in R3, the spherical
curve αν has the same flattenings and we deduce an extension of the
Four Vertex Theorem. For an immersed surface M in R4, it admits
a local non-degenerate parallel normal vector field if and only if it is
totally semi-umbilic and has non zero gaussian curvature K. More-
over, Gν preserves the inflections and the asymptotic lines between
M and Mν . As a consequence, we deduce an extension for this class
of surfaces of the classical Loewner and Carathéodory conjectures for
umbilic points of analytic immersed surfaces in R3.

§1. Introduction

Let ξ : R
n → Sn ↪→ R

n+1 denote the inverse of the stereographic
projection and let M be an m-dimensional submanifold of R

n. It has
been shown by Sedykh [16] and Romero-Fuster [12, 13] that the contacts
of M with the hyperspheres of R

n are the same as the contacts of its
hyperspherical image ξ(M) with the hyperplanes of R

n+1. Since many
of the differential-geometric aspects of a submanifold M of an euclidean
space R

n can be translated in terms of contacts between hyperspheres
or hyperplanes, they use this fact in order to obtain interesting relations
between some special points of the submanifold M and its image ξ(M).
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Revised February 2, 2005.
Work partially supported by DGICYT Grant BFM2003-02037.
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For instance, suppose that α : I → R
2 defines a regular smooth

curve in the plane. Then ξ transforms the vertices (points where κ′ = 0)
of α into the flattenings (points with τ = 0) of the spherical space curve
ξ ◦ α in R

3. This is due to the fact that a vertex corresponds to a point
of contact of type Σ1,1,1 (using Thom-Boardman notation) between the
curve and a circle in the plane, while a flattening of a space curve is
a point of contact of the same type Σ1,1,1 with the osculating plane.
One consequence is that it is possible to translate the classical Four
Vertex Theorem in terms of flattenings and spherical space curves: every
closed regular and simple space curve contained in the sphere S2 has at
least four flattenings. In fact, this observation led to the conjecture by
Scherk in 1936 that every convex closed and simple space curve with
non vanishing curvature has at least four flattenings, which was proved
by Sedykh [15].

In the case of a smooth immersed surface M in R
3 we have a sim-

ilar history with respect to umbilics and the Carathéodory conjecture.
The classical Carathéodory conjecture states that every smooth convex
embedding of a 2-sphere in R

3 must have at least two umbilics, i.e.,
points where the two principal curvatures coincide. This conjecture has
a stronger local version, known as the Loewner conjecture, which states
that the index of the principal foliation at any isolated umbilic of an
immersed smooth surface in R

3 is always ≤ 1. Since the sum of the
indices of the umbilics of a compact immersed surface is equal to its
Euler-Poincaré characteristic (according to the Poincaré-Hopf formula)
it follows that the Loewner conjecture implies the Carathéodory con-
jecture, not only for a convex embedding of a 2-sphere, but for any
immersion (not necessarily convex). The Loewner conjecture is known
to be true in the analytic case (although there is a big controversy about
the correct proof, see for instance [17, 7]).

Now, it is also possible to characterize an umbilic of M as a point
which presents a contact of type Σ2,2 between M and a sphere of R

3.
It follows that the map ξ will give a point of Σ2,2 contact between the
hyperspherical surface ξ(M) and some hyperplane of R

4. But this type
of contact corresponds to an inflection of the surface in the sense of Little
[8] (that is, a point where the two fundamental forms are collinear). In
particular, we have that any analytic immersed surface M in S3 ⊂ R

4,
homeomorphic to S2, has at least two inflections. Moreover, it was also
observed by Little that ξ also takes the principal foliation of M into the
asymptotic foliation of ξ(M) and it is also possible to translate Loewner
conjecture: for any analytic immersed surface M in S3 ⊂ R

4, the index
of the asymptotic foliation at any isolated inflection is always ≤ 1.
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Now, it is natural to ask whether these results can be extended to
general analytic surfaces immersed in R

4. Since the asymptotic foliation
is only defined in the convex part of the surface, it is obvious that we
have to restrict ourselves to locally convex surfaces (that is, at any point
there is a hyperplane which locally supports the surface). A proof of the
Carathéodory conjecture for generic locally convex surfaces in R

4 can be
found in [4] (in fact, for a generic locally convex surface M , the index
of an isolated inflection is always ±1/2 and hence, it must have at least
2χ(M) inflections). In [6], they give a proof of the Loewner conjecture
for a locally convex surface in R

4 which satisfies some non-degeneracy
condition with respect to the Newton polyhedra. Some results about
the index of an isolated inflection of an immersed surface in R

4 can be
also found in [3].

In this paper, we consider the class of smooth submanifolds M im-
mersed in R

n which admit a non-degenerate parallel normal vector field
ν. This class appears in the literature in the context of differential ge-
ometry of submanifolds (see for instance [10]). We show that the image
of the associated Gauss map Gν : M → Sn−1 defines an immersed hy-
perspherical submanifold Mν which has the following property: if M
has a contact of Boardman type Σi1,...,ik with a hyperplane, then Mν

has the same contact type with the translated hyperplane. Thus, for
instance, in the case of a space curve α in R

3, the spherical curve αν

has the same flattenings and we deduce an extension of the Four Vertex
Theorem.

For an immersed surface M in R
4, it admits a non-degenerate par-

allel normal vector field if and only if it is totally semi-umbilic and has
non zero gaussian curvature K. The semi-umbilic condition means that
at any point of the surface, there is a non-zero normal vector ν such that
the ν-principal curvatures are equal and it has been studied recently by
Romero-Fuster and Sánchez-Bringas (see [14]). The totally semi-umbilic
surfaces in R

4 with K �= 0 are an intermediate class between the class of
hyperspherical surfaces and the class of locally convex surfaces. More-
over, we show that the Gauss map Gν preserves the inflections and the
asymptotic lines between M and the hyperspherical image Mν . As a
consequence, we obtain that Loewner and Carathéodory conjectures are
also true for analytic totally semi-umbilic surfaces with K �= 0.

§2. Contact with hyperspheres and hyperplanes

In this section, we recall basic definitions and properties of contact
between submanifolds of an ambient manifold and the relationship with
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K-equivalence of map germs due to Montaldi [9]. We begin with the
notion of contact.

Definition 2.1. Let M, N, M ′, N ′ be smooth submanifolds of R
n

and let x0 ∈ M∩N and x′
0 ∈ M ′∩N ′. We say that the contact of M and

N at x0 is of the same type as the contact of M ′ and N ′ at x′
0 if there are

open neighbourhoods U of x0 and U ′ of x′
0 in R

n and a diffeomorphism
φ : U → U ′ such that φ(U ∩ M) = U ′ ∩ M ′ and φ(U ∩ N) = U ′ ∩ N ′.

Now, we recall the concept of K-equivalence between two smooth
map germs.

Definition 2.2. Consider two smooth map germs f : (M, x0) →
(N, y0) and g : (M ′, x′

0) → (N ′, y′
0) between smooth manifolds. We say

that f, g are K-equivalent if there exists a diffeomorphism

H : (M × N, (x0, y0)) → (M ′ × N ′, (x′
0, y

′
0))

such that:
(1) H(x, y) = (h(x), θ(x, y)) for some map germs h : (M, x0) →

(M ′, x′
0) and θ : (M × N, (x0, y0)) → (N ′, y′

0).
(2) θ(x, y0) = y′

0 for any x in a neighbourhood of x0 in M .
(3) H(x, f(x)) = (h(x), g(h(x))) for any x in a neighbourhood of

x0 in M .

In order to see the relationship between contact and K-equivalence
we need to introduce some notations. Let M, N, M ′, N ′ be smooth sub-
manifolds of R

n and let x0 ∈ M ∩ N and x′
0 ∈ M ′ ∩ N ′. We assume

that M, M ′ are locally given by the image of an embedding. That is,
there are open neighbourhoods W1 of x0 in R

n and W2 of x′
0 in R

n,
open subsets U1, U2 ⊂ R

m and smooth embeddings f1 : U1 → R
n and

f2 : U2 → R
n such that f1(U1) = M ∩ W1 and f2(U2) = M ′ ∩ W2 (here

m is the dimension of M and M ′). We also denote f1(u0) = x0 and
f2(u′

0) = x′
0.

For N, N ′ we assume that they are given locally in implicit forms.
That is, there are smooth maps g1 : W1 → R

p and g2 : W2 → R
p such

that W1 ∩ N = g−1
1 (v0), with v0 a regular value of g1 and W2 ∩ N ′ =

g−1
2 (v′0), with v′0 a regular value of g2 (now, p is the codimension of N

and N ′).

Theorem 2.3. [9] With the above notation, it follows that the con-
tact of M and N at x0 is of the same type as the contact of M ′ and
N ′ at x′

0 if and only if the map germs g1 ◦ f1 : (Rm, u0) → (Rp, v0) and
g2 ◦ f2 : (Rm, u′

0) → (Rp, v′0) are K-equivalent.
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Definition 2.4. The map g1 ◦ f1 : U → R
p is called the contact

map of M, N . It follows that its K-singularity type at each point u0

determines the contact of M, N at x0 = f1(u0) and does not depend on
the choice of maps f1, g1.

In the case that we have a submanifold in Euclidean space M ⊂ R
n,

the most interesting contacts are those of M with hyperplanes and hy-
perspheres of R

n, since they determine some of the geometrical invariants
of M .

Assume that the embedding f : U ⊂ R
m → R

n locally parametrizes
the submanifold M ⊂ R

n in a neighbourhood of x0 = f(u0). For any
v ∈ Sn−1, we consider the height function hv : U → R, given by hv(u) =
〈f(u), v〉. Then, hv is the contact map of M and the hyperplane π(x0, v)
of R

n through x0 perpendicular to v. It is obvious that u0 ∈ U is a
singular point of hv if and only if v belongs to the normal subspace of
M at x0, that is, π(x0, v) is tangent to M at x0.

Analogously, given p ∈ R
n, we can also consider the distance squared

function dp : U → R, given by dp(u) = ‖f(u) − p‖2. Now, dp is the
contact map between M and the hypersphere S(p, R) of R

n centered at
p with radius R = dp(u0). Again, u0 ∈ U is a singular point of dp if and
only if p is in the (affine) normal subspace of M at x0, that is, S(p, R)
is tangent to M at x0.

Now, we recall the Thom-Boardman symbols Σi1,...,ik , which are a
generalization of the rank of a map taking into account higher order
derivatives and provide a useful invariant for K-equivalence.

Let us denote by Em,x0 the local ring of smooth function germs from
(Rm, x0) to R. Given a p×q matrix U with entries in Em,x0, we denote by
It(U) the ideal in Em,x0 generated by the t-minors of U (by convention,
It(U) = {0} if t > min(p, q)). In particular, if f : (Rm, x0) → (Rp, y0)
is a smooth map germ, It(Df) is the ideal generated by the t-minors of
the jacobian matrix Df = (∂fi/∂xj).

Definition 2.5. Let f : (Rm, x0) → R
p be a smooth map germ and

let i = (i1, . . . , ik) be a k-tuple of non-negative integer numbers. We
define the iterated jacobian extension of f by induction on k. If k = 1,
then Ji1(f) = In−i1+1(Df). For k > 1, suppose that Ji1,...,ik−1(f) =
〈g1, . . . , gr〉, then

Ji1,...,ik
(f) = Ji1,...,ik−1(f) + In−ik+1(D(f, g)),

where (f, g) = (f1, . . . , fp, g1, . . . , gr).
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We say that f has Boardman type (or Boardman symbol) Σi if f has
rank n − i1 at x0 and for k > 1, (f1, . . . , fp, g1, . . . , gr) has rank n − ik
at x0, being g1, . . . , gr generators of the ideal Ji1,...,ik−1(f).

Example 2.6. Given a smooth function f : U ⊂ R
m → R, it has

Boardman type Σm,...,m at x0 (with m repeated k times) if and only if
all the partial derivatives of f at x0 are zero up to order k.

We include now a result that will be used in next section.

Lemma 2.7. Let f, g : (Rm, x0) → R be two smooth function germs
such that Jm(f) = Jm(g). Then f, g have the same Boardman symbol
Σi1,...,ik , for any k ≥ 1.

Proof. The ideals Jm(f) = I1(Df) and Jm(g) = I1(Dg) in Em,x0

are generated by the partial derivatives ∂f/∂xi and ∂g/∂xi respectively.
The assumption Jm(f) = Jm(g) means that

∂f

∂xi
=

m∑
j=1

aij
∂g

∂xj
,

for some aij ∈ Em,x0, with det(aij) �= 0. We have that f, g have the
same rank at x0 and hence, the first Boardman number i1 is the same
for f, g.

If f, g are regular, then i1 = m − 1, Jm−1(f) = I2(Df) = {0}
and Jm−1(g) = I2(Dg) = {0}. In particular, the Boardman symbol is
i2 = · · · = ik = m − 1 for both f, g.

Assume now that f, g are singular and i1 = m. We will show by in-
duction on k that f, g have the same Boardman symbol and the same it-
erated jacobian ideals. Assume that the Boardman numbers i1, . . . , ik−1

are equal for f, g and Ji1,...,ik−1(f) = Ji1,...,ik−1(g) = 〈h1, . . . , hr〉. The
Boardman number ik for f, g is determined in each case by the rank
at x0 of (f, h1, . . . , hr) and (g, h1, . . . , hr) respectively. We consider the
matrices

A =

⎛
⎜⎜⎝

∂f
∂x1

. . . ∂f
∂xm

∂h1
∂x1

. . . ∂h1
∂xm

. . . . . . . . .
∂hr

∂x1
. . . ∂hr

∂xm

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝

∂g
∂x1

. . . ∂g
∂xm

∂h1
∂x1

. . . ∂h1
∂xm

. . . . . . . . .
∂hr

∂x1
. . . ∂hr

∂xm

⎞
⎟⎟⎠ .

Since ∂f/∂xi and ∂g/∂xi are 0 at x0, it follows that A, B have the same
rank at x0 and the Boardman number ik is the same for f, g.

On the other hand, by definition, Ji1,...,ik
(f) = Ji1,...,ik−1(f)+ It(A)

and Ji1,...,ik
(g) = Ji1,...,ik−1(g) + It(B), where t = n− ik + 1. Let M be
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a t-minor of A. If M does not contain the first row of A, then M is a
t-minor of B. Otherwise, if M contains the first row of A, then M ∈
Jm(f) = Jm(g) ⊂ Ji1,...,ik

(g). This shows that Ji1,...,ik
(f) ⊂ Ji1,...,ik

(g)
and the opposite inclusion follows by symmetry. Q.E.D.

In general, it is not true that if f, g : (Rm, x0) → R are two smooth
function germs such that Jm(f) = Jm(g), then they are K-equivalent.
For instance, consider f, g : (R2, 0) → R given by f(x, y) = x2 + y2

and g(x, y) = x2 − y2. In this case, J2(f) = J2(g) = 〈x, y〉, they have
Boardman symbol Σ2,0, but they are not K-equivalent.

One of the well known properties of the Boardman symbol is that
it is K-invariant. Hence, it can be associated with each contact class
between submanifolds.

Lemma 2.8. Let f, g : (Rm, x0) → R
p be two smooth map germs

which are K-equivalent. Then f, g have the same Boardman symbol
Σi1,...,ik , for any k ≥ 1.

(See for instance [5] for a proof.)

Definition 2.9. Given submanifolds M, N ⊂ R
n and x0 ∈ M ∩

N , we say that they have contact type Σi if its contact map germ has
Boardman type Σi. The above lemma ensures that this definition does
not depend on the choice of contact map germs.

Example 2.10. Here we present some known basic examples how
the contacts of a submanifold in an euclidean space with hyperplanes or
hyperspheres can be useful to characterize several special points in the
differential geometry of curves and surfaces.

(1) Let α : I → R
2 be a regular plane curve. Then α has a Σ1,1

contact with a line π(x0, v) at x0 = α(t0) if and only if this
point is an inflection (that is, κ(t0) = 0) and v is the normal
vector at such point.

(2) Analogously, α has a Σ1,1,1 contact with a circle S(p, R) at x0

if and only if this point is a non-flat vertex (that is, κ′(t0) = 0
and κ(t0) �= 0), and p and R are the centre and the radius
of curvature of α at x0 respectively. The case of a flat vertex
(that is, κ′(t0) = κ(t0) = 0) corresponds to a Σ1,1,1 contact
with the tangent line.

(3) In the case of a regular space curve α : I → R
3 with non van-

ishing curvature, α has a Σ1,1,1 contact with a plane π(x0, v)
at x0 = α(t0) if and only if this point is a flattening (that is,
τ(t0) = 0) and v is the binormal vector at such point.

(4) Let M be a regular surface in R
3. Then, M has a Σ2,2 contact

with a sphere S(p, R) at x0 if and only if this point is an non-flat
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umbilic (that is, a point where the two principal curvatures are
equal and distinct from zero) and p and R are the centre and
the radius of principal curvature of M at x0 respectively. The
case of a flat umbilic (that is, when both principal curvatures
are zero) corresponds to a Σ2,2 contact with the tangent plane.

(5) Finally, we consider a regular surface M in R
4. Then, M has

a Σ2,2 contact with a hyperplane π(x0, v) at x0 if and only
if this point is an inflection in the sense of Little [8] (that is,
a point where the two second fundamental forms are linearly
dependent) and v is the corresponding binormal vector.

We finish this section by showing that the contacts with hyper-
spheres and hyperplanes are related through the stereographic projec-
tion. Let ξ : R

n → Sn ↪→ R
n+1 denote the inverse of the stereographic

projection, which is given by

ξ(x) =
(2x, ‖x‖2 − 1)

(‖x‖2 + 1)
.

Since this map is conformal, it follows that it transforms any hypersphere
S(p, R) or hyperplane π(x0, v) of R

n into a (n − 1)-sphere contained in
Sn. We denote by πS(p, R) (respectively πS(x0, v)) the only hyperplane
of R

n+1 which has the property ξ−1(πS(p, R)) = S(p, R) (respectively
ξ−1(πS(x0, v)) = π(x0, v)).

It follows from the works by Romero Fuster [12, 13] and Sedykh
[16] that the contact of a submanifold M ⊂ R

n and hyperplane π(x0, v)
or hypersphere S(p, R)at x0 ∈ M is of the same type as the contact of
ξ(M) and πS(x0, v) or πS(p, R) at ξ(x0) respectively. In fact, they show
more, namely, that the family of distance squared functions of M in R

n

is K-equivalent to the family of height functions of ξ(M) in R
n+1.

Example 2.11. By looking at the examples of 2.10, we get some
immediate consequences of this fact. For instance, if α : I → R

2 is a
regular plane curve, then t0 ∈ I is a vertex of α if and only if t0 is a
flattening of ξ ◦ α : I → S2 ⊂ R

3.
In the case of a regular surface M ⊂ R

3, it follows that x0 ∈ M is
an umbilic if and only if ξ(x0) is an inflection of ξ(M) ⊂ S3 ⊂ R

4.

In general, which we can conclude is that in R
n+1, the class of hyper-

spherical submanifolds (that is, submanifolds contained in some hyper-
sphere of R

n+1), presents the same contacts with hyperplanes of R
n+1

as the submanifolds of R
n with respect to hyperspheres or hyperplanes.

Question 2.12. Determine the submanifolds of R
n+1 which have

the same contacts with hyperplanes as the hyperspherical submanifolds.
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In the next section, we give a partial answer to this question, by
considering submanifolds which admit a non-degenerate parallel normal
vector field.

§3. Submanifolds with a non-degenerate parallel normal vec-
tor field

Let M be a smooth immersed m-dimensional submanifold in R
n. We

consider in M the riemannian metric induced by the euclidean metric
of R

n. Given a point p ∈ M , we have a decomposition R
n = TpM ⊕

TpM
⊥ and the corresponding orthogonal projections � : R

n → TpM
and ⊥ : R

n → TpM
⊥. For vector fields X, Y tangent along M in a

neighbourhood of p, we have

∇′
Xp

Y = �(∇′
Xp

Y ) + ⊥(∇′
Xp

Y ),

where ∇′ is the covariant derivative in R
n. It follows that �(∇′

Xp
Y ) =

∇XpY , where ∇ is the covariant derivative in M induced by the metric,
while ⊥(∇′

Xp
Y ) = s(Xp, Yp) is symmetric in Xp and Yp (and indepen-

dent of the extension Y of Yp). This gives us the Gauss formula,

∇′
Xp

Y = ∇XpY + s(Xp, Yp).

Analogously, if ν is a normal vector field along M in a neighbourhood
of p, we have a similar decomposition

∇′
Xp

ν = �(∇′
Xp

ν) + ⊥(∇′
Xp

ν).

The tangential component satisfies

〈�(∇′
Xp

ν), Yp〉 = 〈∇′
Xp

ν, Yp〉 = −〈νp, s(Xp, Yp)〉,

and consequently, �(∇′
Xp

ν) depends only on Xp and νp. Now, for each
normal vector νp ∈ TpM

⊥, we can define the self-adjoint linear map
Aνp : TpM → TpM by

Aνp(Xp) = −�(∇′
Xp

ν),

where ν is any normal vector field extending νp. We also define the
second fundamental form IIνp as

IIνp(Xp, Yp) = 〈Aνp(Xp), Yp〉 = 〈s(Xp, Yp), νp〉, Xp, Yp ∈ TpM.

For the normal component ⊥(∇′
Xp

ν), we will denote it by DXpν so
that it defines a connection on the normal bundle of M in R

n called the
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normal connection. With this notation, the decomposition of ∇′
Xp

ν can
be written as

∇′
Xp

ν = −Aνp(Xp) + DXpν,

which is called Weingarten equation.

Definition 3.1. We say that a normal vector field ν is parallel if
DXpν = 0 for any Xp ∈ TpM and for any p ∈ M .

Definition 3.2. We say that a normal vector νp ∈ TpM
⊥ is non-

degenerate if the self-adjoint linear map Aνp (or equivalently the second
fundamental form IIνp) is non-degenerate. We say that a normal vector
field ν is non-degenerate if it is non-degenerate at any point.

It follows from the definition that a parallel normal vector field ν
has always constant length. Since D defines a connection on the normal
bundle, we have

Xp〈ν, ν〉 = 2〈ν, DXpν〉 = 0,

for any Xp ∈ TpM . Hence 〈ν, ν〉 is a constant function.
If ν is a normal vector field on M with constant length, we can

assume without loss of generality that it is unitary. Then, by translating
the normal vector νp to the origin of R

n we have the Gauss map Gν :
M → Sn−1. That is, let (x1, . . . , xn) be the standard coordinates of
R

n, so that ν =
∑n

i=1 νi
∂

∂xi
for some smooth functions νi on M . Then

Gν is equal to the map (ν1, . . . , νn). We characterize the parallel and
non-degenerate conditions in terms of the differential or tangent map
Gν∗ : TpM → TνpSn−1.

Lemma 3.3. Let ν be a unit normal vector field on M . Then,
(1) ν is parallel if and only if Gν∗(TpM) ⊂ TpM , for any p ∈ M .
(2) ν is parallel and non-degenerate if and only if Gν∗(TpM) =

TpM , for any p ∈ M .

Proof. For any p ∈ M and for any Xp ∈ TpM , it is obvious that

Gν∗(Xp) = ∇′
Xp

ν = −Aνp(Xp) + DXpν.

Then, (1) and (2) follow directly from the definitions. Q.E.D.

In fact, in the case of a hypersurface, the constant length condition is
also sufficient for a normal vector field to be parallel. Since the normal
bundle is 1-dimensional in this case, it is obvious that 〈ν, DXpν〉 = 0
implies DXpν = 0, for any Xp ∈ TpM . Thus, any hypersurface has
always a local parallel normal vector field. Moreover, if it is orientable,
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then there is a global parallel normal vector field. Finally, it is also
non-degenerate if and only if the gaussian curvature K is not zero.

In the case of a Frenet curve in R
n, there always exists a parallel

normal vector field. Let α : I → R
n be a smooth curve such that

α′(t), . . . , α(n−1)(t) are linearly independent at any t ∈ I. We assume
that α is parametrized by arc length and we denote by e1, . . . , en the
Frenet frame and κ1, . . . , κn−1 the curvatures. Let ν =

∑n
i=2 aiei be a

normal vector field. Then, Frenet equations give

ν′ =
n−1∑
i=2

(
a′

iei + ai(−κi−1ei−1 + κiei+1)
)

+ a′
nen + an(−κn−1en−2)

= − a2κ1e1 + (a′
2 − a3κ2)e2 +

n−1∑
i=3

(a′
i + ai−1κi−1 − ai+1κi)ei

+ (a′
n + an−1κn−1)en.

Thus, ν is parallel if and only if a2, . . . , an are a solution of the following
system of ordinary differential equations:

(1)

a′
2 − a3κ2 = 0,

a′
3 + a2κ2 − a4κ3 = 0,

. . .
a′

n−1 + an−2κn−2 − anκn−1 = 0,
a′

n + an−1κn−1 = 0.

Finally, note that if ν is parallel, then ν′ = −a2κ1e1. Hence, it is non-
degenerate if and only if both a2 and κ1 are not zero (note that κ1 > 0
if n ≥ 3).

In general, if M is an immersed submanifold of dimension m in R
n,

with 1 < m < n, a local parallel normal vector field does not always
exist (see Section 5). However, it is obvious that if M is contained in a
hyperplane π(x0, v) of R

n, the constant normal vector field v is parallel.
Analogously, if M is contained in a hypersphere S(p, R) of R

n, then the
outward unit normal vector field of the hypersphere restricted to M is
parallel and non-degenerate (in this case, Gν is the inclusion map).

Corollary 3.4. Let ν be a non-degenerate parallel unit normal vec-
tor field on M . Then the Gauss map Gν : M → Sn−1 is an immersion
whose image, Mν = Gν(M), satisfies that TpM = TνpM

ν , for any
p ∈ M .

The condition TpM = TνpMν can be seen as some kind of “par-
allelism” between M and the hyperspherical submanifold Mν . Next
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proposition shows that this hyperspherical submanifold Mν has the same
contact type Σi with hyperplanes as the original submanifold M , thus
giving a partial answer to Question 2.12.

Proposition 3.5. Let ν be a non-degenerate parallel unit normal
vector field on M . If M has contact type Σi with a hyperplane π(p, v)
at p ∈ M , then Mν has the same contact type Σi with the translated
hyperplane π(νp, v) at νp ∈ Mν.

Proof. Assume that M is locally parametrized in a neighbourhood
of p by the immersion g : U ⊂ R

m → R
n, with g(u0) = p. Then, the

contact between M and π(p, v) is determined by the K-class at u0 of the
height function hv : U → R given by hv(u) = 〈g(u), v〉. Analogously,
to study the contact between Mν and π(νp, v) we consider hν

v : U → R

given by hν
v(u) = 〈Gν(g(u)), v〉.

Since ν is parallel, this means that

∂Gν ◦ g

∂ui
= ∇′

∂
∂ui

ν ◦ g =
m∑

j=1

aij
∂g

∂uj
,

for some smooth functions aij . Moreover, the fact that it is non-degenerate
implies that det(aij) �= 0.

Hence, we also have that

hν
v

∂ui
=

m∑
j=1

aij
hv

∂uj
,

and the result is a consequence of Lemma 2.7, since this condition is
equivalent to Jm(hv) = Jm(hν

v) when considered as function germs from
(Rm, u0) to R. Q.E.D.

In general, it is not true that Mν has the same contact with hy-
perplanes as the original sumbanifold M . For instance, if M ⊂ R

3 is a
surface with gaussian curvature K < 0, then the corresponding height
function is K-equivalent to x2 − y2. However, the image of the Gauss
map Mν is an open subset of the sphere S2 and the contact with the
tangent plane is given by the height function x2 + y2.

§4. Curves in R
3

Let α : I → R
3 be a regular space curve with non-vanishing curva-

ture, so that it has a well defined Frenet frame e1, e2, e3. We also denote
by κ, τ the curvature and the torsion of α respectively. Assume that α
is parametrized by arc length. A normal unit vector field is given by
ν = cos θe2 + sin θe3.
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Proposition 4.1. A normal unit vector field ν = cos θe2 + sin θe3

is parallel if and only if θ′ = −τ . Moreover, it is also non-degenerate if
and only if cos θ �= 0.

Proof. In this case, the system of differential equations (1) is

−θ′ sin θ − τ sin θ = 0,

θ′ cos θ + τ cos θ = 0,

which reduces to θ′ = −τ . For the second part, just note that if ν is
parallel, then ν′ = −κ cos θe1, with κ > 0. Q.E.D.

As a consequence, we have that a parallel normal unit vector field al-
ways exists for a space curve and it is unique up to rotation in the normal
plane. Moreover, since we can take the initial condition cos θ0 �= 0, we
can choose the parallel vector to be non-degenerate in a neighbourhood
of each point of the curve.

Assume that ν is parallel and non-degenerate. Then the “parallel”
curve αν : I → S2 is nothing but the spherical indicatrix of ν. According
to Proposition 3.5, αν has the same contact type Σi with planes than the
original curve α. In particular, α has a Σ1,1,1 contact with its osculating
plane at a point if and only if αν has the same contact type Σ1,1,1

with the translated plane at the corresponding point. Hence, t ∈ I is a
flattening (i.e., τ(t) = 0) of α if and only if it is a flattening of αν .

The classical four vertex theorem for plane curves states that any
regular closed and simple plane curve has at least four vertices. By
taking stereographic projection this is equivalent to say that any regular
closed and simple space curve contained in the sphere S2 has at least
four flattenings. This has been generalized in different ways by several
authors (see [1, 2, 11, 15]) for convex space curves, although they do not
use the same definition of convexity.

As a corollary of our computations we obtain one more different
extension of the Four Vertex Theorem.

Corollary 4.2. Let α : I → R
3 be a regular, simple and closed space

curve with non-vanishing curvature. Assume that the parallel curve αν

is also regular, simple and closed. Then α has at least four flattenings.

The regularity condition on αν is just the non-degeneracy of ν. Al-
though we can choose ν so that it is non-degenerate in a neighbouhood
of each point, it is not true that there always exists a parallel normal
vector field which is globally non-degenerate. On the other hand, the
condition that αν is closed is equivalent to the vanishing of the total
torsion of α, that is,

∫
I τ = 0, which implies the existence of at least two

flattenings.
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§5. Totally semi-umbilic surfaces in R
4

Let M be a smooth surface immersed in R
4. Given a normal vector

ν ∈ TpM
⊥, we define the ν-principal directions and the ν-principal

curvatures to be the unit eigenvectors and corresponding eigenvalues for
the self-adjoint linear map Aν : TpM → TpM .

Definition 5.1. A point p of a smooth immersed surface M in R
4

is said to be semi-umbilic if there is a non-zero normal vector ν ∈ TpM
⊥

such that the ν-principal curvatures are equal. We say that p is umbilic
if the ν-principal curvatures are equal for any normal vector ν ∈ TpM

⊥.
We say that M is totally semi-umbilic (respectively totally umbilic) if
all its points are semi-umbilic (respectively umbilic).

Assume that M is locally parameterized as the image of a smooth
immersion x : U → R

4, where U ⊂ R
2 is an open set. We denote by u, v

the coordinates in R
2 and by xu,xv. the partial derivatives of x with

respect to these coordinates. Then, the first fundamental form is given
in local coordinates by

I = Edu2 + 2Fdudv + Gdv2,

where
E = 〈xu,xu〉, F = 〈xu,xv〉, G = 〈xv,xv〉.

Moreover, for any normal vector ν ∈ TpM
⊥, the second fundamental

form can be expressed as

IIν = aνdu2 + 2bνdudv + cνdv2,

with coefficients

aν = 〈xuu, ν〉, bν = 〈xuv, ν〉, cν = 〈xvv, ν〉.

Then, it follows that the ν-principal directions can be computed as the
null directions of the quadratic form:

∣∣∣∣∣∣
dv2 −dudv du2

aν bν cν

E F G

∣∣∣∣∣∣ .

Example 5.2. Every hyperspherical surface M immersed in R
4 is

totally semi-umbilic. In fact, if M is contained in a hypersphere of
R

4 with center p ∈ R
4 and radius R > 0 a simple computation shows

that the principal curvatures with respect to some unit normal vector



Submanifolds with a non-degenerate parallel normal vector field 325

to the hypersphere are either both equal to 1/R or both equal to −1/R
(depending on the chosen normal vector).

Analogously, if M is contained in some hyperplane of R
4, the princi-

pal curvatures with respect to any normal vector to the hyperplane are
both equal to zero and hence, M is totally semi-umbilic.

Finally, note that there are semi-umbilic surfaces which are not
contained in a hypersphere nor a hyperplane. For instance, consider
two plane regular curves α : I → R

2 and β : J → R
2. Then x =

α×β : I ×J → R
4 parameterizes a semi-umbilic surface. For simplicity,

we assume that both α and β are parameterized by arc-length. Since
xu = (α′, 0) and xv = (0, β′), this implies that E = G = 1 and F = 0.
Let us denote by nα, nβ, κα, κβ the normal vectors and the curvatures
of α, β respectively. If κ2

α + κ2
β > 0, we consider ν = (κβnα, καnβ)

so that both ν-principal curvatures are equal to κακβ . Otherwise, if
κα = κβ = 0, we consider ν = (nα, nβ) and the corresponding principal
curvatures are both equal to zero.

We recall now the concept of curvature ellipse of an immersed surface
M in R

4. Given a point p ∈ M , we consider the unit circle in TpM
parameterized by the angle θ ∈ [0, 2π]. Let γθ be the curve obtained
by intersecting M with the hyperplane at p given by the direct sum of
the normal plane TpM

⊥ and the straight line in the tangent direction
represented by θ. Such curve is called the normal section of M in the
direction θ. The curvature vector η(θ) of γθ in p lies in TpM

⊥. Varying
θ from 0 to 2π, this vector describes an ellipse in TpM

⊥, called the
curvature ellipse of M at p. A tangent direction represented by the
angle θ is called an asymptotic direction (or conjugate direction in the
terminology of Little [8]) if η(θ) and dη

dθ (θ) are collinear.
It is possible to characterize the asymptotic directions as those di-

rections θ such that the line in TpM
⊥ joining the origin p with η(θ) is

tangent to the curvature ellipse at such point. Thus, if the curvature
ellipse is not a radial segment, we can have three cases (Figure 1):

(1) The origin p lies outside the curvature ellipse. There are ex-
actly two asymptotic directions and the point p is called hy-
perbolic.

(2) The origin p lies on the curvature ellipse. There is only one
asymptotic direction and the point p is called parabolic.

(3) The origin p lies inside the curvature ellipse. There are no
asymptotic directions and the point p is called elliptic.

Finally, in the case that the curvature ellipse degenerates to a radial
segment, it follows that all the directions are asymptotic and the point
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p is called an inflection. An inflection is said to be of real type when p
belongs to the curvature ellipse and of imaginary type when it does not.

Fig. 1

In local coordinates, the asymptotic directions are computed by
means of the quadratic equation

∣∣∣∣∣∣
dv2 −dudv du2

aν1 bν1 cν1

aν2 bν2 cν2

∣∣∣∣∣∣ = 0,

being ν1, ν2 some orthonormal frame of the normal plane TpM
⊥. More-

over, the inflections correspond to the singular points of the above dif-
ferential equation, that is, the points where the matrix

(
aν1 bν1 cν1

aν2 bν2 cν2

)

has rank ≤ 1.
The following theorem [14] gives characterizations of the semi-umbilic

points of an immersed surface in R
4 in terms of the curvature ellipse and

asymptotic lines.

Theorem 5.3. Let M be an immersed surface in R
4 and let p ∈ M .

The following are equivalent conditions:

(1) p is semi-umbilic.
(2) The curvature ellipse at p degenerates to a segment.
(3) There are two orthogonal asymptotic directions at p.

Using this theorem, we give a characterization of a totally semi-
umbilic surface in terms of the existence of a local parallel normal vector
field.
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Theorem 5.4. Let M be an immersed surface in R
4. Then M is

totally semi-umbilic if and only if there is a parallel normal vector field
defined in a neighbourhood of each point of M .

Proof. Let p ∈ M and assume that M is locally parameterized in
a neighbourhood of p as the image of a smooth isothermal immersion
x : U → R

4, where U ⊂ R
2 is an open set. This means that E = G and

F = 0. Now we take ν1, ν2 an orthonormal frame of the normal plane
at each point, so that xu,xv, ν1, ν2 give an orthogonal frame of R

4.
In order to make computations, we need to take the following coef-

ficients:

ν1,u = λ11xu + λ12xv + λ13ν2,

ν1,v = λ21xu + λ22xv + λ23ν2,

ν2,u = μ11xu + μ12xv + μ13ν1,

ν2,v = μ21xu + μ22xv + μ23ν1.

Since 〈ν1, ν2〉 = 0, it follows easily that μ13 = −λ13 and μ23 = −λ23.
Let now ν = Aν1 + Bν2 be a normal vector field. We have that if

ν is parallel then 〈ν, ν〉 = constant. Hence, we can assume, without loss
of generality, that A2 + B2 = 1. With this assumption, it follows that ν
is parallel if and only if

det(νu, ν,xu,xv) = det(νv, ν,xu,xv) = 0.

By direct computation we get that

det(νu, ν,xu,xv) = (AuB − BuA − λ13) det(ν1, ν2,xu,xv),

det(νv, ν,xu,xv) = (AvB − BvA − λ23) det(ν1, ν2,xu,xv),

so that ν is parallel if and only if

λ13 = AuB − BuA,

λ23 = AvB − BvA.

Finally, it is not difficult to see that this system of PDE’s has a solution
A, B with A2 + B2 = 1 if and only if λ13,v = λ23,u. In the second part
of the proof, we see that such condition is equivalent to the fact that
the asymptotic directions are orthogonal, and hence that M is totally
semi-umbilic, by the above theorem.

In fact, since λ13 = 〈ν1,u, ν2〉 and λ23 = 〈ν1,v, ν2〉, we get

λ13,v − λ23,u =〈ν1,uv, ν2〉 + 〈ν1,u, ν2,v〉 − 〈ν1,uv, ν2〉 − 〈ν1,v, ν2,u〉
=〈ν1,u, ν2,v〉 − 〈ν1,v, ν2,u〉
=E(λ11μ21 + λ12μ22 − λ21μ11 − λ22μ12).
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In order to simplify the notation we change the notation for the
coefficients of the second fundamental forms of ν1, ν2 in the following
way:

a = aν1 , b = bν1 , c = cν1 ,

e = aν2 , f = bν2 , g = cν2 .

Then, since 〈xu, νi〉 = 〈xv, νi〉 = 0, we deduce that

a = 〈xuu, ν1〉 = −〈xu, ν1,u〉 = −Eλ11,

e = 〈xuu, ν2〉 = −〈xu, ν2,u〉 = −Eμ11,

b = 〈xuv, ν1〉 = −〈xu, ν1,v〉 = −Eλ21 = −〈xv, ν1,u〉 = −Eλ12,

f = 〈xuv, ν2〉 = −〈xu, ν2,v〉 = −Eμ21 = −〈xv, ν2,u〉 = −Eμ12,

c = 〈xvv, ν1〉 = −〈xv, ν1,v〉 = −Eλ22,

g = 〈xvv, ν1〉 = −〈xv, ν1,v〉 = −Eμ22.

Using this, we conclude that λ13,v = λ23,u if and only if

(a − c)f = (e − g)b.

On the other hand, if we look at the differential equation of the
asymptotic lines
∣∣∣∣∣∣

dv2 −dudv du2

a b c
e f g

∣∣∣∣∣∣ =
∣∣∣∣ b c

f g

∣∣∣∣ dv2+
∣∣∣∣ a c

e g

∣∣∣∣ dudv+
∣∣∣∣ a b

e f

∣∣∣∣ du2 = 0,

we see that there are two orthogonal asymptotic lines at each point if
and only if ∣∣∣∣ b c

f g

∣∣∣∣ = −
∣∣∣∣ a b

e f

∣∣∣∣ ,
which is in fact equivalent to the above condition (a − c)f = (e − g)b.

Q.E.D.

Now we see that if we also impose the condition that the gaussian
curvature K of M is not zero, then we can choose the local parallel
vector field to be non-degenerate.

Theorem 5.5. Let M be a totally semi-umbilic surface immersed in
R

4 with K �= 0. Then, there is a non-degenerate parallel normal vector
field defined in a neighbourhood of each point of M .
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Proof. Assume that M is locally parametrized in a neighbourhood
of p as the image of a smooth isothermal immersion x : U → R

4, where
U ⊂ R

2 is some open set. By Theorem 5.4, there is a parallel unit
normal vector field ν and we take another unit normal vector field ξ so
that ν, ξ is an orthonormal frame of the normal plane at each point and
xu,xv, ν, ξ is an orthogonal frame of R

4.
Since 〈ν, ξ〉 = 0 it follows that 〈ξu, ν〉 = −〈ξ, νu〉 = 0 and 〈ξv, ν〉 =

−〈ξ, νv〉 = 0. This shows that ξ is also parallel. Therefore, we can write

νu = λ11xu + λ12xv,

νv = λ21xu + λ22xv,

ξu = μ11xu + μ12xv,

ξv = μ21xu + μ22xv,

for some coefficients λij and μij . In the proof of Theorem 5.4 we showed
that these coefficients are given by

(
λ11 λ12

λ21 λ22

)
= − 1

E

(
a b
b c

)
,

(
μ11 μ12

μ21 μ22

)
= − 1

E

(
e f
f g

)
,

where a, b, c and e, f, g are the coefficients of the second fundamental
forms of the normal vectors ν and ξ respectively.

On the other hand, we can use the Gauss equation (see [8]) which
gives the gaussian curvature K in terms of these coefficients:

K =
1

E2
(ac − b2 + eg − f2).

In particular, if K �= 0, it follows that either ac − b2 �= 0 or eg − f2 �= 0
and hence, either ν is an immersion or ξ is an immersion. Q.E.D.

Theorem 5.6. Let M be a totally semi-umbilic surface immersed in
R

4 with K �= 0. Assume that Gν : W → S3 is the Gauss map of a non-
degenerate parallel unit normal vector field ν defined in a neighbourhood
W of p ∈ M . Then Gν preserves the inflections and the asymptotic
directions between W and the image W ν .

Proof. We use the same notation as in the proof of the above theo-
rem. Since ν is parallel, it follows that for any q ∈ W , the normal plane
to W ν at νq coincides with the normal plane to W at q. Thus, we can
also take ν, ξ as an orthonormal frame of the normal plane of W ν .
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Remember that, according to the proof of the above theorem, we
have

νu = − 1
E

(axu + bxv),

νv = − 1
E

(bxu + cxv),

ξu = − 1
E

(exu + fxv),

ξv = − 1
E

(fxu + gxv),

where xu,xv, ν, ξ is the orthogonal frame adapted to the original surface
M . Thus, it follows that the coefficients of the second fundamental form
of W ν with respect to ν are

〈νuu, ν〉 = −〈νu, νu〉 = − 1
E2

〈axu + bxv, axu + bxv〉 = − 1
E

(a2 + b2),

〈νuv, ν〉 = −〈νu, νv〉 = − 1
E2

〈axu + bxv, bxu + cxv〉 = − 1
E

(ab + bc),

〈νvv, ν〉 = −〈νv, νv〉 = − 1
E2

〈bxu + cxv, bxu + cxv〉 = − 1
E

(b2 + c2).

We compute now the coefficients of the second fundamental form with
respect to ξ:

〈νuu, ξ〉 = −〈νu, ξu〉 = − 1
E2

〈axu + bxv, exu + fxv〉 = − 1
E

(ae + bf),

〈νuv, ξ〉 = −〈νu, ξv〉 = − 1
E2

〈axu + bxv, fxu + gxv〉 = − 1
E

(af + bg),

〈νvv, ξ〉 = −〈νv, ξv〉 = − 1
E2

〈bxu + cxv, fxu + gxv〉 = − 1
E

(bf + cg).

Now, it is easy to write down the differential equation for the asymptotic
directions of W ν ,

1
E2

∣∣∣∣∣∣
dv2 −dudv du2

a2 + b2 ab + bc b2 + c2

ae + bf af + bg bf + cg

∣∣∣∣∣∣ = 0.

In the proof of Theorem 5.4, we showed that if M is semi-umbilic then
(a − c)f = (e − g)b. By using this condition, it follows that

1
E2

∣∣∣∣∣∣
dv2 −dudv du2

a2 + b2 ab + bc b2 + c2

ae + bf af + bg bf + cg

∣∣∣∣∣∣ =
ac − b2

E2

∣∣∣∣∣∣
dv2 −dudv du2

a b c
e f g

∣∣∣∣∣∣ .
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Finally, note that the fact that ν is non-degenerate implies that ac−b2 �=
0, which completes the proof. Q.E.D.

Finally, we consider the composition of the Gauss map of the parallel
unit normal vector field ν with the stereographic projection from S3 into
R

3. It follows that such a map transforms the asymptotic lines of M
into the principal lines of its image in R

3 and the inflections into the
umbilics. Hence, we get as a direct consequence the following extension
of the Loewner and Carathéodory conjectures for totally semi-umbilic
analytic surfaces immersed in R

4 with K �= 0.

Corollary 5.7. Let M be a totally semi-umbilic analytic surface
immersed in R

4 with K �= 0. Then the index of the asymptotic foliation
at an isolated inflection of M is always ≤ 1.

Corollary 5.8. Let M be a totally semi-umbilic analytic surface
immersed in R

4 with K �= 0 and assume that M is homeomorphic to
S2. Then M has at least two inflections.

References

[ 1 ] V. I. Arnold, On the number of flattening points on space curves, Sinăı’s
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Weighted homogeneous polynomials and

blow-analytic equivalence

Ould M Abderrahmane

Abstract.

Based on the T. Fukui invariant and the recent motivic invariants
proposed by S. Koike and A. Parusiński we give a simple classification
of two variable quasihomogeneous polynomials by the blow-analytic
equivalence.

§1. INTRODUCTION

Unlike the topological triviality of real algebraic germs, the C1-
equisingularity admits continuous moduli. For instance, the Whitney
family Wt(x, y) = xy(x − y)(x − ty), t > 1, has an infinite number
of different C1-types. Nevertheless, as was noticed by Tzee-Char Kuo,
this family is blow-analytically trivial, that is, after composing with
the blowing-up β : M2 → R2, Wt ◦ β becomes analytically trivial. T.-
C. Kuo proposed new notions of blow-analytic equisingularity and the
blow-analytic function (see [6, 3] for survey). Let f : U → R, U open
in Rn, be a continuous function. We say that f is blow-analytic, if
there exists a sequence of blowing-up β such that the composition f ◦ β

is analytic (for instance f(x, y) = x2y
x2+y2 is blow-analytic but not C1).

A local homeomorphism h : (Rn, 0) → (Rn, 0) is called blow-analytic
if so are all coordinate functions of h and h−1. Two function germs
f1, f2 : (Rn, 0) → (R, 0) are blow-analytically equivalent if there is a
blow-analytic homeomorphism h such that f1 = f2 ◦ h.

Observation. Let f, g : (Cn, 0) → (C, 0) be weighted homogeneous
polynomials with isolated singularities. It is known, for n = 2, 3, that if
(Cn, f−1(0)) and (Cn, g−1(0)) are homeomorphic as germs at 0 ∈ Cn,
then, their systems of weights coincide.
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Revised December 12, 2004.
This research was supported by the Japan Society for the Promotion of

Science.
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We will consider real singularities. We can easily see that the notion
of topological equivalence is too weak to consider the same problem for
real analytic singularities. For example, consider f(x, y) = x3 + xy6

and g(x, y) = x3 + y8, they are topologically equivalent by Kuiper-
Kuo Theorem (see [7, 8]). However, f and g have different weights. We
replace the topological equivalence by the blow-analytic equivalence, and
we will consider the following problem suggested by T. Fukui.

Problem 1 (T. Fukui, [2], Conjecture 9.2 ). Let f, g : (Rn, 0) →
(R, 0) be weighted homogeneous polynomials with isolated singularities.
Suppose that f and g are blow-analytically equivalent. Then, do their
systems of weights coincide?

The purpose of this paper is to establish this conjecture for two
variables. Namely, we will prove the following :

Theorem 1. Let fi : (R2, 0) → (R, 0) (i = 1, 2) be non-degenerate
quasihomogeneous polynomials of type (1; ri1, ri2) such that 0 < ri2 ≤
ri1. If f1 and f2 are blow-analytically equivalent, then either both f1

and f2 are nonsingular, or both are analytically equivalent to xy, or
(r11, r12) = (r21, r22).

We call a polynomial f quasihomogeneous of type (d; w1, . . . , wn) ∈
Qn+1 if i1w1+· · ·+inwn = d for any monomial αxi1

1 . . . xin
n of f . We say

that a polynomial f(x) is non-degenerate if { ∂f
∂x1

(x) = · · · = ∂f
∂xn

(x) =
0} ⊂ {0} as germs at the origin of Rn.

We will next recall some important results on blow-analytic equiv-
alence.

Theorem 2 (T. Fukui - L. Paunescu [4]). Given a system of weights
w = (w1, . . . , wn), let ft : (Rn, 0) → (R, 0) be an analytic function for
t ∈ I = [0, 1]. Suppose that for each t ∈ I, the weighted initial form
of ft with respect to w is the same weighted degree and has an isolated
singularity at 0 ∈ Rn. Then {ft}t∈I is blow-analytically trivial over I.

T. Fukui ([2]) gave some invariants for blow-analytic equivalence.
One of them is defined as follows :

For an analytic function f : (Rn, 0) → (R, 0), set

A(f) = {O(f ◦ λ) | λ : (R, 0) → (Rn, 0) Cwarc}.

Then we have
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Theorem 3 (Fukui’s invariant). Suppose that analytic functions
f, g : (Rn, 0) → (R, 0) are blow-analytically equivalent, then A(f) =
A(g).

Recently in [5], S. Koike and A. Parusiński have defined motivic zeta
functions (inspired by the work of Denef and Loser [1]) which are invari-
ant for blow-analytic equivalence. We will briefly recall their definition
of the zeta functions.

Denote by L the space of analytic arcs at the origin 0 ∈ Rn :

L = {γ : (R, 0) → (Rn, 0) | γ is analytic }

and by Lk the space of truncated arcs :

Lk = {γ ∈ L | γ(t) = v1t + · · · + vktk, vi ∈ Rn}.

Given an analytic function f : (Rn, 0) → (R, 0). For k ≥ 1 we
denote

Ak(f) = {γ ∈ Lk | f ◦ γ(t) = ctk + · · · , c �= 0}.
We define the zeta function of f by

Zf (T ) =
∑
k≥1

(−1)−knχc(Ak(f))T k

where χc denotes the Euler characteristic with compact support.
Then we have

Theorem 4 (S. Koike - A. Parusiński [5]). Suppose that analytic
functions f, g : (Rn, 0) → (R, 0) are blow-analytically equivalent, then
Zf = Zg.

Before starting the proof of Theorem 1, we will make one more
remark, as follows.

Remark 5. Let f : (Rn, 0) → (R, 0) be a non-degenerate quasiho-
mogeneous polynomial of type (d; w1, . . . , wn). Taking a new representa-
tive of the blow-analytic class of f if necessary we can suppose that, for
each α ∈ Nn such that 〈α , w〉 = α1w1 + · · ·+ αnwn = d, the coefficient
term xα = xα1

1 · · ·xαn
n is not zero in f(x).

Our remark is a simple consequence of Theorem 2 (we omit the
details).
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§2. PROOF OF THEOREM 1

Let fi : (R2, 0) → (R, 0) (i = 1, 2) be non-degenerate quasihomoge-
neous polynomials of type (1; ri1, ri2). Setting

ai =
1

ri1
and bi =

1
ri2

for i = 1, 2.

Modulo a permutation coordinate of R2, we may assume that ai ≤ bi.
Moreover, if ai < 2, then fi is analytically equivalent to g(x, y) = x or xy
by the Implicit Function Theorem. But 0 ∈ R2 is a regular point of x
and the polynomial xy is a weighted homogeneous of type (1; 1

2 , 1
2 ).

Given this, we can assume that

(2.1) 2 ≤ ai ≤ bi for i = 1, 2.

Since fi are non-degenerate quasihomogeneous polynomials, we have
the following cases for Newton boundary Γ(fi) as in the following figure :

•

•

�

�

ai

bi
�
�
�
�
�
��

↙
Γ(fi)

ai, bi ∈ N

�

�
bi •

•

�
�
�
�� (pi, 1)

..
..

∗
ai

↙
Γ(fi)

ai ∈ N or bi ∈ N

�

�

�
�
�

∗
ai

•
(1, qi)..

.∗bi

↙ Γ(fi)

ai /∈ N , bi /∈ N

•... (pi, 1)

These figures suggest that the proof of Theorem 1 should be divided
into several steps, according to the possible cases for ai and bi :

Case 1. In this case, we suppose ai, bi ∈ N (i.e., fi nearly conve-
nient). Here N denotes the set of positive integers and let for any a ∈ N,
N≥a = {k ∈ N | k ≥ a}. We first remark that the Fukui invariant of fi

can be computed easily as follows :

Assertion 6.

(2.2) A(fi) =

{
aiN ∪ biN ∪ {∞} if f−1

i (0) = {0},
aiN ∪ biN ∪ N≥[ai,bi] ∪ {∞} otherwise.
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Where [ai, bi] = LCM(ai, bi).

Proof. Let λ : (R, 0) → (R2, 0) be an analytic arc. Then λ(t) =
(X(t), Y (t)) can be expressed in the following way :

X(t) = αutu + αu+1t
u+1 + · · · , Y (t) = cvtv + cv+1t

v+1 + · · · ,

where αu, cv �= 0 and u, v ≥ 1. By the above Remark 5, we may
assume that there exist the terms Xai and Y bi with non-zero coefficients
in fi(X, Y ).

We will first consider the case whereby f−1
i (0) = {0}. If u ai �= v bi,

we have
fi(X(t), Y (t)) = di tmin{u ai , v bi} + · · · , di �= 0

then O(fi ◦ λ) = min{u ai , v bi} ∈ aiN ∪ biN ∪ {∞}. Thus it remains
for us to consider the case u ai = v bi. In this case, we have

fi(X(t), Y (t)) = fi(αu , cv) tu ai + · · · ,

since fi(αu , cv) �= 0. Therefore A(fi) ⊆ aiN ∪ biN ∪ {∞}. Any integer
s ∈ aiN∪biN, for instance s = k ai, is attained by the arc γ(t) = (tk, 0).
Hence we have

A(fi) = aiN ∪ biN ∪ {∞}.
We will next consider the case whereby f−1

i (0) �= {0}. Similarly we
have

aiN ∪ biN ∪ {∞} ⊆ A(fi) ⊆ aiN ∪ biN ∪ N≥[ai,bi] ∪ {∞}.

Obviously we only have to prove that N≥[ai,bi] ⊆ A(fi). Suppose that
k ∈ N≥[ai,bi]. Then there exists an arc γ through 0 ∈ R2 such that O(f ◦
γ) = k. Setting [ai, bi] = ni ai = mi bi, since fi is non-degenerate and
f−1

i (0) �= {0}, there exists a (α, c) ∈ f−1
i (0) such that (∂fi

∂X (α, c), ∂fi

∂Y (α, c))
�= (0, 0), we may assume that ∂fi

∂X (α, c) �= 0. Then it is easy to see that
for any positive integers [ai, bi] + s ∈ A(f), s ∈ N, is attained by an arc
γ(t) = (αtni + ts+ni , ctmi).

Evidently, this completes the proof of the Assertion. Q.E.D.

From Theorem 3, A(f1) = A(f2). Thus, by the above Assertion, we
have the following result :

a1 = a2 same multiplicity for fi,

b1 = b2 if b1 /∈ a1N or b2 /∈ a2N,

b1 = b2 if f−1
i (0) �= {0}.
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Manifestly, the Fukui invariant determines the weights except in the
following case :

b1 = k1a, b2 = k2a and f−1
i (0) = {0},

where a = a1 = a2 is the smallest number in A(fi), and there remains
to prove k1 = k2. In fact, assume that k1 �= k2, for example k2 > k1.
We will show that this gives rise to a contraduction by comparing the
coefficients of the zeta functions. If k2 > k1 then we may write

Ab1(f2) = {γ(t) = (ck1t
k1 + · · · + cb1t

b1 , d1t
1 + · · · + db1t

b1) | ck1 �= 0}
� R∗ × Rb1−k1 × Rb1 .

That is

(2.3) χc(Ab1(f2)) = (−2)χc(Rb1−k1+b1) = (−2)(−1)2b1−k1 .

Also, since f−1
1 (0) = {0}, we obtain

Ab1(f1) = {γ = (uk1t
k1 + · · · + ub1t

b1 , v1t
1 + · · · + vb1t

b1) | (uk1 , v1) �= 0}
� (R2 − {0})× Rb−k1 × Rb1−1

which means

χc(Ab1(f1)) = χc(R2 − {0})χc(R2b1−k1−1).

Since χc(R2 −{0}) = 0 we get by (2.3) that χc(Ab1(f1)) �= χc(Ab1 (f2)).
Therefore Zf1 �= Zf2 , which contradicts Theorem 4. This ends the proof
of Theorem 1 in the first case.

Case 2. In this case, we suppose ai /∈ N, bi ∈ N for i = 1, 2. Since
fi is non-degenerate, then there exists the term xpiy for some integers
pi ≥ 1 with non-zero coefficients in fi(x, y). By Theorem 2 and (2.1),
it is easy to see that for any integers s ≥ 1, fi(x, y) + xpi+s is blow-
analytically equivalent to fi(x, y). Then the Fukui invariant of fi is
determined by

(2.4) A(fi) = {pi + 1, pi + 2, pi + 3, · · · } ∪ {∞}.

Moreover A(f1) = A(f2), and it follows that p1 = p2. Consequently it
is sufficient to prove that b1 = b2. Indeed, suppose that b1 < b2. Then,
we let

p = p1 = p2, �n = {(r, s) ∈ N2 | rp + s = n}
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and

Cn
r,s = {γ(t) = (urt

r + · · · + untn , vst
s + · · · + vntn) | ur, vs �= 0}

� (R∗)2 × R2n−r−s.

Let us first compute χc(Ab1(fi)). It is easy to see that for any
positive integers n < bi, we have that An(fi) =

⋃
(r,s)∈�n

Cn
r,s (Remark

that the union is disjoint). Thus, by the additivity of χc, we have

(2.5) χc(Ab1 (f2)) =
∑

(r,s)∈�b1

(−2)2(−1)2b1−r−s.

Similarly if b1 − 1 /∈ pN, we obtain

(2.6) χc(Ab1(f1)) = (−2)(−1)2b1−d +
∑

(r,s)∈�b1

(−2)2(−1)2b1−r−s

where d is the smallest number in {1, . . . , b1} such that d p + 1 > b1.
It follows from (2.5) and (2.6) that χc(Ab1 (f2)) �= χc(Ab1(f1)). But
this implies a contradiction, by comparing the coefficients of the zeta
functions. Hence we have b1 − 1 ∈ pN. Now assume b1 = k p + 1. Then
by elementary computation, we have

Ab1(f1) = Cf1 ∪ (∪(r,s)∈�b1\{(k,1)}Cb1
r,s),

where

Cf1 = {γ(t) = (uktk + · · · + ub1t
b1 , v1t

1 + · · · + vb1t
b1) | f1(uk, v1) �= 0}

� {f1 �= 0} × R2b1−k−1,

Also, by the additivity of the Euler characteristic with compact support,
we obtain

χc(Ab1(f1)) = χc({f1 �= 0})(−1)2b1−k−1 +
∑

(r,s)∈�b1\{(k,1)}
4(−1)2b1−r−s.

Together with (2.5), it follows that

(2.7) χc({f1 = 0}) = −3.

We will next compute the χc(Ab1+1(fi)), (i = 1, 2). Setting m =
kp + 2 = b1 + 1. Then, by the above, m − 1 /∈ pN and m ≤ b2, we can
easily see the following
(2.8)

χc(Am(f2)) =

{∑
(r,s)∈�m

4(−1)2m−r−s if m < b2,

−2(−1)2m−k−1 +
∑

(r,s)∈�m
4(−1)2m−r−s if m = b2
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Now we compute χc(Am(f1)). Let λ(t) = (X(t), Y (t)) be an analytic
arc defined by

X(t) = uktk + · · · + umtm,

Y (t) = v1t + · · · + vmtm.

We can write

f1(X(t), Y (t)) = f1(uk, v1)tm−1 + 〈∇f1(uk, v1) ; (uk+1, v2) 〉 tm + · · · ,

where

〈∇f1(uk, v1) ; (uk+1, v2) 〉 =
∂f1

∂x
(uk, v1)uk+1 +

∂f1

∂y
(uk, v1) v2.

Moreover, if f1(uk, v1) = 0 and 〈∇f1(uk, v1) ; (uk+1, v2) 〉 �= 0, then we
have O(f1 ◦ λ) = m. Let us put

B1 = {(u, v, w, z) ∈ (f−1
1 (0) − {0})× R2 | 〈∇f1(u, v) ; (w, z) 〉 �= 0 },

B2 = {(u, v, w, z) ∈ (f−1
1 (0) − {0})× R2 | 〈∇f1(u, v) ; (w, z) 〉 = 0 },

C∇f1 = {(uktk + · · · + umtm, v1t
1 + · · · + umtm)| (uk, uk+1, v1, v2) ∈ B1}

� B1 × R2m−k−3,

Then, by the above, the Am(f1) given by

Am(f1) = C∇f1 ∪ (∪(r,s)∈�m
Cm

r,s).

Thus the Euler characteristic with support compact of Abm(f1) equals

(2.9) χc(Am(f1)) = χc(B1)(−1)2m−k−3 +
∑

(r,s)∈�m

(−2)2(−1)2m−r−s.

By identification of the m-coefficients of both zeta functions of fi for
i = 1, 2, it follows from (2.8) and (2.9) that χc(B1) = 0 or − 2. On the
other hand, (f−1

1 (0) − {0}) × R2 = B1 ∪ B2. Therefore

χc(f−1
1 (0) − {0}) = χc(B1) + χc(B2),

but B2 � (f−1
1 (0)−{0})×R. This is clear because f1 is non-degenerate,

then we have

χc(f−1
1 (0) − {0}) = χc(f−1

1 (0) − {0})(−1) + χc(B1).

Since χc(B1) = 0 or − 2, this yields

χc(f−1
1 (0)) = 1 or 0,

which contradicts (2.7). This ends the proof of Theorem 1 in the second
case.
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Remark 7. If we drop the assumption that b2 is an integer, then
the above proof still holds.

Case 3. In this case, we suppose ai ∈ N, bi /∈ N for i = 1, 2.
Since fi is non-degenerate, then there exists the term xyqi for some
integers qi ≥ 1 with non-zero coefficients in fi(x, y). For any real α we
denote by e(α) the minimum positive integer n such that n ≥ α. By an
argument similar to that of Assertion 6 and (2.4), we can compute the
Fukui invariant of fi as follows :

A(fi) = aiN ∪ {e(bi), e(bi) + 1, · · · } ∪ {∞}.
By Theorem 3, A(f1) = A(f2). Then we have the following result :

(2.10) a1 = a2 and e(b1) = e(b2)

Suppose now b1 �= b2. Then q1 �= q2, but | b1 − b2 |≥| q1 − q2 |≥ 1. It
follows that e(b1) �= e(b2), which contradicts (2.10). This complete the
proof of Theorem 1 in the third case.

Case 4. In this case, we suppose ai, bi /∈ N for i = 1, 2. Since
fi is non-degenerate, then there exist the terms xpiy and xyqi for some
integers pi ≥ 1 and qi ≥ 1 with non-zero coefficients in fi(x, y). Thus,
the Fukui invariant of fi can be written as

A(fi) = {pi + 1, pi + 2, pi + 3, · · · } ∪ {∞},
which implies p1 = p2. Thus we only have to prove that b1 = b2.
Indeed, let us assume that b1 < b2. Then we have q1 < q2 which implies
b1 < e(b1) < b2. Let us put

p = p1 = p2, m = e(b1) and �m = {(r, s) ∈ (N− {0})2 | rp + s = m}.
We first observe that m − 1 /∈ pN. Otherwise, if m − 1 = r p, then we
have :

(2.11) b1 < q1 + r < r p + 1 < r a1.

This is a consequence of b1 < m = r p + 1 and also (1 , q1) and (p , 1)
are vertices of Γ(f1). But m = min{n ∈ N | n > b1}, which contradicts
(2.11). Hence we have m − 1 /∈ pN. Using this observation and by
elementary computation we obtain the following result :

(2.12)

χc(Am(f2)) =
∑

(r,s)∈�m

(−2)2(−1)2m−r−s,

χc(Am(f1)) = (−2)2(−1)m+q1−1 +
∑

(r,s)∈�m

(−2)2(−1)2m−r−s.
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This means that Zf1 �= Zf2 , which contradicts Theorem4. This
complete the proof of Theorem 1 in the fourth case.

In order to finish the proof of Theorem 1, it suffices to show the
following lemmas.

Lemma 8. a1 ∈ N if and only if a2 ∈ N.

Proof. Suppose that this is not the case. Namely, a1 ∈ N and
a2 /∈ N. Since f2 is non-degenerate, then there exists the term xp2y for
some integers p2 ≥ 1 with non-zero coefficients in f2(x, y). Again using
the same argument in (2.4) one gets

A(f2) = {p2 + 1, p2 + 2, p2 + 3, · · · ,∞},
Since A(f1) = A(f2), then we have a1 = b1 = p2 + 1, set m = p2 + 1.
We shall compute the χc(Am(fi)) for i = 1, 2, that is

Am(f2) = {γ(t) = (u1t + · · · + umtm , v1t + · · · + vmtm) | u1, v1 �= 0}
� (R∗)2 × R2m−2,

so

Am(f1) = {γ(t) = (u1t + · · · + umtm , v1t + · · · + vmtm) | f1(u1, v1) �= 0}
� {f1 �= 0} × R2m−2,

and hence to

(2.13) χc(Am(fi)) =

{
(−2)2(−1)2m−2 if i = 2,

χc({f1 �= 0})(−1)2m−2 if i = 1.

Since χc(Am(f1)) = χc(Am(f2)), then we have

(2.14) χc({f1 = 0}) = −3.

Using the same argument as Case 2, the (m + 1)-coefficients of Zfi

for i = 1, 2 can be computed as follows :

χc(Am+1(f1)) = χc(B1) and χc(Am+1(f2)) =

{
−4 if m �= b2,

−6 if m = b2.

We recall that :

B1 = {(u, v, w, z) ∈ (f−1
1 (0) − {0}) × R2 | 〈∇f1(u, v) ; (w, z) 〉 �= 0 },

B2 = {(u, v, w, z) ∈ (f−1
1 (0) − {0}) × R2 | 〈∇f1(u, v) ; (w, z) 〉 = 0 }.
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Finally, by comparing the (m+1)-coefficients of both zeta functions Zfi ,
it is evident that χc(B1) = −4 or −6, but (f−1

1 (0)−{0})×R2 = B1∪B2.
It follows from the additivity of the Euler characteristic that χc(f−1

1 (0)−
{0}) = χc(B1)+χc(B2). On the other hand, by B2 � (f−1

1 (0)−{0})×R
(because f1 is non-degenerate), then we have

χc(f−1
1 (0)) = −1 or − 2,

which contradicts (2.14). This proves the lemma. Q.E.D.

Lemma 9. b1 ∈ N if and only if b2 ∈ N.

Proof. Suppose now that b1 ∈ N and b2 /∈ N. Since f2 is non-
degenerate, then there exists the term xyq2 for some integers q2 ≥ 1
with non-zero coefficients in f2(x, y).

We first consider ai ∈ N for i = 1, 2. Then, by the same reason as
above, we can compute the Fukui invariant of fi as follows :

A(f1) = a1N ∪ b1N ∪ N≥[a1,b1] ∪ {∞},
A(f2) = a2N ∪N≥e(b2) ∪ {∞}.

Since A(f1) = A(f2), then we have the following result :

(2.15) a1 = a2, b1 = k a1, and e(b2) = b1 or b1 + 1.

Since b1 = k a1, we may assume by Remark 5 that there exists the
term xyk(a1−1) with non-zero coefficients in f1(x, y). But |b2 − b1| ≥
|q2 − k(a1 − 1)| ≥ 1, which implies b2 ≥ b1 + 1 or b1 ≥ b2 + 1. It follows
that e(b2) > b1 + 1 or e(b2) < b1, which contradicts (2.15), and ends the
first part of the lemma.

Now we consider the case where ai /∈ N for i = 1, 2. Since fi is
non-degenerate, then there exists the term xpiy for some integers pi ≥ 1
with non-zero coefficients in fi(x, y). It is easy to see that

A(fi) = {pi + 1, pi + 2, pi + 3, · · · } ∪ {∞}.
Moreover A(f1) = A(f2), and we get p1 = p2. Set

p = p1 = p2, m = e(b2) and �m = {(r, s) ∈ N2 | rp + s = m}.
As stated in Remark 7, we can exclude the case where b1 < b2 (because
this is proved in exactly the same way as Case 2). Thus it remains to
consider the case b2 < b1.

We next compute the m-coefficients of both zeta functions Zfi for
i = 1, 2. For this, we can assert that m− 1 /∈ pN. Indeed, suppose that
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m − 1 = α p for some positive integer α. Since b2 < m = α p + 1 which
implies b2 < q2 + α < αp + 1. This is clear because (1 , q2) ∈ Γ(f2).
But m = e(b2) is equal to the smallest integer greater than b2, which is
a contradiction. Therefore we obtain that m − 1 /∈ pN, and so on by
elementary computation, we have the following result :

(2.16) χc(Am(f2)) = (−2)2(−1)m+q2−1 +
∑

(r,s)∈�m

(−2)2(−1)2m−r−s.

And

χc(Am(f1)) =
∑

(r,s)∈�m

(−2)2(−1)2m−r−s if m < b1,

χc(Am(f1)) = (−2)(−1)m+q2 +
∑

(r,s)∈�m

(−2)2(−1)2m−r−s if m = b1.

Now it suffices to note by the above equalities that Zf1 �= Zf2 , which
contradicts Theorem4. This completes the proof. Q.E.D.

Theorem 1 is therefore proved.

Example 10. Let k be an arbitrary integer greater than or equal to
4. We consider quasihomogeneous polynomial functions fk, gk : (R2, 0) →
(R, 0) defined by

fk(x, y) = x5 + x y2 k, gk(x, y) = x5 − y2 k +2.

Note that the weights of fk and gk are (1
5 , 2

5 k ) and (1
5 , 1

2 k +2 ) re-
spectively. Since fk and gk have different weights for k > 4, they are
not blow-analytically equivalent by Theorem 1. However, fk and gk are
topologically equivalent. In fact, the above fk(x, y) = x5 + x y2 k ∈
J2 k+1
R (2, 1) is C0-sufficient by the Kuiper-Kuo Theorem (see [7, 8]).

Therefore, fk is topologically equivalent to fk − y2 k +2. On the other
hand, gk and gk + x y2 k are blow-analytically equivalent by Theorem 2.
Besides fk − y2 k + 2 = gk + x y2 k, hence the conclusion holds. Conse-
quently, fk ∈ J2 k+1

R (2, 1) is not blow-analytically sufficient for k > 4.
In the case k = 4, the weights of f4 and g4 are equal to (1

5 , 1
10 ).

Furthermore, f4 is blow-analytically equivalent to g4. Indeed, consider
the family Ht : (R2, 0) → (R, 0) (t ∈ [0, 1]) defined by Ht(x, y) =
(1− t)f4(x, y)+ t g4(x, y). It is easy to see that for each t ∈ [0, 1], Ht has
an isolated singularity at 0 ∈ R2. Therefore, it follows from Theorem
2 that {Ht}0≤t≤1 is blow-analytically trivial over [0, 1]. In particular,
H0 = f4 is blow-analytically equivalent to H1 = g4.
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Characteristic classes of singular varieties

Adam Parusiński

Abstract. This is a short and concise survey on recent results on the
Milnor classes of global complete intersections. By definition the Milnor
class of X equals the difference between the Chern-Schwartz-MacPherson
and the Fulton-Johnson classes of X and we describe the results that
express it in terms of the local and global invariants of the singular locus
of X . In this survey we underline the characteristic cycle approach and
its realtion to the vanishing Euler characteristic, as for instance to the
Euler characteristic of the Milnor fibre in the hypersurface case.

We present some recent developments in the theory of characteristic
classes of singular algebraic and analytic varieties. We would like, in
particular, underline the characteristic cycle approach and the geometric
insight given by this construction. For different approaches the reader
may consult the excellent surveys [7] and [45].

Several different characteristic classes can be defined for a singular
variety X : the Chern-Schwartz-MacPherson class c∗(X), the Chern-
Mather class cM (X), the Fulton class cF (X) and the Fulton-Johnson
class cFJ (X). For nonsingular X they are all equal to the Poincaré dual
of the Chern class c(TX) of the tangent bundle. We present in this
survey some results that answer the following question: how does the
difference cF (X)−c∗(X) (or cFJ(X)−c∗(X)) depend on the singularities
of X?

The characteristic classes of singular varieties may be defined in
different set-ups. For complex algebraic varieties they take values in the
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Chow group A∗(·). (They can be even defined for algebraic varieties over
an arbitrary algebraically closed field of characteristic zero, cf. [21, 22].)
For complex analytic spaces, assumed compact or such that they can be
compactified, the characteristic classes take values in the Borel-Moore
homology HBM

∗ (·; Z). For complex algebraic varieties both approaches
are linked by the cycle map cl : A∗(·) → HBM

∗ (·; Z). For simplicity of
exposition by variety we mean either a complex analytic space or an
algebraic variety, and then by homology we mean HBM

∗ (·; Z) or A∗(·)
respectively.

We shall also include a brief review of Stiefel-Whitney classes that
can be defined for real algebraic varieties or, in general, for Euler mod
2 triangulated spaces and that take values in HBM

∗ (·; Z2).
If X is singular then the tangent bundle to X is not well-defined

and therefore one cannot consider simply the characteristic classes of
this bundle. Suppose X is a subvariety of a non-singular variety M . We
recall briefely the definitions of the Fulton and Fulton-Johnson classes,
see [16] for details. The idea is to find an object which plays the role of
the normal bundle to X in M . Let CXM be the normal cone to X in M
and let J be the ideal sheaf of X in CXM . Denote by NXM = J /J 2

the conormal sheaf of X in M . Let p be the blow-up of X in M . The
exceptional divisor of p can be identified with the projectivization of
CXM . The Segre class of X in M is given by:

s(X, M) = s(CXM) = p∗
(∑

c1(O(1))i ∩ [PCXM ]
)
,

where O(1) denotes the canonical line bundle on PCXM .
The Fulton class of X is defined by

cF (X) = c(TM |X) ∩ s(X, M).

The Fulton-Johnson class of X equals

cFJ (X) = c(TM |X) ∩ s(NXM).

Both the Fulton and the Fulton-Johson classes are independent of the
embedding of X into non-singular variety, cf. [16], Example 4.2.6. If X
is regularly embedded in M (i. e. J is locally generated by a regular
sequence) then the both classes coincide and

cFJ (X) = cF (X) = c(τX) ∩ [X ],

where τX = TM |X − NXM is the virtual tangent bundle to X . In this
case NXM = dual(J ) is a vector bundle and is canonically isomorphic
to CXM , cf. [16], Appendix B7.



Characteristic classes of singular varieties 349

Another possibility is to recover the tangent bundle to singular X
by the means of the Nash-blowing-up, see [26], [16], Example 4.2.9. Let
ν : X̃ → X be the Nash blowing-up of X and let T̃ denote the vector
bundle on X̃ that extends ν∗TX . Then the Chern-Mather class cM (X)
of X equals by definition

cM (X) := ν∗(c(T̃ ) ∩ [X̃]).

In section 1 below we recall the definition of the Chern-Schwartz-
MacPherson class c∗(X) of X . Thus we have at least four different
notions of characteristic classes that coincide for X nonsingular.

Example 0.1. (Hypersurface with an isolated singularity).
Let L → M a line bundle, M nonsingular, and let X be the zero scheme
of a holomorphic section f of L. Suppose that, moreover, X has an
isolated singularity SingX = {p0}. Then

cFJ(X) = cF (X) = c(TM − L) ∩ [X ]
c∗(X) = c(TM − L) ∩ [X ] + (−1)nμn[p0]
cM (X) = c(TM − L) ∩ [X ] + (−1)n(μn + μn−1)[p0].

where TM −L is the virtual tangent bundle of X , μn is the Milnor num-
ber of f at p0 and μn−1 is the Milnor number of the generic hyperplane
section of f at p0.

We shall study the general hypersurface case in section 2 below.

§1. Chern-Schwartz-MacPherson classes and characteristic cy-
cles

We recall some of the basic results on Chern-Schwartz-MacPherson
classes and characteristic cycles. For the details the reader is refered to
[7, 17, 21, 26, 32, 36].

1.1. Constructible functions
For a variety X we denote by F (X) the group of integer-valued

constructible functions on X i.e. finite sums

α =
∑

i

ni11Vi

where Vi are subvarieties of X . There are many interesting operations
on constructible functions: sum, product, pull-back, push-forward, spe-
cialization, duality, and Euler integral inherited from sheaf theory by
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taking the index of a constructible complex of sheaves. Recall that for
a constructible complex of sheaves F• on X its index is the stalkwise
Euler characteristic p → χ(F•)(p) =

∑
(−1)i dim Hi(F•)p. It is a con-

structible function. Note that this definition is purely local so the global
properties of F• are lost. The operations on constructible functions can
be defined independently by means of Euler integral, see [42], [33], [20].

If X is compact then the Euler integral of α is defined as the
weighted Euler characteristic:

∫
α dχ :=

∑
i niχ(Vi). For a proper map

f : X → Y the proper push-forward f∗ : F (X) → F (Y ) is given by

(f∗α)(y) :=
∫

f−1(y)

α dχ.

Let f : X → S be a morphism to a curve and let s0 be a nonsingular
point of S. Denote X0 = f−1(s0). The specialization homomorphism
sp : F (X) → F (X0), or nearby Euler characteristic, is given by the
Euler integral on the Milnor fibre of f . That is, at p ∈ X0 and for α as
above

(1) sp (α)(p) =
∫

Fp

α dχ =
∑

i

niχ(Fp ∩ Vi),

where Fp is the Milnor fibre of f at p. That is, Fp = f−1(s) ∩ B(p, ε),
where, in local systems of coordinates, B(p, ε) denotes the ball centered
at p of radius ε and s is chosen so that 0 < |s − s0| � ε � 1.

1.2. Chern-Schwartz-MacPherson classes

The Chern-Schwartz-MacPherson class (the CSM class for short)
c∗ is the unique transformation from constructible functions F (·) to
homology H∗(·) and satisfying:

(1) f∗c∗(α) = c∗f∗(α) for a proper morphism f : X → Y .
(2) c∗(α + β) = c∗(α) + c∗(β),
(3) c∗(11X) = c(TX) ∩ [X ] for X nonsingular.

Its existence was conjectured by Deligne and Grothendieck and proven
by MacPherson in [26]. They are, by the Alexander duality isomorphism,
equal to the characteristic classes introduced by M.-H. Schwartz, cf.
[38, 9]

By a theorem of Verdier [41] the CSM class commutes with special-
ization: c∗ ◦ sp = Sp ◦c∗, where Sp : H∗(X) → H∗(X0) is the specializa-
tion on homology, see [22] for the Chow group counterpart.
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1.3. Characteristic cycles
Let M be a nonsingular variety of dimension n and let T ∗M de-

note the cotangent bundle of M . We consider L(M): the free abelian
group generated by the set of conical Lagrangian subvarieties of T ∗M .
Thus each element of L(M) is an integral combination of irreducible
Lagrangian subvarieties that can be described as follows. Let V be a
closed subvariety of M and let Reg(V ) = V \ Sing(V ) denote the set of
regular points of V . The conormal space to V in M

T ∗
V M := Closure

{
(x, ξ) ∈ T ∗M | x ∈ Reg(V ), ξ|TxReg(V ) ≡ 0

}
,

is a conical Lagrangian subvariety and each irreducible conical Lagrangian
subvariety of T ∗M is the conormal space of an irreducible subvariety of
M . For a subvariety X ⊂ M let L(X) denote the subgroup of L(M)
given by the conical Lagrangian subvarieties of T ∗M over X . We call
an element of L(X) a conical Lagrangian cycle over X .

To a constructible function α ∈ F (X) we associate its characteristic
cycle Ch(α) ∈ L(X) so that we get a group isomorphism Ch : F (X) →
L(X). For instance, for a subvariety V , Ch(11V ) can be defined by means
of the characteristic cycle of a sheaf, cf. for instance [11], by

Ch(11V ) = Ch(i∗CV ),

where i : V ↪→ M is the inclusion. Then

T ∗
V M = (−1)dim V Ch(EuV ),

where EuV denotes MacPherson’s Euler obstruction [26]. (In literature
there are two sign conventions in the definition of Ch that differ by
(−1)dim M . We follow that of [21])

Let f : (M, p) → (C, 0) be the germ of a holomorphic function and
let α =

∑
i ni11Vi be a constructible function on M . Let spα(p) be the

specialization of α to the zero fibre of f as defined in (1). The difference
sp α(p) − α(p) can be interpreted as the vanishing Euler characteristic.
Suppose that the graph Gr(df) of df , considered as a section of T ∗M ,
intersects Ch(α) only at (p, df(p)). Then by the index formula for the
sheaf vanishing cycles due to Lê, Dubson, and Sabbah, cf. [13] and (4.5)
and (4.6) of [32], the local intersection number of the cycles Ch(α) and
Gr(df) equals

(2) (Ch(α).Gr(df))(p,df(p)) = −(sp α(p) − α(p)).

Thus one may interpret Ch(α) as the set of such covectors (p, ξ) ∈
T ∗M that the Euler integral of the fibers of functions f : (M, p) →
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(C, 0) with df(p) = ξ changes at p. To be more precise, fix a Whitney
stratification {Sj} of M , such that each Vi is the union of strata. Then,
by Thom-Mather theory, there is no change of topology of fibers of f |Vi

if (p, ξ) /∈
⋃

T ∗
Sj

M . In particular, Ch(α) =
∑

i niT
∗
Si

M with integer
coefficients ni. In general these coefficients may be zero or negative. By
(2) they are determined by the vanishing Euler characteristic of such f
that Gr(df) intersects T ∗

Si
M at a generic point.

Example 1.1. Let p ∈ X ⊂ M . The coefficient of T ∗
p M in Ch(11X)

equals
1 − χ(lkC(X, p))

where lkC(X, p) is the complex link of X at p (in local coordinates the
intersection of X with generic hyperplane near p).

There are operations of proper push-forward and specialization on
conical Lagrangian cycles defined geometrically. Ch is a natural trans-
formation in the sense that it commutes with these operations and the
corresponding operations on constructible functions, cf. [17], [21], [32],

(1) f∗ Ch(α) = Ch f∗(α) for proper morphisms f : X → Y
(2) Ch(α + β) = Ch(α) + Ch(β)
(3) Ch(sp(α)) = Sp(Ch(α)).

By a formula of Sabbah [32], (1.2.1), for α ∈ F (X)

(3) c∗(α) := (−1)n−1c (TM |X) ∩ π∗
(
c(O(1))−1 ∩ [P Ch α]

)
,

where O(1) is the canonical line bundle on PT ∗M and π : PT ∗M |X → X
denotes the projection. Using Sabbah’s own words ”cela montre que la
théorie des classes de Chern de [26] se ramène à une théorie de Chow
sur T ∗M , qui ne fait intervenir que des classes fondamentales”.

The Chern-Mather class of V , see [26], equals
(4)
cM (V ) = c∗(EuV ) = (−1)n−1−dim V c (TM |V )∩π∗ (c(O(−1)) ∩ [PT ∗

V M ]) .

Remark 1.2. The CSM class and the Euler obstruction are closely
related to the geometry of polar varieties, see [24], and also [7] and the
references therein.

§2. Characteristic cycles and Stiefel-Whitney classes

Characteristic cycles can be also defined in real analytic and alge-
braic geometry for semi-algebraic and subanalytic sets cf. [19], [20], [14],



Characteristic classes of singular varieties 353

or even for sets defined in any o-minimal structure [34], see also an ex-
plicit construction in [36]. More precisely, given an oriented real analytic
manifold M , we have a group isomorphism

Ch : F (M) → L(M)

between the group of subanalytically constructible functions F (M) on M
and the group of subanalytic conical Lagrangian cycles L(M) in T ∗M .
(Here by conical we mean R>0-homogeneous.) The most important
difference from the complex case is that the subanalytic Lagrangian
conical cycles in T ∗M are not necessarily combination of conormal spaces
but usually more complicated subanalytic cycles of T ∗M . Moreover
usually the conormal space T ∗

V M is not a cycle. These differences are
caused by the fact that for a subanalytic continuous function f : (V, 0) →
(R, 0), V ⊂ M subanalytic closed, or even for f and V real analytic, the
vanishing Euler characteristic from the right (i.e., defined by the positive
Milnor fiber) may not be equal to that from the left ((i.e., defined by
the negative Milnor fiber). Note that in the real set-up there are more
possible conventions on the sign, for instance the characteristic cycle
constructed by Fu [14] corresponds to that of Kashiwara-Schapira [20]
after the application of the antipodal map (multiplication by −1 in the
fibers of T ∗M).

Example 2.1. Let V ⊂ M be subanalytic closed and let {Si} be a
subanalytic Whitney stratification of V . Define

Λo :=
⊔

Λo
Si

, Λo
Si

= T ∗
Si

M \
⋃
j �=i

T ∗
Sj

M.

Decompose Λo into the connected components Λo :=
⊔

Λo
j . Then

Ch(11V ) =
∑

njΛo
j ,

for some integers ni that can be described topologically by the vanishing
Euler characteristic, see the index formula below.

The analogue of the index formula (2), [20] Thm. 9.5.6, see also [19]
and [37], has even more flavour of the Morse Theory. It says that for
V ⊂ M subanalytic closed, and a real analytic f : (M, p) → (R, 0) such
that Gr(df) intersects Ch(11V ) only at (p, df(p))

(Gr(df). Ch(11V ))(p,df(p)) = χ(B ∩ {x ∈ V, f(x) ≤ +δ})
−χ(B ∩ {x ∈ V, f(x) ≤ −δ}),
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where B denotes the ball of radius ε centered at p, 0 < δ � ε � 1.
Given a conical Lagrangian cycle Λ = Ch(α) ∈ L(M). In order to
recover the value α(p) at p ∈ M it suffices to intersect Λ with Gr(df),
where f : (M, p) → (R, 0) is a Morse function of index 0 (for instance
f(x) = x2

1 + · · · + x2
n in local coordinates). Then

α(p) = (Gr(df).Λ)(p,df(p))

Remark 2.2. The operation inverse to Ch is related to MacPher-
son’s Euler obstruction as follows. Let M be a complex manifold and V
a complex analytic subvariety of M . Consider V as a subanalytic subset
of M and M itself as an oriented real analytic manifold. Then T ∗

V M is a
real Lagrangian cycle. Let p ∈ V and f : (M, p) → (R, 0) be a real Morse
function of index 0. Then (Gr(df).T ∗

V M))(p,df(p)) = (−1)dimC V EuV (p).
This formula for the Euler obstruction is essentially the definition of
MacPherson, where the intersection Gr(df) is replaced by the intersec-
tion with the section given by the radial vector field.

2.1. Stiefel-Whitney classes
In 1935 Stiefel defined a characteristic class wi(X) ∈ Hi(X ; Z2) for

any smooth compact manifold. He conjectured that wi(X) is represented
by the sum of all the i-simplices of the first barycentric subdivision of
a triangulation of X . Stiefel’s Conjecture was proved by Whitney in
1939. In 1969 Sullivan observed that Stiefel’s definition can be applied
to real analytic spaces since they are (mod 2) Euler spaces, that is to
say, the link of each point has even Euler characteristic. Then, for
a triangulated Euler space, the sum of all the i-simplices of the first
barycentric subdivision is a Z2-cycle.

It was noticed in [15] that the Stiefel-Whitney classes of subanalytic
sets can be defined via the characteristic cycles. We give below just a
short account, for details the reader is refered to [15].

Remark 2.3. ([33], [20]) Verdier Duality on sheaves induces a duality
on constructible functions. This duality can be written as

Dα(p) = α(p) −
∫

Sε
p

α dχ,

where Sε
p is a small sphere centered at p. The corresponding duality

on the conical Lagrangian cycles is given by the antipodal map that
is by the multiplication by (−1) in the fibres of T ∗M . Note that in
the complex case the duality on constructible function and the one on
conical Lagrangian cycles are the identity maps.
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Let M be an oriented real analytic manifold. A subanalytically
constructible function α ∈ F (M) is called (mod 2) Euler if it is self dual
modulo 2 (equivalently its Euler integral along any small sphere is even).
For such a function the projectivization of its characteristic cycle

PCh(α) ⊂ PT ∗M

is a (mod 2)-cycle.
For a (mod 2) Euler constructible function α ∈ F (M) one may

define its ith Stiefel-Whitney class by a formula corresponding to (3)

wi(α) = π∗(γn−i−1
M ∩ [PCh(α)])

where π : PT ∗M → M is the projection and

γk
M =

∑
j

π∗(wi(TM)) ∩ ζk−j
M ,

where ζM ∈ H1(PT ∗M ; Z2) is the first Stiefel-Whitney class of the tau-
tological line bundle on PT ∗M .

Defined this way, Stiefel-Whitney homological classes satisfy the ax-
ioms analogous to the Deligne-Grothendieck axioms for the CSM-classes
and the Verdier specialization property.

§3. Hypersurface case

Let M be a nonsingular compact complex analytic variety of pure
dimension n and let L be a holomorphic line bundle on M . Take f ∈
H0(X, L) a holomorphic section of L such that the variety X of zeros of
f is a reduced hypersurface in M .

Consider the constructible function χ : X → Z defined for x ∈ X
by χ(x) := χ(Fx), where Fx denotes the Milnor fibre at x and χ(Fx)
its Euler characteristic. Also, define μ := (−1)n−1(χ − 11X), that is the
signed vanishing Euler characteristic.

In this section, following [1], [2], [29], [3], we give the common de-
scriptions of the CSM and Fulton classes of X as well as the results that
present the contribution of the singularities of X to the difference of
these two classes. Similarly to [29] our approach is based on the compu-
tation of characteristic cycle of X . For an account on different possible
approaches see [4].
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3.1. Local description of characteristic cycle
The characteristic cycle of X was calculated in [5] and [23] in terms

of the blow-up of the Jacobian ideal of a local equation of X in M .
More precisely, let X ⊂ U ⊂ Cn be the zero set of a holomorphic
function f : U → C and denote by π : BlJf

U → U the blowing-up of

the Jacobian ideal of Jf =
(

∂f
∂z1

, . . . , ∂f
∂zn

)
.

Let X = π−1(X) denote the total transform of X by π and we denote
the irreducible components of X by Di and by Ci their projections onto
U . Denote by ICi the ideal defining Ci and the multiplicities of ICi , f ,
and Jf along Di by ni, mi and pi respectively. Note that Di is contained
in the exceptional divisor of π if and only if pi = 0. It is known by the
transversality of polar varieties that mi = ni + pi, see [40], [5], and [31].

By [5], [23], we have the following explicit formulas

Ch(11X) = (−1)n−1
∑

i

niT
∗
Ci

U ;

Ch(χ) = Ch(R ΨfC
U

) = (−1)n−1
∑

i

miT
∗
Ci

U ;

Ch(μ) = (−1)n−1 Ch
(
R ΦfC

U

)
=

∑
i

piT
∗
Ci

U .

(Here R Ψf and R Φf denote the complexes of nearby and vanishing
cycles respectively.)

BlJf
U can be interpreted geometrically by means of the relative

conormal space T ∗
f ⊂ T ∗U

T ∗
f := Closure {(x, η) ⊂ T ∗U ; df(x) 
= 0, ∃λ such that η = λdf(x)}.

Let f̃ : T ∗
f → C denote the composition of the projection T ∗

f → U and f .
Then f̃−1(c), for a regular value c, equals the conormal space to f−1(c).
Thus by Lagrangian specialization, cf. [25], [18], f̃−1(0) is a conical
Lagrangian subvariety of T ∗U . It is equal to Ch(χ) since Ch commutes
with specialization. Moreover the total transform X of X by π, is the set
of limits of the direction of the gradient [ ∂f

∂z1
(x) : . . . : ∂f

∂zn
(x)] and hence

equals, at least as a set, the projectivization of f̃−1(0). Thus f̃−1(0) is
the union of conormals T U

Ci
and each Di = PT ∗

Ci
U . In particular, we

may rewrite the above formulas as follows

[P Ch(11X)] = (−1)n−1 ([X ] − [Y]) ;
[P Ch(χ)] = (−1)n−1 [X ] ;(5)
[P Ch(μ)] = [Y]
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where Y denote the exceptional divisor of π.

Remark 3.1. The computation of coefficients ni, mi and pi can be
done by a topological argument based on the Morse theory and generic
polar curves, see for instance [23]. In particular, in the isolated sin-
gularity case, SingX = {p0}, the coefficients at T ∗

p0
U are equal to

(−1)n−1μn−1, (−1)n−1(μn+μn−1), and μn respectively. Here μn denotes
the Milnor number of f at p0 and μn−1 the Milnor number of the generic
hyperplane section of f at p0. One may show that 1 − (−1)n−1μn−1

equals the Euler characteristic of the complex link of X at p0.

3.2. Global description of characteristic cycle

The singular scheme of X , that we denote by Y , is defined in local
coordinates by (f,Jf ) =

(
f, ∂f

∂z1
, . . . , ∂f

∂zn

)
. Since f belongs to the inte-

gral closure of Jf , the normalizations of blow-ups of Jf and (f,Jf ) are
equal. Hence the formulas (5) hold true locally if we replace the blow-up
of the former ideal by the blow-up of the latter one. We shall see that
they hold true globally.

Let B = BlY M → M be the blow-up of M along Y . Let X and
Y denote the total transform of X and the exceptional divisor in B
respectively. To get a convenient description of B, we use the bundle
P1

ML of principal parts of L over M , as in [2], [31]. The differentials
and the sections of L take values in P1

ML and also P1
ML fits in an exact

sequence
0 → T ∗M ⊗ L → P1

ML → L → 0.

Thus f determines a section of P1
ML that is written locally as (df, f) =(

∂f
∂z1

, . . . , ∂f
∂zn

, f
)
. The closure of the image of the meromorphic map

M > PP1
ML induced by this section is the blow-up B → M . Thus

we may treat B as a subvariety of PP1
ML. Clearly, the total transform

X of X equals B ∩ P(T ∗M ⊗ L), that we identify with a subvariety of
P(T ∗M ⊗ L). Since P(T ∗M ⊗ L) = P(T ∗M) we see that the formulas
(5) hold globally.

By an elementary computation on P(T ∗M ⊗ L), see [31], this gives

c∗(X) = c (TM |X) ∩ π∗

(
[X ] − [Y]
1 + X − Y

)

c∗(χ) = c (TM |X) ∩ π∗

(
[X ]

1 + X − Y

)
;(6)

c∗(μ) = (−1)n−1c (TM |X) ∩ π∗

(
[Y]

1 + X − Y

)
.
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The first of the above formulas was obtained by Aluffi [2] by means of
resolution of singularities and a detailed description of how the formula
changes under a blowing-up. He has also got the following formula for
the Chern-Mather class of X .

cM (X) = c (TM |X) ∩ π∗

(
[X ′]

1 + X − Y

)
,

where X ′ is the proper transform of X . In local coordinates [X ′] =
PTXU and hence this result follows from (4).

3.3. Aluffi’s formulas. Milnor class of a hypersurface.
From (6) we derive the formulas obtained by Aluffi in [1]. First note

that in our case

cF (X) = cFJ(X) = c(TM |X − L|X) ∩ [X ] .

By birational invariance of Segre classes [16], Chap.4:

cF (X) = c(TM |X) ∩ s(X, M) = c(TM |X) ∩ π∗s(X , B)

= c(TM |X) ∩ π∗

(
[X ]

1 + X

)
.

In [1] Aluffi defines a ”thickening” of X along its singular subscheme Y :
Xk is the subscheme of M defined by the ideal IXIk

Y . He shows that
the Fulton class of Xk is a polynomial in k with the CSM class being
equal to cF (X−1). Indeed, as above,

(7) cF (Xk) = c(TM |X) ∩ s(Xk, M) = c(TM |X) ∩ π∗

(
[X ] + k[Y]
1 + X − kY

)
.

This can be expressed in the following suggestive form, cf. [1],

c∗(X) = cF (X−1) = c(TM |X) ∩ s(X \ Y, M).

The Milnor class was first defined by Yokura [44] as

M(X) := (−1)n−1
(
cFJ(X) − c∗(X)

)
.

As follows from (6), (7)

M(X) = (−1)n−1c (TM |X) ∩ π∗

(
[Y]

(1 + X )(1 + X − Y)

)

= (−1)n−1c (TM |X) ∩ π∗

(
[P Ch(μ)]

(1 + X )(1 + X − Y)

)
(8)

= c(L|X)−1c∗(μ), .
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Let S = {S} be any stratification of X such that μ is constant on the
strata of S. (One may take, for instance, any Whitney stratification of
X .) Denote the value of μ on the stratum S by μS and let

α(S) := μS −
∑

S′ �=S,S⊂S′

α(S′)

be the numbers defined inductively on descending dimension of S. Then
μ =

∑
S∈S α(S)11S and

Ch(μ) =
∑
S∈S

α(S)Ch(11S).

This gives the following formula on the Milnor class, see [29],

(9) M(X) =
∑
S∈S

α(S) c(L|X)−1 ∩ (iS,X)∗ c∗(S),

where iS,X : S → X denotes the inclusion. This formula was first
conjectured by Yokura in [44] and proven in [31]. If Y is smooth and μ
is constant on Y , equal say μY , then it reads

M(X) = μY (c(L|X)−1 ∩ (iY,X)∗ c∗(Y )).

If the singular set of X is finite, then we get

(10) M(X) =
∑

x∈Sing(X)

μ(x)[x].

This formula was obtained also by Suwa [39] in a more general set-up of
isolated singularities of (global) complete intersections.

The Milnor class is related to the μ-class supported on Y , introduced
by Aluffi in [1],

μL(Y ) = c(T ∗M ⊗ L) ∩ s(Y, M).

As shown in [2]

M(X) = (−1)nc(L)n−1(μL(Y )∨ ⊗ L).

For the notation μL(Y )∨ and the proof we refer the reader to [2]. We
just note that the above formula can be derived from (8).

Following [3] we give another interpretation of (8). Let Y be a
subvariety of M . Let π : CY M → Y denote the normal cone to Y in M
and let Ci be the irreducible components of CY M . Denote by mi their
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multiplicities and let Yi = π(Ci). Then the weighted Mather class of Y
is defined by

cwM (Y ) :=
∑

(−1)dim YimicM (Yi).

(here the factor (−1)dim Y is removed from the original Aluffi’s defini-
tion). Note that cwM (Y ) depends on the scheme structure of Y , in
particular it is sensitive to the presence of embedded components. An
important property is that cwM (Y ) is intrinsic to Y (independent of
the ambient nonsingular variety). In the particular case when Y is the
singular scheme of a hypersurface X

cwM (Y ) = c∗(μ) = c(L|Y ) ∩M(X).

Thus (8) takes the following form

(11) cFJ(X) − c∗(X) = (−1)n−1c(L|Sing(X))−1 ∩ cwM (Sing(X))

with the right hand side depending only on the scheme structure of
Sing(X) and on c(L|Sing(X)).

Remark 3.2. Many of the results presented above were motivated
by their corresponding formulas for the Euler characteristic. The gener-
alized Milnor number was first defined in [28] as

μ(X) := (−1)n−1(c(TM |X − L|X) ∩ [X ] − χ(X))).

If X has only isolated singularities then the generalized Milnor number
of X equals the sum of their local Milnor numbers. Yokura’s Conjec-
ture, i.e. formula (9), was motivated by a similar formula for the Euler
characteristic established in [29].

3.4. Specialization
Suppose now that the line bundle L admits a section g ∈ H0(M, L)

such that X ′ = g−1(0) is smooth and transverse to the strata of a
Whitney stratification of X . This is for instance the case when L is very
ample. The Milnor class, and so the Fulton class, of X equals the CSM
class of a simple constructible function on X .

For t ∈ C, denote ft = f − tg. In this paragraph by X we denote

X :=
{
(x, t) ∈ M × C | ft(x) = 0

}
.

Let p : X → C be the restriction to X of the projection onto the second
factor of M × C. Then p−1(t) = {x ∈ M | ft(x) = 0} for t ∈ C. Denote
by

sp : F (X ) → F (X)
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the specialization by p. By Proposition 5.1 of [31]

sp 11X (x) =

{
χ(x) = 1 + (−1)n−1μ(x) for x 
∈ X ∩ X ′,

1 for x ∈ X ∩ X ′.

Then by the commutativity of the CSM class with specialization

cF (X) = c∗(sp 11X ), M(X) = (−1)n−1c∗(sp 11X − 11X),

see [31] for details. In particular the last equality gives the formula (8)
for the Milnor class.

Remark 3.3. One may show easily that in the algebraic case cF (X)
or M(X), or indeed any algebraic cycle, is of the form c∗(α) for a con-
structible function α. Note that the above formulas give such α’s ex-
plicitely (under the assumption of ampleness of L).

§4. Milnor classes

One would like to extend the results described in the previous section
to the local complete intersection case. To be more precise, let M be a
nonsingular variety and let i : X ↪→ M be a regular embedding (cf. [16]
Appendix B7). Then

cF (X) = cFJ(X) = c(τX) ∩ [X ] ,

Let NXM denote its normal bundle. The question is whether there is a
formula so that

M(X) = c(NXM)−1 ∩ class(SingX) ?

and class(SingX) is a characteristic class depending only on some data
given by Sing(X), see also [46] for similar questions.

By a result of Suwa [39] this is the case if X has only isolated
singularities. Then

M(X) =
∑

x∈Sing(X)

μx [x],

where μx denotes the Milnor number at x.
But the very first obstacle to extend the hypersurface case is the ab-

sence of a good candidate for constructible function μ. For f : (Cn+k, 0) →
(Ck, 0), k ≥ 2, the Milnor fibration (or the nearby cycles functor) is not
well-defined in general unless f is ”sans éclatement en codimension 0”,
see [18], that is the case, for instance, in the isolated singularity case.

Nevertheless there are some partial answers that we describe below.
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4.1. Milnor class by the obstruction theory
In [8] the authors assume that M is a complex manifold and X ⊂ M

is a local complete intersection. We assume moreover that X is the zero
set of a holomorphic section, generically transverse to the zero section,
of a holomorphic vector bundle E on M (this case is sometimes called
a global complete intersection). X is also assumed to be compact. Let
n = dimX . It is showed in [8] that M(X) can be localized at a connected
component S of the singular set Y of X . For such a component S and the
following data: a tubular neighbourhood U of S in X , a positive integer
r, and an r frame v(r) of vectors tangent to X defined on ∂U ∩ D,
D being the 2(n − r + 1)-skeleton of a cellular decomposition of X ,
the authors define two classes: the localized Schwartz class Sch(v(r), S)
and the localized virtual class V ir(v(r), S) both living in ∈ H2(r−1)(S).
The former class contributes to cr−1(X) and the latter to the homology
characteristic class of the virtual tangent bundle τX = TM |X − NXM .
Then, as shown in [8],

μr−1(X, S) := (−1)n−1((Sch(v(r), S) − V ir(v(r), S))

is independent on the choices and the total Milnor class is the sum over
the connected components Sα

M(X) =
∑
α

(iα)∗μ∗(X, Sα)

where iα : Sα ↪→ X and μ∗(X, Sα) =
∑

μi(X, Sα).

4.2. On Verdier-type Riemann-Roch for CSM classes
Let f : X → Y be a local complete intersection morphism (an

l.c.i. for short), that is the composition of a regular embedding i and a
smooth morphism p, cf. [16] Appendix B. 7. Guided by the Riemann-
Roch theorem and by the bivariant theory of Chern classes, Yokura [43]
posed the question of commutativity (or rather of understanding the
non-commutativity) of the following diagram

F (Y ) c∗−−−−→ A∗(Y )

f∗
⏐⏐� ⏐⏐�c(Tf )∩f∗

F (X) c∗−−−−→ A∗(X)

where Tf is the virtual tangent bundle, f∗ on the left-hand side is the
pull-back of constructible functions, f∗ on the right-hand side is the
Gysin homomorphism, i.e., the composition of the smooth pull-back p∗
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and the Gysin i∗ for regular embeddings. The non-commutativity of
the above diagram is related to the Milnor class as follows, cf. [43]
Example (3.1). Let i : X ↪→ M be a regular embedding as above and
let p : M → pt be the projection to a point. Then f = p ◦ i : X → pt
is an l.c.i. morphism and applying the morphisms of the diagram to 11pt

we get

c∗(f∗11pt) = c∗(X),

c(Tf ) ∩ f∗c∗(11pt) = c(Tf) ∩ [X ] = cFJ(X).

Thus, in this case, the non-commutativity of the diagram is measured
exactly by the Milnor class.

Actually, only the regular embeddings contribute to the non-commu-
tativity of the diagram. Yokura [43] shows that the diagram is commu-
tative for smooth morphisms. Indeed, let us verify it for X and Y
non-singular on 11Y ∈ F (Y ):

c(Tf ) ∩ f∗c∗(11Y ) = c(Tf ) ∩ f∗(c(TY ) ∩ [Y ])
= (c(Tf ) ∪ c(f∗TY )) ∩ f∗[Y ]
= (c(Tf ) ∪ f∗c(TY )) ∩ [X ]
= c(TX) ∩ [X ].

The general case can be reduced to the above one by the resolution of
singularities.

4.3. Schürmann’s formula

We present the main result of [35] that generalizes the results on the
hypersurface case to the case of the regular embedding. Recall that for
a general holomorphic map f : (Cn+k, 0) → (Ck, 0), k ≥ 2, the Milnor
fibration and the nearby Euler characteristic are not well-defined. The
main idea of Schürmann is to overcome this difficulty by replacing X by
a hypersurface using the classical construction of the deformation to the
normal cone, cf. [16] Ch. 5.

Let i : X ↪→ Y be a regular embedding, and we do not have to
assume that Y is smooth. Let CXY be the normal cone of X in Y
and let π : CXY → X and k : X → CXY denote the projection and
the embedding as the zero section respectively. Since i is a regular
embedding, CXY is equal to the normal bundle NXY . In paricular, π
is smooth. Denote by MXY → C the deformation of Y to the normal
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cone CXY . We have the commutative diagram

CXY ↪→ MXY ←↩ Y × C∗⏐⏐� ⏐⏐�flat

⏐⏐�
{0} ↪→ C ←↩ C∗

Denote by π̃ : Y ×C∗ → Y the projection to the first factor. Schürmann
defines the ”constructible function version” of Verdier specialization as

sp = spX\Y = ψh ◦ π̃∗ : F (Y ) → Fmon(CXY ),

whose image is in monodromic, i.e. conical, constructible functions on
CXY . By Verdier specialization, the CSM class commutes with the anal-
ogously defined specialization on homology Sp : H∗(Y ) → H∗(CXY ):
Sp ◦c∗ = c∗ ◦ sp. The ”vanishing Euler characteristic” transformation
associated to the embedding i is defined by Φi = sp−π∗i∗. Thus

c∗(Φi(·)) = c∗(sp(·) − π∗i∗(·)) = Sp(c∗(·)) − c∗(π∗i∗(·)).(12)

This formula holds in H∗(CXY ). To go down to H∗(X), we use the
Gysin isomorphism k∗ = (π∗)−1 : H∗(CXY ) → H∗(X) (recall that
k : X → CXY denotes the embedding on the zero section)

k∗c∗(Φi(α)) = k∗ Sp(c∗(α)) − k∗c∗(π∗i∗(α)).

The Gysin homomorphism i∗ is defined by i∗ = k∗ ◦ Sp. Since π is
smooth, by Yokura’s theorem c∗(π∗(·)) = c(Tπ) ∩ π∗(c∗(·)) and hence

k∗c∗(π∗(·)) = c(k∗Tπ) ∩ k∗π∗(c∗(·)) = c(NXY ) ∩ c∗(·).

Consequently

k∗c∗(Φi(α)) = i∗(c∗(α)) − c(NXY ) ∩ c∗(i∗(α)).

Thus applying c(NXY )−1 ∩ k∗ to both sides of (12)

(13) c(NXY )−1 ∩ k∗c∗(Φi(·)) = c(NXY )−1 ∩ i∗c∗(·) − c∗(i∗(·)).

This is the formula of Schürmann [35].
If Y is smooth, this formula applied to 11Y reads

c(NXY )−1 ∩ k∗c∗(Φi(11Y )) = cF (X) − c∗(X).(14)

If i : X ↪→ Y is a regular embedding of codimension 1, Y arbitrary,
then the specialization in local coordinates defines the vanishing Euler
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characteristic functor μ : F (Y ) → F (X). It satisfies Φi = π∗ ◦μ− k∗ ◦μ
and Schürmann’s formula takes the following simple form

c(NXY )−1 ∩ c∗(μ(α)) = c(NXY )−1 ∩ i∗c∗(α) − c∗(i∗(α)),(15)

for α ∈ F (Y ). If Y is smooth and α = 11Y , we recover the formula of
Yokura’s Conjecture (8).

Suppose that Y is smooth. Since the geometric construction of
deformation onto the normal cone can be localized, Schürmann’s formula
for the Milnor class can be also localized at each connected component
of Sing(X). For such a connected component S denote: iS : S ↪→ X the
inclusion, nS : NXY |S → NXY the induced inclusion of normal cones,
μS := n∗

SΦi(11Y ), and kS : S → NXY |S is the inclusion on the zero
section. Then

cFJ(X) − c∗(X) =
∑
S

(iS)∗(c(NXY |S)−1 ∩ k∗
Sc∗(μS)).
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366 Adam Parusiński
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(Série I), 299 (1984), 181–184.

[14] J. Fu, Curvature measures of subanalytic sets, Amer. J. Math., 116
(1994), 819–880.

[15] J. Fu and C. McCrory, Stiefel-Whitney classes and the conormal cycle of
a singular variety, Trans. A. M. S., 349 (1997), 809–835.

[16] W. Fulton, Intersection Theory, Springer-Verlag, Berlin, 1984.
[17] V. Ginzburg, Characteristic cycles and vanishing cycles, Invent. Math.,

84 (1986), 327–402.
[18] J. P. Henry, M. Merle and C. Sabbah, Sur la condition de Thom stricte

pour un morphisme analytique complexe, Ann. Scient. Éc. Norm. Sup.,
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[24] Lê Dũng Tráng and B. Teissier, Variétés polaires et classes de Chern des
variétés singulières, Ann. of Math., 114 (1981), 457–491.
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algébriques, Comment. Math. Helvetici, 63 (1988), 540–578.

[26] R. MacPherson, Chern classes for singular algebraic varieties, Ann. of
Math., 100 (1974), 423–432.

[27] J. Milnor, Singular points of complex hypersurfaces, Ann. of Math. Stud-
ies, Princeton University Press, 61 (1968).
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decomposable curves

Grigory M. Polotovskiy

Abstract.

A survey of recent results in the problem of the topological clas-
sification of 7th degree decomposable curves in the real projective
plane is given.

Let (x0, x1, x2) be point coordinates in the real projective plane
RP 2. An algebraic curve of degree m is a homogeneous polynomial
Fm(x0, x1, x2) over R of degree m considered up to a constant nonzero
factor. The set

RFm = {(x0, x1, x2) ∈ RP 2|Fm(x0, x1, x2) = 0} ⊂ RP 2

is called the set of real points of the curve. The algebraic curve Fm

is called an M -curve if the set RFm consists of (m − 1)(m − 2)/2 + 1
connected components.

The polynomial Fm is decomposable (in the product of two factors)
if

Fm(x0, x1, x2) = Ak(x0, x1, x2) · Bm−k(x0, x1, x2),

where k ≤ [m/2], and the polynomials Ak(x0, x1, x2) of degree k and
Bm−k(x0, x1, x2) of degree m−k are irreducible over R. Our problem is
to obtain the topological classification of triples (RP 2, RFm, RAk), which
satisfy the following conditions of maximality and general position:

(i) the curves Ak and Bm−k are M -curves ;
(ii) the set RAk

⋂
RBm−k consists of k(m − k) distinguish points;
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(iii) all points of the set RAk

⋂
RBm−k are situated on the same

connected component of RAk and on the same connected component of
RBm−k.

In case m = 6 this problem was solved by the author (under weaker
conditions) – see [P1]–[P4]. In particular, the following theorem provides
the classification for the case m = 6, k = 1.

Theorem 1.Under conditions (i)-(iii), the classification of triples
(RP 2, RF6, RA1) consists of 4 types shown in Figure 1.

Fig. 1. Line and M -quintic (authors of the first construc-
tions are marked).

Here and below we use the Poincaré disk (i.e. disk where every two
diametrically opposite points of its boundary circle are identified) as
model of the projective plane RP 2.

The classification of arrangements of a quintic and a line in general
position has important application: it gives classification of smoothings
of generic five-fold point (singularity N16 in Arnold’s notations). O.Viro
showed (see [V1], [V2]) that from topological point of view, smoothing
such a singular point is a result of gluing an affine quintic instead of a
neighborhood of the point under condition of coincidence of asymptotic
directions of the quintic with tangents to the branches at the singular
point. E.Shustin proved [Sh1] that it is always possible to obtain this
coincidence. We would like to point out that Theorem 1 provides also
the classification of affine M -quintics: it is sufficient to consider the line
RA1 as the line at infinity for the affine plane (in Figure 2 the line RA1

is shown as the boundary of the Poincaré disc).
In one’s turn, smoothing five-fold points has been used by many

authors for the constructions of nonsingular algebraic curves.
The classification of triples (RP 2, RFm, RAk) for m = 6 has many

different applications, therefore it is naturally to consider the problem
for m = 7. Below we give a survey of results in this direction.

The classification of affine M -sextics has been recently completed.
One can find the proof in series of papers [O-Sh1], [K1], [K2], [Sh-K],
[Sh2], [O1], [O2], [O-Sh2], [F-O]. The result is formulated in the following
theorem.
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Theorem 2.Under conditions (i)-(iii), the classification of triples
(RP 2, RF7, RA1) consists of 35 types shown in Figure 2.

Fig. 2. Line and M -sextic (letters denote the number of
ovals in domains of the same names).

Further it is natural to consider separately the cases when points of
set RAk

⋂
RB7−k

a) are situated on ovals1 of curves-factors and
b) lie on the odd branch of the factor of odd degree.
Note, that in case a) there always exists a pseudo-line which has no

intersections with ovals2. Below for pictures we assume that this line is
the boundary of the Poincaré disk and we do not draw it in the Figures.
In case a) we also do not draw the odd branch.

One can find the proof of the classification for the case k = 2 under
condition a) in papers [O3], [P5], [P6] and complete answer is:

1By definition, an oval and the odd branch are respectively a two-sided
and one-sided circles embedded in RP 2.

2In the opposite case there exists a pseudo-line consisting from arcs of
ovals therefore the odd branch will intersect an oval, but it contradicts to the
assumption a).
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Theorem 3. Under conditions (i)-(iii) in case a) the classification
of triples (RP 2, RF7, RA2) consists of 42 types shown in Figure 3.

Fig. 3. Conic and M -quintic with common points on ovals;
p + q = 5.

In the case b) for k = 2 the classification is in progress. In particular,
at the present time about 60 types are constructed and for the same
number of types the question about realizability is still open. Some
details can be found in [P5], [G1], [G2]. In [K-P] was considered a
problem intimately connected with case b) for k = 2: the classification
of arrangements of a M -quintic and pair of lines. Namely, in [K-P] the
following theorem was proved.

Theorem 4. Every arrangement of two lines and quintic in max-
imal general position, for which there are only two arcs of odd branch
having ends in points of intersection lying on different lines, is homeo-
morphic to one of 20 model depicted in Figure 4.

The most difficult case is case k = 3 of mutual arrangements of a
M -cubic and a M -quartic. In [O-P] the answer for case a) was obtained:

Theorem 5. Under conditions (i)-(iii) in case a) the classification
of triples (RP 2, RF7, RA3) consists of 31 types shown in Figure 5.

In the case b) for k = 3 the classification has not been completed.
Below we describe some details for this case. Simultaneously it will give
an illustration of a general approach to the classification which consists
in the following.

We draw topological models, i.e., collections of smooth circles in RP 2,
which may pretend to represent a triple of the kind (RP 2, RFm, RAk)
up to a homeomorphism, and for each such a model we try to find out,
to which extent this pretention can be justified. In other words, our
procedure consists of the following steps.

Step 1. Enumeration of all admissible models.
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Fig. 4. M -quintic and pair of lines.

In essence, each time this is a special combinatorial problem, the
algorithms for solution of the problems were described in [P6] (for m = 6
– in [P2], [P4]).

Step 2. Constructions, i.e., attempts to realize a given admissible
model by a 7th degree curve.
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Fig. 5. M -cubic and M -quartic with common points on
ovals; α + β = 3.

For the constructions, different variants of the small parameter meth-
ods (including Viro’s technique of gluing of charts of polynomials [V1],
[V2]) and quadratic transformations were applied.

Step 3. Prohibitions, i.e., attempts to prove that a given admissible
model cannot be realized by a 7th degree curve.
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The main methods of prohibitions are the Orevkov method [O2]
based on the link theory, and the Hilbert-Rohn-Gudkov method (see
[O-Sh2]) based on the bifurcation theory.

Now we return to the case b) for k = 3: M -cubic and a M -quartic
with 12 common points on an oval O4 of the quartic and the odd branch
J3 of the cubic.

Let the system of coordinates in RP 2 be such that the straight line
x2 = 0 does not intersect ovals of the quartic (to get this, it is sufficient
to assume that x2 = 0 is the result of small shifting a double tangent
line to the quartic). To reduce the space of our paper, we consider
here only the case when there exists a pseudo-line S such that the odd
branch of the cubic intersect this pseudo-line at one point only. Let us
consider S as ”the line at infinity” (i.e. the boundary of the Poincaré
disk). There are 12 arcs on the odd branch J3 and 12 arcs on the oval
O4, which appear under intersection of the odd branch with the oval
O4. We assume that the endpoints of the arc of the odd branch, which
intersect the line S, coincide with two endpoints of the same arc of the
oval O4 (series ”A” in [P6]).

The admissible models of (RP 2, O4

⋃
J3) are enumerated by codes

which are lexicographically ordered in the second column of Table 1. To
obtain the model, which corresponds to a code, it is sufficient
(i) to draw a circle in the interior of the Poincaré disk, which displays
as a model of the oval O4,
(ii)to mark on this circle 12 points and denote consecutively these points
by symbols 1, 2, . . . , 9, a, b, c successively, and
(iii)to draw the model of J3 in the order given by the code so that the
arc (c, 1) of J3 (with the endpoints c and 1) intersects the line at infinity
(in our case the boundary of the Poincarè disk) at one point.

For each of 83 models of Table 1 the set (RP 2 \O4

⋂
J3) consists of

13 connected domains: the closures of 12 of them are homeomorphic to a
disk and the closure of one domain is homeomorphic to a Möbius band.
In all cases we denote the last domain by β. The set RFm � (O4

⋃
J3)

consists of four ovals, which are called ”free”. The quartic provides
three free ovals and the cubic provides one free oval denoted by O3. The
free ovals are located in these domains. Simple arguments (topological
corollaries of the Bézout theorem and so on, see for details [P6]) show
that some of the domains can not contain free ovals, and free ovals can
not surround each other in the domain different from the domain β 3.

3Sometimes (for example, in case no.1) such situation for free ovals in β
is possible.
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Table 1.

no code � of cases realized no code � of cases realized
for ovals (no in [O4]) for ovals (no in [O4])

1 123456789abc 13 1 – 5 43 12543a9678bc 3 –
2 12345678ba9c 12 13 44 12543a9876bc 3 –
3 1234567a98bc 12 – 45 1256789ab43c 12 134
4 123456987abc 12 – 46 125678ba943c 3 –
5 1234569ab87c 12 29,30 47 12569ab8743c 3 –
6 123456ba789c 9 31 48 1256ba98743c 3 –
7 123456ba987c 13 32 – 34 49 1276589ab43c 12 136
8 123458769abc 12 35 50 1278965ab43c 12 138
9 12345876ba9c 12 37 51 12789ab6345c 9 139
10 1234589a76bc 9 – 52 12789ab6543c 13 140
11 12345a9678bc 12 43 53 1278ba96345c 3 –
12 12345a9876bc 13 44,45 54 1278ba96543c 3 –
13 1234765a98bc 3 – 55 1298765ab43c 12 142
14 123478965abc 12 61,62 56 12987ab6345c 8 143
15 1234789ab65c 12 65,66 57 12987ab6543c 12 144
16 123478ba965c 3 – 58 129ab834567c 8 –
17 123498567abc 9 – 59 129ab854367c 8 –
18 123498765abc 13 68 – 70 60 129ab876345c 9 145
19 1234987a65bc 12 74,75 61 129ab876543c 13 146
20 12349ab8567c 9 76 62 12ba3456789c 9 –
21 12349ab8765c 13 77 – 80 63 12ba5436789c 8 –
22 1234ba56789c 8 – 64 12ba7634589c 8 –
23 1234ba76589c 8 – 65 12ba7654389c 8 –
24 1234ba98567c 9 81 66 12ba9834567c 9 –
25 1234ba98765c 13 82 – 85 67 12ba9854367c 8 –
26 123654987abc 12 – 68 12ba9876345c 9 147
27 1236549ab87c 12 87 69 12ba9876543c 13 148
28 123654ba789c 8 88 70 1432789ab65c 12 149
29 123654ba987c 12 89 71 1432987ab65c 12 151
30 12367854ba9c 8 – 72 14329ab8567c 8 152
31 1236789a54bc 8 – 73 14329ab8765c 12 153
32 12367a9854bc 8 – 74 1432ba56789c 8 –
33 12387456ba9c 12 95 75 1432ba76589c 8 –
34 12387654ba9c 12 99 76 1432ba98567c 8 154
35 12389a7456bc 9 – 77 1432ba98765c 8 155
36 12389a7654bc 9 – 78 1456329ab87c 8 156
37 123a945678bc 12 – 79 145632ba789c 8 –
38 123a945876bc 12 – 80 145632ba987c 8 157
39 123a965478bc 3 – 81 1652349ab87c 12 158
40 123a987456bc 13 – 82 165234ba987c 12 159
41 123a987654bc 13 – 83 165432ba987c 8 160
42 1254389a76bc 3 – Total 784 63
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Note that domain β is always admissible for the free ovals. The number
of admissible distributions of ovals is shown in the third column of table
1 4.

Some constructions of arrangements of M -cubic and a M -quartic
having 12 points of intersection of the oval O4 and the odd branch J3

were described in [P6]. Recently using some new approach, S.Orevkov
[O4] obtained a list of 237 distinguish arrangements of such sort (his list
includes results of all previous constructions). In the fourth column of
Table 1, we indicate the numbers of realized models from the Orevkov
list5.

Now we give a short explanation of the application of the Orevkov
prohibition method [O2] taking as an example case no.3 from the Table 1
(many details of the method can be found in [O2],[O3],[K-P],[O-P]). The
topological model for this case is shown to the left picture of Figure 6,
where each Greek letter denotes the numbers of free ovals in the domain
and the same time the name of this domain. The right picture represents
the same model in the more realistic view.

Suppose that this model with some distribution of free ovals is re-
alized by some curve C7 of degree 7. The enumeration of admissible
distribution of free ovals is very simple: the oval O3 can be in one of the
domains α, β, δ (the domain γ is free of free ovals by virtue of the com-
plex orientations formulas); for free ovals of quartic we have β + δ = 3
for every position of O3. Thus, the total number of distributions of free
ovals is 12 (compare with Table 1).

1. To apply the Orevkov method [O2] we need in a pencil LP of lines
in RP 2 with center at a point P ∈ RP 2 \RC7, which has a maximal gen-
eral position with respect to the curve RC7. Here the maximal general
position means that (i) for every line l ∈ LP the set l

⋂
RC7 consists of

at least 5 points and there exists some such line having 7 common points
with RC7, (ii)the multiplicity of intersection of every line l ∈ LP and
the curve RC7 at every point is no more than two, and (iii) for every line
l ∈ LP the number of such points with multiplicity two is no more than
one. The points of intersection of l and RC7 with multiplicity two are
called critical of the pencil LP . They can be either points of tangency
of l and RC7 or double points of RC7. A line l having critical points is
called critical.

4Here corollaries of the Rokhlin and Mishachev formulas of complex orien-
tations are taken into account; applications of these formulas in such situations
are described in [P6], [K-P], [O-P].

5Pictures in the Orevkov list in [O4] are not numbered. We enumerate
them along rows of his figures.
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Fig. 6. Model for arrangement with code (12345678ba9c)
(no.3 from Table 1).

Let a center P of the pencil be chosen by an appropriate way for a
given topological model of J3

⋃
O4. After that we need to consider all

different admissible possibilities for mutual arrangement of the model of
the pencil with respect to the model of J3

⋃
O4. The Bézout theorem

admits several (usually two or three) such essentially different arrange-
ments6.

2. Let us choose point P in the interior of the digon with vertices 8,
9 (see Figure 6). Let Q be some interior point in the digon with vertices
5, 6. The dotted line in Figure 6 represents one of admissible positions
of the line PQ. It is convenient to redraw the picture such that line PQ
becomes the boundary circle of the Poincaré disk, see Figure 7. If we
draw the corresponding affine plane, where the center P of the pencil LP

is located on the line at infinity, then the pencil LP in this affine plane
constitutes a set of parallel lines. Free ovals may be only in vertical
zones bounded by critical lines and filled by lines of the pencil, each
line of which has 5 real points of intersection with J3

⋃
O4. We must

consider all admissible distributions of free ovals in these zones taking
into account their mutual order.

3. Consider complexification of our construction. Let

CC7 = {(x0, x1, x2) ∈ CP 2|C7 = 0}

6”Essentially different” means that corresponding braids, which will be
constructed below, are nonconjugate in the braid group.
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Fig. 7. Model no.3 and pencil LP .

be the set of complex points of the curve C7, Cl be the set of complex
points of the line l and CLP =

⋃
Cl for l ∈ LP . The intersection

CC7

⋂
CLP can be described as a union of 7 circles. Every two circles

either are disjoint or intersect at critical points of the pencil CLP ; and
the intersection of every three circles is empty.

Some standard perturbation (see details in [O2]) of the union of
circles turns it into a link K of disjoint circles. Let b be a braid in
the group B7 of braids of 7 strings, whose closure b̄ coincides with the
link K. It is clear that the braid b is defined up to conjugation in the
group B7. The fact that the pencil LP is in maximal general position
with respect to RC7 implies that the braid b is uniquely defined (up to
conjugation) by visible mutual arrangement of the model of RC7 and
the pencil LP in RP 2.

The construction implies that the link K = b̄ is the boudary link
for a part of a surface CC7 ∈ CP 2. It is well known (see, for example,
[R]) that it is possible only if the braid b is a so called quasi-positive
braid. As a necessary condition of quasipositivity, as in [O2],[K-P],[O-
P], we apply the Murasugi-Tristram Inequality, which for our case can
be written in the form

h = |σ(b̄)| + n − e(b) − null(b̄) ≤ 0,

where σ(b̄) is the signature, null(b̄) is the nullity of the link b̄, and e(b) =
∑

ki for b =
∏

σki

i , where σi, i = 1, 2, . . . , 6, are standard generators of
the B7.
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4. One can check that for every position of the pencil with respect
to the model no. 3 and for every distribution of free ovals, the value of
h is always positive. Thus, the model no. 3 from Table 1 is unrealizable
by an algebraic curve of degree 7.

For all of other considered cases, including all cases of the Table 1,
we have obtain h = 0 only for the arrangements which were realized by
S.Orevkov. This leads to the following

Conjecture. Under conditions (i)-(iii) in the case b) every union of
an M -cubic and M -quartic is homeomorphic to some disposition from
the Orevkov’s list [O4] of realized models.

Remarks. 1. The most difficult step in the application of the
Orevkov method is the choice of the point P and enumeration of admis-
sible arrangements of the pencil LP , i.e., items 1 and 2 above. These
steps were made ”by hand”. All other steps were made on a computer
by using of a number of programs written by M.Guschin. Other variant
of programs was created by S.Orevkov.

2. The prohibitions for cases of the Table 1, which satisfy the as-
sumption that the oval O3 lies outside of ovals of the quartic and outside
of β (for the example, in δ of the model No. 3 above), were indepen-
dently considered by S.Orevkov (see Proposition 6.2 in [O4]). In these
cases, one can choose the center P of the pencil LP inside the oval O3;
and the disposition of LP with respect to the model is easily determined.

Acknowledgement. My thanks to A. B. Korchagin from Texas
Tech University for his friendly support and helpful discussions and to
the referee for very useful remarks to the initial text.
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Abstract.

We apply the method of constructing controlled vector fields to
give sufficient conditions for the A-topological triviality of deforma-
tions of map germs ft : (C

n, 0) → (C
p, 0) of type ft(x) = f(x)+th(x),

with n ≥ p or n ≤ 2p. These conditions are given in terms of an ap-
propriate choice of Newton filtrations for On and Op and are for the
A-tangent space of the germ f .

For the case n ≥ p, we follow the technique used by M. A. S.
Ruas in her Ph.D. Thesis [7] and construct control functions in the
target and in the source to obtain, via a partition of the unit, a unique
control function. We use the control function of the target to give an
estimate for the case p ≥ 2n. Moreover, in this case we show that
if the coordinates of the map germ satisfy a Newton non-degeneracy
condition, deformations by terms of higher filtration are topologically
trivial.

As an application we obtain for both cases, n ≥ p and p ≥ 2n,
the results of Damon in [3] for deformations of weighted homogeneous
map germs.

§1. Introduction

The determinacy of topological triviality for families of map-germs is a
fundamental subject in singularity theory. As we see in the articles of
Damon, [4] and [3] for example, the method of constructing controlled
vector fields is a very powerful tool to compute the topological triviality.
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M. A. S. Ruas in her PhD. Thesis gives an explicit order such that the
A-topological structure of a polynomial map-germ f : (Cn, 0) → (Cp, 0),
with n ≥ p, is preserved after higher order perturbations.

In this paper we apply this method to give sufficient conditions for
the A-topological triviality of deformations of map germs ft : (Cn, 0) →
(Cp, 0) of type ft(x) = f(x) + th(x), with n ≥ p or n ≤ 2p. These con-
ditions are given in terms of an appropriate choice of Newton filtrations
for On and Op and are for the A-tangent space of the germ f .

First we generalize the results of M. A. S. Ruas [7], by considering
different Newton filtrations Ak for On and Bk for Op, these results are
given for the case n ≥ p. We construct control functions in the target
and in the source to obtain, via a partition of the unit, a unique control
function. We remark that in [7] these control functions are homogeneous,
since they are associated to the usual filtration, given by the degree of
monomials.

In the case p ≥ 2n we give an estimate in terms of the control
function of the target. Moreover, if p ≥ 2n, we apply the results of
Gaffney in [6] to show that deformations by higher Newton filtration are
A-topologically trivial if the map germs satisfy a Newton non-degeneracy
condition.

In both cases we also show that the results of Damon for the topo-
logical triviality of unfoldings of weighted homogenous map germs can
be obtained from our results.

§2. Newton filtration and control functions

To construct controlled vector fields that guarantee the topological
triviality we define a convenient control function in terms of a fixed
Newton polyhedron. An analytic function ρ : Cn → R is a control if
there exist constants C and α such that ρ(x) ≥ C|x|α.

First we construct a control function in the target, denoted by ρm
and a function in the source, denoted by ρf. When n ≥ p, the control
function ρ is defined from these, via a partition of the unity. For p ≥ 2n,
the control function is ρm.

Fix coordinate systems x in (Cn, 0), y in (Cp, 0) and denote by On,
Op, the sets of holomorphic germs from (Cn, 0) to (C, 0) and from (Cp, 0)
to (C, 0). We identify these sets with the rings of convergent power series
C[[x]] and C[[y]] respectively.

To fix the notation we follow [1] and say that a subset Γ+ ⊆ Rn
+

is a Newton polyhedron if there exist some k1, . . . , kr ∈ Qn
+ such that

Γ+ is the convex hull in Rn
+ of the set {ki + v : v ∈ Rn

+, i = 1, . . . , r}
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and Γ+ intersects all the coordinate axis. Denote by Γ the union of the
compact faces of Γ+ and consider the Newton filtration of On = A0 ⊇
A1 ⊇ A2 ⊇ . . . , by the ideals Aq = {g ∈ On : supp g ⊆ φ−1

Γ (q + N)}, for
all q ∈ N, here φΓ is the Newton function of Γ.

We fix a Newton polyhedron Γ+ in Rn
+ with its associate Newton

filtration, then for any germ of function g =
∑

k akx
k, denote d(g) =

max{q : g ∈ Aq} and by in(g), the polynomial in(g) =
∑
akx

k such that
φΓ(k) = d(g).

To define a Newton filtration in Op we consider a fixed map germ
g : (Cn, 0) → (Cp, 0), g = (g1, . . . , gp), call Di = d(gi) and say that
D1 ≤ D2 ≤ . . . ≤ Dp. In this case we call d(g) = (D1, D2, . . . , Dp).

Denote byMI the determinant of the p×pminor of the matrix of the
partial derivatives of g indexed by I = {i1, . . . , ip} ⊂ {1, . . . n}, with i1 <
. . . < ip. We fix an order for these determinants calling M1,M2, . . . ,Mr

in such a way that d(Mj) ≤ d(Mj+1) and call Lj = d(Mj).

Now, call D = m.c.m.{D1, D2, . . . , Dp, L1, . . . , Lq} and define the
weighted homogeneous control function in the target, ρm : Cp → R by

ρm(y) = |y1|2r1+|y2|2r2+. . .+|yp|2rp , where ri =
D

Di
for all i = 1, . . . , p.

The Newton filtration of Op = B0 ⊇ B1 ⊇ B2 ⊇ . . . is associate to
the control function ρm(y). Therefore any ideal Bk has a Newton poly-
hedron which only one compact face with normal vector w = (w1, ..., wp),
where wi = R

ri
and R = m.c.m.{r1, . . . , rp}, for all i = 1, ..., p.

For any monomial yβ = yβ1
1 yβ2

2 . . . yβn
n ∈ Op, denote dw(yβ) =

w1β1 + . . . + wpβp, and for any g ∈ Op, dw(g) = min . dw(yβ) for all
yβ with nonzero coefficient in the Taylor series of g, then Bk = {g ∈
Op; dw(g) ≥ k}.

Here we have dw(ρm) = 2R and as ρm(g(x)) = |g1|2r1 + |g2|2r2 +
. . .+ |gp|2rp , d(ρm ◦ g) = d

(|g1|2r1 + |g2|2r2 + ...+ |gp|2rp
)

= 2D.

Now define the control function in the source

ρv(x1, . . . , xn) =
r∑

j=1

x
2vj

1
1 . . . x

2vj
n

n ,

with vj = (vj
1, . . . , v

j
n), j = 1, . . . , r being the vertices of the Newton

polyhedron Γ+(AD), therefore d(ρv) = 2D.



386 M. J. Saia and L. M. F. Soares

We also define the function ρf(g) : Cn → R, ρf(g)(x) =
∑ |Mj |2αj ,

where αj = D
Lj

for all j = 1, . . . , q. We remember that ρf(g) is not a
control function, however, under some conditions, it is important in the
construction of the controlled vector fields. We remark that all these
constructions are done to obtain d(ρf(g)) = d(ρm ◦ g) = d(ρv) = 2D.

Example: Let g(x, y) = (xy, x4 + y5 +xy2) and fix the Newton polyhe-
dron Γ+(g2). Call Δ1 the face with vertices {(0, 5), (1, 2)} and Δ2 the
face with vertices {(4, 0), (1, 2)}, C(Δi) denotes the cone with vertex at
0 passing through Δi.

Fig. 1. The Newton polyhedron Γ+(g2).

The Newton filtration ϕΓ+(g2) is

ϕ(xayb) =

⎧⎨
⎩

24a+ 8b, if (a, b) ∈ C(Δ1)

10a+ 15b, if (a, b) ∈ C(Δ2).

Then d(g1) = 25 and d(g2) = 40, thereforeD = 200 = m.c.m{25, 40}
and the control function in the target is ρm(y) = |y1|16 + |y2|10, and
dw(ρm(y)) = 80 = R.

Now let M(x, y) = 5y5 − 4x4 + xy2, be the determinant of the
Jacobian matrix of g, then d(M) = 40 and ρf(g) = (5y5 − 4x4 + xy2)10,
with d(ρf(g)) = 2D = 400.

Since d(g16
1 ) = d(g10

2 ) = d(ρf(g)) = 2D = 400, the control function
in the source ρv associate to Γ+(g10

2 ) is ρv(x, y) = x40 + y32 + x20y40

and d(ρv) = 2D = 400.
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§3. A-topological triviality

Denote by

F : (Cn × C, (0, 0)) → (Cp × C, (0, 0)) , F (x, λ) = (f(x, λ), λ)

a one parameter unfolding of a finitely determined map germ

f : (Cn, 0) → (Cp, 0)

and call the family of map germs fλ(x) = f(x, λ) a deformation of the
germ f .

An unfolding F (x, λ) of f is A-topologically trivial if, for small val-
ues of λ, there are germs of homeomorphisms H : (Cn × C, (0, 0)) →
(Cn × C, (0, 0)), of type H(x, λ) = (h(x, λ), λ), with h(0, λ) = 0 and
K : (Cp×C, (0, 0)) → (Cp×C, (0, 0)) of type K(x, λ) = (k(x, λ), λ) with
k(0, λ) = 0 such that K ◦ F ◦H−1 = (f0(x), λ).

In this case we say that the deformation fλ(x) is A-topologically
trivial, since for small values of λ, the families of homeomorphisms hλ :
(Cn, 0) → (Cn, 0), with hλ(x) = h(x, λ) and kλ : (Cp, 0) → (Cp, 0) with
kλ(x) = k(x, λ) give

kλ ◦ fλ ◦ h−1
λ = f0.

Let g : (Cn, 0) → (Cp, 0) be a finitely determined map germ satisfy-
ing

A2D+D1θg ⊆ tg(A2Dθn) + wg(B2R+1θp).(1)

From the above constructions we have the following:

Proposition 3.1.
(1) If n ≥ p, suppose that in a neighborhood V of 0 in Cn, there

exist constants α e β such that ρf(g(x)) ≥ βρv(x), for all x ∈
V ∩ {x; ρm(g(x)) < αρv(x)}.

(2) If p≥2n, suppose that ρm(g(x))≥cρv(x), ∀x in a neighborhood
V of 0.

Then deformations gλ = g+λh of g, with d(hi) ≥ Di, ∀ i = 1, . . . , p,
are A-topologically trivial for small values of λ.

In the next Lemma, essential in the proof of this Proposition, we
show that it is possible to extend the filtration condition of the equation
(1) to the tangent space of an unfolding of the germ g.
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We call m1 the maximal ideal in O1 and Ã2D+D1 the ideal in On+1

generated by the monomial λ and the ideal A2D+D1 .

Lemma 3.2. Let G(x, λ) = (gλ(x), λ), with gλ(x) = (g1λ(x), . . . gnλ(x))
be an unfolding of g0(x) = g(x), such that giλ − gi0 ∈ m1.ADiθG for all
i = 1, . . . , n and |λ| < ε for small values of ε. If the equation (1) holds,
then

tG(A2Dθn+1) + wG(B2R+1.θp+1) ⊇ A2D+D1θG.

Proof: Since

A2D+D1θG = A2D+D1θg + λA2D+D1θG

⊆ tg(A2Dθn) + wg(B2R+1.θp) + λA2D+D1θG,

and

tg(A2Dθn) + wg(B2R+1.θp)
⊆ tG(A2Dθn+1) + wG(B2R+1.θp+1) + λA2D+D1θG

it follows that

A2D+D1θG ⊆ tG(A2Dθn+1) + wG(B2R+1.θp+1) + λA2D+D1θG.(2)

Let E be the finitely generated On+1-modulo defined as

E =
tG(A2Dθn+1) + wG(B2R+1.θp+1) +A2D+D1θG

tG(A2Dθn+1) + wG(B2R+1.θp+1)
.

We remark that E is a G∗(Op+1)-modulo and (λ).E = E since

(λ).E = tG(A2Dθn+1)+wG(B2R+1.θp+1)
tG(A2Dθn+1)+wG(B2R+1.θp+1)

+

+ (λ)[tG(A2Dθn+1)+wG(B2R+1.θp+1)+A2D+D1θG]

tG(A2Dθn+1)+wG(B2R+1.θp+1)

= tG(A2Dθn+1)+wG(B2R+1.θp+1)+A2D+D1θG

tG(A2Dθn+1)+wG(B2R+1.θp+1)
= E.

Therefore if we show that E is finitely generated as G∗(Op+1)-
modulo we apply the Nakayama’s Lemma to obtain E = 0, or

A2D+D1θG ⊆ tG(A2Dθn+1) + wG(B2R+1.θp+1).
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We show now that E is finitely generated as G∗(Op+1)- module.

Let E′ be the finitely generated On+1-module

E′ =
tG(A2Dθn+1) +A2D+D1θG

tG(A2Dθn+1)
.

Then we need to show that E′ is finitely generated as a G∗(Op+1)-
module.

From the Malgrange’s Preparation Theorem, E′ is a finitely gener-
ated G∗(Op+1)- module if, and only if dimC

E′
G∗(mp+1)E′ < +∞.

Write

E′

G∗(mp+1)E′ =
tG(A2Dθn+1)+A2D+D1θG

tG(A2Dθn+1)

G∗(mp+1)[tG(A2Dθn+1)+A2D+D1θG]+tG(A2Dθn+1)

tG(A2Dθn+1)

=
tG(A2Dθn+1) +A2D+D1θG

tG(A2Dθn+1) +G∗(mp+1)[tG(A2Dθn+1) +A2D+D1θG]
,

denote S = A2D+D1θG and T = tG(A2Dθn+1) +G∗(mp+1)A2D+D1θG.

Therefore by the isomorphism theorem we obtain
T + S

T
∼= S

T ∩ S .

From

tG(A2Dθn+1) + wG(B2R+1.θp+1) + λA2D+D1θG

⊆ tG(A2Dθn+1) +G∗(mp+1)θG

and by the equation (2) we conclude that

tG(A2Dθn+1) +G∗(mp+1)θG ⊇ A2D+D1θG.

Multiplying by A2D+D1 we obtain

tG(A4D+D1θn+1) +G∗(mp+1)A2D+D1θG ⊇ A4D+2D1θG.

On the other hand,

tG(A4D+D1θn+1) +G∗(mp+1)A2D+D1θG ⊇ λA2D+D1θG.

Hence, dimC
S

T∩S ≤ dimC

A2D+D1θG

Ã2D+D1A2D+D1θG
< +∞. ‖
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Proof of the Proposition 3.1: Let G(x, λ) = (gλ(x), λ) be an un-
folding of g, with gλ(x) = g(x) + λh(x) and h = (h1, . . . , hp) with each
hi ∈ ADi .

From the general hypotheses, since ADi ⊂ AD1 for all i = 1, . . . , n
we obtain

h.ρm(g) ∈ tg(A2Dθn) + wg(B2R+1θp).

From the Lemma 3.2. we conclude that there exist analytic vector
fields ξ ∈ A2Dθn+1 and η ∈ B2R+1θp+1 such that the above inclusion
holds for deformations, i.e.

h.ρm(gλ) = tG(ξ) + η ◦G.(3)

From the equation (3) we construct the vector field controlled by
ρm. Define ω in (Cp × C, 0 × 0) as:

ω(y, λ) =

⎧⎪⎪⎨
⎪⎪⎩

η(y, λ)
ρm(y)

, if y �= 0

0, if y = 0.

Since dw(η) ≥ 2R + 1 > dw(ρm) = 2R we apply Lemmas (1) e (2)
of [9] to conclude that the vector field ω is integrable.

Proof of the case n ≥ p. In order to define the vector field controlled
by the function ρf, for each I = {i1, i2, . . . , ip} ⊂ {1, 2, . . . , n} write
∂gλ

∂λ
MIλ

= tG(γI), with γI =
∑
γi

∂
∂xi

and each γi is defined as

⎧⎪⎨
⎪⎩

γi = 0, if i /∈ I

γim =
∑
Njim

(
∂gλ

∂λ

)
j
, if im ∈ I.

(4)

where Njim is the (p− 1) × (p− 1) cofactor of ∂gj

∂xim
.

Since ρf(gλ) =
∑

|MIλ
|2αI , we obtain

h.ρf(gλ) = tG
(∑

γIM
αI−1
Iλ

MIλ

αI
)
,
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therefore h = tG (ψ) , with ψ=
P

γIM
αI−1
Iλ

MIλ

αI

ρf(gλ) .

Denote γR =
∑
γIM

αI−1
Iλ

MIλ

αI , then d(γR) = d(ρf(gλ)) + r, with

r = min
i,k

{
M

	(vk)
.vk

i

}
.

The integrability of the vector field ψ =
γR

ρf(gλ)
, follows from the

hypotheses of the following:

Lemma 3.3. There exist positive constants α1, β and a neighborhood
V of the origin in Cn such that

ρf(gλ(x)) ≥ α1ρv(x), ∀ x ∈ V ∩ {ρm(gλ(x)) < βρv(x)}.

Proof: Since gλ = g + λh, and d(hi) ≥ d(gi) for all i = 1, . . . , p we
obtain

ρf(gλ) ≥ ρf(g) − λθ(x, λ),with d(θ) ≥ d(ρf(g)).

By hypotheses ρf(g) ≥ αρv(x) for x ∈ V ∩ {x; ρm(g(x)) < βρv(x)}
hence there exists a constant c > 0 such that λθ(x, λ) ≤ cρv(x). Since
ρm(gλ(x)) < ρm(g(x)), for each x ∈ V ∩ {x; ρm(gλ(x)) < ρm(g(x)) <
αρv(x)}, we obtain

ρf(gλ(x)) ≥ ρf(g(x)) − λθ(x, λ)
≥ (α− c)ρv(x)
= α1ρv(x).

‖
To finish the proof of the Proposition 3.1., consider the following

partition of the unity.

Let H = (V × I) − (0 × I), with I = (−ε, ε) and the following sets

F1 = ({(x, λ); gλ(x) = 0} − (0 × C)) ∩ H , F2 = {(x, λ); ρm(gλ(x)) ≥
αρv(x)} ∩H ,

E1 = {(x, λ); ρm(gλ(x))< α1ρv(x)} ∩ H and E2 = {(x, λ); ρm(gλ(x)) <
α2ρv(x)}∩H ,

with α1 < α < α2.

We remark that F1 and F2 are closed and disjoint from H .
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Define ζ(x) = ζ1(x) + ζ2(x), a partition of the unity related to
{E2, (E1)c}.

ζ1(x, λ) =

⎧⎨
⎩

1, if (x, λ) ∈ F1

0, if (x, λ) ∈ (E2)c

and

ζ2(x, λ) =

⎧⎨
⎩

1, if (x, λ) ∈ F2

0, if (x, λ) ∈ E1.

Call ν2(x, λ) =

⎧⎨
⎩

ξ(x,λ)
ρm(gλ(x)) , if (x, λ) ∈ F1

c

0, if (x, λ) ∈ F1,

where ξ(x, λ) is given in equation (3), and define

ν1(x, λ) =

⎧⎪⎨
⎪⎩

γR
ρf(gλ(x)) , if (x, λ) ∈ F2

c

0, if (x, λ) ∈ F2.

Since all functions defined above can be extended in such a way that
they are zero at 0×λ, let ν be the vector field in (Cn ×C, 0× 0) defined
as

ν(x, λ) =

⎧⎨
⎩

ζ1(x, λ)ν1(x, λ) + ζ2(x, λ)ν2(x, λ), if x �= 0

0, if x = 0.

Then the vector field ν is continuous, integrable and h= tG(ν(x, λ))+
w(G(x, λ)).

From the integral curve solutions of ν e ω we construct the germs
of homeomorphisms

H : (Cn×C, 0×0) → (Cn×C, 0×0), H(x, λ) = (h(x, λ), λ), h(x, 0) = x,

and

K : (Cp ×C, 0×0) → (Cp ×C, 0×0), K(y, λ) = (k(y, λ), λ), k(y, 0) = y

to obtain K ◦G ◦H−1 = (g, idC). ‖

Proof of the case p ≥ 2n: From the equation (3) we have

h = tG

(
ξ

ρm(gλ)

)
+

η ◦G
ρm(gλ)

.
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By the general hypotheses ξ ∈ A2D and η ∈ A2R+1, from (2) we see
that
ρm(gλ)(x) ≥ c.ρv(x), therefore the vector field

ξ

ρm(gλ)
is integrable,

and also the vector field
η

ρm
, then the homeomorphisms H and K are

obtained as above. ‖

§4. The non-degenerate case when p ≥ 2n

In this section we are interested in the topological triviality of fam-
ilies gλ : (Cn, 0) → (Cp, 0) of type gλ = g + λh, with p ≥ 2n and
g = (g1, g2, . . . , gp) being an A-finitely determined map germ.

We show the A-topological triviality of the family gλ in terms of
the filtration of the map germ h, if the ideal I generated by the system
{g1, g2, . . . , gp} satisfies some non-degeneracy conditions with respect to
its Newton polyhedron.

We recover the basic definitions needed for these non-degeneracy
conditions.

Let g =
∑

k akx
k in On, denote supp g the set of points k ∈ Zn with

ak �= 0. If I is an ideal in On, define I = ∪g∈Isupp g.

Fix an ideal I, consider its Newton polyhedron Γ+(I), the convex
hull in Rn

+ of {k + v : v ∈ Rn
+, k ∈ supp (I)} and its induced Newton

filtration.

For each compact face Δ of Γ(I), call C(Δ) the cone with vertex
at the origin and passing through Δ and AΔ denotes the sub-ring with
unity of On, AΔ = {g ∈ On : supp g ⊆ C(Δ)}. The Newton filtration of
On induces a filtration on AΔ in a natural way.

For any germ g ∈ On, denote gΔ =
∑
akx

k with k ∈ supp g ∩ Δ,
and inΔ(g), the polynomial

inΔ(g) =
∑{

akx
k : k ∈ supp g ∩ C(Δ) and d(xk) = d(g)

}
.

Definition 4.1. The ideal I is Newton non-degenerate if there exists
a system of generators {f1, . . . , fs} of I such that for each compact face
Δ ⊆ Γ, the ideal generated by the system {f1Δ1 , . . . , fsΔ1} has finite
colength in AΔ1 , for all subfaces Δ1 of Δ.
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Definition 4.2. A system of generators {f1, . . . , fs} of an ideal I is
non-degenerate on Γ+(I) if, for each compact face Δ ⊆ Γ, the ideal of
AΔ generated by inΔ(f1), . . . , inΔ(fs) has finite colength in AΔ.

Now we consider the ideal I = 〈g1, g2, . . . , gp〉, for each generator gi

of I, denote d(gi) = Di and consider D1 ≤ D2 ≤ . . . ≤ Dp.

In the case that the ideal I is non-degenerate on some Newton poly-
hedron Γ+ we have the following:

Proposition 4.3. Suppose that I is non-degenerate on some Newton
polyhedron Γ+. Then, deformations of g of type gλ = g + λh, with
d(hi) ≥ Dp, for all i = 1, . . . , p are A-topologically trivial.

When the ideal I is Newton non-degenerate we obtain the following:

Corollary 4.4. Suppose that I is Newton non-degenerate. Then,
deformations of g of type gλ = g + λh, with d(hi) ≥ Di, for all i =
1, . . . , p are A-topologically trivial.

Since p ≥ 2n any map germ g = (g1, . . . , gp) is A-finitely determined
if, and only if, g is L- finitely determined, where L denotes the L-group
of Mather.

Let G(x, λ) = (gλ, λ) be the one parameter unfolding of g. Since g
is L-finitely determined we can choose an integer number s and a vector
field η ∈ mpθp+1, such that

∂gλ

∂λ

(
g
2D/D1
1 + g

2D/D2
2 + . . .+ g2D/Dp

p

)s

= η ◦G.

Consider the control function in the target ρ : Cp → R, defined by

ρ(y) =
(
|y1|2D/D1 + |y2|2D/D2 + . . .+ |yp|2D/Dp

)1/2

To prove that the vector field
η ◦ g

(ρ(g))2s
is integrable, it is sufficient to

show that there exists a constant C > 0 such that
∣∣∣∂gλ

∂λ (λ, y1, . . . , yp)
∣∣∣ ≤

Cρ(y), (see Gaffney in [6] p.482 and Fukui-Paunescu in [5], p.87).

We can compose the terms of this inequality with G to get an equiv-
alent inequality on Cn,

∣∣∣∂gλ

∂λ (λ, x1, . . . , xn)
∣∣∣ ≤ Cρ(gλ).

Proof of the Proposition 4.3:
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From the proof of the Theorem 3.6 of [1] we see that the ideal I is
non-degenerate on Γ+ if, and only if, the ideal

J =
〈
g

D/D1
1 , g

D/D2
2 , . . . gD/Dp

p

〉

is Newton non-degenerate. In this case, if a germ h satisfies d(h) ≥ Dp,
then Γ+(hD/Dp) ∈ Γ+(J), since J is Newton non-degenerate we obtain
hD/Dp ∈ J . Now we can use the valuative criterion for the integral
closure (see [12] p. 288), to obtain that

∣∣∣∣∂gλ

∂λ
(λ, x1, . . . , xn)

∣∣∣∣ ≤ Cρ(gλ)

and the result follows.

Proof of the Corollary 4.4:
If the ideal I is Newton non-degenerate, we obtain from the Theorem

3.4 of [10] that any germ h with Γ+(h) ⊂ Γ+(I) is in the integral closure
of I. ¿From the condition d(hi) ≥ d(gi), since Γ+(gi) ⊂ Γ+(I) we obtain

Γ+(hi) ⊂ Γ+(I). ‖

4.1. An example in C2 → C4

Let g : C2 → C4 be the map germ g = (g1, g2, g3, g4) with

g1(x, y) = α1x
5 + α2y

5 + a1x
3y + a2xy

3;
g2(x, y) = β1x

7 + β2y
7 + b1x

3y2 + b2x
2y3;

g3(x, y) = θ1x
11 + θ2y

11 + c1x
5y3 + c2x

3y5;
g4(x, y) = γ1x

12 + γ2y
12 + dx4y4;

We see in the example 2.1 of [2] that g is A-finitely determined for
generic values of αi, βi, θi and γi, with ai, bi, ci and d being all distinct
prime numbers.

Here we fix the Newton polyhedron Γ+(g4), with vertices (12, 0),
(0, 12), (4, 4) to obtain that I is non-degenerate on Γ+(g4), therefore any
deformation of type gλ = g + λh with d(hj) ≥ d(g4) for j = 1, 2, 3, 4 is
topologically trivial.
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§5. The weighted homogeneous case

Damon in [3] investigates the topological triviality of unfoldings of
A-finitely determined map germs which are weighted homogenous. His
theorem 1. shows that polynomial unfoldings of non negative weights of
these map germs are topologically trivial.

From the results shown above we obtain similar results for one pa-
rameter linear unfoldings of any weighted homogenous A-finitely deter-
mined map germ. We remark that in the weighted homogenous case, the
results of Damon are for any pair of dimensions (n, p) while the results
shown here are only for n ≥ p and p ≥ 2n

Definition 5.1. Given (w1, . . . , wn; d1, . . . , dp) with wi, dj ∈ IQ+, a map
germ f : (Cn, 0) → (Cp, 0) is weighted homogeneous of type
(w1, . . . , wn; d1, . . . , dp) if for all λ ∈ K − {0}

f(λw1x1, λ
w2x2, . . . , λ

wnxn) = (λd1f1(x), λd2f2(x), . . . , λdpfp(x)).

For a fixed set of weights w = (w1, . . . , wn) consider the Newton
filtration of On = A0 ⊇ A1 ⊇ A2 ⊇ . . . , by the ideals Aq = {g ∈ On :
dw(g) ≥ q}.
Proposition 5.2. Let g be an A-finitely determined map germ which
is weighted homogenous of type (w1, . . . , wn; d1, . . . , dp). Then defor-
mations of gλ = g + λh of g, with dw(hi) ≥ di, ∀ i = 1, . . . , p, are
A-topologically trivial for small values of λ.

Proof: To show this result we follow the proof of the Proposition 3.2.

We should prove that the germ g satisfies the equation 1, however
the main purpose of this equation is to guarantee that

hρm(g) ∈ tg(A2Dθn) + wg(B2R+1θp)

and them from the Lemma 3.2. we obtain that this condition also holds
for deformations, i. e.,

h.ρm(gλ) ∈ tG(A2Dθn+1) + wG(B2R+1θp+1)

In the case of weighted homogenous map germs, we see in the item
ii of the proposition 7.4 of [3] p.319, that it is possible to obtain vector
fields η and ψ satisfying the condition

h.ρm(gλ) = tgλ(ψ(x, λ)) + η(g(x, λ)).
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and as g and ρm are weighted homogeneous, we may assume that the
vector field ψ is in A2Dθn+1 and η is in B2R+1θp+1.

In the case p ≥ 2n we use the fact that each germ gj is weighted
homogeneous of type (w1, . . . , wn; dj), then we consider the ideal I gen-
erated by the system {g2r1

1 , . . . , g
2rp
p }, where rj are integers such that

rjdj = D for some D and each g
2rj

j is weighted homogenous of type
(w1, . . . , wn; 2D).

Since g is A-finitely determined it is also L-finitely determined and
the ideal I is Newton non-degenerate.

Therefore we obtain the inequality ρm(g(x))≥cρv(x), ∀x in a neigh-
borhood V of 0.

In the case n ≥ p we need to show that there exist a neighborhood
V of 0 in Cn, and constants α e β such that ρf(g(x)) ≥ βρv(x), for all
x ∈ V ∩ {x; ρm(g(x)) < αρv(x)}, but in this case this condition follows
from the lemma 7.7, p.319 of [3].

Therefore, we are ready to follow the final part of the proof of the
Proposition 3.1. to obtain the result. ‖

§6. Examples

Example 6.1. ([7], p. 102.) Let f : (C3, 0) → (C2, 0), f(x, y, z) =
(x2 + y2 + x3 + z3, x2 + y3 + z2).

We remark that it is not possible to apply the Proposition 5.2 for
this case since the map germ f is not weighted homogenous.

The best filtrations to choose for On and Op in this example are the
usual filtrations given by the degree.

Here we have tf(m3
nθn) +wf(m2

pθp) = m4
nθf , moreover we see that

tf(m3
nθn)+wf(m2

pθp) = tf(m3
nθn)+f∗(mp)mk−1

n θf = m4
nθf , hence this

germ is (k − 1) − C0 − K− determined. From this condition we show
that this germ satisfies the conditions of the Proposition 3.2., therefore
deformations by order higher than 2 are A-topologically trivial.

Example 6.2. Let f : (C2, 0) → (C2, 0), f(x, y) = (xy, g(x, y)), with
g(x, y) = x4 + xy2 + y5.

This is a special case of a pre-weighted homogeneous map germ
which is in the K-orbit of the A-finitely determined weighted homoge-
nous map germ k(x, y) = (xy, x4 + y5), therefore it is also A-finitely
determined. See [11] for more details about the A-finite determinacy of
pre-weighted homogenous map germs.
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We fix the Newton polygon Γ+(g) and are interested in the topolog-
ical triviality of families of type gλ(x, y) = (xy, x4 +xy2 +y5 +λh(x, y)),
with d(h) ≥ d(g).

The main difficulty with this type of example is to show that the
equation 1 holds, or if we follow the proof for the weighted homogenous
case, we need to show that it is possible to obtain vector fields η and ψ
satisfying the condition

h.ρm(gλ) = tgλ(ψ(x, λ)) + η(g(x, λ)).

in such a way that the vector field ψ is in A2Dθn+1 and η is inB2R+1θp+1.

In fact, in this case we can show that for each germ h it is possible
to find an specific vector field ψ, which depends of the cone C(Δ) that h
belongs, such that ψ is not in A2D, however it is in an appropriate level
of filtration in such a way that we obtain the integrability of the vector
field ν1(x, λ) given in the proof of the Lemma 3.3.

Therefore we can follow the method of the proof of the Proposition
3.2. to show that any deformation of this type is topologically trivial for
small values of λ.

This example is a particular case of the following:

Proposition 6.3. [8] Let f : (C2, 0) → (C2, 0), f(x, y) = (xy, g(x, y)),
with g(x, y) = xa +xrys +yb, be a pre-weighted homogeneous map germ
in the K-orbit of an A-finitely determined map germ k(x, y) = (xy, xa +
yb). Then deformations of type f(x, y) = (xy, xa +xrys + yb +λh(x, y))
with Γ+(h) ⊂ Γ+(g) are topologically trivial for small values of λ.
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On the topology of symmetry sets

of smooth submanifolds in R
k

Vyacheslav D. Sedykh

Abstract.

We study topology of symmetry sets, conflict sets and medial
axes in the case when they have only stable singularities of corank
1. Singularities of these sets satisfy various conditions of coexistence.
For example, isolated singularities and singularities forming smooth
non-closed curves define a graph. If this graph is finite, then there
is the following incidence relation: the sum of the local degrees of
vertices of the graph is equal to the doubled number of its edges
(the local degree of a vertex is the number of edges that are incident
to this vertex; loops are counted twice). We give many-dimensional
generalizations of this relation for sets mentioned above. These gen-
eralizations follow from some general facts on coexistence of wave
front singularities found recently by the author.

Let M be a C∞-smooth closed (compact without boundary) sub-
manifold in the k-dimensional Euclidean space R

k. The manifold M
can have several connected components, perhaps of different dimensions
(including isolated points). We will assume everywhere below that M
lies neither in any hyperplane nor in any hypersphere in R

k.
Let us equip the space of all embeddings M → R

k by the C∞-
topology. Submanifolds in R

k corresponding to embeddings from an
open dense subset in this space are called generic.

Definition. The symmetry set of the manifold M is the closure of
the set of centers of hyperspheres Sk−1 in R

k that are tangent to M at
two different points.

The symmetry set is a complicated singular subset in the ambient
space. This set and various of its subsets (conflict sets, medial axes, etc)
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Revised February 3, 2005.
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found applications in computer vision and other applied fields (see, for
example, [3],[5],[6],[15]).

The symmetry set can be noncompact. Moreover, some of its points
can be centers of several hyperspheres (of different radii) every of which
is tangent to the manifold M at two or more points. Therefore, we will
consider more simple object.

Let H(Rk) be the set of all hyperspheres and hyperplanes in R
k.

This is a smooth (k +1)-dimensional manifold. Hyperplanes in R
k form

a smooth hypersurface P(Rk) in H(Rk). The complement to P(Rk) is
the total space of a smooth fiber bundle

� : H(Rk) \ P(Rk) → R
k,

that takes each hypersphere to its center. The fiber of this (trivial)
bundle is the set of positive real numbers (the radius of a hypersphere).

Definition. Generalized symmetry set Σ(M) of the manifold M is
the closure in H(Rk) of the set of hyperspheres in R

k which are tangent
to M at two different points.

The set Σ(M) is a compact subset in H(Rk). The image of the set
Σ(M)\P(Rk) with respect to the projection � is the symmetry set of the
manifold M . Moreover, the intersection of the tangent cone to Σ(M) at
any point from Σ(M) \ P(Rk) and the tangent space to the fiber of the
bundle � at this point is 0.

Denote by F(M) the set of hyperspheres and hyperplanes in R
k

that are tangent to the submanifold M . This is the front of some Le-
gendre mapping into H(Rk) (see [9]). Its simplest singularities are stable
singularities of corank 1. These singularities are classified by (nonzero)
elements A = Aμ1 + · · ·+ Aμp of the free additive Abelian semigroup A

whose generators are the symbols A1, A2, . . . , Aμ, . . .
Namely a generic front F in a smooth n-dimensional manifold V

has a singularity of type Aμ at a given point v ∈ V if its germ (F , v)
at this point is diffeomorphic to a germ at zero of the hypersurface in
R

n = {(λ0, . . . , λn−1)} formed by points, where the polynomial tμ+1 +
λμ−1t

μ−1 + · · · + λ1t + λ0 has a multiple real root. The front F has
a singularity of type Aμ1 + · · · + Aμp at a point v if the germ (F , v)
consists of p irreducible components having (as germs of fronts) singu-
larities of types Aμ1 , . . . , Aμp at the point v, and if, moreover, germs
of the manifolds of these singularities on the corresponding components
intersect transversally at the point v. The numbers μ1, . . . , μp are called
multiplicities of a singularity of type Aμ1 + · · · + Aμp .

Let us suppose that the front F(M) has only stable singularities of
corank 1. Then for a generic manifold M , the points of the front F(M),
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where it has singularities of type A ∈ A, are in one to one correspondence
with tangent A-spheres and A-planes of the manifold M . The latter are
defined by the following way.

Definition. A hypersphere (hyperplane) π in R
k is said to be

tangent A = Aμ1 + · · · + Aμp -sphere (plane) of the manifold M if
1) it is tangent to M exactly at p points x1, . . . , xp that are the

vertices of an (p − 1)-dimensional simplex;
2) for any i = 1, . . . , p and for any smooth function in R

k equal to 0
on π and having noncritical value at xi, a germ at xi of the restriction
of this function onto M is given by the formula

±tμi+1
1 ± t22 ± · · · ± t2mi

in suitable local coordinates t1, . . . , tmi on M .

Remark. By definition, any hypersphere (hyperplane) in R
k pass-

ing through a given point is a tangent A1-sphere (plane) for this point.

Tangent A-spheres (planes) of the manifold M are called its tangent
hyperspheres (hyperplanes) of corank 1. The number c(A) = μ1+· · ·+μp

is called the codimension of tangency of an A-sphere (plane) with the
manifold M . The number d(A) = c(A) + p is called the degree of this
tangency.

Let M be a generic manifold. Then c(A) ≤ k+1 for any its tangent
A-sphere and c(A) ≤ k for any tangent A-plane. Moreover, for any fixed
A ∈ A the set AM consisting of all tangent A-spheres and A-planes of
the manifold M is a smooth submanifold (generally speaking, nonclosed)
of codimension c(A) in H(Rk). The restriction of the projection � onto
the manifold AM \ P(Rk) is a smooth immersion.

Now, if A = 2A1 or c(A) > 2, then the manifold AM belongs to the
set Σ(M) and is called the manifold of singularities of type A of this set.
The numbers c(A) and d(A) are called the codimension and the degree
of these singularities, respectively.

Denote by χ(AM ) the topological Euler characteristic of the man-
ifold AM (the alternated sum of the Betti numbers of the homology
groups with compact supports). Sometimes, to simplify notations, we
omit the subscript M and write χ(A).

Definition. The index IA(X) of a singularity of type X = Aν1 +
· · ·+Aνq ∈ A with respect to a singularity of type A = Aμ1 + · · ·+Aμp is
the nonnegative integer defined recursively by the following conditions:

1) if μ∗ = max{μ1, . . . , μp} > ν∗ = max{ν1, . . . , νq}, then IA(X) is
equal to 0;
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2) if μ∗ ≤ ν∗, then IA(X) is equal to∑
νi=μ∗,μ∗+1

IA−Aμ∗ (X − Aνi) +
∑

νi>μ∗+1

IA−Aμ∗ (X − Aνi + Aνi−μ∗−1),

where I∅(Y ) = 1 for any Y (here ∅ is the zero of the semigroup A).
Theorem 1. Let M be a smooth closed submanifold in R

k. Sup-
pose that all tangent hyperspheres (hyperplanes) of M are tangent hyper-
spheres (hyperplanes) of corank 1. Then for a generic M the following
statements are valid.

1) If the manifold AM of singularities of type A ∈ A of the general-
ized symmetry set Σ(M) of the manifold M has an odd dimension, then
its Euler characteristic χ(AM ) is a linear combination

(1) χ(AM ) =
∑
X

KA(X)χ(XM )

of the Euler characteristics χ(XM ) of even-dimensional manifolds XM

of singularities of types X ∈ A where c(X) > c(A). This combination
is universal in the sense that every its coefficient KA(X) depends only
on A and X (that is, it does not depend on the topology of the manifold
M). Namely,

KA(X) =
[c(X)−c(A)−1]/2∑

i=0

(−1)iPi(A, X),

where Pi(A, X) is equal to the sum of the products of the form

i∏
j=0

IYj (Yj+1)
IYj (Yj)

by all ordered sets (Y0, Y1, . . . , Yi+1) of elements of the semigroup A such
that Y0 = A, Yi+1 = X and

c(A) < c(Y1) < · · · < c(Yi) < c(X),

c(Y1) ≡ · · · ≡ c(Yi) ≡ c(A) (mod 2) .

2) The list of the formulas (1) for singularities of codimension c ≤ 6
is given in Table 1 for an even k and in Table 2 for an odd k.

3) The Euler characteristic χ(Σ(M)) of the set Σ(M) is a universal
linear combination
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(2) χ(Σ(M)) =
∑
X

K(X)χ(XM )

of the Euler characteristics χ(XM ) of even-dimensional manifolds XM

of singularities of types X ∈ A \ {A1, A2}. The coefficients of this com-
bination are calculated by the formula

K(X) = 1 −
∑
A

KA(X),

where the summation is taken by all nonzero elements A of the semigroup
A such that A �= A1, A �= A2, c(A) < c(X) and c(A) ≡ k (mod 2).

4) The formula (2) for an even k has the form

χ(Σ(M)) = 1
2 [χ(A3) − 4χ(3A1)]

+ 1
2 [χ(A5) + 3χ(A4 + A1) + 2χ(A3 + A2) + 6χ(A3 + 2A1)

+ 4χ(2A2 + A1) + 12χ(A2 + 3A1) + 32χ(5A1)]
− 1

4 [27χ(A7) + 52χ(A6 + A1) + 38χ(A5 + A2) + 96χ(A5 + 2A1)
+ 41χ(A4 + A3) + 70χ(A4 + A2 + A1) + 168χ(A4 + 3A1)
+ 74χ(2A3 + A1) + 52χ(A3 + 2A2) + 124χ(A3 + A2 + 2A1)
+ 288χ(A3 + 4A1) + 88χ(3A2 + A1) + 208χ(2A2 + 3A1)
+ 480χ(A2 + 5A1) + 1088χ(7A1)] + . . .

(the dots denote a universal linear combination of the Euler character-
istics of manifolds of singularities of odd codimensions starting from the
codimension 9); for an odd k

χ(Σ(M)) = χ(2A1)
− 1

2 [2χ(A4) + 3χ(A3 + A1) + 2χ(2A2)
+ 4χ(A2 + 2A1) + 6χ(4A1)]

+ 1
2 [10χ(A6) + 14χ(A5 + A1) + 11χ(A4 + A2)

+ 20χ(A4 + 2A1) + 10χ(2A3) + 15χ(A3 + A2 + A1)
+ 28χ(A3 + 3A1) + 12χ(3A2) + 22χ(2A2 + 2A1)
+ 40χ(A2 + 4A1) + 70χ(6A1)] + . . .

(the dots denote a universal linear combination of the Euler characteris-
tics of manifolds of singularities of even codimensions starting from the
codimension 8).

Proof. Let a generic front F in a smooth manifold V have only sta-
ble singularities of corank 1. Assume that the closure of the submanifold
in V formed by singularities of type 2A1 of this front is compact. Then
there are universal linear relations between the Euler characteristics of
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the manifolds of singularities of F lying in the mentioned closure. These
relations are given in [12]. Theorem 1 is a corollary of these results in
the case F = F(M).

Remark. Theorem 1 is valid for any generic curve in R
k. In the case

dimM > 1, the main condition of Theorem 1 (all tangent hyperspheres
(hyperplanes) of M are tangent hyperspheres (hyperplanes) of corank 1)
is valid only for very special manifold M . For example, a smooth closed
connected generic surface with such a property in R

3 has no umbilic
points. Therefore it is diffeomorphic to a torus (see [4]).

Example. Let M be a smooth closed curve (not necessary con-
nected) in the plane R

2. Then its generalized symmetry set Σ(M) is the
union of a graph and a smooth closed one-dimensional manifold. The
edges of the graph are simply connected components of the manifold
(2A1)M . The vertices are singularities 3A1, A2 + A1, A3. The incidence
relation in this graph has the form: 2χ(2A1) = 6χ(3A1)+2χ(A2+A1)+
χ(A3). This is the first formula of Table 1 (in the case k = 2).

Consider supporting hyperspheres and hyperplanes of the manifold
M . They are tangent hyperspheres and hyperplanes such that M lies on
one side of them. If a supporting hypersphere (hyperplane) is a tangent
Aμ1 + · · · + Aμp -sphere (plane), then μ1, . . . , μp are odd numbers.

Let Aodd ⊂ A be the free additive Abelian semigroup whose gen-
erators are the symbols A1, A3, . . . , A2l+1, . . . Then for k ≤ 6 the set
of supporting hyperspheres (hyperplanes) of a smooth closed generic
submanifold M in R

k consists of supporting A-spheres (planes) where
A ∈ Aodd and c(A) ≤ k+1 (c(A) ≤ k for hyperplanes). If the dimension
of each connected component of the manifold M is at most 1, then this
is true for any k (see [1],[16]).

Supporting hyperspheres and hyperplanes of the manifold M that
lie in its generalized symmetry set Σ(M) are called singular. Singular
supporting hyperspheres and hyperplanes of the manifold M form a
compact subset Σsup(M) in H(Rk). This subset is the closure in H(Rk)
of the set of supporting hyperspheres that are tangent to M at two
different points.

The set of singular supporting A-spheres and A-planes of a generic
manifold M (in dimensions mentioned above) is a smooth submanifold
of codimension c(A) in H(Rk) for any A ∈ Aodd. It is called the manifold
of singularities of type A of the set Σ = Σsup(M) and is denoted by AΣ.
The numbers c(A) and d(A) are called the codimension and the degree
of these singularities, respectively.

Theorem 2. Let M be a smooth closed submanifold in R
k. Assume

that k ≤ 6 or the dimension of each connected component of the manifold
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M is at most 1. Then for a generic M the statements 1 – 5 below are
valid for Σ = Σsup(M) and χ0 = (−1)k[1 − χ(M)] + 1.

1) If the manifold AΣ of singularities of type A ∈ Aodd of the set Σ
has an odd dimension, then its topological Euler characteristic χ(AΣ) is
a linear combination

(3) χ(AΣ) =
∑
X

Kodd
A (X)χ(XΣ)

of the Euler characteristics χ(XΣ) of even-dimensional manifolds XΣ of
singularities of types X ∈ Aodd where c(X) > c(A). This combination
is universal in the sense that every its coefficient Kodd

A (X) depends only
on A and X (that is, it does not depend on the topology of the manifold
M). Namely,

Kodd
A (X) =

[c(X)−c(A)−1]/2∑
i=0

(−1)iP̃i(A, X),

where P̃i(A, X) is equal to the sum of the products of the form

i∏
j=0

(
1
2

) sign [d(Yj+1)−d(Yj)] IYj (Yj+1)
IYj (Yj)

by all ordered sets (Y0, Y1, . . . , Yi+1) of elements of the semigroup Aodd

such that Y0 = A, Yi+1 = X and

c(A) < c(Y1) < · · · < c(Yi) < c(X),

c(Y1) ≡ · · · ≡ c(Yi) ≡ c(A) (mod 2) .

2) The list of the formulas (3) for singularities of codimension c ≤ 8
is given in Table 3 for an even k and in Table 4 for an odd k.

3) The Euler characteristic χ(Σ) of the set Σ is equal to χ0. From
the other side it is a universal linear combination

(4) χ(Σ) =
∑
X

Kodd(X)χ(XΣ)

of the Euler characteristics χ(XΣ) of even-dimensional manifolds XΣ of
singularities of types X ∈ Aodd \ {A1}. The coefficients of this combina-
tion are calculated by the formula

Kodd(X) = 1 −
∑
A

Kodd
A (X),
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where the summation is taken by all nonzero elements A of the semigroup
Aodd such that A �= A1, c(A) < c(X) and c(A) ≡ k (mod 2).

4) The formula (4) for an even k has the form

χ(Σ) = 1
2 [χ(A3) − χ(3A1)] + 1

2 [χ(A5) + 2χ(5A1)] +
+ 1

4 [χ(A7) − 2χ(A5 + 2A1) − χ(2A3 + A1)
− 3χ(A3 + 4A1) − 17χ(7A1)]

+ 1
4 [3χ(A9) + 4χ(A7 + 2A1) + 3χ(A5 + A3 + A1)

+ 13χ(A5 + 4A1) + 2χ(3A3) + 8χ(2A3 + 3A1)
+ 30χ(A3 + 6A1) + 124χ(9A1)]

− 1
4 [7χ(A11) + 22χ(A9 + 2A1) + 16χ(A7 + A3 + A1)

+ 56χ(A7 + 4A1) + 17χ(2A5 + A1) + 12χ(A5 + 2A3)
+ 42χ(A5 + A3 + 3A1) + 152χ(A5 + 6A1)
+ 30χ(3A3 + 2A1) + 106χ(2A3 + 5A1)
+ 378χ(A3 + 8A1) + 1382χ(11A1)] + . . .

(the dots denote a universal linear combination of the Euler character-
istics of manifolds of singularities of odd codimensions starting from the
codimension 13); for an odd k,

χ(Σ) = χ(2A1) − χ(4A1)
+ 1

2 [6χ(6A1) + χ(A3 + 3A1) + χ(A5 + A1)]
− 1

2 [34χ(8A1) + 8χ(A3 + 5A1) + 2χ(2A3 + 2A1)
+ 4χ(A5 + 3A1) + χ(A5 + A3) + χ(A7 + A1)]

+ 1
4 [620χ(10A1) + 167χ(A3 + 7A1) + 46χ(2A3 + 4A1)

+ 13χ(3A3 + A1) + 71χ(A5 + 5A1) + 19χ(A5 + A3 + 2A1)
+ 8χ(2A5) + 26χ(A7 + 3A1) + 7χ(A7 + A3)
+ 11χ(A9 + A1)] + . . .

(the dots denote a universal linear combination of the Euler characteris-
tics of manifolds of singularities of even codimensions starting from the
codimension 12);

5) Let k be even (k ≤ 16) and χ(AΣ) = 0 for any A ∈ Aodd \ {A1}
such that d(A) ≤ k. Then

(5)
∑

A∈Aodd: c(A)=k+1

w(A)χ(AΣ) = (1 + k/2)w(Ak+1)χ0,

where
w(Aμ1 + · · · + Aμp) = (−1)[p/2]w(Aμ1 ) . . . w(Aμp ),

w(A2l+1) =
1

2l + 1

(
2l + 1

l

)
,
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and [x] is the integral part of the number x. The number w(A2l+1) is the
l’th Catalan number. The formulas (5) for k ≤ 12 are given in Table 5
below.

Proof. The subset Σsup(M) ⊂ H(Rk) is diffeomorphic to the set
of singular points of the boundary Γ of a connected component of the
complement to some generic front F in a (k + 1)-dimensional space (see
[10]; the closure of this component is a (k + 1)-dimensional C0-manifold
and Γ is its boundary). For any A ∈ Aodd, the manifold AΣ is diffeomor-
phic to the manifold AΓ of singularities of type A of the hypersurface Γ
(that is the set of singularities of type A of the front F at points of Γ).
Therefore Theorem 2 follows from [11] (see also [14]) where we found
universal linear relations between the Euler characteristics of the mani-
folds of singularities on the boundary of a connected component of the
complement to a generic front under the condition that this boundary
has only stable corank 1 singularities with odd multiplicities.

Remark. The restriction k ≤ 16 in the condition of the statement
5 of Theorem 2 is pure technical. I think that it can be omitted.

Example. The formula (5) is valid for any smooth closed convex
generic curve M in the even-dimensional space R

k (see [13]; recall that a
curve in R

k is convex if it intersects any hyperplane at most at k points
taking multiplicities into account).

Remark. One can prove that the formula (5) is valid for any smooth
closed generic curve M in R

k (k is even) such that for any k of its points
(taking multiplicities into account) there is a hypersphere that passes
through these points and does not intersect the curve at other points.

Consider the set of supporting hyperspheres of the manifold M . A
supporting hypersphere is called externally (internally) supporting if M
lies outside (inside) the ball bounded by this hypersphere.

Let Σext(M) (Σint(M)) be the set of singular externally-supporting
(internally-supporting, respectively) hyperspheres of the manifold M .
The sets Σext(M) and Σint(M) are disjoint (recall, we assume that M
does not lie in any hypersphere and in any hyperplane in R

k). The union
of these sets is equal to Σsup(M) \ P(Rk).

Definition. The externally-supporting (internally-supporting) sym-
metry set of the manifold M is the closure Cext(M) (Cint(M), respec-
tively) in R

k of the set of centers of externally-supporting (internally-
supporting) hyperspheres that are tangent to M at two different points.

The supporting symmetry sets of the manifold M are subsets of its
symmetry set. It is easy to see that Cext(M) = �(Σext(M)), Cint(M) =
�(Σint(M)). Moreover, the projection � defines a homeomorphism of
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the sets Σext(M) and Σint(M) with the sets Cext(M) and Cint(M), re-
spectively.

Proposition. Let M be a smooth closed submanifold in R
k. Then

the set Cext(M) is compact if an only if one of the connected components
of M is a strictly convex hypersurface and all other components lie inside
the compact domain in R

k bounded by this hypersurface.
The similar statement is valid for the set Cint(M) as well. Moreover,

if M = M0 ∪ (M \ M0) where M0 is a smooth closed strictly convex
hypersurface and M \M0 lies inside the compact domain in R

k bounded
by the hypersurface M0, then Cint(M) = Cint(M0).

Proof. The set Cext(M) (or Cint(M)) is compact if and only if
M has no singular supporting hyperplanes. The set of all supporting
hyperplanes of such a manifold is diffeomorphic to Sk−1. The mapping
Sk−1 → R

k that assigns to a supporting hyperplane the point of tan-
gency with M is a smooth embedding ([8]). The image of this embedding
is the desired strictly convex connected component of M . Proposition
is proved.

Let M be a smooth closed submanifold in R
k where k ≤ 6. Then the

set of centers of singular externally-supporting (internally-supporting)
A-spheres of a generic M is a smooth submanifold of codimension c(A)−
1 in R

k for any A ∈ Aodd. It is called the manifold of singularities of type
A of the set Σ = Cext(M) (Σ = Cint(M), respectively) and is denoted
by AΣ. The numbers c(A) and d(A) are called the codimension and the
degree of these singularities.

Theorem 3. Let M be a smooth closed submanifold in R
k where

k ≤ 6. Suppose that one of the connected components of M is a strictly
convex hypersurface and all other components lies inside the compact
domain in R

k bounded by this hypersurface. Then for a generic M , the
statements 1 – 5 from Theorem 2 are valid in every of the following two
cases:

1) Σ = Cext(M) and χ0 = (−1)k[1 − χ(M)];
2) Σ = Cint(M) and χ0 = 1.

Proof. Theorem 3 is a corollary of the main result of [13]. Indeed,
the set Cext(M) (Cint(M)) is the Maxwell set of global minima (maxima,
respectively) of the family of functions F (x, λ) of x ∈ M depending on
the parameter λ ∈ R

k, where F (x, λ) is the square of the distance be-
tween λ and x (see [1]). The manifold AΣ is the manifold of singularities
of type A of the corresponding Maxwell set for any A ∈ Aodd.

Remark. If the sets Cext(M) and Cint(M) are compact, then the
Euler characteristic of the manifold of Morse global minima of the family
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F (x, λ) is equal to χ(M). The Euler characteristic of the manifold of
Morse global maxima of the family F (x, λ) is equal to χ(Sk−1).

Now, take an arbitrary connected component U of the complement
to a smooth closed generic submanifold M in R

k. By MU denote the
union of the connected components of M lying strictly inside the closure
U of the domain U .

Let Σsup(U) be the set of singular supporting hyperspheres and
hyperplanes of M lying in U . The set Σsup(U) is a connected component
of the set Σsup(M). Singularities of Σsup(M) at points from Σsup(U)
are called singularities of Σsup(U).

Definition. The middle points set of the domain U is the set
C(U) of points in U being the centers of singular externally-supporting
hyperspheres of the manifold M . Sometimes, depending on M and U ,
this set is called medial axe or conflict set.

The set C(U) is a subset of the externally-supporting symmetry set
of the manifold M . If the domain U is bounded, then its middle points
set is a compact connected component C(U) = �(Σsup(U)) of the set
Cext(M). Singularities of the set Cext(M) at points from C(U) are called
singularities of C(U).

Theorem 4. Let M be a smooth closed submanifold in R
k, where

k ≤ 6. Assume that the complement R
k \ M is disconnected and U is

one of its connected components. Then for a generic M , the statements
1 – 5 from Theorem 2 are valid for

1) Σ = C(U) and χ0 = χ(U) − (−1)kχ(MU ) if U is bounded;
2) Σ = Σsup(U) and χ0 = χ(U) − (−1)kχ(MU ) + (−1)k if U is

unbounded.

Proof. Theorem 4 in the case of the bounded component U follows
from [13] by analogy with Theorem 3. Namely, the set C(U) is the
Maxwell set of global minima of the family of functions F (x, λ) of x ∈ M
depending on the parameter λ ∈ U \ ∂U , where F (x, λ) is the square of
the distance between λ and x, and ∂U is the boundary of U . The Euler
characteristic of the manifold of Morse global minima of this family is
equal to χ(∂U) + χ(MU ).

The case of the unbounded component U is reduced to the previous
one after the inversion of the space R

k with respect to a hypersphere
of a small radius having the centre at a point from the complement
R

k \ (U ∪ M).

Example. Let M be a smooth closed connected curve in the plane
R

2. Suppose that it has no self-intersections and is generic. Take a
connected component U of the complement R

2 \ M . Let χ(A3) be the
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number of the curvature circles of M lying in U and χ(3A1) be the
number of circles in U that are tangent to M at three points. Then
Theorem 4 implies,

(6) χ(A3) − χ(3A1) = 2.

Remark. At the first time, the relation (6) was obtained in [2] for
a convex curve M . In [7], it was proved in the non-convex case as well.
Theorem 4 extends these results onto the case of non-connected curves
and gives their many-dimensional generalizations.
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Table 1 (k is even)

c = 2 2χ(2A1) = 6χ(3A1) + 2χ(A2 + A1) + χ(A3)
− 40χ(5A1) − 18χ(A2 + 3A1) − 8χ(2A2 + A1)
− 11χ(A3 + 2A1) − 5χ(A3 + A2)
− 7χ(A4 + A1) − 4χ(A5)

+ 672χ(7A1) + 320χ(A2 + 5A1) + 152χ(2A2 + 3A1)
+ 72χ(3A2 + A1) + 204χ(A3 + 4A1)
+ 97χ(A3 + A2 + 2A1) + 46χ(A3 + 2A2)
+ 62χ(2A3 + A1) + 129χ(A4 + 3A1)
+ 61χ(A4 + A2 + A1) + 39χ(A4 + A3)
+ 81χ(A5 + 2A1) + 38χ(A5 + A2)
+ 50χ(A6 + A1) + 31χ(A7) + . . .

c = 4 4χ(4A1) = 20χ(5A1) + 4χ(A2 + 3A1) + 2χ(A3 + 2A1)
− 280χ(7A1) − 100χ(A2 + 5A1) − 32χ(2A2 + 3A1)
− 8χ(3A2 + A1) − 58χ(A3 + 4A1)
− 18χ(A3 + A2 + 2A1) − 4χ(A3 + 2A2)
− 10χ(2A3 + A1) − 26χ(A4 + 3A1)
− 6χ(A4 + A2 + A1) − 3χ(A4 + A3) − 12χ(A5 + 2A1)
− 2χ(A5 + A2) − 4χ(A6 + A1) − χ(A7) + . . .

2χ(A2 + 2A1) = 6χ(A2 + 3A1) + 4χ(2A2 + A1)
+ 2χ(A3 + 2A1) + χ(A3 + A2) + 2χ(A4 + A1)

− 40χ(A2 + 5A1) − 36χ(2A2 + 3A1) − 24χ(3A2 + A1)
− 24χ(A3 + 4A1) − 21χ(A3 + A2 + 2A1)
− 14χ(A3 + 2A2) − 12χ(2A3 + A1) − 24χ(A4 + 3A1)
− 17χ(A4 + A2 + A1) − 9χ(A4 + A3) − 16χ(A5 + 2A1)
− 10χ(A5 + A2) − 11χ(A6 + A1) − 6χ(A7) + . . .

2χ(2A2) = 2χ(2A2 + A1) + 2χ(A3 + A2) + χ(A5)
− 4χ(2A2 + 3A1) − 6χ(3A2 + A1) − 4χ(A3 + A2 + 2A1)
− 5χ(A3 + 2A2) − 4χ(2A3 + A1) − 4χ(A4 + A2 + A1)
− 4χ(A4 + A3) − 2χ(A5 + 2A1) − 5χ(A5 + A2)
− 3χ(A6 + A1) − 4χ(A7) + . . .

χ(A3 + A1) = 2χ(A3 + 2A1) + χ(A3 + A2)
+ χ(A4 + A1) + χ(A5)

− 8χ(A3 + 4A1) − 4χ(A3 + A2 + 2A1) − 2χ(A3 + 2A2)
− 5χ(2A3 + A1) − 6χ(A4 + 3A1) − 3χ(A4 + A2 + A1)
− 4χ(A4 + A3) − 6χ(A5 + 2A1) − 3χ(A5 + A2)
− 5χ(A6 + A1) − 4χ(A7) + . . .

2χ(A4) = 2χ(A4 + A1) + 2χ(A5)
− 4χ(A4 + 3A1) − 2χ(A4 + A2 + A1) − χ(A4 + A3)
− 4χ(A5 + 2A1) − 2χ(A5 + A2)
− 4χ(A6 + A1) − 4χ(A7) + . . .
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c = 6 2χ(6A1) = 14χ(7A1) + 2χ(A2 + 5A1) + χ(A3 + 4A1) + . . .
2χ(A2 + 4A1) = 10χ(A2 + 5A1)

+ 4χ(2A2 + 3A1) + 2χ(A3 + 4A1)
+ χ(A3 + A2 + 2A1) + 2χ(A4 + 3A1) + . . .

2χ(2A2 + 2A1) = 6χ(2A2 + 3A1) + 6χ(3A2 + A1)
+ 2χ(A3 + A2 + 2A1) + χ(A3 + 2A2)
+ 2χ(A4 + A2 + A1) + χ(A5 + 2A1) + . . .

2χ(3A2) = 2χ(3A2 + A1)
+ 2χ(A3 + 2A2) + χ(A5 + A2) + . . .

χ(A3 + 3A1) = 4χ(A3 + 4A1) + χ(A3 + A2 + 2A1)
+ χ(2A3 + A1) + χ(A4 + 3A1) + χ(A5 + 2A1) + . . .

χ(A3 + A2 + A1) = 2χ(A3 + A2 + 2A1) + 2χ(A3 + 2A2)
+ 2χ(2A3 + A1) + χ(A4 + A2 + A1)
+ χ(A4 + A3) + χ(A5 + A2) + χ(A6 + A1) + . . .

2χ(2A3) = 2χ(2A3 + A1) + 2χ(A4 + A3) + χ(A7) + . . .
2χ(A4 + 2A1) = 6χ(A4 + 3A1) + 2χ(A4 + A2 + A1)

+ χ(A4 + A3) + 2χ(A5 + 2A1) + 2χ(A6 + A1) + . . .
χ(A4 + A2) = χ(A4 + A2 + A1) + χ(A4 + A3)

+ χ(A5 + A2) + χ(A7) + . . .
χ(A5 + A1) = 2χ(A5 + 2A1) + χ(A5 + A2)

+ χ(A6 + A1) + χ(A7) + . . .
χ(A6) = χ(A6 + A1) + χ(A7) + . . .

The dots in formulas of Table 1 denote universal linear combinations
of the Euler characteristics of manifolds of singularities of odd codimen-
sions starting from the codimension 9.
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Table 2 (k is odd)

c = 3 2χ(3A1) = 8χ(4A1) + 2χ(A2 + 2A1) + χ(A3 + A1)
− 80χ(6A1) − 32χ(A2 + 4A1) − 12χ(2A2 + 2A1)
− 4χ(3A2) − 19χ(A3 + 3A1) − 7χ(A3 + A2 + A1)
− 4χ(2A3) − 10χ(A4 + 2A1) − 3χ(A4 + A2)
− 5χ(A5 + A1) − 2χ(A6) + . . .

2χ(A2 + A1) = 4χ(A2 + 2A1) + 4χ(2A2)
+ 2χ(A3 + A1) + 2χ(A4)

− 16χ(A2 + 4A1) − 16χ(2A2 + 2A1)
− 12χ(3A2) − 12χ(A3 + 3A1) − 11χ(A3 + A2 + A1)
− 8χ(2A3) − 12χ(A4 + 2A1) − 10χ(A4 + A2)
− 10χ(A5 + A1) − 8χ(A6) + . . .

χ(A3) = χ(A3 + A1) + χ(A4)
− 2χ(A3 + 3A1) − χ(A3 + A2 + A1) − χ(2A3)
− 2χ(A4 + 2A1) − χ(A4 + A2)
− 2χ(A5 + A1) − 2χ(A6) + . . .

c = 5 2χ(5A1) = 12χ(6A1) + 2χ(A2 + 4A1) + χ(A3 + 3A1) + . . .
2χ(A2 + 3A1) = 8χ(A2 + 4A1) + 4χ(2A2 + 2A1)

+ 2χ(A3 + 3A1) + χ(A3 + A2 + A1)
+ 2χ(A4 + 2A1) + . . .

2χ(2A2 + A1) = 4χ(2A2 + 2A1) + 6χ(3A2)
+ 2χ(A3 + A2 + A1) + 2χ(A4 + A2)
+ χ(A5 + A1) + . . .

χ(A3 + 2A1) = 3χ(A3 + 3A1) + χ(A3 + A2 + A1)
+ χ(2A3) + χ(A4 + 2A1) + χ(A5 + A1) + . . .

χ(A3 + A2) = χ(A3 + A2 + A1) + 2χ(2A3)
+ χ(A4 + A2) + χ(A6) + . . .

χ(A4 + A1) = 2χ(A4 + 2A1) + χ(A4 + A2)
+ χ(A5 + A1) + χ(A6) + . . .

χ(A5) = χ(A5 + A1) + χ(A6) + . . .

The dots in formulas of Table 2 denote universal linear combina-
tions of the Euler characteristics of manifolds of singularities of even
codimensions starting from the codimension 8.
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Table 3 (k is even)

c = 2 2χ(2A1) = 3χ(3A1) + χ(A3)
− 5χ(5A1) − χ(A3 + 2A1) − χ(A5)
+ 21χ(7A1) + 5χ(A3 + 4A1) + χ(2A3 + A1)

+ 3χ(A5 + 2A1) + χ(A7)
− 153χ(9A1) − 41χ(A3 + 6A1) − 11χ(2A3 + 3A1)
− 3χ(3A3) − 19χ(A5 + 4A1) − 5χ(A5 + A3 + A1)
− 7χ(A7 + 2A1) − 3χ(A9) + . . .

c = 4 4χ(4A1) = 10χ(5A1) + 2χ(A3 + 2A1)
− 35χ(7A1) − 9χ(A3 + 4A1) − 3χ(2A3 + A1)
− 4χ(A5 + 2A1) − χ(A7)

+ 252χ(9A1) + 70χ(A3 + 6A1) + 20χ(2A3 + 3A1)
+ 6χ(3A3) + 31χ(A5 + 4A1) + 9χ(A5 + A3 + A1)
+ 12χ(A7 + 2A1) + 5χ(A9) + . . .

χ(A3 + A1) = χ(A3 + 2A1) + χ(A5)
− χ(A3 + 4A1) − χ(A5 + 2A1) − χ(A7)
+ 3χ(A3 + 6A1) + χ(2A3 + 3A1) + 3χ(A5 + 4A1)

+ χ(A5 + A3 + A1) + 2χ(A7 + 2A1) + χ(A9) + . . .
c = 6 4χ(6A1) = 14χ(7A1) + 2χ(A3 + 4A1)

− 84χ(9A1) − 20χ(A3 + 6A1) − 5χ(2A3 + 3A1)
− χ(3A3) − 6χ(A5 + 4A1) − χ(A5 + A3 + A1)
− χ(A7 + 2A1) + . . .

2χ(A3 + 3A1) = 4χ(A3 + 4A1)
+ 2χ(2A3 + A1) + 2χ(A5 + 2A1)

− 10χ(A3 + 6A1) − 5χ(2A3 + 3A1) − 3χ(3A3)
− 8χ(A5 + 4A1) − 4χ(A5 + A3 + A1)
− 5χ(A7 + 2A1) − 2χ(A9) + . . .

4χ(2A3) = 2χ(2A3 + A1) + 2χ(A7)
− χ(2A3 + 3A1) + 3χ(3A3) − χ(A5 + A3 + A1)
− χ(A7 + 2A1) − 2χ(A9) + . . .

χ(A5 + A1) = χ(A5 + 2A1) + χ(A7)
− χ(A5 + 4A1) − χ(A7 + 2A1) − χ(A9) + . . .

c = 8 2χ(8A1) = 9χ(9A1) + χ(A3 + 6A1) + . . .
χ(A3 + 5A1) = 3χ(A3 + 6A1)

+ χ(2A3 + 3A1) + χ(A5 + 4A1) + . . .
2χ(2A3 + 2A1) = 3χ(2A3 + 3A1) + 3χ(3A3) +

+ 2χ(A5 + A3 + A1) + χ(A7 + 2A1) + . . .
2χ(A5 + 3A1) = 4χ(A5 + 4A1)

+ χ(A5 + A3 + A1) + 2χ(A7 + 2A1) + . . .
2χ(A5 + A3) = χ(A5 + A3 + A1) + 2χ(A9) + . . .
χ(A7 + A1) = χ(A7 + 2A1) + χ(A9) + . . .
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The dots in formulas of Table 3 denote universal linear combinations
of the Euler characteristics of manifolds of singularities of odd codimen-
sions starting from the codimension 11.

Table 4 (k is odd)

c = 3 4χ(3A1) = 8χ(4A1) + 2χ(A3 + A1)
− 20χ(6A1) − 5χ(A3 + 3A1) − 2χ(2A3) − 3χ(A5 + A1)
+ 112χ(8A1) + 30χ(A3 + 5A1) + 8χ(2A3 + 2A1)

+ 15χ(A5 + 3A1) + 4χ(A5 + A3) + 6χ(A7 + A1) + . . .
4χ(A3) = 2χ(A3 + A1) − χ(A3 + 3A1)

+ 2χ(2A3) − χ(A5 + A1)
+ 2χ(A3 + 5A1) + 2χ(A5 + 3A1)

+ χ(A5 + A3) + χ(A7 + A1) + . . .
c = 5 4χ(5A1) = 12χ(6A1) + 2χ(A3 + 3A1)

− 56χ(8A1) − 14χ(A3 + 5A1) − 4χ(2A3 + 2A1)
− 5χ(A5 + 3A1) − χ(A5 + A3) − χ(A7 + A1) + . . .

4χ(A3 + 2A1) = 6χ(A3 + 3A1) + 4χ(2A3) + 4χ(A5 + A1)
− 10χ(A3 + 5A1) − 4χ(2A3 + 2A1) − 9χ(A5 + 3A1)
− 5χ(A5 + A3) − 7χ(A7 + A1) + . . .

4χ(A5) = 2χ(A5 + A1) − χ(A5 + 3A1)
+ χ(A5 + A3) − χ(A7 + A1) + . . .

c = 7 2χ(7A1) = 8χ(8A1) + χ(A3 + 5A1) + . . .
2χ(A3 + 4A1) = 5χ(A3 + 5A1)

+ 2χ(2A3 + 2A1) + 2χ(A5 + 3A1) + . . .
2χ(2A3 + A1) = 2χ(2A3 + 2A1)

+ 2χ(A5 + A3) + χ(A7 + A1) + . . .
2χ(A5 + 2A1) = 3χ(A5 + 3A1)

+ χ(A5 + A3) + 2χ(A7 + A1) + . . .
2χ(A7) = χ(A7 + A1) + . . .

The dots in formulas of Table 4 denote universal linear combinations
of the Euler characteristics of manifolds of singularities of odd codimen-
sions starting from the codimension 10.
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Table 5

k = 2 χ(A3) − χ(3A1) = 2χ0

k = 4 2χ(A5) − χ(A3 + 2A1) + χ(5A1) = 6χ0

k = 6 5χ(A7) − 2χ(A5 + 2A1) − χ(2A3 + A1)
+ χ(A3 + 4A1) − χ(7A1) = 20χ0

k = 8 14χ(A9) − 5χ(A7 + 2A1) − 2χ(A5 + A3 + A1)
+ 2χ(A5 + 4A1) − χ(3A3) + χ(2A3 + 3A1)

− χ(A3 + 6A1) + χ(9A1) = 70χ0

k = 10 42χ(A11) − 14χ(A9 + 2A1) − 5χ(A7 + A3 + A1)
+ 5χ(A7 + 4A1) − 4χ(2A5 + A1) − 2χ(A5 + 2A3)

+ 2χ(A5 + A3 + 3A1) − 2χ(A5 + 6A1)
+ χ(3A3 + 2A1) − χ(2A3 + 5A1)

+ χ(A3 + 8A1) − χ(11A1) = 252χ0

k = 12 132χ(A13) − 42χ(A11 + 2A1) − 14χ(A9 + A3 + A1)
+14χ(A9 + 4A1) − 10χ(A7 + A5 + A1) − 5χ(A7 + 2A3)

+5χ(A7 + A3 + 3A1) − 5χ(A7 + 6A1) − 4χ(2A5 + A3)
+ 4χ(2A5 + 3A1) + 2χ(A5 + 2A3 + 2A1)
− 2χ(A5 + A3 + 5A1) + 2χ(A5 + 8A1)

+ χ(4A3 + A1) − χ(3A3 + 4A1) + χ(2A3 + 7A1)
− χ(2A3 + 10A1) + χ(13A1) = 924χ0

References

[ 1 ] V. I. Arnold, V. A. Vassiliev, V. V. Goryunov and O. V. Lyashko, Sin-
gularities 2, Itogi Nauki i Tekhn., Sovr. Probl. Mat., Fund. Napravl.,
39, Moscow, VINITI, 1989; English translation Encycl. of Math. Sci.,
39, Springer.

[ 2 ] R. C. Bose, On the number of circles of curvature perfectly enclosing or
perfectly enclosed by a closed convex oval, Math. Zeitsch, 35 (1932),
16–24.

[ 3 ] J. W. Bruce, P. J. Giblin and C. G. Gibson, Symmetry sets, Proc. Roy.
Soc. Edinburgh Sect. A, 101 (1985), 163–186.

[ 4 ] E. A. Feldman, On parabolic and umbilic points of immeresed hyper-
surfaces, Trans. Amer. Math. Soc., 127 (1967), 1–28.

[ 5 ] P. J. Giblin, Symmetry sets and medial axes in two and three dimensions,
The Mathematics of Surfaces IX, (eds. Roberto Cipolla and Ralph
Martin), Springer-Verlag, 2000, 306–321.

[ 6 ] P. J. Giblin and B. B. Kimia, On the local form and Transitions of
Symmetry Sets, Medial Axes, and Shocks, Int. J. Computer Vision,
54 (2003), 143–157.

[ 7 ] O. Haupt, Verallgemeinerung eines Satzes von R. C. Bose über die An-
zahl der Schmiegkreise eines Ovals, die vom Oval umschlossen werden



On the topology of symmetry sets 419

oder das Oval umschließen, J. Reine Angew. Math., 239/240 (1969),
339–352.

[ 8 ] V. D. Sedykh, Invariants of strictly convex manifolds, Functsional.
Anal. i Prilozhen, 27 (1993), no. 3, 67–75; English transl. in Func-
tional Anal. Appl., 27 (1993), 205–210.

[ 9 ] V. D. Sedykh, A relationship between Lagrange and Legendre singular-
ities in stereographic projection, Mat. Sb. (N.S.), 185 (1994), no. 12,
123–130; English transl. in Russian Acad. Sci. Sb. Math., 83 (1995),
533–540.

[ 10 ] V. D. Sedykh, Invariants of nonflat manifolds, Funktsional. Anal. i
Prilozhen, 29 (1995), no. 3, 41–50; English transl. in Functional Anal.
Appl., 29 (1995), 180–187.

[ 11 ] V. D. Sedykh, Relations between Euler numbers of manifolds of corank
1 singularities of a generic front, Dokl. Akad. Nauk, 383 (2002), no. 6,
735–739; English transl. in Russian Acad. Sci. Dokl. Math., 65 (2002),
276–279.

[ 12 ] V. D. Sedykh, Resolution of corank 1 singularities of a generic front,
Funktsional. Anal. i Prilozhen, 37 (2003), no. 2, 52–64; English transl.
in Functional Anal. Appl., 37 (2003), 123–133.

[ 13 ] V. D. Sedykh, On the topology of singularities of Maxwell sets, Moscow
Mathematical Journal, 3 (2003), 1097–1112.

[ 14 ] V. D. Sedykh, On topology of stable corank 1 singularities on the bound-
ary of a connected component of the complement to a front, Mat. Sb.,
195 (2004), no. 8, 91–130; English transl. in Sb. Math., 195 (2004),
1165–1203.

[ 15 ] D. Siersma, Properties of conflict sets in the plane, Banach Center Pub-
lications, 50 (1999), 267–276.

[ 16 ] V. M. Zakalyukin, Singularities of convex hulls of smooth manifolds,
Functsional. Anal. i Prilozhen, 11 (1977), no. 3, 76–77.

Department of Higher Mathematics
Russian State Gubkin University of Oil and Gas
Leninsky prosp. 65, Moscow 119991
Russia
e-mail: sedykh@mccme.ru



 



Advanced Studies in Pure Mathematics 43, 2006

Singularity Theory and Its Applications

pp. 421–436

An infinitesimal criterion for topological triviality of

families of sections of analytic varieties

Maria Aparecida Soares Ruas and João Nivaldo Tomazella

Abstract.

We present sufficient conditions for the topological triviality of
families of germs of functions defined on an analytic variety V . The
main result is an infinitesimal criterion using the integral closure of
a convenient ideal as the tangent space to a subset of the set of
topologically trivial deformations of a given germ. Applications to
the problem of equisingularity of families of sections of V are also
discussed.

§1. Introduction

Let V, 0 be the germ of an analytic subvariety of kn (k = R or C) and
let RV (respectively C0-RV ) be the group of germs of diffeomorphisms
(respectively homeomorphisms) preserving V, 0. In this paper we intro-
duce a sufficient condition for the C0-RV - triviality of families of map
germs h : kn × k, 0 → kp, 0, based on the integral closure of TRV (h),
the tangent space to the orbit of h under the action of the group RV .
Our main result establishes that if ∂h

∂t ∈ TRV (h), then h is topologically
RV -trivial.

We are specially concerned with the case p = 1, that is, with families
h : kn × k, 0 → k, 0. In this case h−1(0) defines a family of sections of
the analytic variety V, 0.

As a corollary of the method, we obtain sharp results when the
analytic variety is weighted homogeneous and the family of sections is a
deformation of a weighted homogeneous map germ h0 (consistent with
V ) by terms of filtration higher than or equal to the filtration of h0.
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This result was previously proved by Damon in [8]. In the final section,
we introduce a notion of V -equisingularity of the family of sections and
we show that the hypothesis of the main theorem implies this geometric
condition. A weighted approach for the topological triviality of families
of sections of analytic varieties was presented in [16]. For other results
related to the subject discussed in this paper, see for instance [2], [8],
[19].

§2. Basic results

Let On be the ring of germs of analytic functions h : kn, 0 → k,
k = R orC.

A germ of a subset V, 0 ⊂ kn, 0 is the germ of an analytic variety
if there exist germs of analytic functions f1, ..., fr such that V = {x :
f1(x) = · · · = fr(x) = 0}.

Our aim is to study map germs h : kn, 0 → kp, 0 under the equiva-
lence relation that preserves the analytic variety V, 0. We say that two
germs h1 and h2 : kn, 0 → kp, 0 are RV -equivalent (respectively C0-
RV -equivalent) if there exists a germ of a diffeomorphism (respectively
homeomorphism) φ : kn, 0 → kn, 0 with φ(V ) = V and h1 ◦ φ = h2.
That is,

RV = {φ ∈ R : φ(V ) = V },

where R is the group of germs of diffeomorphisms of kn, 0.
A one parameter deformation h : kn × k, 0 → kp, 0 of h0 : kn, 0 →

kp, 0 is topologically RV -trivial (or C0-RV -trivial) if there exists home-
omorphism H : kn × k, 0 → kn × k, 0, H(x, t) = (h̄(x, t), t), such that
h ◦ H(x, t) = h0(x) and H(V × k) = V × k.

We denote by θn the set of germs of tangent vector fields in kn, 0; θn

is a free On module of rank n. Let I(V ) be the ideal in On consisting of
germs of analytic functions vanishing on V . We denote by ΘV = {η ∈
θn : η(I(V )) ⊆ I(V )}, the submodule of germs of vector fields tangent
to V (see [2] for more details).

The tangent space to the action of the group RV is TRV (h) =
dh(Θ0

V ), where Θ0
V is the submodule of ΘV given by the vector fields

that are zero at zero.
The group RV is a geometric subgroup of the contact group, as

defined by J.Damon [5], [6], hence the infinitesimal criterion for RV -
determinacy holds (see [2] for a proof).

Theorem 2.1. The germ h is RV -finitely determined if and only if
there exists a positive integer k such that TRV (h) ⊃ Mk

n.



A criterion for topological triviality of families of sections 423

The following theorem is the geometric criterion for the RV -finite
determinacy.

Theorem 2.2. ([2]) Let V, 0 ⊆ Cn, 0 be the germ of an analytic
variety and let h : Cn, 0 → C, 0 be the germ of an analytic function. Let

V (h) = {x ∈ Cn : ξh(x) = 0 for all ξ ∈ ΘV }.

Then h is RV -finitely determined if and only if V (h) = {0} or ∅.
As a consequence of this result, it follows that if h is RV -finitely

determined, then h−1(c) is transverse to V away from 0, for sufficiently
small values of c.

In the real case, the necessary condition remains true, that is, if h is
RV -finitely determined then the set {x ∈ Rn : ξh(x) = 0 for all ξ ∈ ΘV }
is {0} or ∅.

§3. Basic facts on integral closure of ideals

Let I be an ideal in a ring A. An element h ∈ A is said to be integral
over I if it satisfies an integral dependence relation hn+a1h

n−1+...+an =
0 with ai ∈ Ii. The set of such elements form an ideal in A, called the
integral closure of I.

When A = OX,x0 , the local ring of a complex analytic set, Teissier
gives in [18] various notions equivalent to the above concept.

Theorem 3.1. ([11], Proposition 1.2) Let I be an ideal in OX,x0

and I its integral closure, where X is a complex analytic space. The
following statements are equivalent:
(a) h ∈ I.
(b) For each choice of generators {gi} of I there exist a neighbourhood
U of x0 and a constant C > 0 such that for all x ∈ U :

|h(x)| ≤ Csupi|gi(x)|.

(c) For each analytic curve ϕ : C, 0 → X, x0, h ◦ ϕ lies in (ϕ∗(I))O1.
(d) There exists a faithful OX,x0 module L of finite type such that h.L ⊂
I.L.

In the real case, the above algebraic definition of integral closure is
not appropriate. But, one can use condition (c) above as a definition.
More precisely,

Definition 3.2. Let I be an ideal of the ring OX,x0 , where X is a
real analytic set. The real integral closure I of I is the set of h such that
for all analytic ϕ : R, 0 → X, x0, we have h ◦ ϕ ∈ (ϕ∗(I))O1.
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Gaffney ([11], p. 30) shows that h ∈ I if and only if for each choice of
generators {gi} of I there exists a neighbourhood U of x0 and a constant
C > 0 such that for all x ∈ U :

|h(x)| ≤ Csupi|gi(x)|.

§4. The main result

Let h0 : kn, 0 → k, 0 be a RV -finitely determined germ of an analytic
function and let h : kn × k, 0 → k, 0 be an analytic deformation of
h0. In the sequel, we shall assume h(0, t) = 0. The property of being
RV -finitely determined is open in the sense that the germ {x ∈ kn :
dhtξ(x) = 0, ∀ ξ ∈ ΘV } at 0 is {0} or empty for sufficiently small values
of the parameters ([2]). However, this does not guarantee the existence
of a neighbourhood U of 0 in kn, 0 and an open ε-ball, Bε, centered at
the origin in k such that the above condition holds ∀x ∈ U and ∀ t ∈ Bε.
We then need the following definition:

Definition 4.1. Let h0 : kn, 0 → k, 0 be a RV -finitely determined
germ. We say that a deformation h : kn × k, 0 → k, 0 of h0 is a
good deformation if V (h) ⊆ {0} × k, 0, where V (h) = {(x, t) ∈ kn ×
k, 0 ; dht(x)ξ(x) = 0 ∀ ξ ∈ ΘV }.

Example 4.2. Let V be the x-axis in k2; ΘV is generated by (1, 0)
and (0, y). The germ h0(x, y) = x2 + y3 is RV -finitely determined. The
deformation ht(x, y) = x2 + y3 + ty2 of h0 has the property that ht is
RV -finitely determined for each fixed t, but we cannot find ε > 0 such
that the above condition holds for all t ∈ Bε.

Our main result is the following theorem:

Theorem 4.3. Let h0 : kn, 0 → k, 0 be a RV -finitely determined
germ and let h : kn × k, 0 → k, 0 be a good deformation of h0. If
∂h
∂t ∈ dht(Θ0

V ) for all t ∈ k sufficiently near 0, then h is C0-RV -trivial.

The proof of the theorem is a consequence of the following results.
In what follows we can assume that dhtξ(0) = 0, ∀ ξ ∈ ΘV . In fact,

if ξ ∈ ΘV , then dhtξ.
∂h
∂t = dht(∂h

∂t .ξ). If dhtξ0(0) �= 0 for some ξ0, then

∂h

∂t
= dht(

∂h
∂t .ξ0

dhtξ0
)

and hence the deformation is Cω-RV -trivial (i.e. analytically trivial).
Observe that

∂h
∂t .ξ0

dhtξ0
∈ Θ0

V .
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Lemma 4.4. Let I and J be ideals in On with MnI ⊆ J ⊆ I and
V (I) = {0}, where V (I) is the variety of the ideal I. Then V (J) = {0}.

Proof. From the hypothesis, V (MnI) ⊇ V (J) ⊇ V (I). Since
V (MnI) = V (Mn) ∪ V (I) = {0} ∪ {0}, we get V (J) = {0}. Q.E.D.

Let h0 : kn, 0 → k, 0 be a RV -finitely determined germ and let
h : kn × k, 0 → k, 0 be a good deformation of h0. Let {ξ1, ..., ξr}
be generators of ΘV and I = 〈dhtξ1, ..., dhtξr〉 the ideal in On+1 then
V (I) ⊆ {0} × k, since h is a good deformation of h0. Let {α1, ..., αm}
be the generators of Θ0

V , dhtαi = ρi and J = 〈ρ1, ..., ρm〉. Since the
αi and hence the ρi vanish on {0} × k, it follows that V (J) ⊇ {0} × k.
On the other hand, MnI ⊂ J ⊂ I, and it follows from Lemma 4.4, that
V (J) ⊆ {0} × k.

Let ρ(x, t) =
∑m

i=1 |ρi|2. The condition V (J) = {0}×k implies that
ρ ≥ 0, and ρt(x) = 0 is equivalent to x = 0. Then, the following result
holds.

Lemma 4.5. Let h0 : kn, 0 → k, 0 be a RV -finitely determined
germ and let h : kn × k, 0 → k, 0 be a good deformation of h0. If
ρ(x, t) =

∑m
i=1 |dhtαi|2, then V (ρ(x, t)) = {0} × k.

Lemma 4.6. Let h : kn × k, 0 → k, 0 be a deformation of h0.
Suppose there is a continuous vector field (W, 1) ∈ ΘV ×k such that:
(i) ρ∂h

∂t = dht(W ), where ρ is a control function, that is, ρ : kn×k, 0 → R

with ρ(x, t) ≥ 0 and ρ(x, t) = 0 if and only if x = 0.
(ii) (−W

ρ , 1) is locally integrable.
Then h is topologically RV -trivial.

Proof. Let φ(x, t, τ) be the flow of the on kn × k, 0 defined by
(−W

ρ , 1), so ∂φ
∂τ = (−W

ρ , 1) ◦ φ, φ(x, t, 0) = (x, t). When k = R, we
define

ϕ(x, t) = φ(x, 0, t) = (ϕ(x, t), t).

Taking the derivative of h(ϕ(x, t)) = h(ϕ(x, t), t) with respect to t, we
get

∂
∂t (h(ϕ(x, t))) =

∑n
i=1

∂h
∂xi

(ϕ(x, t), t)∂ϕi

∂t (x, t) + ∂h
∂t (ϕ(x, t), t)

= −
∑n

i=1
∂h
∂xi

(ϕ(x, t), t)Wi

ρ (ϕ(x, t), t) + ∂h
∂t (ϕ(x, t), t)

= (∂h
∂t −

∑n
i=1

Wi

ρ
∂h
∂xi

)(ϕ(x, t), t) = 0

where Wi are the components of W . Hence, fixing x, it follows that
h(ϕ(x, t)) is constant, that is, h(ϕ(x, t)) = h(ϕ(x, 0)) = h(x, 0) = h0(x)
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for all t and x. Therefore h is topologically RV -trivial. When k = C,
we consider the restriction

h1 = h|Cn × R × {0} → C.

It is sufficient to show that h is a RV -topologically trivial deformation
of h1, which in turn is a RV -topologically trivial deformation of h0.

Let φ(x, t, τ) be such that ∂φ
∂τ = (−W

ρ , 1) ◦ φ and φ(x, t, 0) = (x, t).
We consider φ1(x, u + iv) = φ(x, u, v) and φ2(x, u) = φ(x, 0, u). It
follows that h ◦ φ1 is constant with respect to v and hence h(φ1(x, u +
iv)) = h(φ1(x, u)) = h(φ(x, u, 0)) = h(x, u) = h1(x, u). One can also
show that h1 ◦φ2 is constant with respect to u, therefore h1(φ2(x, u)) =
h1(φ2(x, 0)) = h1(x, 0) = h0 and the result follows. Q.E.D.

Proof of the Theorem 4.3. With the above notations, it follows that

|ρi|2
∂h

∂t
= dht(ρi

∂h

∂t
αi).

Since ρ =
∑m

i=1 |ρi|2, it follows that

ρ
∂h

∂t
= dht

(
∂h

∂t
(ρ1α1 + ... + ρmαm)

)

hence
∂h

∂t
= dht

(
∂h

∂t

1
ρ
(ρ1α1 + ... + ρmαm)

)
.

From Lemma 4.5, V (ρ(x, t)) = {0} × k. We define the vector field X in
kn × k, 0,

X(x, t) =

{ (
−∂h

∂t
1
ρ(ρ1α1 + ... + ρmαm), 1

)
if x �= 0

(0, 1) if x = 0

The vector field X(x, t) is real analytic away from {0} × k.
From the hypothesis, ∂h

∂t ∈ dht(Θ0
V ) and hence by item (b) of The-

orem 3.1

|∂h

∂t
| ≤ csup{|ρi|}.
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Then

|X(x, t) − X(0, t)| = |∂h
∂t

1
ρ(ρ1α1 + ... + ρmαm)|

≤ |∂h
∂t |

1
ρ (|ρ1||α1| + ... + |ρm||αm|)

≤ csup{|ρi|} 1
ρ(|ρ1||α1| + ... + |ρm||αm|)

≤ c(|α1| + ... + |αm|) ≤ C|x|.

Thus, X satisfies the Lipschitz condition around the solution (0, t), and
it follows from [4] or [13] that X(x, t) is locally integrable in a neighbour-
hood of (0, 0) ∈ kn × k. Then, there exists a family of homeomorphisms
φ(x, t, τ), φ : kn × k × R, 0 → kn × k, 0 such that ∂φ

∂τ = −X ◦ φ and
φ(x, t, 0) = (x, t). The proof follows now from Lemma 4.6 (see Lemma
6.2, in [9]). Q.E.D.

§5. Weighted homogeneous germs and varieties

Definition 5.1. (a) Given (w1, ..., wn : d1, ..., dp), wi, dj ∈ Q+, a
map germ f : kn, 0 → kp, 0 is weighted homogeneous of type (w1, ..., wn :
d1, ..., dp) if for all λ ∈ k − {0}:

f(λw1x1, λ
w2x2, ..., λ

wnxn) = (λd1f1(x), λd2f2(x), ..., λdpfp(x)).

In this case, the value wi is called weight of the variable xi and the value
di, is the filtration of fi with respect to the weights (w1, ..., wn). We
write: weight(xi) = w(xi) = wi and filtration(f) = fil(f) = (d1, ..., dp).

(b) Given (w1, ..., wn), and any monomial xα = xα1
1 xα2

2 ...xαn
n , we

define fil(xα) =
∑n

i=1 αiwi.
(c) We define a filtration in the ring On via the function defined by

fil(f) = inf |α|{fil(xα) : ∂|α|f
∂xα (0) �= 0}, |α| = α1 + . . . + αn.

Definition 5.2. A germ of an analytic variety V, 0 ⊆ kn, 0 is
weighted homogeneous if it is defined by a weighted homogeneous map
germ f : kn, 0 → kp, 0.

Definition 5.3. Let V, 0 ⊆ kn, 0 be the germ of a weighted homo-
geneous analytic variety. We say that a set {α1, ..., αr} of generators
of ΘV is weighted homogeneous of type (w1, ..., wn : d1, ..., dr) if αij are
weighted homogeneous polynomials of type (w1, ..., wn : di+wj) whenever
αij �= 0, where αi =

∑n
j=1 αij

∂
∂xj

, i = 1...r.
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When V is a weighted homogeneous variety, we always can choose
weighted homogeneous generators for ΘV . A proof can be found in [10].

Following [7], we define:

Definition 5.4. Let V be defined by weighted homogeneous polyno-
mials. We say that h is weighted homogeneous consistent with V if h is
weighted homogeneous with respect to the same set of weights assigned
to V .

Example 5.5. Let V = φ−1(0) ⊂ k3 where φ(x, y, z) = z2 −
x2y. We have that φ is weighted homogeneous of type (1, 2, 2 : 4). Let
h(x, y, z) = x3 + xy + xz and f(x, y, z) = x3 + xy + z2. Then h is
consistent with V , f is weighted homogeneous but not consistent with V .

The following result does not follow as a corollary of the Theorem
4.3, but the proof is similar. It was previously proved by J. Damon in [8],
but we include it here for completeness. In [16], we discuss a weighted
approach for the topological triviality of families of sections of analytic
varieties, which also gives Theorem 5.6 as a corollary.

Theorem 5.6. Let V be a weighted homogeneous subvariety of kn, 0
and let h0 : kn, 0 → k, 0 be weighted homogeneous consistent with V
and RV -finitely determined. Then any deformation h of h0 by terms of
filtration greater than or equal to the filtration of h0, is C0-RV -trivial.

Proof. Under the above conditions, any such h is a good deforma-
tion of h0 (see [15]).

We have dh0(αi) is weighted homogeneous, where {α1, ..., αm} is a
set of weighted homogeneous generators of ΘV . Let ri be the filtration
of dh0(αi), i = 1, ..., m and

ω0(x) = |dh0(α1)(x)|2s1 + ... + |dh0(αm)(x)|2sr

with si = k/ri, and k = l.c.m.{ri}. Let ρi = dht(αi) and ω =
∑m

i=1 |ρi|2si .
Since

|ρi|2
∂h

∂t
= dht(ρi

∂h

∂t
αi),

it follows that

ω
∂h

∂t
= dht

(
∂h

∂t
(ρ1|ρ1|2s1−2α1 + ... + ρm|ρm|2sm−2αm)

)
.

Then

∂h

∂t
= dht

(
∂h

∂t

1
ω

(ρ1|ρ1|2s1−2α1 + ... + ρm|ρm|2sm−2αm)
)

.
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The proof now follows analogously to the proof of Theorem 4.3.
Q.E.D.

Example 5.7. Let V, 0 ⊂ R3, 0 (or C3, 0) be defined by ϕ(x, y, z) =
2xk+1y2+y3−z2+x2(k+1)y = 0. This is the implicit equation for the Sk-
singularities classified by D. Mond [14]. The function-germ ϕ is weighted
homogeneous of weights 2, 2k + 2 and 3k + 3 for x, y and z respectively.
We have that h(x, y, z) = y + ak+1x

k+1 is RV -finitely determined for
ak+1 �= 0, 1 and consistent with V . Therefore deformations of h by
terms of order higher than or equal to fil(h) are C0-RV -trivial. For k
odd, h1(x, y, z) = z + ax3(k+1)/2 and h2(x, y, z) = z + bx(k+1)/2y are
consistent with V and RV -finite for all a2 �= −4/27 and b �= ±2. Thus
deformations of h1 and h2, respectively by terms of order higher than or
equal to fil(h1) and fil(h2) are C0-RV -trivial.

§6. V -Equisingularity

Bernard Teissier developed in [18] an infinitesimal theory and a the-
ory of geometrical invariants to study the equisingularity of families of
complex analytic hypersurfaces Xd

t with isolated singularities. The in-
tegral closure of an ideal I is the right object to the infinitesimal part of
that theory. T. Gaffney in [11] extended Teissier results, using the in-
tegral closure of a convenient module to obtain necessary and sufficient
conditions for the equisingularity of families of complete intersections
with isolated singularities.

Definition 6.1. Suppose (X, x) is a complex analytic germ, OX,x

its local ring and M a submodule of Op
X,x. Then an element h ∈ Op

X,x

is in M if and only if for all φ : C, 0 → X, x, h ◦ φ is in (φ∗(M))O1.

Theorem 6.2. ([11], Theorem 2.5) Let F : Ct×CN → Cp, 0, defin-
ing X = F−1(0) with reduced structure, Y = Ct × 0 and X0 the smooth

part of X. Then ∂F
∂s ∈

〈
zi

∂F
∂zj

〉
OX

for all tangent vectors ∂
∂s to Ct × 0

iff (X0, Y ) are Whitney regular.

Our purpose in this section is to show that the infinitesimal condition
in Theorem 4.3 gives a sufficient condition for equisingularity of families
of sections of analytic varieties. We also show with an example that it
is not a necessary condition.

Let V ⊂ Cn be an analytic variety. The family of sections of V is
defined by h(x, t) = 0, where h : Cn ×C, 0 → C, 0, h(0, t) = 0, is a good
deformation of a RV -finitely determined map germ h0 : Cn, 0 → C, 0.
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In order to define the notion of V -equisingularity, we will construct
a stratified diagram of mappings which satisfies Thom’s second isotopy
lemma.

From now on, we assume that V admits a Whitney stratification SV

in a neighbourhood U of the origin, for which {0} is a stratum. We can
also extend this stratification to the neighbourhood U of the origin in a
natural way, that is, the strata are the strata of SV and the complement
of V in U . We denote by Ṽ the subvariety of Cn × C, 0 defined by
Ṽ = V ×C. The product stratification is clearly Whitney regular. Since
the germ h : Cn × C, 0 → C, 0 is a good deformation, we can choose a
representative, which we also denote by h, given by h : U ×Br, 0 → C, 0,
where Br is an open ball in C centered at the origin with the property
that h−1(0) is transversal to the strata of Ṽ away from 0 × Br.

We refine the stratification S̃ of U ×Br as follows. Given a stratum
S of S, we define the new strata S̃ of S̃ as one of the following types:
(S ×Br)−h−1(0) and (S ×Br)∩h−1(0). This refinement defines a new
stratification U × Br, since h is transversal to Ṽ away from zero. We
denote this new stratification by the same notation S̃.

Definition 6.3. With the above notation, h is V -equisingular if
there exists ε > 0 such that:
(1) (Bε × Br, S̃) is Whitney regular;
(2) Bε × Br

F→ C × Br
π→ Br satisfies the second isotopy lemma, where

Bε is the closed ball in Cn with radius ε, Br is the closed ball in C of
radius r, and F : Cn × C, 0 → C × C, 0 is given by F (x, t) = (h(x, t), t).

In the following theorem we show that ∂h
∂t ∈ dht(Θ0

V ) is a sufficient
condition for V -equisingularity.

Theorem 6.4. Let V = φ−1(0), φ : Cn, 0 → C, 0, h0 : Cn, 0 → C, 0
RV -finitely determined and h : Cn × C, 0 → C, 0 a good deformation of
h0. Let h−1(0) ∩ Σφ = {0} × C, where Σφ is the singular set of φ. If
∂h
∂t ∈ dht(Θ0

V ), then h is V -equisingular.

J.W. Bruce in [1] considers an analogous question. He describes
the topological type of generic families of sections of a semialgebraic
stratification T of a neighbourhood of the origin in Rn, with 0 being
a stratum. Such families are generalised transverse (G.T) with respect
to the stratification, that is, for every pair of strata S1 and S2, and a
sequence of points (xi) ∈ S1 such that limi→∞ xi = x ∈ S2 and the
limit of the tangent spaces limi→∞ TxiS1 = T then dh(x) : T → R has
maximal rank, that is, h−1(h(x)) is transversal to T .

The following theorem is proved in [1]:
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Theorem 6.5. ([1], Proposition 1.4) Let T a Whitney stratification
of an open neighbourhood U of the origin in Rn, with 0 being a stratum.
Let h : Rn × [0, 1] → R be a family of submersions, with h(0, t) = 0 and
ht(x) = h(x, t). If the family h is generalised transverse with respect
to T , for all t ∈ [0, 1], then there exists a germ of homeomorphism
G : Rn, 0 → Rn, 0 preserving the strata of T such that h0 ◦ G = h1.

Good examples of families satisfying the G.T. condition are the fam-
ilies of sections of an analytic variety defined by generic families of hy-
perplanes in Rn. In this work, we substitute the G.T. condition by the
finite determinacy of h0 and the integral closure condition. Under these
hypothesis we are able to obtain the topological triviality of families that
do not satisfy the G.T. condition.

Example 6.6. Let V, 0 ⊆ C3, 0 be the swallowtail parametrized by
(x,−4y3 − 2xy,−3y4 − xy2). The module ΘV is generated by η1 =
(2x, 3y, 4z), η2 = (6y,−2x2 − 8z, xy) and η3 = (−4x2 − 16z,−8xy, y2).
The RV classification of germs h : C3, 0 → C, 0 given by Theorem
4.10 in [3], gives the normal form z + axn + txn+1, n ≥ 2 which is
finitely determined for a �= 0, n �= 2, and a �= 0, a �= 1/12, n = 2 .
Let h0(x, y, z) = z + axn from Theorem 4.3 we have that the family
ht(x, y, z) = z + axn + txn+1 is topologically RV -trivial. However this
family ht is not G.T. at 0, since dht(0, 0, 0) = (0, 0, 1) and the limit of
tangent planes to the smooth part of V is the xy-plane.

To prove Theorem 6.4, we first prove the following Lemma.

Lemma 6.7. Let φ : Cn, 0 → C, 0 and V = φ−1(0). Given h :
Cn+1, 0 → C, 0, define G : Cn+1, 0 → C2, 0, by G(x, t) = (h(x, t), φ(x)).

If g ∈ dht(Θ0
V )On+1

then (g, 0) ∈
〈
xi

∂G
∂xj

〉
OG−1(0)

.

Proof. By hypothesis, for any analytic curve ϕ : C, 0 → Cn+1, 0, it
follows that g ◦ ϕ ∈ 〈dht(αi) ◦ ϕ〉 where αi are generators of Θ0

V . Then
for all ϕ : C, 0 → V × C, 0, we also have
(g ◦ ϕ, 0) ∈ 〈dht(αi) ◦ ϕ, dφ(αi) ◦ ϕ〉, since dφ(αi) ∈ 〈φ〉 and φ(V ) = 0.
Therefore (g ◦ ϕ, 0) ∈

〈
(xi

∂h
∂xj

, xi
∂φ
∂xj

) ◦ ϕ
〉
. Thus,

(g, 0) ∈
〈
(xi

∂h
∂xj

, xi
∂φ
∂xj

)
〉
OV ×C

=
〈
xi

∂G
∂xj

〉
OV ×C

. In particular, (g, 0) ∈〈
xi

∂G
∂xj

〉
OG−1(0)

. Q.E.D.

Remark 6.8. The above result remains true under the weaker hy-
pothesis g ∈ dh(Θ0

V )OV ×C

.
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We now proceed to prove Theorem 6.4; our proof is analogous to
the proof of Theorem 6.5 in [1]. As in [1], we divide the proof in steps:

Step 1. The stratification S̃ is Whitney regular.

Proof. The Whitney regularity of a pair of strata (S1, S2) follows
easily, with exception of the regularity condition of the strata over {0}×
C. Clearly the strata of type (S×C)−h−1(0) are regular with respect to
{0}×Br, since the original stratification satisfies the Whitney conditions.
Then we only have to verify that (S × Br) ∩ h−1(0) is regular over
{0}×Br. From hypothesis, ∂h

∂t ∈ dhtΘ0
V and from Lemma 6.7 it follows

that (∂h
∂t , 0) ∈

〈
xi

∂G
∂xj

〉
OG−1(0)

. Now, from Theorem 6.2, (G−1(0) −

ΣG−1(0), {0} × Br) = (h−1(0) ∩ Ṽ − {0} × Br, {0} × Br) is Whitney
regular. Q.E.D.

Step 2. For some ε
′

> 0 and all 0 < ε ≤ ε
′

the product of the
boundary of the ε-ball, ∂Bε, by Br meets the strata of S̃ transversaly.

Proof. The argument is the same as in Theorem 6.5 in [1]. Let
us suppose that the statement is false. Then we can find a sequence of
points (xi, ti) in some stratum S̃ with xi → 0 and
T(xi,ti)S̃ ⊂ T(xi,ti)(∂Bεi × Br) where εi = ||xi||. Then (xi, 0) is perpen-
dicular to T(xi,ti)S̃. This contradicts the Whitney condition B. Q.E.D.

We then have the first approximation to our stratified diagram, that
is,

Bε × Br
F→ C × Br

π→ Br

where Bε is the closed ball in Cn of radius ε, ε ≤ ε
′
, F (x, t) = (h(x, t), t)

and π is the projection to the second factor. We stratify C × Br by
(C − {0}) × Br ∪ {0} × Br and we refine the stratification of Bε × Br,
taking the intersection of the strata in S̃ with ∂Bε×Br and intBε×Br.
We would like to show that this stratification satisfies Thom’s condition,
but ht might have critical points on ∂Bε. To get around this difficulty
we need the following.

Step 3. For some δ > 0, Bδ − {0} in C consists only of regular
values of ht for every t ∈ Br.

Proof. This follows from the fact that h is a good deformation of
h0. Q.E.D.

In the above diagram we change C by Bδ, where Bδ is the ball with
radius δ, with the stratification ∂Bδ∪{0}∪intBδ−{0}, and satisfying the
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conditions in Step 3. We then get a new stratification of F−1(Bδ × Br)
pulling back the strata. We consider now

F−1(Bδ × Br)
F→ Bδ × Br

π→ Br

Step 4. The above diagram is Thom stratified.

Proof. We have to show that the diagram satisfies the condition
Aht . Given two strata S̃1, S̃2 with (xi, ti) ∈ S̃1, and (xi, ti) → (x, t) ∈
S̃2, the restriction of the kernel of dF (xi, ti) to T(xi,ti)S̃1, say Ki, is
T(xi,ti)S̃1 ∩ (ker dhti(xi) × {0}). The limit of this sequence of spaces
is contained in T ∩ (ker dht(x) × {0}) where T = limi→∞ T(xi,ti)S̃1. If
x �= 0 then ker dht(x) × {0} is transversal to T , hence limi→∞ Ki =
T ∩ (ker dht(x) × {0}). Since T ⊃ T(x,t)S̃2 (Whitney condition A), then
limi→∞ Ki contains the restriction of the kernel of dF (x, t) to T(x,t)S̃2. If
x = 0 then S̃2 = {0}×Br, and Thom condition follows trivially. Q.E.D.

Remark 6.9. The V -equisingularity of a family h as above implies
that h is topologically RV -trivial.

In fact, from Thom’s second isotopy lemma ([12], p.62), there exist
homeomorphisms

H : F−1 (Bδ × {0})× Br → F−1(Bδ × Br)

H
′
: Bδ × {0} × Br → Bδ × Br,

preserving the stratifications, such that the following diagram commutes:

F−1 (Bδ × {0})× Br
F×id−→ Bδ × {0} × Br

π3−→ Br

↓ H ↓ H
′ ↓ id

F−1(Bδ × Br)
F−→ Bδ × Br

π2−→ Br

Then H(x, 0, t) = (h(x, t), t), F (h(x, t), t) = (h(x, 0), t) and it follows
that h(h(x, t), t) = h0(x) for all t and x. Therefore h is topologically
RV -trivial.

The example below shows that the condition g ∈ dh(Θ0
V )OV ×C

is

stronger than the condition (g, 0) ∈
〈
xi

∂G
∂xj

〉
OG−1(0)

.
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Example 6.10. Let V, 0 ⊂ k3, 0 be defined by φ(x, y, z) = 2x2y2 +
y3 − z2 + x4y = 0 and h : C4, 0 → C, 0, h(x, y, z, t) = y + (a + t)x2 and
G : C4, 0 → C2, 0 given by G(x, y, z, t) = (y+(a+ t)x2, 2x2y2 +y3−z2 +
x4y). The module ΘV is generated by η1 = (2x, 4y, 6z), η2 = (0, 2z, x4 +
4x2y + 3y2), η3 = (x2 + 3y,−4xy, 0) and η4 = (z, 0, 2x3y + 2xy2). The
element ∂h

∂t = x2 is not in the integral closure of the ideal dht(Θ0
V ) (it

also follows that x2 �∈ 〈dh(ηi)〉OV ×C
). In fact, given φ : k, 0 → k4, 0,

φ(s) = (s,−as2, 0, 0), it follows that ∂h
∂t ◦ φ is not in (φ∗(dht(Θ0

V )))O1,
then by Theorem 3.1, ∂h

∂t = x2 �∈ dht(Θ0
V ). We can verify that (x2, 0) ∈〈

xi
∂G
∂xj

〉
OG−1(0)

. In fact, we will show that (x2, 0) ∈
〈
xi

∂G
∂xj

, eiGj

〉
O4

and the result will follow from this. We have

(a) zGz = (0,−2z2)
(b) e1G1 = (y + (a + t)x2, 0)
(c) x2Gy = (x2, 4x4y + 3x2y2 + x6)
(d) e2G2 + 1

2zGz = (0, 2x2y2 + y3 + x4y)

Let ϕ : C, 0 → C4, 0 be given by ϕ(u) = (ϕ1(u), ϕ2(u), ϕ3(u), ϕ4(u)).
We shall see that (ϕ2

1, 0) ∈
〈
(xi

∂G
∂xj

, eiGj) ◦ ϕ
〉
O1

. Let r = ord(ϕ1)

and s = ord(ϕ2), if s ≤ r or 2s = r then it follows from (b) that
(ϕ2

1, 0) ∈
〈
(xi

∂G
∂xj

, eiGj) ◦ ϕ
〉
O1

.

If s > r then it follows from (c) that

x2Gy ◦ϕ = (ϕ2
1, 4ϕ4

1ϕ2 +3ϕ2
1ϕ

2
2 +ϕ6

1) = (ϕ2
1, 0)+(0, 4ϕ4

1ϕ2 +3ϕ2
1ϕ

2
2 +ϕ6

1)

and from (d) we get that (0, 4ϕ4
1ϕ2+3ϕ2

1ϕ
2
2+ϕ6

1) ∈
〈
(xi

∂G
∂xj

, eiGj) ◦ ϕ
〉
O1

,

hence,

(ϕ2
1, 0) ∈

〈
(xi

∂G
∂xj

, eiGj) ◦ ϕ
〉
O1

or (x2, 0) ∈
〈
xi

∂G
∂xj

, eiGj

〉
O4

.

Remark 6.11. When the variety V reduces to 0, Tessier in [17]
proved that the set

{t ∈ C, 0 :
∂h

∂t
∈

〈
xi

∂h

∂xj

〉
}

is open and dense. In the relative case, we can obtain a similar result
as a consequence of Gaffney in [11], that is :

{t ∈ C, 0 : (
∂h

∂t
, 0) ∈

〈
xi

∂G

∂xj

〉
OG−1(0)

}
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is open and dense. However, the corresponding statement does not hold
for dht(Θ0

V ). In fact, with a slight modification of the arguments in the
above example, we see that the set:

{t ∈ C, 0 :
∂h

∂t
∈ dht(Θ0

V )}

is empty.
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Lines of principal curvature near singular end points
of surfaces in R3

Jorge Sotomayor and Ronaldo Garcia

Abstract.

In this paper are studied the nets of principal curvature lines on
surfaces embedded in Euclidean 3−space near their end points, at
which the surfaces tend to infinity.

This is a natural complement and extension to smooth surfaces
of the work of Garcia and Sotomayor (1996), devoted to the study of
principal curvature nets which are structurally stable –do not change
topologically– under small perturbations on the coefficients of the
equations defining algebraic surfaces.

This paper goes one step further and classifies the patterns of
the most common and stable behaviors at the ends, present also in
generic families of surfaces depending on one-parameter.

§1. Introduction

A surface of smoothness class Ck in Euclidean (x, y, z)-space R3 is
defined by the variety A(α) of zeros of a real function α of class Ck in
R3. The exponent k ranges among the positive integers as well as on
the symbols ∞, ω (for analytic) and a(n) (for algebraic of degree n).

In the class Ca(n) of algebraic surfaces of degree n, we have α =∑
αh, h = 0, 1, 2, ..., n , where αh is a homogeneous polynomial of de-

gree h with real coefficients: αh =
∑

aijkxiyjzk, i + j + k = h.
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The space R3 will be endowed with the Euclidean metric ds2 =
dx2 +dy2 +dz2 also denoted by <, >, and with the positive orientation
induced by the volume form Ω = dx ∧ dy ∧ dz.

An end point or point at infinity of A(α) is a point in the unit sphere
S2, which is the limit of a sequence of the form pn/|pn|, for pn tending
to infinity in A(α).

The end locus, E(α), of A(α) is the collection of its end points. This
set is a geometric measure of the non-compactness of the surface and
describes how it tends to infinity.

A surface A(α) is said to be regular at p ∈ E(α) if in a neighborhood
of p, E(α) is a regular smooth curve in S2. Otherwise, p is said to be a
critical end point of A(α).

For the class a(n), E(α) is contained in the algebraic curve En(α) =
{p ∈ S2; αn(p) = 0}. The regularity of E(α) is equivalent to that of
En(α).

The gradient vector field of α, will be denoted by ∇α = αx∂/∂x +
αy∂/∂y + αz∂/∂z, where αx = ∂α/∂x, etc.

The zeros of this vector field are called critical points of α; they
determine the set C(α). The regular part of A(α) is the smooth surface
S(α) = A(α) \ C(α). When C(α) is disjoint from A(α), the surface
S(α) = A(α) is called regular. The orientation on S(α) will be defined
by taking the gradient∇α to be the positive normal. Thus A(−α) defines
the same surface as A(α) but endowed with the opposite orientation on
S(−α).

The Gaussian normal map N , of S(α) into the sphere S2, is defined
by the unit vector in the direction of the gradient: Nα = ∇α/|∇α|.
The eigenvalues −k1

α(p) and −k2
α(p) of the operator DNα(p), restricted

to TpS(α), the tangent space to the surface at p, define the principal
curvatures, k1

α(p) and k2
α(p) of the surface at the point p. It will be

always assumed that k1
α(p) ≤ k2

α(p).
The points on S(α) at which the principal curvatures coincide, define

the set U(α) of umbilic points of the surface A(α). On S(α) \ U(α),
the eigenspaces of DNα, associated to −k1

α and −k2
α define line fields

L1(α) and L2(α), mutually orthogonal, called respectively minimal and
maximal principal line fields of the surface A(α). The smoothness class of
these line fields is Ck−2, where k−2 = k for k = ∞, ω and a(n)−2 = ω.

The maximal integral curves of the line fields L1(α) and L2(α) are
called respectively the lines of minimal and maximal principal curvature,
or simply the principal lines of A(α).

What was said above concerning the definition of these lines is equiv-
alent to require that they are non trivial solutions of Rodrigues’ differ-
ential equations:
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(1) DNα(p)dp + ki
α(p)dp = 0, < N(p), dp >= 0, i = 1, 2.

where p = (x, y, z), α(p) = 0, dp = dx∂/∂x + dy∂/∂y + dz∂/∂z. See
[22, 23].

After elimination of ki
α, i = 1, 2, the first two equations in (1) can

be written as the following single implicit quadratic equation:

(2) < DNα(p)dp ∧ N(p), dp >= [DNα(p)dp, Nα(p), dp] = 0.

The left (and mid term) member of this equation is the geodesic
torsion in the direction of dp. In terms of a local parametrization α
introducing coordinates (u, v) on the surface, the equation of lines of
curvature in terms of the coefficients (E, F, G) of the first and (e, f, g)
of the second fundamental forms is, see [22, 23],

(3) [Fg − Gf ]dv2 + [Eg − Ge]dudv + [Ef − Fe]du2 = 0.

The net F (α) = (F1(α), F2(α)) of orthogonal curves on S(α)\U(α),
defined by the integral foliations F1(α) and F2(α) of the line fields L1(α)
and L2(α), will be called the principal net on A(α).

The study of families of principal curves and their umbilic singular-
ities on immersed surfaces was initiated by Euler, Monge, Dupin and
Darboux, to mention only a few. See [2, 18] and [14, 22, 23] for refer-
ences.

Recently this classic subject acquired new vigor by the introduction
of ideas coming from Dynamical Systems and the Qualitative Theory of
Differential Equations. See the works [14], [5], [7], [13] of Gutierrez, Gar-
cia and Sotomayor on the structural stability, bifurcations and genericity
of principal curvature lines and their umbilic and critical singularities
on compact surfaces.

The scope of the subject was broadened by the extension of the
works on structural stability to other families of curves of classical ge-
ometry. See [12], for the asymptotic lines and [8, 9, 10, 11] respectively
for the arithmetic, geometric, harmonic and general mean curvature
lines. Other pertinent directions of research involving implicit differen-
tial equations arise from Control and Singularity Theories, see Davydov
[3] and Davydov, Ishikawa, Izumiya and Sun [4].

In [6] the authors studied the behavior of the lines of curvature on
algebraic surfaces, i.e. those of Ca(n), focusing particularly their generic
and stable patterns at end points. Essential for this study was the
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operation of compactification of algebraic surfaces and their equations
(2) and (3) in R3 to obtain compact ones in S3. This step is reminiscent
of the Poincaré compactification of polynomial differential equations [19].

In this paper the study in [6] will be extended to the broader and
more flexible case of Ck-smooth surfaces.

As mentioned above, in the case of algebraic surfaces studied in [6],
the ends are the algebraic curves defined by the zeros, in the Equato-
rial Sphere S2 of S3, of the highest degree homogeneous part αn of the
polynomial α. Here, to make the study of the principal nets at ends of
smooth surfaces tractable by methods of Differential Analysis, we fol-
low an inverse procedure, going from compact smooth surfaces in S3 to
surfaces in R3. This restriction on the class of surfaces studied in this
paper is explained in Subsection 1.1.

The new results of this paper on the patterns of principal nets at end
points are established in Sections 2 and 3. Their meaning for the Struc-
tural Stability and Bifurcation Theories of Principal Nets is discussed
in Section 4, where a pertinent problem is proposed. The essay [21]
presents a historic overview of the subject and reviews other problems
left open.

1.1. Preliminaries
Consider the space Ak

c of real valued functions αc which are Ck-
smooth in the three dimensional sphere S3 = {|p|2+|w|2 = 1} in R4, with
coordinates p = (x, y, z) and w. The meaning of the exponent k is the
same as above and a(n) means polynomials of degree n in four variables
of the form αc =

∑
αhwh, h = 0, 1, 2, ..., n, with αh homogeneous of

degree h in (x, y, z).
The equatorial sphere in S3 will be S2 = {(p, w) : |p| = 1, w = 0}

in R3. It will be endowed with the positive orientation defined by the
outward normal. The northern hemisphere of S3 is defined by H+ =
{(p, w) ∈ S3 : w > 0}.

The surfaces A(α) considered in this work will be defined in terms
of functions αc ∈ Ak

c as α = αc◦P, where P is the central projection of
R3, identified with the tangent plane at the north pole T3

w, onto H+,
defined by:

P(p) = (p/(|p|2 + 1)1/2, 1/(|p|2 + 1)1/2).

For future reference, denote by T3
y the tangent plane to S3 at the

point (0, 1, 0, 0), identified with R3 with orthonormal coordinates (u, v, w),
with w along the vector ω = (0, 0, 0, 1). The central projection Q of T3

y

to S3 is such that P−1 ◦ Q : T3
y → T3

w has the coordinate expression
(u, v, w) → (u/w, v/w, 1/w).
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For m ≤ k, the following expression defines uniquely, the functions
involved:

(4) αc(p, w) =
∑

wjαc
j(p) + o(|w|m), j = 0, 1, 2, ..., m.

In the algebraic case (k = a(n)) studied in [6], αc =
∑

wn−hαh, h =
0, 1, 2, .., n, where the obvious correspondence αh = αc

n−h holds.
The end points of A(α), E(α), are contained in E(αc) = {αc

0(p) =
0}.

At a regular end point p of E(α) it will be required that αc
0 has a

regular zero, i.e. one with non-vanishing derivative i.e. ∇αc
0(p) 	= 0. At

regular end points, the end locus is oriented by the positive unit normal
ν(α) = ∇αc

0/|∇αc
0|. This defines the positive unit tangent vector along

E(α), given at p by τ(α)(p) = p∧ν(α)(p). An end point is called critical
if it is not regular.

A regular point p ∈ E(α) is called a biregular end point of A(α)
if the geodesic curvature, kg, of the curve E(α) at p, considered as a
spherical curve, is different from zero; it is called an inflexion end point
if kg is equal to zero.

When the surface A(α) is regular at infinity, clearly E(α) = E(αc) =
{αc

0(p) = 0}.
The analysis in sections 2 and 3 will prove that there is a natural

extension Fc(α) = (Fc1(α), Fc2(α)) of the net (P(F1(α)), P(F2(α)) to
Ac(α) = {αc = 0}, as a net of class Ck−2, whose singularities in E(α)
are located at the inflexion and critical end points of A(α). This is
done by means of special charts used to extend the quadratic differen-
tial equations that define (P(F1(α)), P(F2(α)) to a full neighborhood in
Ac(α) of the arcs of biregular ends. The differential equations are then
extended to a full neighborhood of the singularities. See Lemma 2, for
regular ends, and Lemma 4, for critical ends.

The main contribution of this paper consists in the resolution of sin-
gularities of the extended differential equations, under suitable genericity
hypotheses on αc. This is done in sections 2 and 3. It leads to eight
patterns of principal nets at end points. Two of them – elliptic and
hyperbolic inflexions– have also been studied in the case of algebraic
surfaces [6].

§2. Principal Nets at Regular End Points

Lemma 1. Let p be a regular end point of A(α), α = αc ◦ P. Then
there is a mapping α of the form
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α(u, w) = (x(u, w), y(u, w), z(u, w)), w > 0, defined by

(5) x(u, w) =
u

w
, y(u, w) =

h(u, w)
w

, z(u, w) =
1
w

.

which parametrizes the surface A(α) near p, with

(6)

h(u, w) =k0w +
1
2
au2 + buw +

1
2
cw2

+
1
6
(a30u

3 + 3a21u
2w + 3a12uw2 + a03w

3)

+
1
24

(a40u
4 + 4a31u

3w + 6a22u
2w2

+4a13uw3 + a04w
4) + h.o.t

Proof. With no lost of generality, assume that the regular end point
p is located at (0, 1, 0, 0), the unit tangent vector to the regular end
curve is τ = (1, 0, 0, 0) and the positive normal vector is ν = (0, 0, 1, 0).
Take orthonormal coordinates u, v, w along τ, ν, ω = (0, 0, 0, 1) on the
tangent space, T3

y to S3 at p. Then the composition P−1 ◦ Q writes as
x = u/w, y = v/w, z = 1/w.

Clearly the surface A(αc) near p can be parametrized by the central
projection into S3 of the graph of a Ck function of the form v = h(u, w)
in T3

y, with h(0, 0) = 0 and hu(0, 0) = 0. This means that the surface
A(α), with α = αc ◦ P−1 can be parametrized in the form (5) with h as
in (6).

Q.E.D.

Lemma 2. The differential equation (3) in the chart α of Lemma 1,
multiplied by w8

√
EG − F 2, extends to a full domain of the chart (u, w)

to one given by

(7)

Ldw2 + Mdudw + Ndu2 = 0,

L = − b − a21u − a12w − (c + a22)uw

−(b +
1
2
a31)u2 − 1

2
a13w

2 + h.o.t.

M = − a − a30u − a21w − 1
2
(2a + a40)u2

−a31uw +
1
2
(2c − a22)w2 + h.o.t.

N =w[au + bw + a30u
2 + 2a21uw + a12w

2 + h.o.t.]

where the coefficients are of class Ck−2.
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Proof. The coefficients of first fundamental form of α in (5) and
(6) are given by:

E(u, w) =
1 + h2

u

w2

F (u, w) =
hu(whw − h) − u

w3

G(u, w) =
1 + u2 + (whw − h)2

w4

The coefficients of the second fundamental form of α are:

e(u, w) =
huu

w4
√

EG − F 2
,

f(u, w) =
huw

w4
√

EG − F 2
,

g(u, w) =
hww

w4
√

EG − F 2

where e = [αuu, αu, αw]/|αu ∧ αw|, f = [αuw, αu, αw]/|αu ∧ αw| and
g = [αww, αu, αw]/|αu ∧ αw|.

The differential equation of curvature lines (3) is given by Ldw2 +
Mdudw + Ndu2 = 0, where L = Fg − Gf, M = Eg − Ge and N =
Ef − Fe.

These coefficients, after multiplication by w8
√

EG − F 2, keeping the
same notation, give the expressions in (7). Q.E.D.

The differential equation (7) is non-singular, i.e., defines a regular
net of transversal curves if a 	= 0. This will be seen in item a) of next
proposition. Calculation expresses a as a non-trivial factor of kg.

The singularities of equation (7) arise when a = 0; they will be
resolved in item b), under the genericity hypothesis a30b 	= 0.

Proposition 1. Let α be as in Lemma 1. Then the end locus is
parametrized by the regular curve v = h(u, w), w = 0.

a) At a biregular end point, i.e., regular and non inflexion, a 	= 0,
the principal net is as illustrated in Fig. 1, left.

b) If p is an inflexion, bitransversal end point, i.e., β(p) = a30b 	=
0, the principal net is as illustrated in Fig. 1, hyperbolic β < 0,
center, and elliptic β > 0, right.
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Fig. 1. Curvature lines near regular end points: biregu-
lar (left ) and inflexions: hyperbolic (center) and
elliptic (right).

Proof. Consider the implicit differential equation

(8)

F(u, w, p) = − (b + a21u + a12w + h.o.t.)p2

−(a + a30u + a21w + h.o.t.)p

+w(au + bw + h.o.t.) = 0.

The Lie-Cartan line field tangent to the surface F−1(0) is defined
by X = (Fp, pFp,−(Fu + pFw)) in the chart p = dw/du and Y =
(qFq,Fq,−(qFu +Fw)) in the chart q = du/dw. Recall that the integral
curves of this line field projects to the solutions of the implicit differential
equation (8).

If a 	= 0, F−1(0) is a regular surface, X(0) = (−a, 0, 0) 	= 0 and
Y (0) = (b, a, 0). So by the Flow Box theorem the two principal foliations
are regular and transversal near 0. This ends the proof of item a).

If a = 0, F−1(0) is a quadratic cone and X(0) = 0. Direct calcula-
tion shows that

DX(0) =

⎛
⎝−a30 −a21 −2b

0 0 0
0 0 a30

⎞
⎠

Therefore 0 is a saddle point with non zero eigenvalues −a30 and a30

and the associated eigenvectors are e1 = (1, 0, 0) and e2 = (b, 0,−a30).
The saddle separatrix tangent to e1 is parametrized by w = 0 and

has the following parametrization (s, 0, 0). The saddle separatrix tangent
to e2 has the following parametrization:

u(s) = s + O(s3), w(s) = −a30

b

s2

2
+ O(s3), p(s) = −a30

b
s + O(s3).

If a30b < 0 the projection (u(s), w(s)) is contained in the semiplane
w ≥ 0. As the saddle separatrix is transversal to the plane {p = 0} the
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phase portrait of X is as shown in the Fig. 2 below. The projections
of the integral curves in the plane (u, w) shows the configurations of the
principal lines near the inflexion point.

Fig. 2. Phase portrait of X near the singular point of sad-
dle type

Q.E.D.

Proposition 2. Let α be as in Lemma 1. Suppose that, contrary
to the hypothesis of Proposition 1, a = 0, a30 = 0, but ba40 	= 0 holds.

The differential equation (7) of the principal lines in this case has
the coefficients given by:

(9)

L(u, w) = − [b + a21u + a12w +
1
2
(2b + a31)u2

+(c + a22)uw +
1
2
a13w

2 + h.o.t.]

M(u, w) = − [a21w +
1
2
a40u

2

+a31uw +
1
2
(a22 − 2c)w2 + h.o.t.]

N(u, w) =w2(b + 2a21u + a12w + h.o.t.)

The principal net is as illustrated in Fig. 3.
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Fig. 3. Curvature lines near a hyperbolic-elliptic inflexion
end point

Proof. From equation (7) it follows the expression of equation (9) is
as stated. In a neighborhood of 0 this differential equation factors in to
the product of two differential forms X+(u, w) = A(u, w)dv−B+(u, w)du
and X−(u, w) = A(u, w)dv−B−(u, w)du, where A(u, w) = 2L(u, w) and
B±(u, w) = M(u, w) ±

√
(M2 − 4LN)(u, w). The function A is of class

Ck−2 and the functions B± are Lipschitz. Assuming a40 > 0, it follows
that A(0) = −2b 	= 0, B−(u, 0) = 0 and B+(u, 0) = a40u

2 + h.o.t. In the
case a40 < 0 the analysis is similar, exchanging B− with B+.

Therefore, outside the point 0, the integral leaves of X+ and X−
are transversal. Further calculation shows that the integral curve of X+

which pass through 0 is parametrized by (u,−a40
6b u3 + h.o.t.).

This shows that the principal foliations are extended to regular fo-
liations which however fail to be a net a single point of cubic contact.
This is illustrated in Fig. 3 in the case a40/b < 0. The case a40/b > 0 is
the mirror image of Fig. 3. Q.E.D.

Proposition 3. Let α be as in Lemma 1. Suppose that, contrary
to the hypothesis of Proposition 1, a = 0, b = 0, but a30 	= 0 holds.

The differential equation of the principal lines in this chart is given
by:

(10)

−[a21u + a12w +
1
2
a31u

2 + (c + a22)uw +
1
2
a13w

2 + h.o.t.]dw2

−[a30u + a21w +
1
2
a40u

2 + a31uw +
1
2
(a22 − 2c)w2 + h.o.t.]dudw

+w[(a30u
2 + 2a21uw + a12w

2) + h.o.t.]du2 = 0.

a) If (a2
21 − a12a30) < 0 the principal net is as illustrated in Fig.

4 (left).
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b) If (a2
21 − a12a30) > 0 the principal net is as illustrated in Fig.

4(right).

Fig. 4. Curvature lines near an umbilic-inflexion end point

Proof. Consider the Lie-Cartan line field defined by

X = (Fp, pFp,−(Fu + pFw))

on the singular surface F−1(0), where

F(u, w, p) = − [a21u + a12w + h.o.t.]p2 − [a30u + a21w + h.o.t.]p

+w[(a30u
2 + 2a21uw + a12w

2) + h.o.t.] = 0.

The singularities of X along the projective line (axis p) are given
by the polynomial equation p(a30 + 2a21p + a12p

2) = 0. So X has one,
respectively, three singularities, according to a2

21 − a12a30 is negative,
respectively positive. In both cases all the singular points of X are
hyperbolic saddles and so, topologically, in a full neighborhood of 0 the
implicit differential equation (10) is equivalent to a Darbouxian umbilic
point D1 or to a Darbouxian umbilic point of type D3. See Fig. 5 and
[14, 17].

In fact,

DX(0, 0, p) =

⎛
⎝ −2a21p − a30 −2a12p − a21 0
−p(2a21p + a30) −p(2a12p + a21) 0

A31 A32 A33

⎞
⎠

where, A31 = p((c+a22)p2+2a31p+a40), A32 = p[a13p
2+(2a22−c)p+a31]

and A33 = 4a21p + a30 + 3a12p
2.

The eigenvalues of DX(0, 0, p) are λ1(p) = −(a30 +3a21p+2a12p
2),

λ2(p) = 4a21p + a30 + 3a12p
2 and λ3 = 0.
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Fig. 5. Resolution of a singular point by a Lie-Cartan line
field

Let p1 and p2 be the roots of r(p) = a30 + 2a21p + a12p
2 = 0.

Therefore, λ1(pi) = a21pi + a30 and λ2(pi) = −2(a21pi + a30).
As

r(−a30

a21
) =

a30(a12a30 − a2
21)

a2
21

	= 0,

it follows that λ1(pi)λ2(pi) < 0 and λ1(0)λ2(0) = −a2
30 < 0. So the

singularities of X are all hyperbolic saddles. If a2
21 − a12a30 < 0, X has

only one singular point (0, 0, 0). If a2
21−a12a30 > 0, X has three singular

points (0, 0, 0), (0, 0, p1) and (0, 0, p2).
In the first case in a full neighborhood of (0, 0) the principal folia-

tions have the topological type of a D1 Darbouxian umbilic point. In
the region w > 0 the behavior is as shown in Fig. 4 (left). In the second
case the principal foliations have the topological type of a D3 Darboux-
ian umbilic point and so the behavior in the finite region w > 0 is as
shown in Fig. 4 (right). Q.E.D.

§3. Principal Nets at Critical End Points

Let p be a critical end point of the surface A(α), α = αc◦P. Without
lost of generality assume that the point p is located at (0, 1, 0, 0) and that
the surface αc = 0 is given by the graph of a function w = h(u, v), where
h vanishes together with its first partial derivatives at (0, 0) and the u
and v are the principal axes of the quadratic part of its second order jet.

Through the central projection Q, the coordinates (u, v, w) can be
thought to be orthonormal in the tangent space T3

p to S3 at p, with w
along ω = (0, 0, 0, 1), u along (1, 0, 0, 0) and v along (0, 1, 0, 0).
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Lemma 3. Let p be a critical end point of the surface A(α), α =
αc ◦ P. Then there is a mapping α of the form

α(u, v) = (x(u, v), y(u, v), z(u, v))

defined by

(11) x(u, v) =
u

h(u, v)
, y(u, v) =

v

h(u, v)
, z(u, v) =

1
h(u, v)

which parametrizes the surface A(α) near p. The function h is as follows.

i) If p is a definite critical point of h, then
(12)

h(u, v) =(a2u2 + b2v2) +
1
6
(a30u

3 + 3a21u
2v + 3a12uv2 + a03v

3)

+
1
24

(a40u
4 + 6a31u

3v + 4a22u
2v2 + 6a13uv3 + a04v

4) + h.o.t.

ii) If p is a saddle critical point of h, then
(13)

h(u, v) =(−au + v)v +
1
6
(a30u

3 + 3a21u
2v + 3a12uv2 + a03v

3)

+
1
24

(a40u
4 + 6a31u

3v + 4a22u
2v2 + 6a13uv3 + a04v

4) + h.o.t.

Proof. The map x = u/w, y = v/w, z = 1/w from T3
y to T3

w,
expresses the composition P−1 ◦ Q.

Therefore the surface A(α), with α = αc◦(P)−1 can be parametrized
with the functions x, y, z as is stated in equation (11).

The function h takes the form given in equation (12) if it is definite
positive. If it is a non degenerate saddle, after a rotation of principal
axes, h can be written in the form given in equation (13). Q.E.D.

Lemma 4. The differential equation (3) in the chart α of Lemma 3,
multiplied by h8

√
EG − F 2, extends to a full domain of the chart (u, v)

to one given by

(14)

Ldw2 + Mdudw + Ndu2 = 0,

L =h8
√

EG − F 2(Fg − Gf),

M =h8
√

EG − F 2(Eg − Ge),

N =h8
√

EG − F 2(Ef − Fe).
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where the coefficients are of class Ck−2. Here (E, F, G) and (e, f, g) are
the coefficients of the first and second fundamental forms of the surface
in the chart α.

Proof. The first fundamental form of the surface parametrized by
α, equation (11), in Lemma 3 is given by:

E(u, v) =
(h − uhu)2 + (v2 + 1)h2

u

h4

F (u, v) =
−h(uhu + vhv) + (u2 + v2 + 1)huhv

h4

G(u, v) =
(h − vhv)2 + (u2 + 1)h2

v

h4

The coefficients of the second fundamental form are given by :

e(u, v) = − huu

h4
√

EG − F 2

f(u, v) = − huv

h4
√

EG − F 2

g(u, v) = − hvv

h4
√

EG − F 2

where e = [αuu, αu, αv]/|αu ∧ αv|, f = [αuv, αu, αv]/|αu ∧ αv| and g =
[αvv, αu, αv]/|αu ∧ αv|.

Therefore the differential equation of curvature lines, after multipli-
cation by h8|αu ∧ αv| is as stated. Q.E.D.

3.1. Differential Equation of Principal Lines around a Def-
inite Critical End Point

Proposition 4. Suppose that 0 is a critical point of h given by
equation (12), with a > 0, b > 0 (local minimum).

In polar coordinates u = br cos θ, v = ar sin θ the differential equa-
tion (14) is given by Ldr2 + Mdrdθ + Ndθ2 = 0, where:

(15)

L =l0 + l1r + h.o.t,

M =m0 + m1r + h.o.t,

N =r2(
1
2
n0 +

1
6
n1r +

1
24

n2r
2 + h.o.t.)

with m0 = M(θ, 0) = −8a7b7 	= 0 and the coefficients (l0, l1, m1, n0,
n1, n2) are trigonometric polynomials with coefficients depending on the
fourth order jet of h at (0, 0), expressed in equations (16) to (19).
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Proof. Introducing polar coordinates u = br cos θ, v = ar sin θ in
the equation (14), where h is given by equation (12), it follows that
the differential equation of curvature lines near the critical end point
0, is given by Ldr2 + Mdrdθ + Ndθ2 = 0, where: m0 = M(θ, 0) =
−8a7b7, N(θ, 0) = 0, and ∂N

∂r (θ, 0) = 0.
The Taylor expansions of L, M and N are as follows:

L =l0 + l1r + h.o.t,

M =m0 + m1r + h.o.t,

N =r2(n0/2 + n1r/6 + n2r
2/24 + h.o.t.)

After a long calculation, corroborated by computer algebra, it follows
that:

(16)
l0 = = 2a5b5[a30b

3 cos2 θ sin θ + a21ab2(2 cos θ − 3 cos3 θ)

+a12a
2b(sin θ − 3 cos2 θ sin θ) + a03a

3(cos3 θ − cos θ)]

(17)

n0 =4b5a5[(−3a21b
2a + a03a

3) cos3 θ

+(a30b
3 − 3a12ba

2) sin θ cos2 θ

+(−a03a
3 + 2a21b

2a) cos θ + 4ba2a12 sin θ]

(18) m1 = − 4b5a5[(a30b
3 + a12ba

2) cos θ + (a21b
2a + a03a

3) sin θ]
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(19)
n2 = − 2a3b3[(a3b4(24a30a13 + 6a03a40 + 108a21a22 + 72a12a31)

+6a7a03a04 − 18b2a5(a21a04 + 4a12a13 + 2a03a22) − 6ab6(3a21a40

+4a30a31)) cos7 θ + (a4b3(6a04a30 + 72a21a13 + 108a12a22

+24a03a31) + 6a40b
7a30 − 18b5a2(a40a12 + 4a21a31 + 2a30a22)

−6a6b(4a03a13 + 3a12a04)) sin θ cos6 θ + (24a7b2a03 + 72b6a3a21

−b4a5(24a03 + 72a21) + ab6(50a30a31 + 36a21a40)

−a3b4(10a03a40 + 198a21a22 + 46a30a13 + 126a12a31)

+b2a3(18a2
12a21 − 6a2

21a03 − 12a30a12a03) + b4a(3a2
30a03

+6a30a12a21 − 9a3
21) + a5b2(54a03a22 + 114a12a13 + 30a21a04)

+a5(3a2
03a21 − 3a2

12a03) − 8a03a
7a04) cos5 θ

+(a6b(22a03a13 + 18a12a04) + a4b5(72a12 + 24a30) − 10a40b
7a30

−a4b3(90a21a13 + 126a12a22 + 8a04a30 + 26a03a31)

+a2b5(54a30a22 + 24a40a12 + 102a21a31) + a2b3(12a30a03a21

+6a2
12a30 − 18a2

21a12) − 24b7a2a30 + 3b5(a2
21a30 − a2

30a12)

−a4b(3a2
03a30 + 6a21a12a03 − 9a3

12) − 72a6b3a12) sin θ cos4 θ

+(−2a03a
7a04 − 24a7b2a03 + 6a5(a2

12a03 − a2
03a21) − ab6(16a21a40

+24a30a31) − a5b2(12a21a04 + 18a03a22 + 48a12a13)

+a5b4(24a03 + 96a21) + a3b2(15a30a12a03 + 12a2
21a03 − 27a2

12a21)

+a3b4(4a03a40 + 120a21a22 + 70a12a31 + 26a30a13)

+ab4(6a3
21 − 3a2

30a03 − 3a30a12)a21 − 96b6a3a21)) cos3 θ + (48a6a21b
3

+(4a13a03 + 2a21a04)a6b + (9a21a03a21 + 3a2
03a30 − 12a3

21)a
4b

−(48a21 + 24a30)a4b5 + (6a03a31 + 34a13a21 + 48a21a22

+2a04a30)a4b3 + 24b7a2a30 − (36a31a21 + 18a22a30 + 6a40a21)a2b5

+(9a2
21a21 − 9a30a03a21)a2b3) sin θ cos2 θ

+(4a03a
7a04 + (−3a2

12a03 + 3a2
03a21)a5

+6a13b
2a5a12 − 36a5b4a21 + 3(3a2

12a21 − 2a2
21a03 − a12a03a30)b2a3

−4(6a21a22 + a13a30 + 3a12a31)b4a3 + 36b6a3a21) cos θ

+(12b5a4a12 − 12a6b3a12 − (2a12a04 + 2a13a03)a6b

−(4a13a21 − 6a12a22)a4b3 + (3a3
12 − 3a12a03a21)a4b) sin θ].
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(20)

l1 = − 1
6
a3b3[(18b5aa21a30 + 18ba5a12a03

−6b3a3(a30a03 + 9a21a12)) cos6 θ

+(3a6a2
03 − 9(2a21a03 + 3a2

12)b
2a4

+9(2a30a12 + 3a2
21)b

4a2 − 3b6a2
30) sin θ cos5 θ

+(−15b5aa21a30 + 9b3a3(9a21a12 + a30a03)

−39ba5a12a03 − 32b3a5a13 + 32b5a3a31) cos4 θ

+(48b4a4a22 − 8b6a2a40 − 6b4a2(3a2
21 + 2a12a30) − 8b2a6a04

−6a6a2
03 + 12b2a4(2a21a03 + 3a2

12)) sin θ cos3 θ

+(−24b5a3a31 + 40b3a5a13 + 24ba5a12a03

−3b3a3(9a21a12 + a30a03)) cos2 θ

+(−12b6a4 − 3b2a4(3a2
12 + 2a21a03) + 8b2a6a04

+12b4a6 + 3a6a2
03 − 24b4a4a22) sin θ cos θ

−(3ba5a12a03 + 8b3a5a13)]

(21)

n1 =a3b3[(18b5aa21a30 − 6b3a3(9a21a12 + a30a03)

+18ba5a12a03) cos6 θ

+(9b4a2(2a12a30 + 3a2
21) − 9b2a4(2a21a03 + 3a2

12)

−3b6a2
30 + 3a6a2

03) sin θ cos5 θ

+(16b3a5a13 + 9b3a3(a30a03 + 9a21a12)

−16b5a3a31 − 39b5aa21a30 − 15ba5a12a03) cos4 θ

+(−24b4a4a22 + 6b6a2
30 − 12b4a2(3a2

21 + 2a12a30) + 4b2a6a04

+4b6a2a40 + 6b2a4(2a21a03 + 3a2
12)) sin θ cos3 θ

+(−20b3a5a13 − 6ba5a12a03 + 12b5a3a31

+18b5aa21a30 − 3b3a3(13a21a12 + a30a03)) cos2 θ

+(−12b6a4 − 3a2
12b

2a4 + 12b4a4a22 + 12b4a6

+6b4a2(2a2
21 + a12a30) − 3a6a2

03 − 4b2a6a04) sin θ cos θ

+(4b3a5a13 + 6b3a3a21a12 + 3ba5a12a03)].

Q.E.D.
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3.2. Principal Nets around a Definite Critical End Points
Proposition 5. Suppose that p is an end critical point and consider

the chart defined in Lemma 3 such that h is given by equation (12), with
a > 0, b > 0 (local minimum). Then the behavior of curvature lines
near p is the following.

i) One principal foliation is radial.
ii) The other principal foliation surrounds p and the associated

return map Π is such that Π(0) = 0, Π′(0) = 1, Π′′(0) = 0,

Π′′′(0) = 0 and Π′′′′(0) =
π

210a5b5
Δ, where

Δ =12(a30a21 + 3a03a30 − 5a12a21)b6a4

+12(5a12a21 − a12a03 − 3a03a30)a6b4

+4(3a04a30a21 + a13a
2
21 + 10a31a03a21)a4b4

−4(10a13a12a30 + 3a40a12a03 + a31a
2
12)a

4b4

+4(a13a
2
03 − a04a12a03)a8 + 4(a40a30a21 − a31a

2
30)b

8

+3(a3
30a03 + 2a30a

3
21 − 3a2

30a21a12)b6

+3(3a12a
2
03a21 − 2a3

12a03 − a30a
3
03)a

6

+4[a03(2a13a21 − 3a04a30 − 3a31a03 + 12a22a12)

+5a04a12a21 − 13a13a
2
12]a

6b2

+4[a30(+3a13a30 − 2a31a12 + 3a40a03 − 12a22a21)

−5a40a21a12 + 13a31a
2
21]a

2b6

+9(a30a
2
21a03 − 2a30a21a

2
12 + a12a

3
21)a

2b4

+9(−a3
12a21 − a30a03a

2
12 + 2a12a

2
21a03)a4b2

+12b2a8a12a03 − 12b8a2a30a21

Fig. 6. Curvature lines near a definite focal critical end
point, Δ > 0.
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Proof. Consider the implicit differential equation (15)

(l0 + rl1 + h.o.t)dr2 + (m0 + m1r + h.o.t)drdθ

+r2(n0/2 + n1r/6 + n2r
2/24 + h.o.t.)dθ2 = 0.

As m0 = −8a7b7 	= 0 this equation factors in the product of two
equations in the standard form, as follows.

(22)

dr

dθ
= − 1

2
n0

m0
r2 +

1
6

3m1 − n0 + m0n1

m2
0

r3

− 1
24

(12m2
1n0 + m2

0n2 + 6l0n
2
0 − 6m0m2n0 − 4m0m1n1)
m3

0

r4

+h.o.t.

=
1
2
d2(θ)r2 +

1
6
d3(θ)r3 +

1
24

d4(θ)r4 + h.o.t.

(23)
dθ

dr
= − l0

m0
+ h.o.t.

The solutions of the nonsingular differential equation (23) defines
the radial foliation.

Writing r(θ, h) := h+q1(θ)h+q2(θ)h2/2+q3(θ)h3/6+q4(θ)h4/24+
h.o.t. as the solution of differential equation (22) it follows that:

(24)

q′1(θ) =0

q′2(θ) =d2(θ) = − n0

m0

q′3(θ) =3d2(θ)q2(θ) + d3(θ)

q′4(θ) =3d2(θ)q2(θ)2 + 4d2(θ)q3(θ) + 6d3(θ)q2(θ) + d4(θ)

As q1(0) = 0 it follows that q1(θ) = 0. Also qi(0) = 0, i = 2, 3, 4.
So it follows that q2(θ) = −

∫ θ

0
n0
m0

dθ. From the expression of n0, an
odd polynomial in the variables c = cos θ and s = sin θ, it follows that
q2(2π) = 0 and therefore Π′(0) = 1, Π′′(0) = 1.

Now, q3(θ) =
∫ θ

0 [q2(θ)q′2(θ) + d3(θ)]dθ.
Therefore q3(θ) = 1

2q2
2(θ) +

∫ θ

0
d3(θ)dθ.

So,

Π′′′(0) = q3(2π) =
∫ 2π

0

d3(θ)dθ.

A long calculation, confirmed by algebraic computation, shows that
q3(2π) = 0.
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Integrating the last linear equation in (24), it follows that:

q4(θ) = 3q2(θ)3 + 4q2(θ)
∫ θ

0

d3(θ)dθ + 2
∫ θ

0

q2(θ)d3(θ)dθ +
∫ θ

0

d4(θ)dθ.

Therefore,

Π′′′′(0) = q4(2π) = 2
∫ 2π

0

q2(θ)d3(θ)dθ +
∫ 2π

0

d4(θ)dθ.

Integration of the right hand member, corroborated by algebraic
computation, gives Π′′′′(0) =

π

210a5b5
Δ. This ends the proof. Q.E.D.

Remark 1. When Δ 	= 0 the foliation studied above spirals around
p. The point is then called a focal definite critical end point.

3.3. Principal Nets at Saddle Critical End Points
Let p be a saddle critical point of h as in equation (13) with the

finite region defined by h(u, v) > 0.
Then the differential equation (14) is given by

(25)
Ldv2 + Mdudv + Ndu2 = 0,

L(u, v) = − a3u2 + 2a2uv − 3aa12uv2 + (2a2a12 − 3aa21 − 2a30)u2v

+(aa30 + 2a2a21)u3 + (2a12 + aa03)v3 + h.o.t.

M(u, v) = − 2a2v2 + (4a30 − a2a12)uv2 + (a2a21 − 2aa30)u2v

+a2a30u
3 + (2aa12 − a2a03 + 4a21)v3 + h.o.t.

N(u, v) =av2[a2 − 2(aa21 + a30)u − 2(aa12u + a21)v] + h.o.t.

Proposition 6. Suppose that p is a saddle critical point of the sur-
face represented by w = h(u, v) as in Lemma 3. Then the behavior of
the extended principal foliations in the region (h(u, v) ≥ 0), near p, is
the following.

i) If aa30(a03a
3 + 3aa21 + 3a2a12 + a30) > 0 then the curvatures

of both branches of h−1(0) at p have the same sign and the
behavior is as in Fig. 7, left -even case.

ii) If aa30(a03a
3 + 3aa21 + 3a2a12 + a30) < 0 then the curvatures

of both branches of h−1(0) at p have opposite signs and the
behavior is as in the Fig. 7, right - odd case.
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Fig. 7. Curvature lines near saddle critical end point: even
case, left, and odd case, right.

Proof. In order to analyze the behavior of the principal lines near
the branch of h−1(0) tangent to v = 0 consider the projective blowing-up
u = u, v = uw.

The differential equation Ldv2 + Mdudv + Ndu2 = 0 defined by
equation (25) is, after some simplification, given by:

(26)
(−1

4
a2
30u + aa30w + O(2))du2 + (aa30u − 2a2w + O(2))dwdu

−(a2u + O(2))dw2 = 0.

To proceed consider the resolution of the singularity (0, 0) of equation
(26) by the Lie-Cartan line field X = (qGq ,Gq,−(qGu + Gw)), q = du

dw .
Here G is

G = (−1
4
a2
30u+aa30w+O(2))q2+(aa30u−2a2w+O(2))q−(a2u+O(2)).

The singularities of X , contained in axis q (projective line), are the
solutions of the equation q(2a − a30q)(6a − a30q) = 0.

Also,

DX(0, 0, q) =

⎛
⎝

1
2 (qa30(2a − a30q)) −2qa(a− a30q) 0
1
2 (a30(2a − a30q)) −2a(a− a30q) 0

0 0 A33

⎞
⎠

where A33 = 3a2 − 4aa30q +
3
4
a2
30q

2.

The eigenvalues of DX(0, 0, q) are λ1(q) = −2a2 +3aa30q−
1
2
a2
30q

2,

λ2(q) = 3a2 − 4aa30q +
3
4
a2
30q

2 and λ3(q) = 0.
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Therefore the non zero eigenvalues of DX(0) are −2a2 and 3a2. At
q1 = 2a

a30
the eigenvalues of DX(0, 0, q1) are 2a2 and −2a2. Finally at

q2 = 6a
a30

the eigenvalues of DX(0, 0, q2) are 6a2 and −2a2.
As a conclusion of this analysis we assert that the net of integral

curves of equation (26) near (0, 0) is the same as one of the generic
singularities of quadratic differential equations, well known as the Dar-
bouxian D3 or a tripod, [14, 17]. See Fig. (5).

Now observe that the curvature at 0 of the branch of h−1(0) tangent
to v = 0 is precisely k1 =

a30

a
and that h−1(0)\{0} is solution of equation

(25). So, after the blowing down, only one branch of the invariant curve
v =

a30

6a
u2 + O(3) is contained in the finite region {(u, v) : h(u, v) > 0}.

Analogously, the analysis of the behavior of the principal lines near
the branch of h−1(0) tangent to v = au can be reduced to the above
case. To see this perform a rotation of angle tan θ = a and take new
orthogonal coordinates ū and v̄ such that the axis ū coincides with the
line v = au.

The curvature at 0 of the branch of h−1(0) tangent to v = au is

k2 = −a03a
3 + 3aa21 + 3a2a12 + a30

3a
.

Performing the blowing-up v = v, u = sv in the differential equa-
tion (25) we conclude that it factors in two transversal regular foliations.

Gluing the phase portraits studied so far and doing their blowing
down, the net explained below is obtained.

The finite region (h(u, v) > 0) is formed by two sectorial regions
R1, with ∂R1 = C1 ∪ C2 and R2 with ∂R2 = L1 ∪ L2. The two regular
branches of h−1(0) are given by C1 ∪ L1 and C2 ∪ L2.

If k1k2 < 0 – odd case – then one region, say R1, is convex and ∂R1

is invariant for one extended principal foliation and ∂R2 is invariant for
the other one. In each region, each foliation has an invariant separatrix
tangent to the branches of h−1(0). See Fig. 7, right.

If k1k2 > 0 – even case – then in a region, say R1, the extended
principal foliations are equivalent to a trivial ones, i.e., to dudv = 0,
with C1 being a leaf of one foliation and C2 a leaf of the other one. In
the region R2 each extended principal foliation has a hyperbolic sector,
with separatrices tangent to the branches of h−1(0) as shown in Fig. 7,
left. Here C2 ∪ L1 are leaves of one principal foliation and C1 ∩ L2 are
leaves of the other one. Q.E.D.
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§4. Concluding Comments and Related Problems

We have studied here the simplest patterns of principal curvature
lines at end points, as the supporting smooth surfaces tend to infinity
in R3, following the paradigm established in [6] to describe the struc-
turally stable patterns for principal curvature lines escaping to infinity
on algebraic surfaces.

We have recovered here –see Proposition 1 – the main results of the
structurally stable inflexion ends established in [6] for algebraic surfaces:
namely the hyperbolic and elliptic cases.

In the present context a surface A(αc) with αc ∈ Ak
c is said to be

structurally stable at a singular end point p if the Cs, topology with s ≤ k
if the following holds. For any sequence of functions αc

n ∈ Ak
c converging

to αc in the Cs topology, there is a sequence pn of end points of A(αc
n)

converging to p such that the extended principal nets of αn = αc
n ◦ P,

at these points, are topologically equivalent to extended principal net of
α = αc ◦ P, at p.

Recall (see [6]) that two nets Ni i = 1, 2 at singular points pi i = 1, 2
are topologically equivalent provided there is a homeomorphism of a
neighborhood of p1 to a neighborhood of p2 mapping the respective
points and leaves of the respective foliations to each other.

The analysis in Proposition 1 makes clear that the hyperbolic and el-
liptic inflexion end points are also structurally stable in the C3 topology
for defining αc functions in the space Ak

c , k ≥ 4.
We have studied also six new cases –see Propositions 2 to 6 – which

represent the simplest patterns where the structural stability conditions
fail.

The lower smoothness class Ck for the validity of the analysis in the
proofs of these propositions is as follows. In Propositions 2 and 6 we
must assume k ≥ 4. In Proposition 5, clearly k ≥ 5 must hold.

In each of these cases it is not difficult to describe partial aspects
of possible topological changes –bifurcation phenomena– under small
perturbations of the defining functions αc.

However it involves considerably technical work to provide the full
analysis of bifurcation diagrams of singular end points and their global
effects in the principal nets.

We recall here that the study of the bifurcations of principal nets
away from end points, i.e., in compact regions was carried out in [13],
focusing the umbilic singular points. There was also established the con-
nection between umbilic codimension one singularities and their counter-
parts in critical points of functions and the singularities of vector fields,
following the paradigm of first order structural stability in the sense of
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Andronov and Leontovich [1], generalized and extended by Sotomayor
[20]. Grosso modo this paradigm aims to characterize the structurally
stable singularities under small perturbations inside the space of non-
structurally stable ones.

To advance an idea of the bifurcations at end points, below we will
suggest pictorially the local bifurcation diagrams in the three regular
cases studied so far.

Fig. 8. Bifurcation Diagram of Curvature lines near regular
end points: elimination of hyperbolic and elliptic
inflexion points

Fig. 9. Bifurcation Diagram of Curvature lines near
umbilic-inflexion end points. Upper row: D1 um-
bilic - hyperbolic inflexion. Lower row: D3 umbilic
- elliptic inflexion.
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The description of the bifurcations in the critical cases, however, is
much more intricate and will not be discussed here.

The full analysis of the non-compact bifurcations as well as their
connection with first order structural stability will be postponed to a
future paper.

Concerning the study of end points, see also [16], where Gutierrez
and Sotomayor studied the behavior of principal nets on constant mean
curvature surfaces, with special analysis of their periodic leaves, umbilic
and end points. However, the patterns of behavior for this class of
surfaces is non-generic in the sense of the present work.

We conclude proposing the following problem.

Problem 1. Concerning the case of the focal critical end point,
we propose to the reader to provide a conceptual analysis and a proof
of Proposition 5, avoiding long calculations and the use of Computer
Algebra.
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(r) does not imply (n) or (npf) for definable sets
in non polynomially bounded o-minimal structures.

David Trotman and Leslie Wilson

Abstract.

It is known that if two subanalytic strata satisfy Kuo’s ratio test,
then the normal cone of the larger stratum Y along the smaller X
satisfies two nice properties: the fiber of the normal cone at any point
of X is the tangent cone to the fiber of Y over that point; the projec-
tion of the normal cone to X is open (“normal pseudo-flatness”). We
present an example with X a line and Y a surface which is definable
in any non polynomially bounded o-minimal structure such that the
pair satisfies Kuo’s ratio test, but neither of the above properties hold
for the normal cone.

In [OT2] P. Orro and the first author defined a regularity condition
(re) for C2 stratifications which provides a way of quantifying Kuo’s ratio
test (r) [K], because for subanalytic stratifications, Whitney’s condition
(a) and (re) hold, for some e, 0 < e < 1, if and only if Kuo’s ratio test
(r) is satisfied. They further showed that if 0 < e < 1, (a + re) implies
rather good behaviour of the normal cone along strata: the special fibre
of the normal cone at a point x in a stratum X is equal to the tangent
cone to the normal slice to X through x (this property is denoted by (n)
in [OT2]), and the stratification is normally pseudo-flat (abbreviated
to (npf)). Thus for subanalytic stratifications, (r) implies both (n) and
(npf).

In the example below, which is not subanalytic, (r) holds, but nei-
ther (n) nor (npf) hold, and one can check that (re) fails for all 0 < e < 1,
so that in particular Verdier’s condition (w) fails ((w) is equivalent to
(a + r0)). Example 4.2 of [OT2] provides a different non-subanalytic
example without (n) or (npf), called a Kuo Escargot (cf. [OT1]), which
was (b)-regular and not (r)-regular, but this example was not definable
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in any o-minimal structure, due to spiralling. The example below is log-
analytic, so is definable in the o-minimal structure Rexp,an, but it is not
definable in any polynomially bounded o-minimal structure, by Miller’s
dichotomy [M] stating that an o-minimal structure is not polynomially
bounded if and only if it possesses the exponential function as a defin-
able function. By the same dichotomy, our example is definable in every
o-minimal structure which is not polynomially bounded.

It is straightforward to show that (r) implies (re) for some e, 0 < e <
1, for stratified sets whose strata are definable in a polynomially bounded
o-minimal structure, as the proof of the implication in [OT2] uses only
curve selection and the �Lojasiewicz inequality (see [DM] or [V]).

One can check easily that (rcod 1) fails for our example showing that
(r) does not imply (r∗) for definable sets in non polynomially bounded
o-minimal structures. The proof in [NT] that (r) implies (r∗) for sub-
analytic strata presumably works for polynomially bounded o-minimal
structures (but it would be good to have a complete proof of this).

One can also check that (b) holds for the example, showing that (b)
does not imply (b∗) along a stratum X for definable sets in non poly-
nomially bounded o-minimal structures, even when dimX = 1. Recall
from [NT] that (b) implies (b∗) for subanalytic strata if dimX = 1
because then (r) and (b) are equivalent, by [K].

Presumably, for definable sets in polynomially bounded o-minimal
structures, (r) implies (b), and (b) implies (r) if dim X = 1, so that then
(b) would imply (b∗) if dimX = 1.

In the example below the density is actually constant along the
small stratum, so in particular it is continuous. In 2000, G. Comte
[C] has shown continuity of the density along strata of any (r)-regular
subanalytic stratification (hence along 1-dimensional strata of any (b)-
regular subanalytic stratification). In 2003 G. Valette found a different
proof of this result [V] with a strengthened conclusion and has very
recently (2003) announced an extension to any (b)-regular subanalytic
stratification.

Are these results about the density true for definable sets in any
o-minimal structure ?

Definitions. Below k will denote an integer greater than or equal
to 2. Let S be a closed stratified subset of R

n, whose strata are differ-
entiable submanifolds of class Ck. For each stratum X of S denote by
CXS the normal cone of S along X , that is the restriction to X of the
closure of the set {(x, μ(xπ(x))) : x ∈ S − X} ⊂ R

n × Sn−1, where π is
the local canonical projection onto X , μ(x) is the unit vector x

‖x‖ , and
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here and throughout the paper pq denotes the vector q−p. In fact CXS
is the union of the normal cones CXYi, where {Yi} are the strata of S
whose closures contain X .

Condition (n): The fibre (CXS)x of CXS at a point x of X is the
tangent cone Cx(Sx) to the fibre Sx = S ∩ π−1(x) of S at x, for every
stratum X of S.

Normal pseudo-flatness (npf): The projection p : CXS → X is open
for every stratum X of S.

When a stratification satisfies two conditions, for example Whitney
(a)-regularity and (n)-regularity, we say it is (a+n)-regular. Subanalytic
stratifications satisfying (a + n) or (npf) have a normal cone with good
behaviour from the point of view of the dimension of its fibres. In fact
they satisfy the condition

dim(CXS)x < dimS − dimX − 1. (∗)

This is obvious for (a + n), while for (npf) it follows from (5.1.ii′)
of [OT2]. For differentiable stratifications one first needs to be able to
define the dimension.

Despite this limitation, the tangent cone Cx(Sx) to the fibre Sx =
S ∩ π−1(x) (hence the fibre (CXS)x of the normal cone, assuming (n))
can be quite arbitrary: recent work of Ferrarotti, Fortuna and Wilson
show that every closed semi-algebraic cone of codimension ≥ 1 is realised
as the tangent cone at a point of a certain real algebraic variety [FFW],
while Kwieciński and Trotman showed that every closed cone is realised
as the tangent cone at an isolated singularity of a certain C∞(b)-regular
stratified espace [KT].

Hironaka showed in [H] that a Whitney stratification (i.e. (b)-
regular) of an analytic set (real or complex) is normally pseudo-flat along
each stratum. J.-P. Henry et M. Merle [HM2] obtained (n) with S re-
placed by X ∪Y when X and Y are two adjacent strata of a subanalytic
Whitney stratification of X ∪ Y .

Every C2 (w)-regular stratification satisfies automatically (a) and
(re), i.e. (a + re). For subanalytic strata the combination (a + re)
is equivalent to the ratio test (r) introduced by T.-C. Kuo in 1971,
which implies Whitney’s condition (b) [K]; since [T] we know that (r)
is strictly weaker than (w) in the semialgebraic case, and there even
exist real algebraic examples [BT]. The equivalence of (b), (r) and (w)
for complex analytic stratifications was completed by Teissier in 1982
([Te2], [HM1]).
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In [OT2] it is proved that every (a + re)-regular stratification is
normally pseudoflat and satisfies condition (n). Hence for (r)-regular
stratifications which are definable in a polynomially bounded o-minimal
structure, (n) and (npf) hold.

We recall the definitions of the conditions (a) and (b) of Whitney,
(r) of Kuo [K], and (w) of Kuo-Verdier [Ve].

Let X and Y be two submanifolds of R
n such that X ⊂ Y , and let

π be the local projection onto X . Following Hironaka [H], denote by
αY,X(y) the distance of TyY to Tπ(y)X , which is

αY,X(y) = max{< μ(u), μ(v) >: u ∈ NyY − {0}, v ∈ Tπ(y)X},

and by βY,X(y) the distance of yπ(y) to TyY expressed as

βY,X(y) = max{< μ(u), μ(yπ(y))} >: u ∈ NyY − {0}},

where <, > is the scalar product on R
n.

For v ∈ R
n, the distance of the vector v to a plane B is

η(v, B) = sup{< v, n >: n ∈ B⊥, ‖n‖ = 1}.

Set
d(A, B) = sup{η(v, B) : v ∈ A, ‖v‖ = 1},

so that in particular

αY,X(y) = d(Tπ(y)X, TyY ).

Set also

RY,X(y) =
‖y‖αY,X(y)
‖yπ(y)‖ and WY,X(y, x) =

d(TxX, TyY )
‖yx‖ .

Definition. The pair of strata (X, Y ) satisfies, at 0 ∈ X :
condition (a) if, for y in Y ,

lim
y→0

αY,X(y) = 0,

condition (bπ) if, for y in Y ,

lim
y→0

βY,X(y) = 0,
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condition (b) if, for y in Y ,

lim
y→0

αY,X(y) = lim
y→0

βY,X(y) = 0,

condition (r) if, for y in Y ,

lim
y→0

RY,X(y) = 0,

condition (w) if, for y in Y and x in X , WY,X(y, x) is bounded near
0.

In [OT2] P. Orro and the first author introduced the following con-
dition of Kuo-Verdier type.

Definition. Let e ∈ [0, 1). One says that (X, Y ) satisfies condition
(re) at 0 ∈ X if, for y ∈ Y , the quantity Re(y) = ‖π(y)‖eαY,X (y)

‖yπ(y)‖ is
bounded near 0.

This condition is a C2 diffeomorphism invariant. It is Verdier’s
condition (w) when e = 0, hence (w) implies (re) for all e ∈ [0, 1). But,
unlike (w), condition (re) when e > 0 does not imply condition (a) : a
counter-example which is a semi-algebraic surface can be obtained by
pinching a half-plane {z ≥ 0, y = 0} of R

3, with boundary the axis
0x = X , in a cuspidal region Γ = {x2 + y2 < zp}, where p is an odd
integer such that p > 2

e , such that in Γ there are sequences tending to 0
for which condition (a) fails. Such an example will be (re)-regular.

Theorem[OT2]. Every (a + re)-regular stratification is normally
pseudo-flat and satisfies condition (n).

Corollary. For (r)-regular stratifications which are definable in a
polynomially bounded o-minimal structure, (n) and (npf) hold.

Now we recall the definition of E∗-regularity for E an equisingu-
larity condition, as in [OT1]. This notion came from the discussion of
B. Teissier in his 1974 Arcata lectures [Te1]. Teissier stated that one
requirement for an equisingularity condition to be “good” is that it be
preserved after intersection with generic linear spaces containing a given
linear stratum. Various equisingularity conditions have been shown to
have this property, notably Whitney (b)-regularity for complex analytic



468 D. Trotman and L. Wilson

stratifications ([Te2], [HM1]), and Kuo’s ratio test (r) and Verdier’s
condition (w) for subanalytic stratifications [NT].

Definition. Let M be a C2-manifold. Let X be a C2-submanifold
of M and x ∈ X . Let Y be a C2-submanifold of M such that x ∈ Y ,
and X ∩ Y = ∅. Let E denote an equisingularity condition (examples:
Whitney (b), (r), (w)). Then (X, Y ) is said to be Ecod k-regular at x

(0 < k < cod X) if there is an open dense subset Uk of the Grassmann
manifold of codimension k subspaces of TxM containing TxX such that
if W is a C2 submanifold of M with X ⊂ W near x, and TxW ∈ Uk,
then W is transverse to Y near x, and (X, Y ∩ W ) is E-regular at x.

Definition. (X, Y ) is said to be E ∗-regular at x if (X, Y ) is Ecod k-
regular for all k, 0 < k < cod X .

Theorem[NT]. For subanalytic stratifications, (r) implies (r∗)
and (w) implies (w∗).

Corollary. For subanalytic (b)-regular stratifications, (b∗) holds
over every 1-dimensional stratum.

In the log-analytic example below, (r) and (b) hold, but (r∗) and
(b∗) fail.

Example.
In R3 consider the graph Y of the function f(x, z), for z > 0, and

x and z small, where

y = f(x, z) = z − z

ln z
ln(x +

√
x2 + z2).

Note that limz→0 f(x, z) = 0.

Then let X be the x-axis, so that X ⊂ Y , and X and Y are disjoint
C∞ submanifolds of R3. We consider the closed stratified set S with
just 2 strata (X, Y ).

Remark 1. f(x, z) = −f(−x, z), i.e. f is an odd function of x.

Proof.

f(x, z) + f(−x, z) = 2z − z

ln z
[ln(x +

√
x2 + z2) + ln(−x +

√
x2 + z2)]

= 2z − z

ln z
[ln(x2 + z2 − x2)] = 2z − z.2 ln z

ln z
= 0.

Q.E.D.
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Remark 2. X ⊂ Y , because limz→0 f(x, z) = 0.

Proof. Obviously

lim
z→0

z = 0, and lim
z→0

1
ln z

= 0.

If x > c > 0, then | ln(x +
√

x2 + z2)| < | ln(2c)|, so that

lim
z→0

z ln(x +
√

x2 + z2) = 0.

By remark 1 we do not need to study the case of x < 0.
If both x and z tend to 0, consider the cases :
(i) |z|

|x| → 0. Then

|z ln(x +
√

x2 + z2)| < |z ln(2x)| < |x ln(2x)| → 0 as x → 0.

(ii) |x|
|z| is bounded. Then

|z ln(x +
√

x2 + z2)| ≡ |z ln z| → 0 as x → 0.

Q.E.D.

We prove below that the following five properties hold :

(1) (n) and (npf) fail at (0, 0, 0).
(2) (r) holds.
(3) (b) holds.
(4) (b∗) and (r∗) fail at (0, 0, 0).
(5) The density of S is constant along X.

Property 1. (n) and (npf) fail at (0, 0, 0).

Proof. We will show that the limits of secants from (x, 0, 0) to
(x, f(x, z), z) as (x, z) tends to (x0, 0) are the straight lines which in the
(y, z)-plane have equations

y = z if x0 > 0

y = σz for all σ ∈ [−1, 1] if x0 = 0 (1.1)

y = −z if x0 < 0.

However, for the secants from (0, 0, 0) to (0, f(0, z), z) as z tends
to 0, the limiting secant is y = 0. Hence (n) fails (the tangent cone to
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C0(S0) does not equal the fibre at 0 of the normal cone). Moreover (npf)
fails since for x0 = 0 the fibre at x0 of the normal cone is 0-dimensional,
while the fibre at 0 is 1-dimensional.

Proof of (1.1). First observe that, for all 0 < z < 1, the secant from
(0, 0, 0) to (0, f(0, z), z) has slope

f(0, z)
z

= 1 − ln z

ln z
= 0.

Take x0 > 0 and let (x, z) tend to (x0, 0). The slope of the secant from
(x, 0, 0) to (x, f(x, z), z) is

f(x, z)
z

= 1 − ln(x +
√

x2 + z2)
ln z

which tends to 1 as z tends to 0 and x tends to x0.
By symmetry (Remark 1), when x0 < 0 the limiting slope is −1.
Now suppose (x, z) tends to (0, 0).
By symmetry (Remark 1 again) it will be enough to study the case

x > 0 and to show that all the values σ ∈ [0, +1] are realised. So we
must show that the limits of

ln(x +
√

x2 + z2)
ln z

take all values in [0, 1] as x and z tend to 0 when x > 0.
First notice that if x < Cz for some positive constant C, then

lim
x→0,z→0

ln(x +
√

x2 + z2)
ln z

= 1,

because

ln(x +
√

x2 + z2) = ln z + ln

(
x

z
+

√(x

z

)2

+ 1

)
,

and the second term is bounded and non-negative.
So it remains to check that ln(x+

√
x2 + z2) takes all values in [0, 1],

when z = o(x). Write

ln(x +
√

x2 + z2)
ln z

=
ln x

ln z
+

ln
(

1 +
√

1 +
(

z
x

)2
)

ln z
.
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The second term on the right has a bounded numerator so goes to 0 as
(x, z) goes to (0, 0). Because 0 < z < x < 1, the first term on the right
belongs to (0, 1).

Let α ∈ (0, 1). On the curve x = zα,

ln x

ln z
= α,

so that

lim
ln(x +

√
x2 + z2)

ln z
= α.

On the curve x| ln z| = +1,

ln x

ln z
= x| ln x|,

with limit 0 as x tends to 0.
This completes the proof of (1.1), and hence the proof of Property

1. Q.E.D.

Property 2. (r) holds for the pair of strata (X, Y ) at (0, 0).

Proof. Recall that Kuo’s ratio test (r) holds when

|(x, y, z)|.d(T(x,0,0)X, T(x,y,z)Y )
|(y, z)| → 0

as (x, y, z) tends to (0, 0, 0) on Y .
Now,

d(T(x,0,0)X, T(x,y,z)Y ) =
|∂f
∂x |

|(∂f
∂x ,−1, ∂f

∂z )|
< |∂f

∂x
|.

And
|∂f
∂x |.|(x, y, z)|

|(y, z)| ≈
|∂f
∂x |
|z| .

√
x2 + z2

=
z

| ln z| .
1

x +
√

x2 + z2
.(1 +

x√
x2 + z2

).
√

x2 + z2

z

=
1

| ln z|
which tends to 0 as z tends to 0.

We check directly that (a) holds. As above, d(T(x,0,0)X, T(x,y,z)Y ) <

|∂f
∂x |.

But |∂f
∂x | = |z|

| ln z| .
1√

x2+z2 < 1
| ln z| , which tends to 0 as z tends to 0,

as required. Q.E.D.
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Note that although (r) holds, this argument does not show that
(re) (of [OT2]) holds. In fact we know already, by the main theorem of
[OT2], that (re) must fail, because (a) holds, while (n) and (npf) fail.

Property 3. (b) holds for (X, Y ) at (0, 0, 0).

Proof. We have just seen that (a) holds. Thus we need only prove
that (bπ) holds.

Again by remark 1, we need only treat the case x ≥ 0.
Suppose 0 < z < 1, and 0 < x, for x small.
Then x +

√
x2 + z2 ≥ z, so that

0 <
ln(x +

√
x2 + z2)

ln z
< 1. (∗)

Also

0 <
z2

x
√

x2 + z2 + x2 + z2
< 1. (∗∗)

The zy slope of the secant line from (x, 0, 0) to (x, f(x, z), z) is

f(x, z)
z

= 1 − ln(x +
√

x2 + z2)
ln z

.

The zy slope of the tangent in the z direction on Y is

∂f

∂z
(x, z) = 1 − ln(x +

√
x2 + z2)

ln z
− z

∂

∂z

(
ln(x +

√
x2 + z2)

ln z

)
.

To prove that Whitney (bπ) holds at (0, 0, 0) we must show that

lim
(x,z)→(0,0)

(
z

∂

∂z

(
ln(x +

√
x2 + z2)

ln z

))
= 0.

But

z
∂

∂z

(
ln(x +

√
x2 + z2)

ln z

)

=
1

ln z

(
z2

x
√

x2 + z2 + x2 + z2
− ln(x +

√
x2 + z2)

ln z

)
,

which tends to 0 as z tends to 0 for x small, by (∗) and (∗∗). This implies
that (bπ) holds, and hence that (b) holds for (Y, X) on a neighbourhood
of (0, 0, 0) in X . Q.E.D.
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Property 4. (b∗) and (r∗) fail at (0, 0, 0).

Proof. We intersect Y with planes {y = az,−1 < a < 1} to obtain

(1 − a)z =
z

ln z
ln(x +

√
x2 + z2),

which becomes
z1−a = x +

√
x2 + z2.

Squaring, we get x2 + z2 = z2−2a − 2xz1−a + x2 which simplifies to

x =
z1−a − z1+a

2
.

This curve in the xz-plane passes through (0, 0) if −1 < a < 1,
showing that (b∗) and (r∗) fail to hold, since Y ∩ {y = az} contains
curves passing through (0, 0, 0), and so (X, Y ∩ {y = az}) cannot be
(b)-regular, because (a) fails for (X, Y ∩ {y = az}), and hence (X, Y ) is
not (bcod 1)-regular and (b∗) fails, implying that (r∗) fails also. Q.E.D.

Property 5. The density of S is constant along X.

Proof. We show first that the tangent cone to S at (0, 0, 0) is the
half-plane {y = 0, z ≥ 0}.

Each definable curve on Y which passes through (0, 0, 0) and which
is not tangent to X has a projection to the (x, z)-plane tangent to some
line x = cz, where c is a nonzero constant. On such a curve,

y = z

(
1 − ln(cz + o(z) +

√
c2z2 + 2cz.o(z) + o(z2) + z2)

ln z

)

=
z ln(c + o(1) +

√
c2 + 2c.o(1) + 1)

ln z
= o(z).

Hence such a curve on Y is tangent to {y = 0}.
Now consider a curve whose projection to the (x, z)-plane is tangent

to the x-axis, so of the form (x, y(x, z), z(x)) where z = o(x). Then

y = z

(
1 − ln(x +

√
x2 + z2)

ln z

)

= O(z) = o(x),

so that again the curve itself is tangent to the x-axis. It follows that the
tangent cone to S at (0, 0, 0) is {y = 0, z ≥ 0}.
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It is easy to see that the tangent cone at (x0, 0, 0) equals {y = z} if
x0 > 0 and equals {y = −z} if x0 < 0.

It follows that the density of S at points of the x-axis has the con-
stant value 1/2. Q.E.D.
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Valuations and local uniformization

Michel Vaquié

Abstract.

We give the principal notions in valuation theory, the value group
and the residue field of a valuation, its rank, the compositions of val-
uations, and we give some classical examples. Then we introduce
the Riemann-Zariski variety of a field, with the topology defined by
Zariski. In the last part we recall the result of Zariski on local uni-
formization and give a sketch of the proof in the case of an algebraic
surface.

§ Introduction

In these notes, we are going to give an idea of the proof of the res-
olution of singularities of an algebraic surface by O. Zariski. This proof
is based on the theory of the valuations of algebraic function fields and
could be seen as one of the most important applications of this theory
in algebraic geometry.
In the first part of the paper we give the principal definitions and prop-
erties of valuations that we need for resolution. We don’t speak about
the problems of extension of valuations in a field extension, neither the
problems of ramification.
In the second part we define the Riemann-Zariski variety of a field, what
is called “abstract Riemann surface” or “Riemann manifold” by Zariski,
and we give the principal property of this space.
In the last part we give a sketch of the proof of local uniformization
in the case of an algebraic surface over an algebraically closed field of
characteristic zero, and how we can deduce the resolution.
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All the results on valuations of this paper are classical, we give a
proof of some of them, otherwise we send back the reader to the books of
Bourbaki ([Bo]), Endler ([En]), Ribenboim ([Ri]) or Zariski and Samuel
([Za-Sa]), or to the articles of Zariski and of the author ([Va]).

§1. Valuations

1.1. Valuation rings and valuations
A commutative ring A is called a local ring if the non-units form an

ideal, this ideal is the unique maximal ideal m of A and we note (A, m)
the local ring. The quotient field k = A/m is called the residue field
of (A, m). We don’t assume that the ring A is noetherian, in Zariski’s
terminology such a ring is called a “quasi-local ring”.
Let (A, m) and (B, n) be two local rings, we say that B dominates A,
and we note A � B, if A ⊂ B and m = A∩n. If we assume A ⊂ B, then
B dominates A if and only if m ⊂ n.
We deduce from the definition that if A is dominated by B, we have an
inclusion between the residue fields: A/m ⊂ B/n.

Example 1. If (A, m) is a noetherian local ring, the completion Â
of A for the m-topology dominates A.
Let A and B be two integral domains with A ⊂ B, then for any prime
ideal q in B, the local ring Bq dominates the local ring Ap where p is
the prime ideal of A defined by p = A ∩ q.
Let f : X −→ Y be a morphism between algebraic varieties, or schemes,
for any point x in X , the local ring OY,y dominates the local ring OX,x,
where y = f(x).

Let K be a field, the relation B dominates A, or A is dominated by
B, defines a partial ordering on the set of the local rings contained in
K. Then we can give the following definition.

Definition. Let V be an integral domain; then V is a valuation ring
of K if K is the fraction field of V and if V is a maximal element of the
set of local rings contained in K ordered by the relation of domination.
If V is an integral domain, we say that V is a valuation ring if V is a
valuation ring of its fraction field.

With this definition, it is easy to prove the existence of valuation
rings, more precisely, we have the following result.

Proposition 1.1. ([Bo], Chap. 6, §1, n◦2, Théorème 2, page 87.)
Let A be a subring of a field K and h : A −→ L be a morphism of A in
L an algebraically closed field, then there exists a valuation ring V of K
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with A ⊂ V and a morphism f : V −→ L which extends h and such that
max(V ) = f−1(0).

Proof. We consider the set H =
{
(B, f) / B ⊂ K and f : B → L

}
;

we order H by (B, f) � (C, g) if B ⊂ C and g extends f . Any totally
ordered subset

(
(Bα, fα)

)
of H has an upper bound (B, f) in H, with

B = ∪αBα, then by Zorn’s lemme the set H contains a maximal element
(W, g) and if we note p the kernel of g : W −→ L, the local ring Wp is
the valuation ring satisfying the required condition.

Corollary. Any local subring A of a field K is dominated by at least
one valuation ring V of K.

Remark 1.1. In the cases we shall consider, we have a ground field
k and we have the following result. Let A be a k-subalgebra of K and
h : A −→ L a k-morphism from A in an algebraically closed field L,
then there exists a valuation ring V of K wich is a k-algebra, with
A ⊂ V and a k-morphism f : V −→ L which extends h and such that
max(V ) = f−1(0). In particular we get that the ground field k is in-
cluded in V max(V ).

We are going to give now the principal characteristic properties of val-
uation rings.

Theorem 1.2. ([Bo], Chap. 6, §2, n◦2, Théorème 1, page 85.)
Let V be an integral domain, contained in a field K, then the following
conditions are equivalent:

a) V is a valuation ring of K;
b) let x ∈ K, then x �∈ V =⇒ x−1 ∈ V ;
c) K is the fraction field of V and the set of ideals of V is totally

ordered by inclusion;
c’) K is the fraction field of V and the set of principal ideals of V

is totally ordered by inclusion.

Remark 1.2. From the condition b), we deduce that any valuation
ring is integrally closed. In fact, we have the following result:

let A be an integral domain and K a field containing A, then the
intersection of all the valuation rings V of K with A ⊂ V is the integral
closure of A in K.

From the condition c), we deduce that any finitely generated ideal
of a valuation ring is principal.

Let Γ be an additive abelian totally ordered group. We add to Γ an
element +∞ such that α < +∞ for every α in Γ, and we extend the law
on Γ∞ = Γ ∪ {+∞} by (+∞) + α = (+∞) + (+∞) = +∞.
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Definition. Let A be a ring, a valuation of A with values in Γ is a
mapping ν of A in Γ∞ such that the following conditions are satisfied:

1) ν(x.y) = ν(x) + ν(y) for every x, y ∈ A,
2) ν(x + y) ≥ min

(
ν(x), ν(y)

)
for every x, y ∈ A,

3) ν(x) = +∞ ⇐⇒ x = 0.

Remark 1.3. The condition 1) means that the valuation ν is a homo-
morphism of A {0} with the multiplicative law in the group Γ, hence
we have ν(1) = 0 and more generally, for any root of unity z, i. e. zn = 1
for some n > 0, we have also ν(z) = 0 because Γ has no torsion.

From the conditions 1) and 3) it follows that if there is a valuation
ν on A, then A is an integral domain. More generally, if we have a
mapping ν : A −→ Γ∞ with the conditions 1), 2) and with ν(0) = +∞,
but if we don’t assume that ν takes the value +∞ only for 0, the set
P = ν−1{+∞} is a prime ideal of A and ν induces a valuation on the
integral domain A/P .
If A is an integral domain, any valuation ν on A with values in Γ extends
in a unique way in a valuation of the fraction field K of A with values
in Γ.
The set of elements of Γ vhich are values of elements of A {0} generates
a subgroup Γ′ of Γ and we have Γ′ = ν(K∗).

The valuation ν defined by ν(x) = 0 for any x in A {0} is called
the trivial valuation.

Proposition 1.3. ([Bo], Chap. 6, §3, n◦1, Proposition 1, page 97.)
Let ν be a valuation of A, then for any family

{
x1, . . . , xn

)
in A we have

the inequality:

ν
( n∑

i=1

xi

)
≥ min

{
ν(x1) . . . , ν(xn)

}
.

More over, if the minimum is reached by only one of the ν(xi) we have
the equality:

ν
( n∑

i=1

xi

)
= min

{
ν(x1) . . . , ν(xn)

}
.

Proposition 1.4. Let ν be a valuation of a field K with values in a
group Γ, then the set A of elements x of K with ν(x) ≥ 0 is a valuation
ring of K and the maximal ideal max(A) is the set of elements x of K
with ν(x) > 0.
Conversely, we can associate to any valuation ring V of K a valuation ν
of K with values in a group Γ such that V is the inverse image ν−1

(
{α ∈

Γ |α ≥ 0}
)
.
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Proof. We deduce from the conditions 1) and 2) of the definition of
a valuation that the set A = {x ∈ K | ν(x) ≥ 0} is a subring of K, and
by property b) of theorem 1.2 we get that A is a valuation ring.

To get the converse, we are going to construct the group Γ and
the mapping ν from the ring V . More generally, if C is an integral
domain with fraction field K, the set U(C) of invertible elements of C is
a subgroup of the multiplicative group K∗ and we call ΓC the quotient
group. The divisibility relation on C defines a partial order on ΓC ,
compatible with the group structure, and we deduce from the remark
following the theorem 1.2 that ΓC is totally ordered if and only if C is
a valuation ring. Then the canonical mapping K∗ −→ ΓC = K∗/U(C)
induces a valuation ν on K with C = {x | ν(x) ≥ 0} and with values in
the group ΓC .

Definition. The valuation ring V associated to the valuation ν of K
is called the valuation ring of ν and we note it V = Rν , and the field
κ(V ) = V/max(V ) is called the residue field of ν and we denote it κν .
The subgroup Γ′ = ν(K∗) of Γ is called the value group of ν and we note
it Γ′ = Γν . We deduce from the proof of the proposition that the value
group Γν is isomorphic to ΓV = K∗/U(V ). In general we shall assume
that Γ is the value group, i. e. that ν is surjective from K∗ into Γ.

We say that two valuations ν and ν′ of a field K are equivalent if
they have the same valuation rings, i. e. Rν = Rν′ .

Proposition 1.5. ([Bo], Chap. 6, §3, n◦2, Proposition 3, page 99.)
Two valuations ν and ν′ of K are equivalent if and only if there exists
an order preserving isomorphism ϕ of Γν onto Γν′ such that ν′ = ϕ ◦ ν.

We make no distinction between equivalent valuations and we iden-
tify them.

We often consider a fixed field k; all the fields K are extensions of k
and we say that a valuation ν of K is a valuation of K/k if the restriction
of ν to k is trivial, i.e. if for all elements x in k∗ we have ν(x) = 0.
If V is the valuation ring of K associated to the valuation ν, this is
equivalent to demand to V to be a k-algebra. The natural map k −→ V

has its image included in V max(V ), then we get an inclusion k ⊂ κν ,
i.e. the residue field of the valuation is also an extension of k.

1.2. Rank of a valuation and composite valuation
Definition. A subset Δ of a totally ordered group Γ is called a seg-

ment if Δ is non-empty and if for any element α of Γ which belongs to
Δ, all the elements β of Γ which lie between α and −α, i. e. such that
−α ≤ β ≤ α or α ≤ β ≤ −α, also belong to Δ.
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A subgroup Δ of Γ is called an isolated subgroup if Δ is a segment
of Γ.

Proposition 1.6. ([Bo], Chap. 6, §4, n◦2, Proposition 3, page 108.)
The kernel of an order preserving homorphism of totally ordered groups
of Γ in Γ′ is an isolated subgroup of Γ.
Conversely, if Δ is an isolated subgroup of a totally ordered group Γ,
the quotient group Γ/Δ has a structure of totally ordered group and the
canonical morphism Γ −→ Γ/Δ is ordered preserving.

The set of all the segments Δ of Γ is totally ordered by the relation
of inclusion, then we can give the following definition.

Definition. The ordinal type of the totally ordered set of proper
isolated subgroups Δ of Γ is called the rank of the group Γ.

Let ν be a valuation of a field K, with value group Γ, and let V be
the valuation ring associated to ν. For any part A of V containing 0 we
denote by ΔA the set of all the elements Γ∞ in the complementary of(
ν(A)

)
∪

(
−ν(A)

)
.

Theorem 1.7. ([Za-Sa], Chap.VI, §10, Theorem 14, page 40.) If
I is an ideal of V , I �= V , then ΔI is a segment in Γ. The mapping
I −→ ΔI is a bijection from the set of all proper ideals of V onto
the set of all segments of Γ, which is order-reversing for the relation of
inclusion.
Moreover, the segment ΔI is an isolated subgroup of Γ if and only if I
is a prime ideal of V .

The maximal ideal max(V ) is the prime ideal corresponding to the iso-
lated subgroup Δ = {0}, and the ideal (0) is the prime ideal correspond-
ing to the isolated subgroup Δ = Γ.

Definition. We define the rank of a valuation ν as the rank of its
value group.

Remark 1.4. From the theorem, we see that the set of the prime
ideals of the valuation ring V associated to the valuation ν is totally
ordered by inclusion and the rank of the valuation ν is by definition the
ordinal type of the set of prime ideals of V .

When the ordinal type of the set of prime ideals of the valuation
ring V is finite, we say that the valuation ν is of finite rank and we
denote rank(ν) = n with n ∈ N. Otherwise we say that the valuation is
of infinite rank.

Corollary. The rank of the valuation ν is equal to the Krull dimen-
sion of the valuation ring V associated to ν.
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For any element α in the group Γ we can define the ideals Pα(V )
and Pα+(V ) of the valuation ring V by:

Pα(V ) =
{
x ∈ V / ν(x) ≥ α

}
and Pα+

(
V ) =

{
x ∈ V / ν(x) > α

}
.

We can also define the Rees-like algebras introduced in [Te], 2.1, associ-
ated to this family of ideals:

Aν

(
Rν

)
=

⊕
α∈Γ

Pα

(
Rν

)
v−α ⊂ Rν [vΓ] and grν(V ) =

⊕
α∈Γ

Pα(V )/Pα+(V ) .

Remark 1.5. If the value group Γ is not isomorphic to the group of
integers Z, then there may exist ideals I of V which are different from
ideals Pα or Pα+ for all α in Γ.
If the value group Γ of ν is equal to Q, for any real number β > 0
in R Q, the set I =

{
x ∈ V / ν(x) ≥ β

}
, which is also equal to{

x ∈ V / ν(x) > β
}
, is an ideal of V , but there is no α in Γ such that I

is equal to Pα or Pα+.
If the value group Γ of the valuation ν is of rank bigger than one, and
if P is a prime ideal of the valuation ring V different from (0) and from
the maximal ideal max(V ), there doesn’t exist α in Γ such that P is
equal to Pα or to Pα+.

Proposition 1.8. ([Bo], Chap.6, §4, n◦1, Proposition 1, page 110;
[Va], Proposition 3.3, page 547.) Let V be a valuation ring of a field K.
a) Any local ring R with V ⊂ R ⊂ K is a valuation ring of K, and the
maximal ideal max(R) of R is contained in V and is a prime ideal of
V .
b) The mapping P �→ VP is a bijection from the set of prime ideals
of V onto the set of local rings R with V ⊂ R ⊂ K, which is order-
reversing for the relation of inclusion. The inverse map is defined by
R �→ max(R).

Proof. From the condition b) of theorem 1.2 we see that the ring R
is a valuation ring and that max(R) is an ideal of V . Since max(R) is
a prime ideal of R, it is also a prime ideal of V .
For any prime ideal P of V the local ring VP is such that V ⊂ VP ⊂ K,
and if P ⊂ Q we have VQ ⊂ VP . We can verify that the maximal ideal
PVP of the local ring VP is equal to P .

Let V be a valuation ring of a field K associated to a valuation ν
of value group Γ, and we assume that ν is of finite rank r. We denote
respectively Pi, Δi and Vi, 0 ≤ i ≤ r, the prime ideals of V , the iso-
lated subgroups of Γ and the local subrings of K containing V , with
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the relations Pi = max(Vi), Vi = VPi and Δi = ΔPi . We have the
inclusions:

(0)= P0 ⊂ P1 ⊂ . . . ⊂ Pr−1 ⊂ Pr = max(V )
V = Vr ⊂ Vr−1 ⊂ . . . ⊂ V1 ⊂ V0 = K

(0)= Δr ⊂ Δr−1 ⊂ . . . ⊂ Δ1 ⊂ Δ0 = Γ.

We shall study later the relations between the valuations νi associ-
ated to the valuation rings Vi and the valuation ν, more precisely the
relations between their value groups Γi and the isolated subgroups Δi

of Γ (cf. the proposition 1.11).

Example 2. The trivial valuation of K, i.e. the valuation ν defined
by ν(x) = 0 for all the non-zero elements x of K, is the unique valuation
of rank 0.

Example 3. The valuation ν of K is of rank one if and only if
the value group Γ of ν is isomorphic to a subgroup of (R, +). It is
equivalent to say that the group Γ is archimedean, i.e. Γ satisfies the
following condition: if α and β are any two elements of Γ with α > 0,
then there exists an integer n such that nα > β. The valuation ring V
associated to ν is of dimension 1 and we deduce from the proposition
that V is a maximal subring of K for the relation of inclusion.

Definition. We say that a totally ordered group Γ is a discrete group
if it is of finite rank r and if all the quotient groups Δi+1/Δi, where the
Δi are the isolated subgroups of Γ, are isomorphic to Z. It is equivalent
to say that the ordered group Γ is isomorphic to a subgroup of (Zn, +)
with the lexicographic order. We say that a valuation ν is discrete if its
value group Γ is a discrete group.

If the value group of ν is discrete of rank one, i.e. if ν is discrete
valuation of rank one, we can assume that the value group is Z.

Proposition 1.9. ([Bo], Chap. 6, §3, n◦6, Proposition 9, page
105.) Let A be a local integral domain, then the following conditions are
equivalent:

a) A is a discrete valuation ring of dimension 1;
b) A is principal;
c) the maximal ideal max(A) is principal and A is noetherian;
d) A is a noetherian valuation ring.

We see that in that case, if we assume that the value group Γ of the
valuation ν associated to the ring A is the ring Z, the maximal ideal
m = max(A) is generated by any element x in A such that ν(x) = 1.
Then any element y of the fraction field K of A can be written y = uxn,
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with u ∈ A m and with n ∈ Z, and we have ν(y) = n. We say that
the valuation ν is the m-adic valuation, i.e. the valuation defined by the
relation: ν(y) ≥ n if and only if y ∈ mn.
The only ideals of A are the ideals Pn(A) =

{
x ∈ A/ ν(x) ≥ n

}
,(cf.

remark 1.5), and Pn(A) is the principal ideal generated by xn.

Definition. Let Γ be a commutative group, then the maximum num-
ber of rationally independent elements of Γ is called the rational rank of
the group Γ. We define the rational rank of a valuation ν as the rational
rank of its value group Γ.

The rational rank is an element of N∪{+∞}, we denote it rat.rank(Γ),
and we have rat.rank(Γ) = dimQ

(
Γ ⊗Z Q

)
.

The rational rank of a group is zero if and only if Γ is a torsion
group. If Γ is a value group of a valuation, Γ is totally ordered, then
its rational rank is zero if and only if Γ = {0}, i.e. if and only if the
valuation is the trivial valuation.

Proposition 1.10. ([Bo], Chap. 6, §10, n◦2, Proposition 3, page
159.) Let Γ be a commutative group and Γ′ a subgroup of Γ. Then we
have the equality:

rat.rank(Γ) = rat.rank(Γ′) + rat.rank
(
Γ/Γ′) .

If Γ is a totally ordered group we have the inequality:

rank(Γ) ≤ rank(Γ′) + rat.rank
(
Γ/Γ′) .

Corollary. The rank of a valuation ν is never greater than its ra-
tional rank:

rank(ν) ≤ rat.rank(ν) .

Let ν be a valuation of a field K, with value group Γ and valuation
ring V , and we denote m the maximal ideal of V . If the rank of ν is
bigger than one, there exists a proper isolated subgroup Δ of Γ, Δ �= (0),
and let m′ the prime ideal of V associated to Δ by the theorem 1.7. We
know by proposition 1.8 that m′ is a prime ideal of V and that the local
ring V ′ = Vm′ is a valuation ring of K with m′ as maximal ideal and
such that V ⊂ V ′. We denote ν′ the valuation of K associated to V ′

and Γ′ the value group of ν′.

Proposition 1.11. ([Za-Sa], Chap.VI, §10, Theorem 17, page 43.)
a) The value group Γ′ is isomorphic to the quotient group Γ/Δ, and
the valuation ν′ : K∗ −→ Γ′ is the composition of ν : K∗ −→ Γ and
λ : Γ −→ Γ/Δ.
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b) The quotient ring V̄ = V/m′ is a valuation ring of the residue field
κν′ = V ′/m′ of the valuation ν′, and the value group of the valuation ν̄
associated to V̄ is isomorphic to Δ.

Proof. a) The valuations ν and ν′ are defined as the natural applica-
tions ν : K∗ −→ Γ = K∗/U(V ) and ν′ : K∗ −→ Γ′ = K∗/U(V ′). Then
we deduce from V ⊂ V ′ and m ⊂ m′ that U(V ) is included in U(V ′)
and that ν′ is equal to λ ◦ ν. We have to show that the kernel of λ is
isomorphic to the isolated subgroup Δ, which is a consequence of the
relation between the prime ideal m′ and Δ = Δm′ .
b) Since V is a valuation ring of K, the quotient ring V̄ is also a val-
uation ring of the fraction field K̄ of V̄ and we have K̄ = V ′/m′. To
show that the value group of the valuation ν̄ is equal to the group Δ it is
enough to remark that we have the exact sequence: 0 −→ K̄∗/U(V̄ ) −→
K∗/U(V ) −→ K∗/U(V ′) −→ 0.

Definition. ([Za-Sa], Chap.VI, §10.) The valuation ν is called the
composite valuation with the valuations ν′ and ν̄ and we write ν = ν′ ◦ ν̄.

Corollary. If ν is the composite valuation ν′ ◦ ν̄ we have the equal-
ities:

rank(ν) = rank(ν′) + rank(ν̄)

rat.rank(ν) = rat.rank(ν′) + rat.rank(ν̄) .

Conversely, if we have a valuation ν′ of a field K and a valuation
ν̄ of the residue field K̄ = κν′ , we can define the composite valuation
ν = ν′ ◦ ν̄.

Proposition 1.12. ([Va], Proposition 4.2, page 552.) Let ν′ be a
valuation of K with valuation ring V ′ and residue field κν′ = K̄ and
ν̄ be a valuation of K̄, then the composite valuation ν = ν′ ◦ ν̄ is the
valuation of the field K associated to the valuation ring V defined by
V =

{
x ∈ V ′ / ν̄(x̄) ≥ 0

}
.

We notice that the residue field of the composite valuation ν is equal
to the residue field κν̄ of the valuation ν̄.

Remark 1.6. If we have the valuations ν′ of K and ν̄ of κν′ , the
composite valuation ν = ν′ ◦ ν̄ defines an extension of the value group
Γ′ of ν′ by the value group Γ̄, i.e. an exact sequence of totally ordered
groups: 0 −→ Γ̄ −→ Γ −→ Γ′ −→ 0.
If this exact sequence splits, the value group Γ is isomorphic to the
group (Γ′ × Γ̄) with the lexicographic order. If the valuation ν′ is a
discrete valuation of rank one, i.e. for Γ′ � Z, the exact sequence always
splits and we can describe the composite valuation ν = ν′ ◦ ν̄ in the
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following way. The maximal ideal of the valuation ring V ′ associated to
ν′ is generated by an element u and we can associate to any non zero
element x in K the non zero element ȳ in the residue field κν′ which is
the class of y = x.u−ν′(x). The composite valuation ν is then defined by
ν(x) =

(
ν′(x), ν̄(ȳ)

)
.

Remark 1.7. If ν1 is a valuation of a field K and if ν2 is a valuation
of the residue field κ1 of ν1, we have defined the composite valuation
ν of K, ν = ν1 ◦ ν2. By induction we may define in the same way
the composite valuation ν = ν1 ◦ ν2 ◦ . . . ◦ νr, where each valuation νi

is a valuation of the residue field κi−1 of the valuation νi−1, 1 ≤ i ≤
r, with ν0 = ν. For any 1 ≤ t ≤ r, we decompose the valuation ν
as ν = ν′

(t) ◦ ν̄(t), where ν′
(t) = ν1 ◦ . . . ◦ νt is a valuation of K and

ν̄(t) = νt+1 ◦ . . . ◦ νr is a valuation of the residue field κν′
(t)

of ν′
(t), with

κν′
(t)

= κt. If we denote V(t) the valuation ring of K associated to ν′
(t),

the family of valuations
(
ν′
(1), . . . , ν

′
(r) = ν

)
corresponds to the sequence

V = V(r) ⊂ . . . ⊂ V(1) ⊂ K. We call the valuation ν = ν1 ◦ ν2 ◦ . . . ◦ νr,
the composite valuation with the family

(
ν1, ν2, . . . , νr

)
.

Let ν1 and ν2 be two valuations of a field K and let (V1, m1) and
(V2, m2) be the valuation rings respectively associated to ν1 and ν2. We
assume that there exists a valuation ring V of K, V �= K, which contains
the rings V1 and V2, then there exists a non trivial valuation ν of K such
that the valuations ν1 and ν2 are composite with ν. More precisely, there
exist two valuations ν̄1 and ν̄2 of the residue field κν with ν1 = ν ◦ ν̄1

and ν2 = ν ◦ ν̄2. This is also equivalent to say that there exists an non
zero subset m of V1 ∩ V2 which is a prime ideal of the two rings V1 and
V2.

Definition. ([Za-Sa], Chap.VI, §10, page 47.) Two valuations ν1

and ν2 of a field K are said independent if they are not composite with
a same non trivial valuation ν.
A family

{
ν1, ν2, . . . , νk

}
of valuations of a field K is called a family of

independent valuations if any two of them are independent.

In fact we can define a partial order on the set of all the valuations
of a field K by ν1 � ν2 if and only if V2 ⊂ V1, where Vi is the valuation
ring associated to νi, i = 1, 2. This equivalent to say that ν2 is composite
with ν1, i.e. that there exists a valuation ν̄ of the residue field κν1 such
that ν2 = ν1 ◦ ν̄. If ν1 and ν2 are two valuations of K, we can define
the valuation ν = ν1 ∧ ν2 as the “biggest” valuation ν such that ν � ν1

and ν � ν2. This valuation ν = ν1 ∧ ν2 is the valuation associated to
smallest valuation ring V of K which contains the valuation rings V1
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and V2 associated to ν1 and ν2. Then two valuations ν1 and ν2 of K are
independent if and only if ν1 ∧ ν2 is the trivial valuation.
If ν is a valuation of rank one, the valuation ring V associated to ν is
maximal among the valuation rings of K, i.e. the valuation ν is minimal
among the non trivial valuations of K. Then for any valuation ν′ of K,
ν and ν′ are not independent if and only if ν � ν′, i.e. if and only if ν′

is composite with ν. If ν and ν′ are two distinct valuations of K of rank
one, then ν and ν′ are independent.

The notion of independence of valuations is important because of
the following result which is called the approximation theorem.

Theorem 1.13. ([Za-Sa], Chap.VI, §10, Theorem 18, page 47.) Let{
ν1, ν2, . . . , νk

}
be a family of independent valuations of a field K; given

k arbitrary elements x1, . . . , xk of K and k arbitrary elements α1, . . . , αk

of the value groups Γ1, . . . , Γk of the valuations ν1, . . . , νk respectively,
then there exists an element x of K such that

νi(x − xi) = αi , i = 1, 2, . . . , k .

1.3. Extension of a valuation
Let K be a field and let L be an overfield of K. If μ is a valuation of

L, the restriction of μ to K is a valuation of K, the value group Γν of ν
is a subgroup of the value group Γμ and the valuation ring Rν associated
to ν is equal to Rμ ∩ K where Rμ is the valuation ring associated to μ.

Definition. We say that the valuation μ is an extension of the valu-
ation ν to L.

Remark 1.8. In fact the valuation ring Rν is dominated by the valu-
ation ring Rμ. More generally if V and W are valuation rings of K and
L respectively, we have W dominates V if and only if V = W ∩ K.
Since the valuation ring Rμ dominates the valuation ring Rν , we have
an inclusion of the residue fields κν ⊂ κμ.

Proposition 1.14. For any valuation ν of a field K and for any
overfield L of K, there exists at least one valuation μ of L wich is an
extension of ν.

Proof. By the corollary at the proposition 1.1 there exists at least
one valuation ring W of the field L which dominates the valuation ring
V associated to the valuation ν. Then the valuation μ associated to W
is an extension of ν.

Let ν be a valuation of a field K and let μ be any extension of ν
to an overfield L of K. We want to study the extensions Γμ and κμ of
respectively the value group Γν and the residue field κν of ν.
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Definition. The ramification index of μ relative to ν is the index of
the subgroup Γν in Γμ:

e(μ/ν) =
[
Γμ : Γν

]
.

The residue degree of μ relative to ν is the degree of the extension of the
residue fields:

f(μ/ν) =
[
κμ : κν

]
.

The ramification index and the residue degree are elements of N̄ = N ∪
{+∞}.

Remark 1.9. If μ′ is an extension of μ to an overfield L′ of L, then
μ′ is an extension of ν and we have the equalities:

e(μ′/ν) = e(μ′/μ)e(μ/ν) and f(μ′/ν) = f(μ′/μ)f(μ/ν) .

Proposition 1.15. Let ν be a valuation of a field K and let μ be
an extension of ν to an overfield L; if the field extension L|K is finite
of degree n, then we have the inequality

e(μ/ν)f(μ/ν) ≤ n .

We deduce that the ramification index e(μ/ν) =
[
Γμ : Γν

]
and the

residue degree f(μ/ν) =
[
κμ : κν

]
are finite.

Proof. Let r and s be two integers with r ≤ e(μ/ν) and s ≤ f(μ/ν),
and we want to show rs ≤ n. There exist r elements x1, x2, . . . , xr of L
such that for any (i, j) with i �= j, μ(xi) �≡ μ(xj) modΓν , and there exist
s elements y1, y2, . . . , ys in the valuation ring Rμ such that their images
ȳ1, ȳ2, . . . , ȳs in the residue field κμ are linearly independent over κν . It
is enough to show that the rs elements xiyj , 1 ≤ i ≤ r and 1 ≤ j ≤ s,
of L are linearly independent over K.
We assume that there exists a non trivial relation

(∗)
∑

ai,kxiyk = 0 , with ai,k ∈ K .

We choose an (j, m) such that for all (i, k) we have μ(aj,mxjym) ≤
μ(ai,kxiyk). Since μ(yk) = 0 for all the yk and since μ(xj) − μ(xi) /∈ Γν

for all i �= j, we have μ(aj,mxjym) �= μ(ai,kxiyk) for i �= j. If we multiply
the relation (∗) by (aj,mxj)−1 we get a relation

∑
bkyk + z = 0, with

bk = aj,k/aj,m ∈ Rμ ∩ K and z ∈ max(Rμ), then we get in the residue
field κμ the relation

∑
b̄kȳk = 0 with b̄m = 1. This is a non trivial

relation of linear dependence of the ȳk over κν , which is impossible by
hypothesis.
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Proposition 1.16. If L is an algebraic extension of K the quotient
group Γμ/Γν is a torsion group, i.e. every element has finite order, and
the residue field κμ is an algebraic extension of κν .

Proof. We can write L = lim→ Lα, where the fields Lα are finite
extensions of K. Then the value group is equal to

⋃
α Γα where

(
Γα =

μ(L∗
α)

)
is a filtered family of groups with

[
Γα; Γν

]
< +∞ for all the α.

If we denote κα the residue field of the valuation μ|Lα
, then the residue

field κμ is equal to lim→ κα where the κα are finite extensions of κν .

Remark 1.10. If K is an algebraic extension of k, the unique ex-
tension to K of the trivial valuation of k is also the trivial valuation
of K. Then if K is algebraic over k the unique valuation of K/k, i.e.
the unique valuation of K which is trivial on k, is the trivial valuation.
More generally, if K is any extension of k, a valuation of K/k is also a
valuation of K/k̄, where k̄ is the algebraic closure of k in K.

Let ν be a valuation of a field K with value group Γ and residue
field κ, then for any algebraic extension L of K and for any extension
μ of ν to L we can consider that the value group Γμ is contained in the
divisible closure Γ∗ of Γ and that the residue field κμ is contained in
the algebraic closue κ̄ of κ. The divisible closure Γ∗ of Γ is the quotient
of the group Γ × (N {0}) by the equivalence relation ∼ defined by
(α, p) ∼ (β, q) ⇐⇒ pβ = qα, endowed with the natural addition and
ordering.

Corollary. If L is an algebraic extension of K then the rank and
the rational rank of the valuation μ are equal respectively to the rank and
the rational rank of the valuation ν. Moreover if L is a finite extension
of K, μ is a discrete valuation if and only if ν is a discrete valuation.

Remark 1.11. If the extension L|K is algebraic but not finite, we
can find an extension μ of a discrete valuation ν of K which is not a
discrete valuation.

Let ν be a valuation on a field K and let L|K be an extension, then
we want to study the set of all the extensions μ of ν to L. We know that
the valuation ring V associated to ν is an integrally closed ring and we
consider the integral closure V̄ of V in the extension L. In general the
ring V̄ is not a local ring but we always have V̄ =

⋂
W where the rings

W are the valuation rings associated to all the extensions of ν to L. In
the case of an algebraic extension we have the following result.

Theorem 1.17. ([Bo], Chap. 06, §8, n◦6, Proposition 6, page 147.)
Let L|K be an algebraic extension and let ν be a valuation of K with
valuation ring V , then there is a bijection from the set of the maximal
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ideals of the integral closure V̄ of V in L onto the set of the extensions
of ν to L, which is defined in the following way:

for any maximal ideal p of V̄ the local ring V̄p is a valuation ring
of L which dominates V , and we associate to p the valuation μ of L
associated to V̄p.

We can deduce from the theorem that if W and W ′ are valuation
rings of L which dominate V , they are not comparable with respect to
the inclusion, then if μ and μ′ are two extensions of ν to L, they are
not comparable with respect to relation �. If the valuation ν is of finite
order, it’s a consequence of the corollary of the proposition 1.16 and of
the corollary of the proposition 1.11.

If L is a finite extension of K, for any valuation ν of K the set
V = VL(ν) of valuations μ of L which are extensions of ν to L is finite.
In fact we have the inequality card(V) ≤ [L : K]sep, where [L : K]sep

is the separable degree of the extension L|K. If the extension L|K
is purely inseparable, there exists only one extension μ of ν: for any
element x in L there exists an integer n ≥ 0 such that xpn

belongs to
K, where p is the characteristic of K, then the valuation μ is defined by
μ(x) = p−nν

(
xpn)

.
For a finite extension L|K we have the following important result:

Theorem 1.18. ([Za-Sa], Chap.VI, §11, Theorem 19, page 55 and
Theorem 20, page 60.) Let L be a finite extension of K of degree n, let
ν be a valuation of K and let μ1, μ2, . . . , μg be the extensions of ν to L.
If ei and fi are respectively the ramification index and the residue degree
of μi relative to ν, then:

e1f1 + e2f2 + . . . + egfg ≤ n .

If we assume that the integral closure V̄ in L of the valuation ring
V associated to ν is a finite V -module, then we have equality:

e1f1 + e2f2 + . . . + egfg = n .

Remark 1.12. If the extension L|K is separable and if ν is discrete
valuation of rank one, which is equivalent to say that the valuation ring
V is noetherian, the integral closure V̄ is a finite V -module and we
always have equality. But it is possible to find inseparable extension
L|K and a discrete rank one valuation ν of K, or a separable extension
L|K and a non-discrete valuation ν of K, such that the equality fails.

Let ν be a valuation of a field K and let L|K be a normal algebraic
extension. Then the Galois group G = Gal(L/K) acts transitively on
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the set V of the extensions of ν to L. To any extension μ of ν to L, we can
associate subgroups of G called the decomposition group Gd(μ) = GZ ,
the inertia group Gi(μ) = GT and the ramification group Gr(μ) = GV .
The ramification theory of valuations, which is the study of the proper-
ties of these groups, is very important part of the theory of valuations.
Since we don’t need it in the following, we are not going to develop this
theory here.

Let ν be a valuation of a field K and let ν′ be an extension of ν to
an extension K ′ of K of positive transcendence degree. We called V and
V ′, Γ and Γ′ and κ and κ′ respectively the valuation rings, the residue
fileds and the value groups of the valuations ν and ν′. We want to study
the relations between the transcendence degree of the extensions K ′/K
and κ′/κ and the rational rank and the rank of the quotient group Γ′/Γ.
We first consider the case K ′ = K(x), whith x transcendental over K.

Proposition 1.19. ([Bo], Chap. 6, §10, n◦1, Proposition 1 and
Proposition 2, page 157.) Let ν be a valuation of a field K with value
group Γ and residue field κ.
a) If Γ” is a totally ordered group which contains Γ and if ξ is an element
of Γ” satisfying the condition n.ξ ∈ Γ =⇒ n = 0, there exists a valuation
ν′ and only one which is an extension of ν to K ′ = K(x), with values
in the group Γ” and such that ν′(x) = ξ. Then the value group of ν′ is
equal to Γ′ = Γ + Z.ξ and the residue field κν′ of ν′ is equal to κ.
b) There exists a valuation ν′ and only one which is an extension of ν
to the field K ′ = K(x) such that ν′(x) = 0 and such that the image t of
x in the residue field κν′ is transcendental over κ. Then the value group
Γ′ of ν′ is equal to Γ and the residue field κν′ is equal to κ(t).

Remark 1.13. There may exist valuations ν′ which are extension of
ν to the extension K ′ = K(x) with value group Γ′ such that the quotient
Γ′/Γ is a nontrivial torsion group, or with residue field κ′ a non trivial
algebraic extension of κ.

Proof. For any element ξ of a totally ordered group Γ” containing
Γ, the map ν′ from the polynomial ring K[x] to Γ” by ν′(∑ ajx

j
)

=
min

(
ν(aj) + j.ξ

)
, is a valuation of K[x] which extends to a valuation ν′

of the field K ′ = K(x) and ν′ is an extension of ν.
In the first case, we see that if μ is any extension of ν with ν(x) = ξ

we have μ(aix
i) = ν(aj) + i.ξ and as for i �= j, ν(ai) + i.ξ �= ν(aj) + j.ξ,

we must have μ
(∑

ajx
j
)

= min
(
ν(aj)+ j.ξ

)
(cf. proposition 1.3). Then

there exists only one extension of ν which is the valuation ν′ that we have
defined, and the value group is obviously the group Γ+Z.ξ. Any element
y of K ′ = K(x) may be written y = xnb(1+u), with n ∈ Z, b ∈ K∗ and
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u ∈ K ′, ν′(u) > 0, then if ν′(y) = 0, i.e. if y is in V ′ max(V ′) where
V ′ is the valuation ring associated to ν′, n = 0 and the residue class ȳ
of y in κν′ is equal to the residue class of b in κ, and then κν′ = κ.

In the second case we want to show that there is only one exten-
sion μ of ν, and that this valuation μ is again defined by μ

(∑
ajx

j
)

=
min

(
ν(aj) + j.ξ

)
= min

(
ν(aj)

)
. Let y be in K ′, and we may assume

that y =
∑

ajx
j with aj ∈ V and with ν(al) = 0 for one index l. Then

by the proposition 1.3 we have μ(y) ≥ min
(
ν(aj)

)
= 0. The image ȳ of

y in the residue field κμ is equal to
∑

ājt
j , and since t is transcendental

over κ, we have ȳ �= 0 which is equivalent to μ(y) = 0.

We consider now the general case, K ′ is an extension of K with
transcendental degree tr.deg.K ′/K and let ν′ be an extension of a val-
uation ν of K to K ′. We denote V , κ, Γ and V ′, κ′, Γ′ respectively the
valuation ring, the residue field, the value group of ν and ν′.

Theorem 1.20. ([Bo], Chap. 6, §10, n◦3, Théorème 1, page 161.)
Let x1, . . . , xs be elements of the valuation ring V ′ such that their im-
ages x̄1, . . . , x̄s in the κ′ are algebraically independent over κ, and let
y1, . . . , yr be elements of K ′ such that the images of ν′(y1), . . . , ν′(yr)
in the quotient group Γ′/Γ are linearly independent over Z. Then the
r + s elements x1, . . . , xs, y1, . . . , yr of K ′ are algebraically independent
over K. If we denote ν” the restriction of the valuation ν′ to the
field K” = K(x1, . . . , xs, y1, . . . , yr), the value group Γ” of ν” is equal
to Γ + Z.ν′(y1) + . . . + Z.ν′(yr) and the residue field κ” is equal to
κ(x̄1, . . . , x̄s).

For a polynomial f =
∑

a(β,γ)x
βyγ in K[x1, . . . , xs, y1, . . . , yr], the

valuation of f is defined by:

ν′′(f) = min(β,γ)ν
′′
(
a(β,γ)x

βyγ
)

= min(β,γ)

(
ν
(
a(β,γ)

)
+

∑
1≤j≤r

γjν
′(yj

))
.

Proof. We make a proof by induction on r + s, and it is enough to
consider the two cases r = 1 and s = 0 or r = 0 and s = 1. Then the
result is a consequence of the proposition 1.19.

Corollary. a) We have the inequality:

rat.rank
(
Γ′/Γ

)
+ tr.deg.κ′/κ ≤ tr.deg.K ′/K .

Moreover if we have equality and if we assume that K ′ is a finitely
generated extension of K, the group Γ′/Γ is a finitely generated Z-module
and the residue field κ′ is a finitely generated extension of κ.
b) We have the inequality:

rank(ν′) + tr.deg.κ′/κ ≤ rank(ν) + tr.deg.K ′/K .
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Moreover if we have equality, and if we assume that K ′ is a finitely
generated extension of K and that Γ is discrete, i.e. Γ � (Zh, +)lex,
then the residue field κ′ is a finitely generated extension of κ and Γ′ is
discrete.

Example 4. Let K be a field and let ν be a valuation of K, then
from the theorem 1.20 there exists a unique extension ν′ of ν to the
purely transcendental extension K ′ = K(x1, . . . , xs) of K such that
ν′(xi) = 0 for all i and such that the images x̄1, . . . , x̄s in the residue field
κν′ are algebraically independent over κν . The valuation ν′ is defined
by

ν′
(∑

aβxβ
)

= minβ

(
ν
(
aβ

))
.

The valuation ν′ is called the Gauss valuation.
Let L/K be an extension of transcendence degree s, let ν be a valua-
tion of K and μ be an extension μ of ν to L such that tr.deg.κμ/κν =
tr.deg.L/K = s. Then there exist s elements x1, . . . , xs of L, alge-
braically independent over K such that L is an algebraic extension of
K ′ = K(x1, . . . , xs) and such that μ is the extension of a Gauss valuation
ν′ of K ′.

Let k be a field, K be an extension of k and we consider a valuation ν
of K/k, i.e. that ν is a valuation of K which induces the trivial valuation
on k, and let κ be the residue field of ν. We define the dimension of the
valuation ν by the following.

Definition. The dimension of the valuation ν is the transcendence
degree of the residue field κ of ν over the field k: dim(ν) = tr.deg.κ/k.

Remark 1.14. Let k be a field, K be an extension of k and let ν be
a valuation of K/k, with residue filed κ. We can apply the corollary in
the case of a valuation ν of K/k, where K is an extension of k and we
find the inequalities:

rank(ν) + dim(ν) ≤ rat.rank(ν) + dim(ν) ≤ tr.deg.K/k .

If we assume that K is a function field over k, i.e. that K is a finitely gen-
erated extension of k, and if we have the equality rat.rank.(ν)+ dim(ν) =
tr.deg.K/k then the value group Γ is a finitely generated Z-module and
the residue field κ is finitely generated over k, moreover if we have the
equality rank(ν)+ dim(ν) = tr.deg.K/k, the valuation ν is discrete.

Remark 1.15. Let k be a field, K be an extension of k and let ν be a
valuation of K/k which is composite ν = ν′ ◦ ν̄, where ν′ is a valuation of
K/k with residue field κ′ and ν̄ is a valuation of κ′/k. We deduce from
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the proposition 1.11 that the valuations ν and ν̄ have the same residue
field κ, and that we have the equalities rank(ν) = rank(ν′)+ rank(ν̄).
Hence, if we are in the case of equality for the rank for the valuation ν:

rank(ν) + dim(ν) = tr.deg.K/k ,

we are also in the case of equality for the rank for the valuations ν′ and
ν̄:

rank(ν′) + dim(ν′) = tr.deg.K/k ,
rank(ν̄) + dim(ν̄) = tr.deg.κ′/k .

We have the same result for the rational rank of the valuations ν,
ν′ and ν̄.

Definition. Let K be a field and let ν a valuation on K with value
group Γ and residue field κ. Let K∗ be an extension of K and let ν∗ be
an extension of ν to K∗, with value group Γ∗ and residue field κ∗, then
we say that the valued field (K∗, ν∗) is an immediate extension of the
valued field (K, ν) if the group Γ is canonically isomorph to Γ∗ and the
field κ is canonically isomorph to κ∗.

This equivalent to the following condition:

∀x∗ ∈ K∗ ∃x ∈ K such that ν∗(x∗ − x) > ν∗(x∗) .

A valued field (K, ν) is called a maximal valued field if there doesn’t
exist any immediate extension. It is possible to prove that for any val-
ued field (K, ν) there exists an immediate extension (K∗, ν∗) which is a
maximal valued field, but in general this extension is not unique ([Ku]).

1.4. Examples
Example 5. Prime divisor ([Za-Sa], Chap.VI, §14, page 88.)

Let K be a function field over a field k, of transcendence degree d, then a
prime divisor of K over k is a valuation ν of K/k which have dimension
d − 1, i.e. such that tr.deg.κ/k = d − 1 where κ is the residue field of
ν. Since the valuation ν is non trivial, we have rank(ν) ≥ 1, and we
deduce from the corollary of the theorem 1.20 that we have rank(ν) = 1,
hence we are in the case of equality for the rank for the valuation ν:
rank(ν)+ dim(ν) = tr.deg.K/k, the valuation ν is discrete of rank one,
i.e. its value group is isomorphic to Z, and its residue field κ is finitely
generated over k. We deduce from the proposition 1.9 that the valuation
ring V associated to ν is a noetherian ring.
Furthermore, we can always find a normal integral domain R, finitely
generated over k, having K as fraction field, and a prime ideal p of
height one of R, such that the valuation ring V is equal to the local ring
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Rp. The valuation ν is the “p-adic valuation”, i.e. the valuation defined
by ν(g) = max{n ∈ N / g ∈ pn}, for any g in R. If we consider the
affine algebraic variety X associated to R, X = SpecR, the prime ideal
p defines a prime Weil divisor D on X , i.e. a reduced irreducible closed
subscheme of codimension one, and the valuation ν is the valuation
defined by the order of vanishing along the divisor D. Moreover the
valuation ring associated to ν is equal to the local ring OX,D of the
generic point of D in X . Conversely, any prime Weil divisor D on a
normal algebraic variety X defines a prime divisor ν of the function
field K = F (X) of the variety X , and the valuation ring associated to
ν is the local ring OX,D.

Example 6. Composition of prime divisors
Let K be a function field over a field k, of transcendence degree d, and
let ν be a valuation of K/k of rank r and of dimension d − r. Then we
are in the case of equality for the rank in the corollary of the theorem
1.20, and we know that the value group Γ of ν is isomorphic to (Zr, +)lex
and that the residue field κ of ν is also finitely generated over k. We
deduce from the remark 1.15 that if we write ν as a composite valuation
ν = ν′ ◦ ν̄, with rank(ν′) = 1, then ν′ is a prime divisor of K and ν̄ is a
valuation of the residue field κ′ of ν′ which satisfies also the equality for
the rank. By induction we can write the valuation ν as the composite
of a family of valuations ν = ν1 ◦ ν2 ◦ . . . ◦ νr (cf remark 1.7). All the
valuations νi, 1 ≤ i ≤ r, are discrete valuations of rank one, the residue
field κi of the valuation νi is a function field over k and the valuation
νi+1 is a prime divisor of κi.

Example 7. Field of generalized power series ([Za-Sa], Chap.
VI, §15, Example 2, page 101.)
We want to construct a valuation with a preassigned value group. More
precisely, let Γ be a totally ordered group and let k be a ground field,
and we want to find a field K, extension of k, and a valuation ν of K/k
whose value group is isomorphic to the group Γ.
We define the ring R of generalized power series of a variable x with
coefficients in the field k and with exponents in the group Γ by the
following: R is the set of the expressions ξ of the form ξ =

∑
γ∈Γ cγxγ

whose support supp(ξ) = {γ ∈ Γ / cγ �= 0} is a well ordered subset of Γ.
We recall that an ordered set A is well ordered if any non empty subset
B of A has a minimal element. Then we can define an addition and a
multiplication on R in the usual way: for ξ =

∑
γ cγxγ and ζ =

∑
γ dγxγ
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in R, we put:

ξ + ζ =
∑

γ sγxγ with sγ = cγ + dγ ,

ξ.ζ =
∑

γ mγxγ with mγ =
∑

α+β=γ cαdβ ,

this last sum is well defined because since the supports of ξ and ζ are
well ordered sets, for any γ ∈ Γ, there exists only a finite number of
couples (α, β) in supp(ξ) × supp(ζ) with α + β = γ.
Hence we have a ring, in fact a k-algebra, and we denote it by R =
k[[xΓ]]. The ring R is integral, we call its fraction field K = Fr(R) the
field of generalized power series and we denote it by K = k((xΓ)).
We can define a valuation ν on K = k((xΓ)). Let ξ be an element of the
ring k[[xΓ]], ξ =

∑
γ∈Γ cγxγ , ξ �= 0, then we put ν(ξ) = min(supp(ξ)),

this is well defined because since the support of ξ is a non empty well
ordered subset of Γ, it has a minimal element; and for ξ = 0 we put
ν(0) = +∞. It is easy to prove that the valuation ν is a valuation of
K = k((xΓ)), which is trivial on k and such that its residue field κ is
equal to k and its value group is Γ.
Moreover, the valued field (k((xΓ)), ν) is maximal, i.e. there exist no
immediate extension. ([Ri], Chap. D, Corollaire au Théorème 2, page
103.)

Example 8. Valuations of k(x,y)/k
We are going to give two examples of valuations of K/k, where K is
the pure transcendental extension K = k(x, y) of k of degree 2. We
construct these valuations by their restrictions to the polynomial ring
R = k[x, y].
i) The first one is a valuation ν on R = k[x, y] whose value group is the
group of rational numbers Q.
We put:

ν(y) = 1 and ν(x) = 1 +
1
2

=
3
2

.

The “first” element z2 of R, i.e. a polynomial in x, y of minimal degree,
such that the value ν(z) is not uniquely determined by the values in
z0 = y and in z1 = x is the element z2 = x2 + y3. We must have
ν(z2) ≥ 3 and we put:

ν(z2) = 3 +
1
3

=
10
3

.

We can define a sequence (zn) of elements of R such that for any integer
n ≥ 2, the value ν(zn) is not determined by the values on ν in the zr

for r < n. For any n the value ν(zn) is a rational number γn =
pn

n + 1
,
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with pn a positive integer and (pn, n + 1) = 1. The sequence (zn) is
constructed by induction in the following fashion, we assume we have
found the elements zr, 0 ≤ r ≤ n and the values ν(zr) = γr, then we
put:

zn+1 = zn + ypn ,

with the value:

ν(zn+1) = γn+1 = pn +
1

n + 2
=

pn+1

n + 2
with pn+1 = pn(n + 2) + 1 .

We have constructed a valuation ν of R, hence a valuation of the
field K = k(x, y), whose value group is Q and it is easy to see that the
residue filed κ of ν is the ground field k.

There is another construction of such a valuation in [Za 1], I §6,
page 648.

More generally, for any preassigned value group Γ of R, we can con-
struct a valuation with value group Γ. ([Za-Sa], Chap.VI, §15, Example
3, page 102 or [ML-Sc].)

ii) The second example is what we call an analytic arc on the surface
A2

k = SpecR. ([Za 1], I §5, page 647.)
Let R̂ be the completion of the ring R, R̂ is the ring of power series
k[[x, y]], and let K̂ its fraction field K̂ = k((x, y)). We consider an
element t of R̂:

t = x +
+∞∑
i=1

ciy
i , ci ∈ k∗ for all i ≥ 1 ,

which is not algebraic over the field K.
We define the valuation ν̂ of K̂/k with values in the group Γ̂ = (Z2, +)lex,
by:

ν̂(y) = (0, 1) and ν̂(t) = (1, 0) .

For any element ξ of R̂, with ξ =
∑+∞

i=1 diy
i and d1 �= 0, we have

ν̂(ξ) = (0, 1), hence since the coefficients ci are non zero, for any N ≥ 1
we have:

ν̂
(+∞∑

i+n

ciy
i
)

= ν̂
(
yN

)
= (0, N) ,

then for any N ≥ 1 we get:

ν̂
(
x +

N−1∑
i=1

ciy
i
)

= (0, N) .
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We define the valuation ν on K = k(x, y) as the restriction to K

of the valuation ν̂ of K̂, then the value group Γ is equal to Z, i.e. the
valuation ν is a discrete valuation of rank one. But this valuation is not
a prime divisor, its residue field is equal to k.

We may describe the valuation ν on R in a different way. We have
an injective k-morphism ϕ of R = k[x, y] to the power series ring k[[y]]
defined by

ϕ(x) = x − t = −
+∞∑
i=1

ciy
i and ϕ(y) = y .

Then the valuation ν is the restriction to R of the y-adic valuation on
k[[y]].

Example 9. A non finitely generated residue field ([Za 2],
Chap.3 II , footnote 12, page 864.)
Let K be a function field over a field k and let ν be a valuation of
K/k, then if we don’t assume that we have the equality rat.rank(ν)+
dim(ν) = tr.deg.K/k, it may happen that the residue field κ of ν is not
finitely generated over k.

Let k be a field and K = k(x, y, z) be an extension of k with x, y
and z algebraically independent elements over k and we consider the
valuation ν defined by the formal power serie in y:

z = x1/2.y + x1/4.y2 + x1/8y3 . . . =
∑
n≥1

x1/2n

.yn .

We can give the following description of the valuation ν.
Let A = k[x, y, z] be the polynomial ring and let R = ∪n≥1k

[[
x1/2n

, y, z
]]

be the ring of formal power series in y, z and the x1/2n

, n ≥ 1. Let
f = z−

∑
n≥1 x1/2n

.yn be in R and R̄ be the quotient ring R/(f). Then
the map A −→ R̄ induced by A ⊂ R is an injection. We consider on R̄
the y-adic valuation μ, i.e. the valuation defined by the order in y. If we
denote k̄ the field k̄ = ∪n≥1k((x1/2n

)) and L the fraction field of R̄, L
is an extension of k̄ and μ is a discrete rank one valuation of L/k̄, then
the valuation ring W associated to μ is a noetherian k̄-algebra and the
residue field κμ is an extension of k̄. The valuation ν is the restriction
of μ to A, we have for instance ν(x) = 0, ν(y) = ν(z) = 1.
We shall see that the residue field κ of ν is not finitely generated over
k, in fact we have k̄ ⊂ κ, i.e. all the elements x1/2n

, for n ≥ 1, belong
to κ. If we denote by [u] the image in R̄ of any element u ∈ R, we
have μ([z/y − x1/2]) = 1 and the residue class of [z/y] in κμ is equal to
x1/2. Then we have also that x1/2 is the residue class of z/y in κ. In
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the same way we can write [z2/y2 − x] = [(z/y − x1/2)(z/y + x1/2)] =
[2x1/2x1/4y + . . .], and we find that the residue class of (z2 − xy2)/y3 in
κ is equal to 2x3/4, and we can continue in this fashion to show that all
the elements x1/2n

, for n ≥ 1, belong to κ.
Since the valuation ν is the restriction of discrete valuation μ, ν is also
a discrete valuation of rank one, i.e. its value group Γ is equal to Z,
hence rank.(ν) = rat.rank.(ν) = 1, and we have seen that the transcen-
dence degree of the residue field κ over k is equal to one, i.e. dim(ν) =
tr.deg.κ/k = 1. Then for this valuation we have rank(ν)+ dim(ν) = 2 <
tr.deg.K/k = 3.

§2. Riemann variety

2.1. Center of a valuation
Let K be a field and ν be a valuation of K, we denote V the valuation

ring associated to ν and m its maximal ideal.

Definition. Let A be a subring of K with A ⊂ V , i.e. such that
ν(x) is non negative for all the elements x of A, then the center of the
valuation ν on A is the ideal p of A defined by p = A ∩ m.

Remark 2.1. The center p of the valuation ν on A is the unique
prime ideal q of A such that the valuation ring V dominates the local
ring Aq. If A is a local ring, the center of ν on A is the maximal ideal
of A if and only if V dominates A.

Let X be an algebraic variety over a field k, i.e. an irreducible
reduced scheme of finite type over k, and let K = F (X) be the function
field of X , then K is a finitely generated extension of k and the dimension
of the variety X is equal to the transcendence degree of K over k. We
want to define the center of a valuation ν of K/k, or more generally of
a valuation ν of L/k where L is an extension of K, on the variety X .

We consider first that X is an affine variety, X = SpecA, where A is
an integral k-algebra of finite type, with A ⊂ L. If A is contained in the
valuation ring V associated to ν, i.e. if the valuation ν is non negative
for all the elements x ∈ A, the center of ν on X is the point ξ of X
corresponding to the prime ideal p where p is the center of the valuation
ν on A, i.e. p = A ∩ m. Since the center p is a prime ideal of A, the
closed subscheme Z of X defined by p is an integral subscheme, i.e. an
irreducible reduced subscheme of X , and ξ is the generic point of Z. We
say also that the closed subscheme Z is the center of the valuation ν on
the affine variety X . If A is not contained in the valuation ring V , then
we say that the valuation ν has no center on X or that the center Z of
the valuation ν on X is the empty set.
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We want to generalise this definition for any algebraic variety X
over k, with function field K, and say that the center of a valuation ν
of a field L, with K ⊂ L, on the variety X is a point ξ of X such that
the local ring OX,ξ is dominated by the valuation ring V associated to
ν. This is equivalent to say that we have a morphism of T = SpecV to
X such that the image of the closed point t of T , corresponding to the
maximal ideal of V , is the point ξ, and that this morphism induces the
inclusion K ⊂ L, i.e. that the image of the generic point of T is the
generic point of X .

Before defining the center of a valuation on any algebraic variety, we
shall recall the valuation criterions of separatedness and of properness.
([EGA], Proposition 7.23 and Théorème 7.3.8, or [Ha], Chap.II, Theorem
4.3 and Theorem 4.7.)

Valuative criterion of separatedness. let X and Y be noetherian
schemes, let f : X −→ Y be a morphism of finite type, then f is separated
if and only if for every field L, for every valuation ring V of L and for
every morphism g : U = SpecL −→ X and h : T = SpecV −→ Y forming
a commutative diagram

U = Spec L
g−→ X⏐⏐�i

⏐⏐�f

T = Spec V
h−→ Y

there exists at most one morphism h̄ : T −→ X making the whole dia-
gram commutative.

Valuative criterion of properness. let X and Y be noetherian
schemes, let f : X −→ Y be a morphism of finite type, then f is proper
if and only if for every field L, for every valuation ring V of L and
for every morphism g : U = SpecL −→ X and h : T = SpecV −→ Y
forming a commutative diagram

U = Spec L
g−→ X⏐⏐�i

⏐⏐�f

T = Spec V
h−→ Y

there exists a unique morphism h̄ : T −→ X making the whole diagram
commutative.

The valuative criterion of separatedness will give the unicity of the
center of a valuation on an algebraic variety and the valuative criterion
of properness will give a condition on a variety for any valuation to have
a center on X .
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Proposition 2.1. Let X be an algebraic variety over k and let ν be
a valuation of a field L, extension of the function field K = F (X) of X,
then there exists at most one point ξ of X such that the local ring OX,ξ

is dominated by the valuation ring V associated to ν.
Moreover the irreducible closed subvariety Z of X defined by Z = {ξ} is
the subset of the points x ∈ X whose the local ring OX,x is contained in
the valuation ring V associated to ν.

Proof. Since X is an algebraic variety, the morphism f : X −→
Speck is separated, and the unicity of the point ξ is a consequence of
the valuative criterion of separatedness, where the morphism g : U =
SpecL −→ X is defined by the inclusion F (X) ⊂ L and where the
morphism h : T = SpecV −→ Speck is defined because the valuation
ν is trivial on k. Then there exists at most one morphism h̄ : T =
SpecV −→ X , i.e. at most one point ξ on the variety X such that its
local ring OX,ξ is dominated by the valuation ring V .
To show that the set Z = {ξ} is equal to

{
x ∈ X /OX,x ⊂ V

}
, we can

assume that X is an affine variety X = SpecA and that Z is exactly the
closed subscheme of X defined by the center p of the valuation ν on A.
Then it is enough to see that for any prime ideal q of A we have p ⊂ q

if and only if Aq ⊂ V .

Definition. The center of the valuation ν on the variety X is the
point ξ, when it exists, defined in the proposition. We say also that the
center of the valuation ν on the variety X is the subvariety Z = {ξ}. If
there doesn’t exist ξ we say that the valuation ν has no center on the
variety X or that the center Z is empty.

The valuation ν may have no center on the variety X , for instance
if X is an affine variety X = SpecA, with A non contained in V . But, if
X is a projective variety, any valuation ν has a center on X . In fact we
have the following result. We recall that an algebraic variety X over a
field k is complete if the morphism X −→ Speck is proper.

Theorem 2.2. If X is a complete variety over a field k, any val-
uation ν of L/k, L an extension of the function field K = F (X) of X,
has a center on X.
Conversely, the variety X is complete over k if all the valuations ν of
K/k have a center on X.

Proof. If X is a complete variety, the morphism f : X −→ Speck is
proper, and we can apply the criterion of properness where the morphism
g : U = SpecL −→ X is defined by the inclusion F (X) ⊂ L and where
the morphism h : T = SpecV −→ Speck is defined because the valuation
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ν is trivial on k. Then we obtain a morphism h̄ : T = SpecV −→ X and
the image of the closed point of T is the center of the valuation ν on X .

If X is an algebraic variety over a field k, then the transcendence
degree of the function field K = F (X) of X over k is equal to the
dimension of X . Let ν be a valuation of the function field K, then
we are going to show that the dimension of ν, i.e. the transcendence
degree of the residue field κ of ν over k, is always bigger or equal to the
dimension of its center Z on X .

Proposition 2.3. Let X be an algebraic variety over a field k with
function field K = F (X), and let ν be a valuation of K/k with residue
field κ. Then if the center Z of ν on X is non empty whe have dimZ ≤
dim(ν). Moreover if we have a strict inequality, there exists a proper
birational morphism Y −→ X such that the dimension of the center of
ν on Y is equal to dim(ν).

Proof. Let Z be the center of the valuation ν on X and let ξ be
the generic point of Z. We denote by A the local ring OX,ξ of X in ξ
and by p its maximal ideal, then the valuation ring V associated to ν
dominates A and we have A/p ⊂ V/m, i.e. an inclusion of the function
field F (Z) of Z in the residue field κ. Since Z is an algebraic variety
over k we have dimZ =tr.deg.F (Z)/k, then dimZ ≤tr.deg.κ/k.

If the inequality is strict, let x1, . . . , xr be elements of V such that
their images x̄1, . . . , x̄r in κ is a transcendental basis of κ over F (Z),
and we can write xi = pi/q with pi and q in A, i = 1, . . . , r. We
consider an ideal I of OX which is locally generated by q, p1, . . . , pr and
Y the blowing up of I in X . Then the center Z ′ of ν on Y satisfies
F (Z)(x̄1, . . . , x̄r) ⊂ F (Z ′) and we obtain dimZ ′ = tr.deg.κ/k.

Remark 2.2. Let ν be a prime divisor of the function field K of an
algebraic variety X over k (cf exemple 5), let Z be the center of ν on
X and we assume that Z is non empty. Then we have codimZ ≥ 1 and
we deduce from the proposition 2.3 that there exists a proper birational
morphism π : Y −→ X such that the center D of ν on Y is a prime Weil
divisor, moreover if we choose Y normal, the valuation ring V associated
to ν is equal to the local ring OY,D of D in Y .
Conversely, if we consider a prime Weil divisor Z on an algebraic variety
X over k, then we deduce from the proposition 2.3 that any non trivial
valuation ν of the function field K of X with center Z is a prime divisor.
It is possible to show that the set of prime divisors ν of the function field
K of X which have center Z on X is finite and non empty. Moreover
if the variety X is normal there exists only one prime divisor ν with
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center Z, this the valuation ν associated to the local ring OX,Z , which
is a noetherian valuation ring ([Za-Sa]).

Let X be an algebraic variety over a field k with function field K =
F (X) and let ν be a valuation of K/k with residue field κ. We assume
that the transcendence degree of κ over k is positive, then there exists
non trivial valuations ν̄ of κ/k and we can define the composite valuation
ν′ = ν ◦ ν̄ which is also a valuation of K/k. If the center Z of ν on X is
non empty the function field K̄ = F (Z) of Z is contained in the residue
field κ and we can consider the center on Z of a valuation ν̄ of κ/k.

Proposition 2.4. The center on Z of the valuation ν̄ is equal to
the center on X of the composite valuation ν′ = ν ◦ ν̄.

Proof. We may assume that X is an affine variety X = SpecA. We
denote respectively V , V ′, V̄ and m, m′, m̄ the valuation rings associated
to ν, ν′, ν̄ and their maximal ideals, then we have (0) ⊂ m ⊂ m′ ⊂ V ′ ⊂
V ⊂ K and m̄ ⊂ V̄ = V ′/m ⊂ K̄ = V/m. The centers of the valuations
ν and ν′ on X are defined by the prime ideals p = A∩m and p′ = A∩m′

of A, and the center of the valuation ν̄ on Z = SpecĀ, with Ā = A/p is
defined by the prime ideal p̄ = Ā ∩ m̄ of Ā. Then the proposition is a
consequence of the equality p̄ = p′/p.

We have seen that if ν′ is a composite valuation ν′ = ν ◦ ν̄ of K/k,
where K is the function field of an algebraic variety X over k, the cen-
ter Z ′ of ν′ is contained in the center Z of ν. This a consequence of
the proposition 2.4 if the center Z of ν is non empty. If the center Z
is empty, no local ring OX,x for x ∈ X is contained in the valuation
ring V associated to ν, then none is contained in the valuation ring V ′

associated to ν′ since we have V ′ ⊂ V . More generally if the valuation
ν is composite with the family

(
ν1, ν2, . . . , νr

)
, and if we denote ν′

(t) the
valuation of K defined by ν′

(t) = ν1 ◦ . . .◦ νt, 0 ≤ t ≤ r, and ξt the center
of ν′

(t) on the variety X , we obtain a family
(
ξ1, ξ2, . . . , ξr

)
of points of X

such that ξt is a specialization of ξt+1, i.e. ξt ∈ {ξt+1}, for 1 ≤ t ≤ r−1.
Conversely, we have the following result.

Theorem 2.5. ([Za-Sa], Chap.VI, §16, Theorem 37, page 106.) Let
X be an algebraic variety over a field k of dimension d, let r be an
integer such that r ≤ d and let

(
ξ1, ξ2, . . . , ξr

)
be a family of points of

X such that ξt is a specialization of ξt+1, 1 ≤ t ≤ r − 1. Then there
exists a valuation ν composite with a family

(
ν1, ν2, . . . , νr

)
, such that

the center of the composite valuation ν′
(t) = ν1 ◦ . . . ◦ νt is the point ξt,

for t = 1, . . . , r.
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Remark 2.3. Let ν be a valuation of K/k of rank r, where K is
the function field of an algebraic variety X over k of dimension d. We
assume that the center Z of ν on X is non empty and that we have
dimZ = d− r. Then we are in the case of equality of the corollary of the
theorem 1.20 for the rank, and we know that we can write the valuation
ν as ν = ν1◦ν2◦. . .◦νr (cf example 6), where each valuation νi is a prime
divisor. In that case the center ξt of the valuation ν′

(t) = ν1 ◦ ν2 ◦ . . . ◦ νt

defines a divisor in {ξt+1} and the valuation ν is the composition of the
orders of vanishing along these divisors (cf remark 1.6).

2.2. Riemann variety
Let k be a field, we want to study the set of all the valuations ν of

K/k where K is an extension of k, i.e. the set of all the valuations ν of
K which are trivial on k.

Definition. ([Za-Sa], Chap.VI, §17, page 110.) The Riemann variety
or the Rieman manifold or the abstract Riemann surface of K relative
to k is the set of all the valuations ν of K which are trivial on k. We
denote this set by S = S(K/k).

More generally we can define the Riemann variety of K/k when k is
a subring of K, not necessarily a field. In that case the Riemann variety
is the set of all the valuations of K which are not negative on k, i.e. the
valuations of K such that the valuation ring V associated to ν contains
k.

Remark 2.4. We deduce from the remark 1.10 that the Riemann va-
riety S(K/k) and S(K/k̄) are isomorphic, where k̄ is the integral closure
of k in K, and if K is an algebraic extension of k, the Riemann variety
contains one unique element, the trivial valuation.

We give sometimes another definition of the Riemann variety, we
consider only the non trivial valuations ν of K which are trivial on k,
and we denote this set S∗(K/k), i.e. S(K/k) = S∗(K/k) ∪ {ν0} where
ν0 is the trivial valuation of K. With this definition, if K is an algebraic
extension of k, the Riemann variety S∗(K/k) is empty.

We introduce a topology in the Riemann variety S = S(K/k), by
defining a basis of open sets.

Definition. Let A be a subring of K containing k, then we denote
E(A) the set of all the valuations ν of K/k which are non negative on A,
i.e. the set defined by E(A) =

{
ν ∈ S(K/k) / A ⊆ Vν

}
, where Vν is the

valuation ring associated to ν. We define the topology in S by taking
as basis of open sets the family of all the sets E(A) where A range over
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the family of all k-subalgebras of K which are finitely generated over k.
We call this topology the Zariski topology.

If A and A′ are two finitely generated k-subalgebras, we denote
[A, A′] the subalgebra of K generated by A and A′. This algebra is
finitely generated over k and we notice that the intersection E(A) ∩
E(A′) is equal to E([A, A′]). Therefore the intersection of two basic
open subsets is again a basic open subset, and hence we have indeed
defined a topology in S. Any finitely generated k-subalgebra A of K
is of the form A = k[x1, . . . , xn], where x1, . . . , xn are elements of K.
Then we can write the basic open set E(A) = E(k[x1])∩ . . .∩E(k[xn]),
and hence the topology in S is generated by the open sets E(k[x]) ={
ν ∈ S(K/k) / ν(x) ≥ 0

}
, where x range K∗. We may also notice that

if A and A′ are two k-subalgebras of K with A ⊂ A′, then we have
E(A′) ⊆ E(A).

Theorem 2.6. Let ν be a valuation of K/k, then the closure of
the set {ν} consisting of the single element ν in S is the set of all the
valuations ν′ of K/k which are composite with ν:

{ν} =
{
ν′ ∈ S / ν′ is composite with ν

}
.

More precisely the closure {ν} is isomorphic to the Riemann variety
S(κ/k) of the residue field κ of the valuation ν.

Proof. Let ν and ν′ be two valuations of K, then ν′ is composite
with ν if and only if the valuation ring V ′ associated to ν′ is contained in
the valuation ring V associated to ν. If ν′ is in the closure of {ν}, for any
finitely generated k-subalgebra A of K we have ν′ ∈ E(A) =⇒ ν ∈ E(A),
i.e. A ⊆ V ′ =⇒ A ⊆ V , hence V ′ is contained in V . Conversely, il ν′ is
not in the closure of {ν}, there exists a finitely generated k-algebra A
with A ⊆ V ′ and A � V , hence V ′ is not contained in V .

We deduce from the proposition 1.12 that the map φ of {ν} to
the Riemann variety S(κ/k) of the residue field κ of ν, which sends a
composite valuation ν′ = ν ◦ ν̄ to the valuation ν̄ of κ, is a bijection.
By definition of the valuation ring V̄ associated to ν̄, we see that for
all the elements x in the valuation ring V , we have ν′(x) ≥ 0 if and
only if ν̄(x̄) ≥ 0, where x̄ is the image of x in κ, hence the map φ is an
homeomorphism.

Remark 2.5. Let ν0 be the trivial valuation of K, all the valuations
of K are composite with ν0. The valuation ring associated to ν0 is the
field K, hence the valuation ν0 belongs to all the non empty open sets
E(A), and ν0 is a generic point of the Riemann variety S(K/k).
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Even if we consider the variety S∗(K/k) = S(K/k) {ν0}, we see that
this space is never a Hausdorff space, in the case where k is a field.

Theorem 2.7. ([Za-Sa], Chap.VI, §17, Theorem 40, page 113.) The
Riemann variety S = S(K/k) is quasi-compact, i.e. every open covering
of S contains a finite subcovering.

Proof. We give a sketch of the Chevalley’s proof which is exposed
with more details in [Za-Sa] or in [Va].
Any valuation ν of K is uniquely determined by its valuation ring, hence
to know a valuation it is enough to know the sets of the elements x of
K where ν is positive, equal to zero or negative and we can consider the
Riemann variety S = S(K/k) as a subset of the set ZK of the applica-
tions of K to Z = {+, 0,−}.
We define a topology in Z by taking as open sets ∅, {0, +} and Z
and we introduce the product topology on ZK . Then the induced
topology in S has for basis of open sets the sets E defined as follows:
E = {ν ∈ S / ν(xi) ≥ 0, i = 1, 2, . . . , r} where {x1, x2, . . . , xr} is a finite
subset of K. This definition agree with the preceding definition, hence
we can consider the Riemann variety as a subset of the topological space
ZK .
We shall modify temporarily the topology on ZK , we introduce the dis-
crete topology on Z, then Z is compact and by Tychonoff’s theorem the
product space ZK is also compact. With this new topology S becomes
closed in ZK , hence is compact. Since this topology is stronger that the
preceding one, we deduce that the Riemann variety is quasi-compact
with the Zariski topology.

We shall show that the Riemann variety S(K/k) may be regarded as
the projective limit of an inverse system of integral schemes: S = lim←−Xα.
More precisely, if k is a field anf K a function field over k, i.e. a finitely
generated extension of k, we define a model M of K (over k) as an
algebraic variety M over k such that K is the function field of M . We say
that M is a complete, resp. projective, model of K if M is a complete,
resp. projective, algebraic variety over k.

We call L the set of local k-subalgebras P of K, and for any P we
denote m(P ) its maximal ideal: L =

{
P local k-algebra/ k ⊂ P ⊂ K

}
.

For any k-subalgebra A of K, non necessarily local, we call L(A) the
subset of L of the local k-algebras P containing A: L(A) =

{
P ∈ L / A ⊂

P
}
. Then we define a topology in L such that the set of the L(A), for

A ranging the finitely generated k-algebras, is a basis of open sets.
Let A be a finitely generated k-subalgebra of K and let SpecA be the
affine scheme associated to A, then we can define a map fA : L(A) →
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Spec A by fA(P ) = m(P ) ∩ A = p. We have a topology in SpecA, the
Zariski topology, such that the closed subsets are the sets V (I) =

{
p ∈

Spec A/ I ⊂ p
}
, where I range the ideals of A. Moreover the closed

subset V (I) is isomorphic to the affine scheme SpecA/I.

Proposition 2.8. The map fA is continuous from L(A) to SpecA,
and induces an homeomorphism of V (A) into SpecA, where V (A) is the
subset of L(A) defined by V (A) =

{
Ap / p ∈ Spec A

}
.

Proof. To show that the map fA is continuous, we have to show that
the inverse image of any open subset O of SpecA is open in L(A), and we
may consider only the open sets O = D(x) =

{
p ∈ SpecA/ x /∈ p

}
, and

we recall that D(x) is isomorphic to the affine scheme SpecAx. We shall
see that the inverse image f−1

A

(
D(x)

)
is equal to the open set L(Ax). A

local ring P of L(A) belongs to f−1
A

(
D(x)

)
if and only if the prime ideal

p = m(P ) ∩ A doesn’t contain x, i.e. x doesn’t belong to the maximal
ideal m(P ), and as x belongs to A ⊂ P and P is local this equivalent to
demand to x−1 to belong to P , hence to demand to Ax to be contained
in P .
By definition the map fA induces a bijection of the subset V (A) into
SpecA and we have to show that fA identify the topology in V (A) in-
duced by the topology of L to the Zariski topology in SpecA. Any open
set in V (A) is a finite intersection of sets O(x) of the following type
O(x) =

{
P ∈ V (A) / x ∈ P

}
, for x a non zero element of the fraction

field of A, and it is enough that the set fA

(
O(x)

)
is open in SpecA. In

fact we see that this set is the complementary in SpecA of the closed
subset V (I) where I is the ideal I = (A : x) =

{
c ∈ A/ cx ∈ A

}
. An

element x of the fraction field of A belongs to the local ring Ap if and
only if we have x = a/b with a ∈ A and b ∈ A p, i.e. if and only if
there exists b with b ∈ I and b /∈ p.

Remark 2.6. If M is a model of the field K, i.e. if M is an algebraic
variety over k with function field K, then we can associate to any point
x of M the local ring OM,x in L. By the preceding proposition, the map
f defined by f(x) = OM,x is a homeomorphism of M , with the Zariski
topology, into a subset of L.
In the same way, if we associate to any valuation ν of the Riemann
variety S = S(K/k) the valuation ring V = Vν , we see that S is a subset
of L. And by definition we see that the topology in L induces the Zariski
topology in S.

Let A be an integral k-algebra, finitely generated over k and with
fraction field K, then the set of valuations ν of the Riemann variety
S(K/k) which have a non empty center on the affine scheme X = SpecA
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is equal to the open set E(A). We can define a map gA of E(A) to X
by gA(ν) = x where x = p is the center of ν on X , and as the center p

is by definition equal to A ∩m(V ), where m(V ) is the maximal ideal of
the valuation ring V , this map is the restriction of the map fA, hence is
continuous. More generaly, we have the following result.

Proposition 2.9. Let X be an algebraic variety over k with function
field K. The set of valuations ν of K/k which have a non empty center
on X is an open set U(X) of the Riemann variety S(K/k) and the map
gX which associate to any valuation ν of U(X) its center xν on X is
continuous. Moreover, the variety X is complete if and only if the open
set U(X) is equal to the whole Riemann variety, and we get a continuous
map gX : S(K/k) −→ X.

Proof. We deduce from the proposition 2.1 that the center of a
valuation ν of K/k on X is well defined, and from the theorem 2.2 that
all the valuations ν of K/k have a center on X if and only if the variety
X is complete over k.
We can write the algebraic variety X as the union of a finite number of
affine open sets X =

⋃n
i=1 Xi, where Xi = SpecAi and Ai is a finitely

generated k-algebra with fraction field K. Then the subset U(X) of
the valuations ν in S(K/k) which have a center on the variety X is the
union of the open subsets E

(
Ai

)
, hence U(X) is open in S(K/k). The

restriction of the map gX on each subset E
(
Ai

)
is the continuous map

fAi , hence the map gX is also continuous of U(X) to X .

Let X and X ′ be two algebraic varieties over k, with the same
function field K, and let h : X ′ −→ X be a birational morphism of X ′

to X . Let ν be a valuation of K/k belonging to the open set U(X ′),
then there exits a birational morphism f ′ of T = SpecV to X ′, where V
is the valuation ring associated to ν, and the image ξ′ of the closed point
t of T is the center of ν on X ′. Then the composite morphism f = h◦f ′

is a birational morphism of T = SpecV to X , hence the valuation ν has
also a center on X , i.e. the valuation ν belongs to the open set U(X),
and this center ξ = f(t) is equal to the image h(ξ′) of the center of ν on
X ′.
We can also notice that for any point x′ of X ′, its image x = h(x′) is
the point of X such that the local ring OX,x is dominated by the local
ring OX′,x′ . Then if ξ′ is the center of the valuation ν on X ′, we have
the local ring OX′.ξ′ which is dominated by V , and since the relation of
domination is transitive, the local ring OX,ξ is dominated by V , where
ξ = h(ξ′), i.e. ξ is the center of ν on X .

We have shown that the open set U(X ′) is contained in the open set
U(X) and that the restriction of the map gX to U(X ′) is equal to h◦gX′.
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Moreover, if the morphism h : X ′ −→ X is proper, for any valuation ν
of K/k having a center ξ on X , we can apply the valuative criterion of
properness to the following commutative diagram:

U = Spec K
j−→ X ′⏐⏐�i

⏐⏐�h

T = Spec V
f−→ X

where the morphism f : T −→ X is defined by the existence of the center
of the valuation on X . Then we deduce the existence of a morphism
f ′ : V −→ X ′ and the image ξ′ of the closed point t of T is the center of
the valuation ν on X ′ and h(ξ′) is equal to ξ. Hence, if the birational
morphism h : X ′ −→ X is proper, any valuation ν having a center on X
has also a center on X ′, i.e. the open sets U(X) and U(X ′) are equal.

We have proven the following result.

Proposition 2.10. Let X and X ′ be two algebraic varieties over
a field k, with the same function field K. If there exists a birational
morphism h : X ′ −→ X, then we have the inclusion U(X ′) ⊂ U(X) in
the Riemann variety S(K/k).
Moreover, the morphism h : X ′ −→ X is proper if and only if we have
equality U(X ′) = U(X).

Let X be an algebraic variety over k, with function field K, and
let U = U(X) the open subset of the Riemann variety S = S(K/k)
of the valuations ν having a center on X . For any algebraic variety Y
such that there exists a proper birational morphism hY : Y −→ X , the
open subset U(Y ) of S is equal to U and the continuous map gY : U −→
Y satisfies gX = hY ◦ gY . Let Y and Y ′ be two algebraic varieties
with proper birational morphisms hY : Y −→ X and hY ′ : Y ′ −→ X ,
we denote Y ≺ Y ′ if there exists a morphism hY ′,Y of Y ′ to Y such
that hY ′ = hY ◦ hY ′,Y , in that case the morphism hY ′,Y is also proper
birational. We call D the inverse system of the (Y, hY ) with the relation
≺ and we may define the projective limit

X = lim←−
D

Y .

This projective limit is the subset of the product space
∏

D Y of the
elements x̄ =

(
xY

)
such that hY ′,Y

(
xY ′

)
= xY for any couple (Y, Y ′)

with Y ≺ Y ′. We introduce in X the topology induced by the product
topology on

∏
D Y , and the natural maps tY : X −→ Y are continuous.

Theorem 2.11. ([Za-Sa], Chap.VI, §17, Theorem 41, page 122.)
There exists a natural homeomorphism g : U −→ X of the open subset
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U = U(X) of the Riemann variety S(K/k) to the projective limit X =
lim←−D

Y . Hence the Riemann variety S(K/k) may be identified with the
projective limit of the inverse system C of the complete algebraic varieties
Z over k, with function field K: S = lim←−C

Z.

Remark 2.7. The algebraic varieties Y of the inverse system D are
models of the function field K, and if we have two algebraic varieties Y
and Y ′ in D with Y ≺ Y ′, we say that Y ′ dominates Y . To calculate the
projective limit X = lim←−D

Y of the inverse system D, we can consider a
cofinal subset D′ of D, i.e. a subfamily D′ of D such that for any Y in
D there exists an element Z in D′ with Y ≺ Z.
The algebraic varieties of the system C are the complete models of K,
and the Chow lemma says that the inverse system of projective models
P is cofinal in the inverse system of complete models, hence we have
also the equality S(K/k) = lim←−P

P .

Remark 2.8. The complete algebraic varieties are quasi-compact
topological spaces, hence we could deduce the quasi-compacity of the
Riemann variety as projective limit of quasi-compact spaces, but to
prove the theorem 2.11 we use the quasi-compacity of S(K/k).

Proof. For every couple (Y, Y ′) of the inverse system D with Y ≺ Y ′,
the maps gY : U → Y and gY ′ : U → Y ′ are continuous and satisfy
gY = hY ′,Y ◦ gY ′ . Hence we obtain a continuous map g of the open
subset U of S in the projective limit X , such that tY ◦ g = gY on U .
We shall show that this map g : U −→ X is onto. Let x̄ = (xY ) be a point
in X and let RY the local ring of the point xY = tY (x̄), RY = OY,xY .
Since for Y ≺ Y ′ the local ring RY is dominated by RY ′ , the ring
R =

⋃
Y ∈D RY is a local ring, contained in K, with maximal ideal

max(R) =
⋃

Y ∈D max(RY ). There exists a valuation ring V , associated
to a valuation ν of K/k, which dominates the local ring R. For all the
Y in D the valuation ring dominates also the local rings RY = OY,xY ,
then the center of the valuation ν on Y is xY , i.e. ν belongs to the open
subset U and its image by gy is xY , hence the image of ν by the map g
is the point x̄.
To show that the map g : U −→ X is injective, we shall show that for
any point x̄ = (xY ) of X , the local ring R =

⋃
Y ∈D RY defined by

RY = OY,xY , is a valuation ring of K. Let w be an element of K, and
we have to show that either w, either w−1 belongs to the ring R. We can
write w = u/v with u and v in R, and there exist Y ′ and Y ′′ in D such
that u ∈ RY ′ and v ∈ RY ′′ , and since there exists Y in D with Y ′ ≺ Y
and Y ′′ ≺ Y , we may assume that u and v belong to the same local ring
RY . Let I be a sheaf of ideals on the variety Y such that IY,xY is equal
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to the ideal (u, v) of the local ring RY = OY,xY and let r : Z −→ Y be
the blowing up of center I in Y . Then Z belongs to the inverse system
D and let xZ be the point in Z with xZ = tZ(x̄). By definition the
ideal IRZ is principal, i.e. is generated by one of the elements u or v.
If IRZ is generated by u, then w−1 = v/u belongs to RZ anf if IRZ

is generated by v, w = u/v belongs to RZ , hence we deduces that w or
w−1 belongs to R.
We have to prove that the map g : U −→ X is closed. We deduce from
the proposition 2.8 that the maps gY : U −→ Y are closed, then the map
g : U −→ X is also closed because for any closed subset F of U we have
g(F ) = X ∩

(∏
Y ∈D gY (F )

)
.

Proposition 2.12. A valuation ν of K/k is a closed point of the
Riemann variety S(K/k) if and only if the residue field κ of ν is an
algebraic extension of k, i.e. if and only if the valuation ν is zero-
dimensional.

Proof. The valuation ν is a closed point of S(K/k) if and only if
{ν} is reduced to one point, hence from the theorem 2.6, if and only if
the Riemann variety S(κ/k) of the valuations of the residue field κ of
ν which are trivial on k, contains one element, and we deduce from the
remark 2.4 that this is equivalent to demand to κ to be an algebraic
extension of the field k. By definition of the dimension of a valuation ν
of K/k, this also equivalent to say that the dimension of ν is zero.

§3. Uniformization and resolution of singularities

3.1. The general problem
Let X be a scheme, a point x of X is said non-singular, or simple, if

the local ring OX,x is a regular ring. If we assume that X is an excellent
scheme, for instance if X is a scheme of finite type over a field K, and
if X is reduced, the set of all the non-singular points of X is a dense
open subset Xreg of X . We say that the scheme X is non-singular if
all the points x of X are non-singular, i.e. if X = Xreg. Hence all the
connected components of X are irreducible. By definition a resolution
of singularities of a reduced scheme X is a proper birational morphism
π : X̃ −→ X of a non-singular scheme X̃ onto X , which induces an
isomorphism over the non-singular open subset Xreg of X . We may
also demand more conditions on the morphism π, for instance that the
exceptional locus, i.e. the closed subset E in X̃ where π is not an
isomorphism, E = X̃ π−1(Xreg), is a normal crossings divisor in X̃,
or that π is a composition of blowups in regular centers.
If we assume that X is an algebraic variety over a field k, any resolution
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of singularities π : X̃ −→ X of X will give a non-singular model X̃ of
the function field K = F (X) of X , i.e. a non-singular algebraic variety
X̃ over k with function field F (X̃) equal to K. Moreover, if the variety
X is complete, the variety X̃ is also complete because the morphism π
is proper, then we get a complete non-singular model X̃ of the function
field K. Then we may also define a problem, which is weaker than the
resolution of singularities, by the following:

let K be a function field over a field k, then does there exist a
complete non-singular model Y of K?

The stategy of Zariski to solve the problem of the resolution of sin-
gularities of an algebraic variety X over a field k, with function field
F (X) = K, is to study all the valuations of K/k, which belong to the
open subset U(X) of the Riemann variety S(K/k), and to try to find
for each valuation ν of U(X) a model Y of K such that the center ξ of
ν on Y is a non-singular point, i.e. such that the local ring OY,ξ is a
regular ring. This is this problem we call the local uniformization of a
valuation ν.
We may notice that there are also two ways to define the problem of the
uniformization, one we call the abstract form, or the invariantive form in
Zariski’s terminology, and one we call the strong form, or the projective
form in Zariski’s terminology ([Za 2]).

Uniformization problem in the abstract form. Let K be a
function field over a field k and let ν be a valuation of K/k, then does
there exist a complete model V of K over k on wich the center ξ of the
valuation ν is a non-singular point?

Uniformization problem in the strong form. Let X be an alge-
braic variety over a field k, with function field K, and let ν be a valuation
of K/k which belongs to the open subset U(X) of the Riemann variety
S(K/k), then does there exist a proper birational morphism π : X̃ −→ X

of an algebraic variety X̃ onto X, such that the center ξ̃ of the valuation
ν on X̃ is a non-singular point?

Remark 3.1. Zariski gives a different definition of the uniformization
problem in the strong form. He considers a model X of the field K and
a valuation ν of K/k with center ξ on X and he wants to find a new
model X̃ of K such that the center ξ̃ of ν on X̃ is a non-singular point
and such that the local ring OX,ξ is contained in the local ring OX̃,ξ̃.
Since the two local rings OX,ξ and OX̃,ξ̃ are dominated by the valuation
ring V associated to the valuation ν, we have OX,ξ contained in OX̃,ξ̃ if
and only if OX,ξ is dominated by OX̃,ξ̃. Hence if there exists a proper
birational morphism π : X̃ −→ X the local ring OX,ξ is contained in the
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local ring OX̃,ξ̃, and conversely if the local ring OX,ξ is contained in the
local ring OX̃,ξ̃, there exists locally in a neighbourhood of ξ̃ a birational
morphism π of X̃ to X with π(ξ̃) = ξ.

To see how the uniformization problem is a step to get the resolution
of singularities, we need the following result.

Proposition 3.1. (cf. [Za 2], Chap.II, §5, , page 855.) Let X be
an algebraic variety over a field k, with function field K, then the set of
valuations ν of K/k wich have a center ξ on X which is a non-singular
point of X is an open subset of the Riemann variety S(K/k).

Proof. The set V of valuations ν of K/k wich have a non-singular
center ξ on X is a subset of the open subset U = U(X) of valuation
which have a center on X , and to prove that V is open we have to show
that V is stable under generalization, i.e. that for any valuation ν in V

and for any valuation μ in U with ν ∈ {μ}, we have μ which belongs to
V . If ξ and ζ are the centers on X respectively of the valuations ν and
μ, then ζ is again a generalization of ξ, because the map gX : U −→ X
is continuous. Since the subset of non-singular points of an algebraic
variety is an open subset, we see that if ν has a non-singular center ξ on
X , then μ has also a non-singular center ζ on X .

Corollary. The uniformization theorem for zero-dimensional valu-
ations implies the uniformization theorem for all the valuations of K/k.

Proof. By the proposition it is enough to show that for any valuation
μ of K/k, there exists a zero-dimensional valuation ν such that ν ∈ {μ}.
If the valuation μ is of dimension d > 0, then by definition deg.tr.κ/k is
positive and there exists a zero-dimensional valuation ν̄ of κ/k. Hence
the composite valuation ν = μ◦ ν̄ is a zero-dimensional valuation of K/k

which belongs to {μ}.

However, to prove the uniformization theorem we do not prove the
result for zero-dimensional valuations and then use the corollary to get
the result for all the valuations of K/k, i.e. we don’t uniformize a zero-
dimensional valuation ν = μ◦ν̄ to get the uniformization of the valuation
μ. We do the converse, we first uniformize the valuation μ and we then
use this result to get the uniformization theorem for the valuations ν
which are composite with μ. The reason for this is that we get the
proof by induction on the rank of the valuations and we have seen that
for ν = μ ◦ ν̄ we have rank(ν) = rank(μ)+ rank(ν̄) by proposition 1.10
([Za 2], Chap.III, §7, , page 857).
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We may enonce the local version of the uniformization theorem in
the strong form in the following way. Let R be an integral finitely gen-
erated k-algebra, R = k[x1, x2, . . . , xn] and let ν be a valuation of K,
where K is the fraction field of R, K = Fr(R), with ν(x) ≥ 0 for all
the elements x in R, i.e. we assume that the valuation ν has a center
on R. We denote V the valuation ring associated to ν, m its maxi-
mal ideal and p = R ∩ m the center of ν on R. Then there exists a
finitely generated k-algebra S, with fraction field Fr(S) = K, i.e. we
have S = R[u1, u2, . . . , ut] with ui ∈ K for i = 1, 2, . . . t, such that the
center q = S ∩ m of ν on S is regular, i.e, such that the local ring Sq

is regular, and such that the local ring Rp is contained in the local ring
Sq. Since the local rings Rp and Sq are dominated by the valuation ring
V , we have also Rp dominated by Sq and the inclusion Rp ⊂ Sq induces
a birational correspondence π : SpecS ��� SpecR which is defined in a
neighbourhood of q and with π(q) = p. We may replace the ring S by
S∗ = S[v1, v2, . . . , vs] in such a way that the ring S∗ is a regular ring
and R is contained in S∗. This ring S∗ corresponds to a non-singular
affine open subvariety U = SpecS∗ of the affine variety SpecS, which
contains the non-singular point q, a such subvariety U exists because the
set of non-singular points of SpecS is open. Then we get a birational
morphism π∗ : SpecS∗ −→ SpecR with SpecS∗ a non-singular affine al-
gebraic variety and such that the valuation ν has a center on SpecS∗.
Let d be the dimension of the ring R, then d is equal to the transcendence
degree of the fraction field K over k. We can find d elements ξ1, ξ2, . . . , ξd

of K algebraically independent over k, and the field K is an algebraic
extension of k(ξ1, ξ2, . . . , ξd). Let X be the affine algebraic variety asso-
ciated to the k-algebra R. If we write R = k[X1, X2, . . . , Xn]/I, where
X1, X2, . . . , Xn are algebraically independent over k, then X is the closed
subvariety of the n-dimensional affine space An

k defined by the ideal I
of the polynomial ring k[X1, X2, . . . , Xn]. We say that the k-algebra R
is an hypersurface ring if we may write R = k[x1, x2, . . . , xd+1] with d =
dimR, i.e. if the affine variety X associated to R is an hypersurface in
the affine space Ad+1

k . In that case the ideal I is generated by only one
element, I = (f).

Proposition 3.2. (cf. [Za 2], Chap.IV, §9, , page 858.) Let k be a
field of characteristic zero and let K be a function field over k. If the
uniformization problem is resolved for all the k-algebras R with fraction
field K which are hypersurface rings, then it is resolved for any k-algebra
with fraction field K.

Proof. Let R = k[x1, x2, . . . , xn] be an integral k-algebra with frac-
tion field K and let ν be a valuation of K/k with valuation ring V , we
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assume that ν is non negative on R, i.e. R ⊂ V and let p = R ∩ m

be the center of ν on R. By the Emmy Noether normalization theorem
there exists d elements y1, y2, . . . yd, with d = dimR = tr.deg.K/k, such
that R is integral over the k-algebra k[y1, y2, . . . , yd]. Then K is a finite
extension of L = k(y1, y2, . . . , yd), and since the characteristic of k is
zero, there exists z in K with K = L(z) and we may assume z ∈ R. Let
R∗ be the k-algebra R∗ = k[y1, y2, . . . , yd, z], then R∗ satisfies R∗ ⊂ R,
Fr(R∗) = Fr(R) = K and R is integral over R∗. Moreover, by construc-
tion R∗ is an hypersurface ring. Let p∗ be the center of the valuation ν
on R∗, p∗ = R∗∩m, and by hypothesis there exists an uniformization of
ν over R∗, i.e. a k-algebra S with R∗ ⊂ S, Fr(S) = Fr(R∗) = K, and
such that the center q = S ∩m of ν on S is non-singular. Since the ring
Sq is regular, Sq is integrally closed in its fraction field K, then we get
also Rp ⊂ Sq and S is a uniformization of ν over R.

The most important result on the uniformization problem is the
theorem of Zariski for algebraic varieties over a field of characteristic
zero. For varieties over a field of positive characteristic, we have the
theorem for the dimensions d ≤ 3, and there are also results for some
special valuations ([Kn-Ku]).

Uniformization theorem. ([Za 2]) Let X be an algebraic variety
over an arbitrary ground field k of characteristic zero, with function field
K, and let ν be a valuation of K/k which belongs to the open subset U(X)
of the Riemann variety S(K/k), then there exists a proper birational
morphism π : X̃ −→ X of an algebraic variety X̃ onto X, such that the
center ξ̃ of the valuation ν on X̃ is a non-singular point.

Now, if we assume that we have the uniformization theorem we
shall see that the resolution is a consequence of a gluing problem of
a finite number of local uniformizations. More precisely, let X be a
complete algebraic variety over a field k, with function field K, and we
assume that for any valuation ν of K/k, there exists a proper birational
morphism π(ν) : X̃(ν) −→ X such that the center ξ(ν) of ν on X̃(ν)
is a non-singular point. By the proposition 3.1, there exists an open
subset V (ν) of the Riemann variety S(K/k), such that the center of
any valuation μ in V (ν) is also a non-singular point of X̃(ν). By the
quasi-compacity of the Riemann variety (theorem 2.7), there exists a
finite number of valuations ν1, ν2, . . . , νt of K/k such that the family
V (ν1), V (ν2), . . . , V (νt) is a covering of the Riemann variety S(K/k). We
have obtained a finite family of proper birational morphisms πi : X̃i −→
X , i = 1, 2, . . . , t, such that for any valuation ν of K/k there exists i

such that ν has a non-singular center on X̃i. Hence, the problem of the
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resolution of singularities is reduced to the following gluing problem.
Let X be an algebraic variety, and let π1 : X̃i −→ X and π2 : X̃2 −→ X
be two proper birational morphisms. Then, does there exist a variety Y
and two proper birational morphisms ρ1 : Y −→ X̃1 and ρ2 : Y −→ X̃2,
with π1◦ρ1 = π2◦ρ2, and such that the open subset Yreg of non-singular
points of Y satisfies ρ1

−1
(
X̃1reg

)
∪ ρ2

−1
(
X̃2reg

)
⊂ Yreg.

The Zariski proof of resolution of singularities of surfaces over an
algebraically closed field k of characteristic zero is the first algebraic or
arithmetic proof. He used the uniformization theorem and the theory
of integrally closed ideals to show that we can obtain the resolution of
singularities by a finite sequence of normal blowing ups ([Za 1]. Zariski
give a new proof of the resolution of singularities for surfaces and later
a proof of resolution of singularities for three dimensional varieties over
an arbritary ground field of characteristic zero by using the method of
the uniformization of valuations and by showing that it is possible to
solve the gluing problem ([Za 3], [Za 4]).

3.2. The case of algebraic surfaces
In this section, we give an idea of the Zariski proof of the uniformiza-

tion theorem for surfaces over an algebraically closed field of character-
istic zero ([Za 1]).

Let k be an algebraically closed field of characteristic zero, let K
be a function field over k with transcendence degree d = 2. First of all
we shall study all the valuations ν of K which are trivial on the ground
field k. Let ν be a non trivial valuation of K/k, we recall that we have
the inequalities (remark 1.14):

rank(ν) + dim(ν) ≤ rat.rank(ν) + dim(ν) ≤ tr.deg.K/k = 2 ,

where the dimension of the valuation is the transcendence degree of the
residue field κ of ν over the ground field k. Since the valuation ν is non
trivial its rank is positive, then we have the four following possibilities:

i) rank(ν) = 1 = rat.rank(ν) = 1 and dim(ν) = 1 .
ii) rank(ν) = 1 = rat.rank(ν) = 1 and dim(ν) = 0 ;

iii) rank(ν) = 1 < rat.rank(ν) = 2 and dim(ν) = 0 ;
iv) rank(ν) = 2 = rat.rank(ν) = 2 and dim(ν) = 0 ;

We are going to give a description of the valuation ν in the four
cases.

Remark 3.2. Since K is finitely generated over the ground field k,
we deduce from the corollary of the theorem 1.20 that in the cases i),
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iii) and iv) the value group Γ of the valuation ν is finitely generated
over Z and the residue field κ is finitely generated over k, and moreover
in the cases i) and iv) the value group Γ is discrete, i.e. is isomorphic
to (Z, +) or to (Z2, +)lex.
Moreover since we have assumed that the field k is algebraically closed,
in the cases ii), iii) and iv) the residue field κ, which is algebraic over
k, is equal to k.

i) rank(ν) = rat.rank(ν) = 1, dim(ν) = 1
The valuation ν is a prime divisor of the function field K (cf example

5). If X is a model of the field K such that the valuation ν has a center
ξ on X , the dimension of the center Z = {ξ} is either zero, i.e. ξ is a
closed point of X , either a curve, which we may call an algebraic arc on
X .
Let U = SpecR be an affine open neighbourhood of ξ in X , then R is
contained in the valuation ring V associated to ν, and let p the center
of ν in R, i.e. the prime ideal of R corresponding to ξ. There exists an
affine normal model Y = SpecS of K, i.e. S is a finitely generated k-
algebra, integrally closed in its fraction field K, and there exists a prime
ideal q of S with height one, such that R ⊂ S and Sq = V . Hence the
valuation ν is the q-adic valuation, and we may write ν(f) = orderq(f)
for any element f in S.
The residue field κ of the valuation ν is a function field of transcendence
degree one over the ground field k. Let C be the center of the valuation
ν on SpecS, i.e. let C be the affine algebraic curve defined by the prime
ideal q, then the residue field of the valuation is the function field of C:
κ = F (C).

ii) rank(ν) = rat.rank(ν) = 1, dim(ν) = 0
We consider first the case where the valuation ν is discrete, i.e. that

its value group Γ is isomorphic to Z, and we may assume Γ = Z. Let u
be an element of the field K such that ν(u) = 1. Then for any element
x in K, x �= 0, we have ν(x) = n0 with n0 ∈ Z, hence ν(x/un0) = 0.
Since the residue field κ of the valuation ν is equal to k, there exists a
uniquely determined element c0 of k such that x/un0 and c0 have the
same image in κ, i.e. such that ν(x/un0 − c0) > 0. Hence we may define
x1 in K such that:

x = c0u
n0 + x1, with ν(x1) = n1 > n0 .

By induction we may construct uniquely determined sequences (ci) in
k, (ni) in Z and xi in K by:

x = c0u
n0 +c1u

n1 +c2u
n2 + . . .+ci−1u

ni−1 +xi with ν(xi) = ni > ni−1 .



Valuations and local uniformization 519

Let ξ(x) =
∑

i≥0 ciu
ni be the power series expension for x, hence the

map x �→ ξ(x) defines an injective morphism of K to the field k((u)) of
integral power series of u with coefficients in k. The restriction to K of
the u-adic valuation of k((u)), i.e. the valuation by the order in u, is the
valuation ν.
If we choose any model X of K such that the valuation ν has a center on
X , for instance if we choose a complete model of K, then the center of
the valuation is a closed point p of X because the dimension of the center
is always non greater than the dimension of the valuation. In a neigh-
bourhood of the center p, we may choose coordinates (x1, x2, . . . , xn),
i.e. we choose an affine neighbourhood U = Spec k[x1, x2, . . . , xn], with
ν(xi) ≥ 0 for i = 1, 2, . . . , n, and we may write the power series expen-
sions for these coordinates:

xi = c0,iu
n0,i + c1,iu

n1,i + c2,iu
n2,i + . . . 1 ≤ i ≤ n .

These expensions represent an analytic arc on U which is not algebraic,
i.e. which is not supported by an algebraic curve in U .

We consider now the case where the value group Γ is not discrete, by
hypothesis we may assume Z ⊂ Γ ⊂ Q. There exists a family of prime
numbers P = {pi}, which may be finite or infinite, and for any prime
number pi in P a number ni, 1 ≤ ni ≤ ∞ such that the value group Γ
consists of all the rational numbers whose denominators are of the form
pa1
1 pa2

2 pn3
3 . . . with 0 ≤ ai ≤ ni for any i.

Since Γ is non discrete, the denominators of the elements of Γ are not
bounded, hence if all the numbers ni are finite, the family P must be
infinite.

iii) rank(ν) = 1, rat.rank(ν) = 2, dim(ν) = 0
Since the field K is finitely generated over k, we deduce from the

corollary of the theorem 1.20 that the value group Γ is finitely generated
subgroup of R with dimQ(Γ ⊗Z Q) = 2. Then the group Γ is gener-
ated by two elements linearly independent over Q and we may assume
Γ = Z ⊕ βZ, with β ∈ R Q and β ≥ 0.
Let x and y be elements of K with ν(x) = 1 and ν(y) = β, then x, y
are algebraically independent over k and K is a finite extension of the
field K∗ = k(x, y). We denote R∗ the polynomial ring R∗ = k[x, y]
and ν∗ the restriction of the valuation ν to K∗, since β /∈ Q the
value ν∗(xiyj) = i + jβ is equal to ν∗(xi′yj′) = i′ + j′β if and only
if (i, j) = (i′, j′), then the valuation ν∗ is defined on the polynomial ring
R∗ by the following: for any polynomial f =

∑
i,j ai,jx

iyj in R∗, we
have ν∗(f) = min

{
i + jβ / ai,j �= 0

}
.



520 Michel Vaquié

The valuation ν∗ on K∗ is obtained by putting formally y = xβ , i.e. we
may define an injective morphism of K∗ in the field k((xΓ)) of power
series of x with exponents in the group Γ (cf example 7), and the valu-
ation ν∗ is the restriction of the natural valuation μ defined on k((xΓ))
to the field K∗. The equation y = xβ represents formally an arc on the
affine plane A2

k = SpecR∗, which we call a transcendental branch on A2
k.

iv) rank(ν) = rat.rank(ν) = 2, dim(ν) = 0
The valuation ν is composite of prime divisors: ν = ν′ ◦ ν̄, the

valuation ν′ is a prime divisor of K and the valuation ν̄ is a prime divisor
of the residue field κ′ of ν′, which a function field of transcendence degree
one over k (cf example 6).
For the valuation ν′ we are in the case i), and we can consider an affine
normal model Y = SpecS, with S integrally closed in its fraction field
K and such that the center q of ν′ in S is a height one prime ideal.
Then the residue field κ′ is equal to the function field of the algebraic
curve C and the valuation ν̄ is a valuation of F (C) whose center ξ is
also the center of the valuation ν. The local ring Sq is the valuation
ring associated to the discrete valuation ν′ of rank one, and let u be a
generator of its maximal ideal qSq. Then we can write the composite
valuation ν = ν′ ◦ ν̄ in the following form:

ν(f) =
(
ν′(f), ν̄(f)

)
=

(
orderq(f), ν̄(f)

)
,

where we denote f the image of fu−ν′(f) in the residue field κ′.
Moreover, if the center ξ of the valuation ν̄ is a regular point of the curve
C, the local ring OC,ξ is the discrete rank one valuation ring associated
to ν̄ and we can write

ν̄(f) = orderm(f) ,

where m is the maximal ideal of OC,ξ.

Uniformization
We shall give an idea of Zariski’s proof of the uniformization theorem

in the abstract form for a valuation of rank one and of rational rank two,
i.e. in the case iii), the proof in the other cases are simpler, cases i) and
iv), ore are quite similar, case ii) ([Za 1]).

Let Γ be the value group of the valuation ν, we may write Γ = Z⊕τZ,
with τ ∈ R Q and τ > 0, and we choose two elements x and y in the
function field K such that ν(x) = 1 and ν(y) = τ . Then the elements x
and y are algebraically independent over k and since the characteristic
of k is zero, there exists a primitive element z for the algebraic extension
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K/k(x, y), i.e. K = k(x, y, z), and we choose z with ν(z) positive.
Hence we consider the affine model M = SpecR of the function field K
where R is an hypersurface ring R = k[x, y, z], i.e. M is a surface defined
in the affine space A3

k = Speck[X, Y, Z] by a polynomial f(X, Y, Z) =∑
ar,s,tX

rY sZt which satisfies the equality:

(1) f(x, y, z) =
∑

ar,s,tx
ryszt = 0 .

Since we have ν(x), ν(y) and ν(z) positive, the center ξ of the valuation ν
is the point ξ = (0, 0, 0), then a0,0,0 = 0. Moreover, since f(x, y, z) = 0
there must exist at least two monomials ar,s,tx

ryszt in f(x, y, z) for
which the minimal value ν

(
xryszt

)
is reached. If xr1ys1zt1 and xr2ys2zt2

are two distinct terms of f which have the same value, then we have
t1 �= t2. In fact if t1 = t2, we get ν(xr1ys1) = ν(xr2ys2), then r1 + s1τ =
r2 + s2τ and since τ /∈ Q this implies r1 = r2 and s1 = s2.
We may write the polynomial f in the form:

(2) f(x, y, z) =
d∑

i=1

ari,si,tix
riysizti +

D∑
j=d+1

arj ,sj ,tj x
rj ysj ztj ,

such that the monomials xriysizti , 1 ≤ i ≤ d, have the same value
ν(xriysizti) = γ and such that the monomials xrj ysj ztj , d +1 ≤ j ≤ D,
have a value ν(xrj ysj ztj) > γ, and we may assume t1 < t2, . . . < td. If
ν(z) = u + vτ , with u and v in Z, and if γ = M + Nτ , with M and N
in Z, we get the equalities:

M = r1 + ut1 = r2 + ut2 = . . . = rd + utd ,(3)
N = s1 + vt1 = s2 + vt2 = . . . = sd + vtd ,(4)

and for any j > d we have:

(5) (rj + utj) + (sj + vtj)τ > M + Nτ .

We may assume that f(0, 0, z) is not identically zero, i.e. that the z-axis
Z does not lie on the model M ⊂ A3

k; it is enough if necessary to replace
z by z + c′x + c′′y for sufficiently general c′ and c′′ in k. We may write
f(0, 0, z) =

∑T
t=m a0,0,tz

t, with a0,0,m �= 0, i.e. ξ = (0, 0, 0) is an m-fold
point of the zero-dimensional subvariety Z ∩ M . If ξ is a regular point
of Z ∩M , then ξ is also a regular point of the variety M , i.e. the center
of the valuation ν on the model M is a non-singular point. Hence we
may assume that ξ is a singular point of Z ∩ M , which is equivalent
to m > 1, and the polynomial f(x, y, z) contains the term azm with
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a = a0,0,m ∈ k∗. Moreover, since we have ν(zm) ≥ γ = ν(xrdysdztd), we
must have

(6) td ≤ m .

We consider the expansion of τ in continued fraction:

τ = h1 +
1

h2 +
1

h3 + . . .

.

We denote (fi/gi) the sequence of convergent fractions of τ :

fi

gi
= h1 +

1

h2 +
1

. . . +
1
hi

, with
(
fi, gi

)
= 1 ,

and moreover for all i ≥ 2 we have:

fi−1gi − figi−1 = (−1)i−1 and (−1)i−1
(
τ − fi/gi

)
> 0 .

Since we have limq→∞ fq/gq = τ and since we have a finite number
of terms xrj ysj ztj with ν(xrj ysj ztj ) > γ, we can find an integer p,
sufficiently high, such that for any q ≥ p−1, we have also the inequality

(7) (rj + utj) + (sj + vtj)
fq

gq
> M + N

fq

gq
,

for all these terms xrj ysj ztj , d + 1 ≤ j ≤ D.
We want to construct a new ring R1 = k[x1, y1, z1], with R ⊂ R1 ⊂

K, or in other words we want to construct a birational morphism M1 −→
M , such that the situation is better in some sense for the singularity of
the center ξ1 of ν on M1. We pass from the elements x, y, z to the
new elements x1, y1, z1 of the function field K, by doing the following
Cremona transformation:

(8) x = x
gp

1 y
gp−1
1 , y = x

fp

1 y
fp−1
1 , z = xuyv(z1 + c) ,

where c is the element of k∗ determined as follows: since ν(z) = u +
vτ = ν(xuyv), and since the residue field of the valuation ν is equal
to the ground field k, there exists a unique element c in k∗ such that
ν(z − cxuyv) > ν(z). Hence we have

(9) ν(z1) = ν
( z

xuyv
− c

)
> 0 .
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If we denote ε = (−1)p−1, we deduce from the equality fp−1gp−fpgp−1 =
ε and from the inequalities ε(−τ +fp−1/gp−1) > 0 and ε(τ −fp/gp) > 0,
that we have:

(10) x1 =
(

xfp−1

ygp−1

)ε

and y1 =
(

ygp

xfp

)ε

,

whence:
(11)

ν(x1) = εgp−1

(
fp−1

gp−1
− τ

)
> 0 and ν(y1) = εgp

(
τ − fp

gp

)
> 0 .

Then the center of the valuation ν on R1 is the maximal ideal (x1, y1, z1),
i.e. the center of ν on the model M1 = SpecR1 is the point ξ1 = (0, 0, 0).

The ring R1 is again an hypersurface ring, i.e. R1 is isomorphic to
the quotient ring k[X1, Y1, Z1]/(f1) where f1 is the polynomial defined as
follows. Every monomial xryszt is transformed by the Cremona transfor-
mation into the polynomial xr′

1 ys′

1 (z1+c)t with r′ = (r+tu)gp+(s+tv)fp

and s′ = (r+tu)gp−1+(s+tv)fp−1. Hence, we deduce from the equalities
(3) and (4) and from the inequality (7) that all the terms of f are divis-
ible by the monomial x

Mgp+Nfp

1 y
Mgp−1+Nfp−1
1 , and that this monomial

is the biggest factor of all the terms. We may write:

(12) f(x, y, z) = x
Mgp+Nfp

1 y
Mgp−1+Nfp−1
1 .f1(x1, y1, z1) ,

with f1 irreducible.
More precisely we notice that all the terms xryszt of f with minimal
value have exactly x

Mgp+Nfp

1 y
Mgp−1+Nfp−1
1 as factor, and that the other

terms acquire a factor xr′

1 ys′

1 with r′ > Mgp + Nfp and s′ > Mgp−1 +
Nfp−1. Then we deduce from (2) that the polynomial f1(x1, y1, z1) has
the form:
(13)

f1(x1, y1, z1) = (z1 +c)t1
( d∑

i=1

ari,si,ti(z1+c)ti−t1
)

+ x1y1g(x1, y1, z1) .

We put ari,si,ti = ai for i = 1, 2, . . . , d and we notice h(u) the polynomial
defined by h(u) = a1 + a2u

t2−t1 + . . . + adu
td−t1 =

∑td−t1
j=0 hju

j, hence
we have

f1(x1, y1, z1) = (z1 + c)t1h(z1 + c) + x1y1g(x1, y1, z1) .

Since the center ξ1 of the valuation on M1 is the point (0, 0, 0) of A3
k, we

have (0, 0, 0) ∈ M1, i.e. we must have f1(0, 0, 0) = 0, and since c �= 0,
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u = c is a root of the polynomial h(u). If c is an m1-fold root of h(u),
i.e. if we have h(u) = (u − c)m1h′(u) with h′(c) �= 0, then ξ1 is also a
m1-root of Z1 ∩ M1, where Z1 is the z1-axis. Since degh(u) = td − t1
and from the inequality (6) we deduce:

(14) m1 ≤ td − t1 ≤ m .

To prove the theorem of uniformization, we have to show that with
this process, we can get a point ξ1 which is better than the point ξ. If we
have m1 < m0 = m, then we have succeeded, we can make an induction
on mi and for mN = 1 we have a non-singular point.
We assume that we have m1 = m, then from (14) we deduce that we
have:

t1 = 0 , td = m and h(u) = ad(u − c)m .

Then the sum of the terms of minimal value of f(x, y, z) is equal to:

d∑
i=1

aix
riysizti = x

Mgp+Nfp

1 y
Mgp−1+Nfp−1
1 zm

1

= h0x
b0yc0 + h1x

b1yc1z1 + . . . + hmxbmycmzm ,

with hj �= 0 and ν(xbj ycj zj) = γ for all j, and we may deduce ν(z) =
bm−1 + cm−1τ .
Then we have the following result: if by the transformation (8) the
multiplicity m does not decrease, the value ν(z) is of the form ν(z) =
u + vτ with u, v ≥ 0.

We assume that we have choosen the element z with ν(z) = u + vτ ,
with u, v ≥ 0. Since the residue field of the valuation ν is equal to the
ground field k, there exists a unique c ∈ k∗ such that ν(z−cxuyv) > ν(z).
Let

z[1] = z − cxuyv , ν(z[1]) > ν(z)

f [1](x, y, z[1]) = f(x, y, cxuyv + z[1]) = f(x, y, z) .

We have found a new presentation of the model M as closed subvariety
of A3

k, now defined by the polynomial f [1]. The center ξ of the valuation
ν on M belongs to the z[1]-axis Z [1], and the multiplicity of ξ on Z [1]∩M
is also equal to m, i.e. z[1] = 0 is also a m-fold root of f [1](0, 0, z[1]) = 0.
We can apply a Cremona transformation such as (8), and we get a new
model M1 with a center ξ1 of “multiplicity” m1. If we have m1 < m,
then we have got a better variety.
We assume that we have again the equality m1 = m, then we deduce
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from the previous result that the value of z[1] is also of the form

ν(z[1]) = u1 + v1τ , with u1, v1 ≥ 0 .

Then we put again
z[2] = z[1] − c1x

u1yv1 ,

where the constant c1 ∈ k∗ is choosen such that ν(z[2]) > ν(z[1]), and
we make the same construction as before.

Hence we may assume that we have found by induction a sequence
(z[i]), o ≤ i ≤ p, of elements of K, with z[0] = z, such that

(15) z[i+1] = z[i] − cix
uiyvi and ν(z[i+1]) > ν(z[i]) = ui + viτ .

Each z[i] defines a polynomial f [i](x, y, z[i]) and an embedding of the
model M in A3

k, or equivalently, if we have fixed the first embedding
defined by f(x, y, z), each element z[i] defines a curve C [i] on A3

k, C [i]

corresponds to the z[i]-axis on A3
k. The center ξ of the valuation ν on M

belongs to all the curves C[i] and the multiplicity m = multξ(C [i] ∩ M)
does not depend from i.
Such as (8), we can associate to each z[i], 0 ≤ j ≤ p − 1 a Cremona
transform M

[i]
1 −→ M , and the center ξ

[i]
1 of the valuation ν on this

model M
[i]
1 satisfies

m
[i]
1 = mult

ξ
[i]
1

(C [i]
1 ∩ M

[i]
1 ) = m .

If for j = p we have an inequality, i.e. m
[p]
1 < m, then we consider

the new model M1 = M
[p]
1 of K for which the situation is better.

If for j = p we have again an equality m
[p]
1 = m, then we have shown

that we can find a new element z[p+1] of K with z[p+1] = z[p] − cpx
upyvp

and ν(z[p+1]) > ν(z[p]).
Hence it is enough to show that it is impossible to find an infinite se-
quence (z[i]) of elements of K which satisfies the property (15).
By definition, for any i, i ≥ 0, we have

f [i+1](x, y, z[i+1]) = f [i](x, y, cix
uiyvi + z[i+1]) ,

hence we deduce
∂f [i+1]

∂z[i+1]
=

∂f [i]

∂z[i]
.

Since in each polynomial f [i] the term in (z[i])m must be among the
minimum value terms, it follows that

ν

(
∂f [i]

∂z[i]

)
≥ (m − 1)ν(z[i]) ≥ ν(z[i]) ,
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hence we have for all i the inequality

(16) ν(z[i]) = ui + viτ ≤ ν

(
∂f

∂z

)
.

If we have an infinite sequence
(
z[i]

)
, we find an infinite sequence

(
(ui, vi)

)
in N2 such that the sequence of real numbers αi = ui +viτ is increasing,
but in that case the sequence (αi) is non bounded, which contradicts
the inequality (16).

In fact we have proven that the sequence is finite, i.e. there exists
a curve C = C [p] which is better than the other ones. In particular we
have shown that the Cremona transformation associated to this curve
C will give a new situation which is better than the initial one because
the multiplicity m1 is srictly smaller than the multiplicity m. This is
the curve which corresponds to the maximal contact.
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Abstract.

The concept of motivic integration was invented by Kontsevich
to show that birationally equivalent Calabi-Yau manifolds have the
same Hodge numbers. He constructed a certain measure on the arc
space of an algebraic variety, the motivic measure, with the subtle and
crucial property that it takes values not in R, but in the Grothendieck
ring of algebraic varieties. A whole theory on this subject was then
developed by Denef and Loeser in various papers, with several appli-
cations.

Batyrev introduced with motivic integration techniques new sin-
gularity invariants, the stringy invariants, for algebraic varieties with
mild singularities, more precisely log terminal singularities. He used
them for instance to formulate a topological Mirror Symmetry test for
pairs of singular Calabi-Yau varieties. We generalized these invari-
ants to almost arbitrary singular varieties, assuming Mori’s Minimal
Model Program.

The aim of these notes is to provide a gentle introduction to
these concepts. There exist already good surveys by Denef-Loeser
[DL8] and Looijenga [Loo], and a nice elementary introduction by
Craw [Cr]. Here we merely want to explain the basic concepts and
first results, including the p-adic number theoretic pre-history of the
theory, and to provide concrete examples.

The text is a slightly adapted version of the ‘extended abstract’
of the author’s talks at the 12th MSJ-IRI ”Singularity Theory and
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1 Pre-history

1.1. Let f ∈ Z[x1, · · · , xm] and r ∈ Z>0. A very general problem
in number theory is to compute the number of solutions of the congru-
ence f(x1, · · · , xm) = 0 mod r (in (Z/rZ)m). Thanks to the Chinese
remainder theorem it is enough to consider the case where r is a power
of a prime.

So we fix a prime number p and we investigate congruences mod-
ulo varying powers of p. We denote by Fn the number of solutions of
f(x1, · · · , xm) = 0 mod pn+1.

1.2. Examples.

1. f1 = y − x2. It should be clear that Fn = pn+1.

2. f2 = x · y. Exercise : Fn = (n + 2)pn+1 − (n + 1)pn.

3. f3 = y2 − x3. We list Fn for small n : F0 = p,

F1 = p(2p − 1) F5 = p5(p2 + p − 1) F7 = p7(2p2 − 1)
F2 = p2(2p − 1) F6 = p6(p2 + p − 1) F8 = p8(2p2 − 1)
F3 = p3(2p − 1) F9 = p9(2p2 − 1)
F4 = p4(2p − 1) F10 = p10(2p2 − 1)

F11 = p11(p3 + p2 − 1)
F12 = p12(p3 + p2 − 1).
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Note that the plane curve {f1 = 0} is nonsingular, {f2 = 0} has the
easiest curve singularity, an ordinary node, and {f3 = 0} has a slightly
more complicated singularity, an ordinary cusp. It is in fact this cusp
which is responsible for the at first sight not so nice behavior of the Fn

for f3.
More generally, the problem of the behavior of the Fn turns out to

be non-obvious precisely when {f = 0} has singularities.

1.3. We now know that, for any f ∈ Z[x1, · · · , xm], the Fn do
satisfy the following ‘regular’ behavior.

Conjecture [Borewicz, Shafarevich] = Theorem [Igusa]. The
generating formal series Jp(T ) := Jp(f, T ) =

∑
n≥0 FnT n is a rational

function in T . (In particular the Fn are determined by a finite number
of them.)

Igusa showed this in 1975 [Ig1] using

(1) a ‘translation’ of Jp(T ) into a p-adic integral (more precisely into∫
Zm

p
|f |sp|dx|, which is now called Igusa’s local zeta function, and which

is the ancestor of the motivic zeta function of section 6),
(2) an embedded resolution of singularities for {f = 0},
(3) the change of variables formula for integrals.

(We will see later an analogue of this strategy in the theory of motivic
integration.)

1.4. Examples (continuing 1.2).

1. Jp(f1; T ) = p
1−pT (easy).

2. Exercise : Jp(f2; T ) = 2p−1−p2T
(1−pT )2 .

3. Claim : Jp(f3; T ) = p 1+(p−1)T+(p6−p5)T 5−p7T 6

(1−p7T 6)(1−pT ) .

1.5. We already want to mention another connection with singu-
larity theory; the famous (still open) monodromy conjecture of Igusa
relates the poles of Jp(T ) with eigenvalues of local monodromy of f
considered as a map f : Cn → C, see (6.8).

1.6. Before introducing arc spaces and motivic integration in the
next sections, we present a hopefully motivating analogy between this
number theoretic setting and the geometric arc setting.
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f ∈ Z[x1, · · · , xm] f ∈ C[x1, · · · , xm]

solution of f = 0 over the ring solution of f = 0 over the ring
Z/pn+1Z ∼= Zp/pn+1Zp, i.e. C[t]/(tn+1) ∼= C[[t]]/(tn+1), i.e.
an m-tuple with coordinates an m-tuple with coordinates
of the form a0 + a1p + ... + anpn, of the form a0 + a1t + ... + antn,
ai ∈ {0, 1, ..., p− 1} ai ∈ C

(“n-jet” of {f = 0})

solution of f = 0 over solution of f = 0 over
Zp = lim

←
Z/pn+1Z, C[[t]] = lim

←
C[t]/(tn+1),

i.e. with coordinates of the form i.e. with coordinates of the form∑∞
n=0 aip

i
∑∞

n=0 ait
i

(“arc” of {f = 0})

integrate over Zm
p integrate over

L(Cm) := { arcs of Cm}

Warning. Here and further on we sometimes use other (better ?) nor-
malizations than in the original papers.

2 Arc spaces

Let X be an algebraic variety over C. (The theory of arc spaces and
motivic integration can be generalized to any field of characteristic zero,
see e.g. [DL8].)

2.1. The space of arcs modulo tn+1 or space of n-jets on X is an
algebraic variety Ln(X) over C such that

{points of Ln(X) with coordinates in C}

={points of X with coordinates in
C[t]

(tn+1)
}.

For all n there are obvious ‘truncation maps’ πn+1
n : Ln+1(X) → Ln(X),

obtained by reducing (n+1)-jets modulo tn+1, and more generally πm
n :

Lm(X) → Ln(X) for m ≥ n. This description is somewhat informal,
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but is essentially what is needed. We now first provide examples and
give the ‘exact’ definition later.

2.2. Example. Let X = Cd. Then

Ln(X) ={(a(1)
0 + a

(1)
1 t + · · · + a(1)

n tn, · · · , a(d)
0 + a

(d)
1 t + · · · + a(d)

n tn),

with all a
(j)
i ∈ C}

∼=C(n+1)d.

2.3. Example. Let X = {y2 − x3 = 0}.
(0) L0(X) = {(a0, b0) ∈ C2|b2

0 = a3
0} = X .

(1) L1(X)

= {(a0 + a1t, b0 + b1t) ∈ (C[t]/(t2))2 | (b0 + b1t)2 = (a0 + a1t)3mod t2}
= {(a0 + a1t, b0 + b1t) ∈ (C[t]/(t2))2 | b2

0 = a3
0 and 2b0b1 = 3a2

0a1}.

So we can consider L1(X) as the (two-dimensional) algebraic variety
in C4 with equations b2

0 = a3
0 and 2b0b1 = 3a2

0a1 in the coordinates
a0, a1, b0, b1. The map π1

0 : L1(X) → L0(X) = X is induced by the
projection C4 → C2 : (a0, a1, b0, b1) �→ (a0, b0).

The fibre of π1
0 above (0, 0) is {(0, a1, 0, b1)} ∼= C2; this corresponds

to the fact that the tangent space to X at (0, 0) is the whole C2. The
fibre above (a0, b0) �= (0, 0) is the line in the (a1, b1)-plane with equation
2b0b1 = 3a2

0a1, which corresponds to the tangent line at X in (a0, b0).
In other words : L1(X) is the tangent bundle TX , and π1

0 is the natural
projection TX → X .

(2) L2(X) = {(a0 + a1t+ a2t
2, b0 + b1t+ b2t

2) ∈ (C[t]/(t3))2 | (b0 + b1t+
b2t

2)2 = (a0 + a1t + a2t
2)3mod t3} is given in C6 by the equations⎧⎪⎨

⎪⎩
b2
0 = a3

0

2b0b1 = 3a2
0a1

b2
1 + 2b0b2 = 3a0a

2
1 + 3a2

0a2.

Exercise. a) Verify the description of L2(X) and note that the map
π2

1 : L2(X) → L1(X) is not surjective. More precisely, the fibre of π2
0

above (0, 0) is {(0, a1, a2, 0, 0, b2)} ∼= C3, but its image by π2
1 is not the

whole (a1, b1)-plane; it is just the line {b1 = 0}.
b) Compute L3(X) and note that also π3

2 : L3(X) → L2(X) is not
surjective.



534 W. Veys

c) However, above the nonsingular part of X = L0(X) all considered
maps πn+1

n : Ln+1(X) → Ln(X) are fibrations with fibre C.

2.4. Some observations in the examples are easily seen to be sat-
isfied in general.
(1) L0(X) = X, L1(X) = TX.

(2) If X is smooth of dimension d, then all πn+1
n are locally trivial

fibrations (w.r.t. the Zariski topology) with fibre Cd.

2.5. The space of arcs on X is an ‘algebraic variety of infinite
dimension’ L(X) over C such that

{points of L(X) with coordinates in C}
={points of X with coordinates in C[[t]]}.

We provide the ‘exact’ definition after continuing the examples. Now
we have for all n truncation maps πn : L(X) → Ln(X), obtained by
reducing arcs modulo tn+1.

2.6. Example. Let X = Cd. Then

L(X) = {(
∞∑

n=0

a(1)
n tn, · · · ,

∞∑
n=0

a(d)
n tn), with all a(j)

n ∈ C},

which can be considered as an infinite dimensional affine space.

2.7. Example. Let X = {y2 − x3 = 0}. Then L(X) is given in the
infinite dimensional affine space with coordinates{

a0, a1, a2, · · · , an, · · ·
b0, b1, b2, · · · , bn, · · ·

by the infinite number of equations⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

b2
0 = a3

0

2b0b1 = 3a2
0a1

b2
1 + 2b0b2 = 3a0a

2
1 + 3a2

0a2

· · ·
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2.8. More precise definitions.

(i) The ‘base extension operation’ Y → Y ×C C[t]/(tn+1) is a covari-
ant functor on the category of complex algebraic varieties, and it has
a right adjoint X → Ln(X). (Even more precisely we should say that
we consider the reduced scheme Ln(X) associated to this right adjoint
scheme.) This says that, for any C-algebra R, the set of R-valued points
of Ln(X) is in natural bijection with the set of R[t]/(tn+1)-valued points
of X . In particular, as we said in (2.1), the C-valued points of Ln(X)
can be naturally identified with the C[t]/(tn+1)-valued points of X .

(ii) Then L(X) is the inverse limit lim
←

Ln(X). (Technically, it is im-

portant here that the truncation morphisms πn+1
n : Ln+1(X) → Ln(X)

are affine.) The K-valued points of L(X), for any field K ⊃ C, are in
natural bijection with the K[[t]]-valued points of X . We mention the
following result, attributed to Kolchin : if X is irreducible, then L(X)
is irreducible.

See [DL3] for more information.

2.9. When X is an affine variety, i.e. given by a finite number of
polynomial equations, one can describe equations for the Ln(X) and for
L(X) as in Examples 2.3 and 2.7.

2.10. Some first natural and fundamental questions are how the
Ln(X) and πn(L(X)) change with n. (For πn(L(X)) this was already
considered by Nash [Na].) Note that Ln(X) describes by definition the
n-jets on X , and πn(L(X)) those n-jets that can be lifted to arcs on X .

This can be compared with the number theoretical setting of the
previous section : there the question was how the solutions over Z/pn+1Z

changed with n, and we could consider the same question for those
solutions over Z/pn+1Z that can be lifted to solutions over Zp.

2.11. We now introduce the Grothendieck ring of algebraic va-
rieties, which is the ‘best’ framework to answer these questions, and
which is moreover (essentially) the value ring for motivic integration, to
be explained in the next section.

Recall first two fundamental properties of the topological Euler char-
acteristic χ(·) ∈ Z on complex algebraic varieties :

(1) χ(V ) = χ(Z) + χ(V \ Z) if Z is (Zariski-)closed in V ,
(2) χ(V × W ) = χ(V ) · χ(W ).

A finer invariant satisfying these properties is the Hodge-Deligne poly-
nomial H(·) = H(·; u, v) ∈ Z[u, v], given for an algebraic variety V of
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dimension d by

H(V ; u, v) :=
d∑

p,q=0

(
2d∑

i=0

(−1)ihp,q(Hi
c(V, C)))upvq,

where hp,q(·) denotes the dimension of the (p, q)-component of the mixed
Hodge structure. (When we would work over an arbitrary field of
characteristic zero, we use an embedding into C of the field of defini-
tion of V . The upvq–coefficients of H(V ; u, v) do not depend on the
chosen embedding, since for a smooth projective V they are equal to
(−1)p+q dim Hq(V, Ωp

V ).)
Note that H(V ; 1, 1) = χ(V ).

The Grothendieck ring is the value ring of the ‘universal Euler char-
acteristic’ on algebraic varieties.

Definition. (i) The Grothendieck group of (complex) algebraic vari-
eties is the abelian group K0(V arC) generated by symbols [V ], where
V is an algebraic variety, with the relations [V ] = [W ] if V and W are
isomorphic, and [V ] = [Z] + [V \ Z] if Z is (Zariski-) closed in V .

(ii) there is a natural ring structure on K0(V arC) given by [V ] ·
[W ] := [V × W ].

— So by construction the map {Varieties over C} → K0(V arC) : V �→
[V ] is indeed universal with respect to the two properties above. Of
course we still loose some information by this operation. For example
X = {y2 − x3 = 0} ⊂ A2 satisfies [X ] = [A1]. Also, when V → B is a
locally trivial fibration with fibre F , then [V ] = [B] · [F ]. —

(iii) Let C be a constructible subset of some variety V , i.e. a disjoint
union of (finitely many) locally closed subvarieties Ai of V , then [C] ∈
K0(V arC) is well defined as [C] :=

∑
i[Ai].

(iv) We denote 1:= [point], L := [A1] and MC := K0(V arC)L the
ring obtained from K0(V arC) by inverting L.

The rings K0(V arC) and MC are quite mysterious. For instance, it
was shown only recently that K0(V arC) is not a domain [Po], and it is
still not known whether MC is a domain or not, or whether the natural
map K0(V arC) → MC is injective.

Remark. There is an interesting alternative description of K0(V arC) as
the abelian group, generated by isomorphism classes [V ] of nonsingular
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projective varieties V , with the relations [∅] = 0 and [Ṽ ]−[E] = [V ]−[Z],
where Ṽ → V is the blowing-up with centre Z and exceptional variety
E [Bi1].

2.12. We now answer the questions in (2.10). We will consider
[Ln(X)] and [πn(L(X))] in MC. For the latter we use a theorem of
Greenberg [Gr], saying that πn(L(X)) is a constructible subset of Ln(X).

Theorem [DL3][DL8]. The generating formal series

J(T ) :=
∑
n≥0

[Ln(X)]T n and P (T ) :=
∑
n≥0

[πn(L(X))]T n

in MC[[T ]] are rational, with moreover as denominators products of poly-
nomials of the form 1 − LaT b, where a ∈ Z and b ∈ Z>0.

The proof uses motivic integration, which ‘explains’ why MC is
needed instead of K0(V arC); see section 3.

This result specializes to the analogous statement, replacing [·] by
χ(·) or H(·). Note for this that χ : K0(V arC) → Z and H : K0(V arC) →
Z[u, v] obviously extend to χ : MC → Z and H : MC → Z[u, v][ 1

uv ].
When X = {f = 0} for some polynomial f , the statement for J(T )
should be compared with Theorem 1.3 for Jp(T ) ! In this case, we will
outline a proof for J(T ) later. We just mention that the proof for P (T )
uses techniques from logic, more precisely quantifier elimination.

2.13. Example. When X is smooth of dimension d, all Ln(X) =
πn(L(X)) are locally trivial over X with fibre Cnd. Hence

J(T ) = P (T ) =
∑
n≥0

[X ]LndT n =
[X ]

1 − LdT
.

2.14. Example. Let X = {y2 − x3 = 0}. The descriptions in
Example 2.3 yield [L0(X)] = [X ] = L, [L1(X)] = L2 + (L − 1)L =
2L2 − L, [L2(X)] = L3 + (L − 1)L2 = 2L3 − L2. We claim that

J(T ) = L
1 + (L − 1)T + (L6 − L5)T 5 − L7T 6

(1 − L7T 6)(1 − LT )
,
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see section 6. (Compare with 1.4(3)!) The formula in [DL5, Proposition
10.2.1] yields

P (T ) =
L + (1 − L)T − LT 2

(1 − LT )(1 − T 2)
.

2.15. Example. Let X = {xy = 0}. Exercise :
(i) [Ln(X)] = (n + 2)Ln+1 − (n + 1)Ln. Then

J(T ) =
2L − 1 − L2T

(1 − LT )2
.

(Compare again with Examples 1.2 and 1.4.)
(ii) [πn(L(X))] = 2Ln+1 − 1. Then

P (T ) =
2L − 1 − LT

(1 − LT )(1 − T )
.

2.16. [Mu1] To conclude this section, we relate some properties of
the spaces of n-jets on X to properties of X . Let X be irreducible of
dimension d.

(i) The closure in Ln(X) of (πn
0 )−1(Xreg) is an irreducible component of

Ln(X) of dimension d(n + 1).

(ii) Suppose that X is locally a complete intersection. Then
(1) Ln(X) is pure dimensional if and only if dimLn(X) ≤ d(n + 1).
(2) Ln(X) is irreducible if and only if dim(πn

0 )−1(Xsing) < d(n + 1).
(3) If Ln+1(X) is pure dimensional or irreducible, then so is Ln(X).
(4) If Ln(X) is irreducible for some n > 0, then X is normal.
(5) Ln(X) is irreducible for all n > 0 if and only if X has rational

singularities.

(iii) When d = 1 we have for any n > 0 that Ln(X) is irreducible if and
only if X is nonsingular.

3 Motivic integration

This notion is due to Kontsevich [Ko] on nonsingular varieties. It has
been further developed by Batyrev [Ba2][Ba3], and especially by Denef
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and Loeser [DL3][DL4][DL6][DL8], with some improvements by Looi-
jenga [Loo]. Probably the best way to view and understand it, is as
being an analogue of p-adic integration.

Let in this section X be any algebraic variety of pure dimension d.

3.1. A subset A of L(X) is called constructible or cylindric or a
cylinder if A = π−1

m C for some m and some constructible subset C of
Lm(X). These can be considered as ‘reasonably nice’ subsets of the arc
space L(X), being precisely all arcs obtained by lifting a nice subset of
a jet space.

3.2. Suppose that X is nonsingular. Then such a constructible
subset A = π−1

m C satisfies the property

[πn(A)] = L(n−m)d[C] for all n ≥ m,

since πn
m : Ln(X) = πn(L(X)) → Lm(X) = πm(L(X)) is a locally trivial

fibration with fibre C(n−m)d. We have in particular that the

[πn(A)]
Lnd

are all equal in MC for n ≥ m.
For general X , a constructible set A ⊂ L(X) which is disjoint with

L(Xsing) still satisfies the property that the [πn(A)]
Lnd stabilize for n big

enough [DL3, Lemma 4.1]. More precisely we have the following.

Definition. We call a set A ⊂ L(X) stable if for some m ∈ N we have
(i) πm(A) is constructible and A = π−1

m (πm(A)), and
(ii) for all n ≥ m the projection πn+1(A) → πn(A) is a piecewise

trivial fibration with fiber Cd.
(So in particular A is constructible.)

Lemma [DL3]. If A ⊂ L(X) is constructible and A∩L(Xsing) = ∅,
then A is stable.

Hence for such A it makes sense to consider limn→∞
[πn(A)]

Lnd ∈ MC

as an invariant of A; it is called its naive motivic measure. Note that
for nonsingular X the measure of L(X) is just [X ].
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3.3. For arbitrary constructible A ⊂ L(X) the sequence [πn(A)]
Lnd

will not stabilize.

Example. Let X = {xy = 0}. From Example 2.15 we see that

[πn(L(X))]
Lnd

=
2Ln+1 − 1

Ln
= 2L − 1

Ln
.

This sequence ‘almost’ stabilizes (the singular point of X of course causes
the trouble), and it would be nice to be able to consider 2L as the limit
of this sequence.

This will indeed work in Kontsevich’s completed Grothendieck ring
M̂C. This is by definition the completion of MC with respect to the
decreasing filtration Fm, m ∈ Z, of MC, where Fm is the subgroup
of MC generated by the elements [S]

Li with S an algebraic variety and
dimS − i ≤ −m. Note that this is indeed a ring filtration : Fm · Fn ⊂
Fm+n. So M̂C = lim←−m

MC

F m .

Continuing the example. Indeed in M̂C we have

lim
n→∞

[πn(L(X))]
Lnd

= 2L − lim
n→∞

1
Ln

= 2L.

Theorem [DL3]. Let A be a constructible subset of L(X). Then
the limit

μ(A) := lim
n→∞

[πn(A)]
Lnd

exists in M̂C.

We call μ(A) the motivic measure of A. This yields a σ-additive measure
μ on the Boolean algebra of constructible subsets of L(X). Thus, given
any sequence Ai, i ∈ Z>0, of disjoint constructible subsets in L(X) such
that lim

i→∞
μ(Ai) = 0, we have that μ(∪iAi) =

∑
i μ(Ai) in M̂C.

Note. It is not known whether the natural map MC → M̂C is injective;
its kernel is ∩m∈ZFm. However, e.g. the topological Euler characteristic
χ(·) and the Hodge-Deligne polynomial H(·) factor through the image
of MC in M̂C.
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Remark. Let S � X be a closed subvariety; it is not difficult to see that
L(S) is not a constructible subset of L(X). It is possible to introduce
more generally measurable subsets of L(X), and to associate analogously
a motivic measure (in M̂C) to those subsets [Ba2][DL6]; we then have
that such L(S) are measurable of measure zero.

3.4. We briefly compare with the p-adic case. Let M be a d-
dimensional submanifold of Zm

p , defined algebraically. We denote by
|πn(M)| the cardinality of the image of M under the natural truncation
map πn : (Zp)m → (Zp/pn+1Zp)m = (Z/pn+1Z)m. Then |πn(M)|

p(n+1)d ∈ Z[ 1p ]
is constant for n big enough and is called the volume μp(M) of M .

For a singular d-dimensional subvariety Z of Zm
p one defines its vol-

ume as μp(Z) := limε→0 μp(Z \Tε(Zsing)) ∈ R, where Tε denotes a small
tubular neighbourhood ‘of radius ε’. Then by a Theorem of Oesterlé
[Oe] we have, with analogous notation |πn(Z)|,

μp(Z) = lim
n→∞

|πn(Z)|
p(n+1)d

.

Note the analogy

p-adic motivic

integrate over Zm
p (C[[t]])m

value rings Z K0(V arC)
Z[ 1p ] MC

R M̂C

The brilliant idea of Kontsevich was to use M̂C instead of R as a value
ring for integration.

3.5. We can now consider in a natural way motivic integration. We
do not treat the most general setting; the following suffices in practice.
Let A ⊂ L(X) be constructible and α : A → Z ∪ {+∞} a function with
constructible fibres α−1{n}, n ∈ Z. Then∫

A

L−αdμ :=
∑
n∈Z

μ(α−1{n})L−n
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in M̂C, whenever the right hand side converges in M̂C. Then we say
that L−α is integrable on A. (This will always be the case if α is bounded
from below.)

3.6. An important example of an integrable function is induced
by an effective Cartier divisor D on X , i.e. D is an (eventually non-
reduced) subvariety of X which is locally given by one equation. Define
ordtD : L(X) → N ∪ {+∞} : γ �→ ordtfD(γ), where fD is a local
equation of D in a neighbourhood of the origin π0(γ) of γ. Note e.g.
that (ordtD)(γ) = +∞ if and only if γ ∈ L(Dred) and (ordtD)(γ) = 0 if
and only if π0(γ) �∈ Dred. One easily verifies that L−ordtD is integrable
on L(X).

We note that (ordtD)−1(+∞) = L(Dred) is not constructible; it is
however measurable with measure zero.

Example. Take X = A1 and D the divisor associated to the function
xN , i.e. the ‘origin with multiplicity N ’.

Exercise. (i) N |(ordtD)(γ) for all γ ∈ L(A1) and

μ({γ ∈ L(A1) | (ordtD)(γ) = iN}) =
L − 1

Li
for all i ∈ N.

(ii)
∫
L(A1)

L−ordtDdμ = (L−1)LN+1

LN+1−1 = (L − 1) + L−1
L1+N−1 .

This example is the easiest case of the following very useful formula.

Proposition [Ba3][Cr]. Let X be nonsingular and take a normal
crossings divisor D =

∑
i∈S NiDi on X, i.e. all Di are nonsingular

hypersurfaces intersecting transversely (and occurring with multiplicity
Ni). Denote D◦

I := (∩i∈IDi)\(∪� �∈ID�) for I ⊂ S; the D◦
I , I ⊂ S, form a

natural locally closed stratification of X (note that D◦
∅ = X \ (∪�∈SD�)).

Then ∫
L(X)

L−ordtDdμ =
∑
I⊂S

[D◦
I ]

∏
i∈I

L − 1
L1+Ni − 1

.

3.7. The construction in (3.6) can be generalized as follows. Let
I be a sheaf of ideals on X . Then we define

ordtI : L(X) → N ∪ {+∞} : γ �→ min
g

ordtg(γ),
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where the minimum is taken over g ∈ I in a neighbourhood of π0(γ). Of
course, when I is the ideal sheaf of an effective Cartier divisor D, then
ordtI = ordtD.

3.8. The most crucial ingredient in the theory of motivic integra-
tion is the change of variables formula or transformation rule for motivic
integrals under a birational morphism.

Theorem [DL3]. (i) Let h : Y → X be a proper birational mor-
phism between algebraic varieties X and Y , where Y is nonsingular. Let
A ⊂ L(X) be constructible and α : A → Z ∪ {+∞} such that L−α is
integrable on A. Then∫

A

L−αdμ =
∫

h−1A

L−(α◦h)−ordt(Jach)dμ.

Here the ideal sheaf Jach is defined as follows. When also X is non-
singular, it is locally generated by the ‘ordinary’ Jacobian determinant
with respect to local coordinates on X and Y . For general X, the sheaf
of regular differential d-forms h∗(Ωd

X) is still a submodule of Ωd
Y ; but

now h∗(Ωd
X) is not necessarily locally generated by one element. Taking

(locally) a generator ωY of Ωd
Y , each h∗(ω) for ω ∈ Ωd

X can be written as
h∗(ω) = gωωY , and Jach is defined as the ideal sheaf which is (locally)
generated by these gω.

(ii) When also X is nonsingular and α = ordtD for some effective
divisor D on X, we can rewrite the formula as follows :∫

A

L−ordtDdμ =
∫

h−1A

L−ordt(h
∗D+KY |X)dμ.

Here h∗D is the pullback of D, i.e. locally given by the equation f ◦ h,
if D is given by the equation f . And KY |X is the relative canonical
divisor, which is precisely the effective divisor with equation the Jacobian
determinant. Alternatively, KY |X = KY − h∗KX where K� denotes the
(ordinary) canonical divisor, i.e. the divisor of zeros and poles of a
differential d-form.

Note. The birational morphism h above must be proper in order to
induce a bijection from L(Y ) to L(X) outside subsets of measure zero.
More precisely, denoting by Exc the exceptional locus of h, we have a
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bijection from L(Y )\L(Exc) to L(X)\L(h(Exc)). This is an easy con-
sequence of the valuative criterion of properness [Har, Theorem II.4.7].

Exercise. Check the change of variables formula in the following special
case : h is the blowing-up of a nonsingular X in a nonsingular centre,
A = L(X) and α is the zero function.

4 First applications

4.1. Here we mean by a Calabi-Yau manifold M of dimension d
a nonsingular complete (=compact) algebraic variety, which admits a
nowhere vanishing regular differential d-form ωM . Alternative formula-
tions of this last condition are that the first Chern class of the tangent
bundle of M is zero, or that the canonical divisor KM of M is zero.

Theorem [Ko]. Let X and Y be birationally equivalent Calabi-
Yau manifolds. Then [X ] = [Y ] in M̂C.

Proof. Since X and Y are birationally equivalent there exist a non-
singular complete algebraic variety Z and birational morphisms hX :
Z → X and hY : Z → Y . By the definition of the motivic measure and
the change of variables formula we have in M̂C :

[X ] = μ(L(X)) =
∫
L(X)

1dμ =
∫
L(Z)

L−ordtKZ|X dμ =
∫
L(Z)

L−ordtKZ dμ

and of course [Y ] is given by the same right hand side. Q.E.D.

This implies that birationally equivalent Calabi-Yau manifolds have
the same Hodge-Deligne polynomial, meaning that they have the same
Hodge numbers. This result was Kontsevich’s motivation to invent mo-
tivic integration !

The same proof gives the following more general result. Two nonsin-
gular complete algebraic varieties are called K-equivalent if there exists
a nonsingular complete algebraic variety Z and birational morphisms
hX : Z → X and hY : Z → Y such that h∗

XKX = h∗
Y KY . This is an

important notion in birational geometry.
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Theorem. Let X and Y be K-equivalent varieties. Then [X ] =
[Y ] in M̂C.

4.2. Let h : Y → X be a proper birational morphism between
nonsingular algebraic varieties. We assume that the exceptional locus
Exc of h, i.e. the subvariety of Y where h is not an isomorphism, is a
normal crossings divisor. Let Ei, i ∈ S, be the irreducible components
of Exc. The relative canonical divisor KY |X is supported on Exc; let
νi−1 be the multiplicity of Ei in this divisor, so KY |X =

∑
i∈S(νi−1)Ei.

Denoting E◦
I := (∩i∈IEi) \ (∪� �∈IE�) for I ⊂ S, we have

[X ] =
∑
I⊂S

[E◦
I ]

∏
i∈I

L − 1
Lνi − 1

=
∑
I⊂S

[E◦
I ]

∏
i∈I

1
[Pνi−1]

in M̂C. Indeed, by the change of variables formula we have again that

[X ] = μ(L(X)) =
∫
L(Y )

L−ordtKY |X dμ,

and then Proposition 3.6 yields the stated formula. Specializing to the
topological Euler characteristic yields the remarkable formula

χ(X) =
∑
I⊂S

χ(E◦
I )

∏
i∈I

1
νi

,

which was first surprisingly obtained in [DL1], using p-adic integration
and the Grothendieck-Lefschetz trace formula.

5 Motivic volume

Here X is again any algebraic variety of pure dimension d.

5.1. Definition. The motivic volume of X is μ(L(X)) ∈ M̂C, thus
the motivic measure of the whole arc space of X . Recall that μ(L(X)) =
limn→∞

[πn(L(X))]
Lnd , and that it equals [X ] when X is nonsingular.

We computed in (3.3) the motivic volume of X = {xy = 0} as
μ(L(X)) = 2L by the defining limit procedure. For more complicated
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X , the following formula in terms of a suitable resolution of singularities
is very useful.

5.2. Theorem [DL3]. Let h : Y → X be a log resolution of X;
i.e. h is a proper birational morphism from a nonsingular Y such that
the exceptional locus Exc of h is a normal crossings divisor. Assume
also that the image of h∗(Ωd

X) in Ωd
Y is locally principal, i.e. locally

generated by one element.
Denote by Ei, i ∈ S, the irreducible components of Exc, and let

ρi − 1 be the multiplicity along Ei of the divisor associated to h∗(Ωd
X),

i.e. the (effective) divisor locally given by the zeroes of a generator of
h∗(Ωd

X). Finally, set E◦
I := (∩i∈IEi) \ (∪� �∈IE�) for I ⊂ S. Then

μ(L(X)) =
∑
I⊂S

[E◦
I ]

∏
i∈I

L − 1
L ρi − 1

=
∑
I⊂S

[E◦
I ]

∏
i∈I

1
[Pρi−1]

in M̂C; in particular μ(L(X)) belongs to the subring of M̂C, obtained
from (the image of) MC by inverting the elements 1+L+· · ·+Lj = [Pj ].

We will denote this subring by Mloc.

5.3. Example. Let X = {y2 − x3 = 0} in A2. We take A1 → X :
u �→ (u2, u3) as a log resolution. Since Ω1

X is generated by dx and dy

(subject to the relation 2ydy = 3x2dx), one easily verifies that h∗Ω1
X is

generated by udu. Hence the image of h∗Ω1
X in Ω1

Y is principal and we
can apply Theorem 5.2.

Note that Exc = E1 = {0}, occurring with multiplicity 1 in the
divisor of udu. So ρ1 = 2 and

μ(L(X)) = L − 1 +
1

[P1]
=

L2

L + 1
.

(Recall that [X ] = L.)

5.4. Example. Let X = {z2 = xy} in A3.
Exercise. (i) Verify that μ(L(X)) = L2. (The ‘obvious’ log resolution
satisfies the assumption of Theorem 5.2, and the unique component E1

of the exceptional locus has ρ1 = 2.)
(ii) Note that also [X ] = L2; this could be interpreted as the singu-

larity of X being ‘very mild’.
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5.5. Exercise. Compute again that the motivic volume of X =
{xy = 0} is 2L; now using Theorem 5.2. (Note here that [X ] = 2L − 1;
one could say that the motivic volume counts the double point twice.)

5.6. Recall that for nonsingular X its universal Euler characteristic
[X ] ∈ K0(V arC) specializes to its Hodge-Deligne polynomial H(X) ∈
Z[u, v] and further to χ(X) ∈ Z.

Since χ(·) and H(·) factor through the image of MC in M̂C, they
induce natural maps χ : Mloc → Q and H : Mloc → Z[[u, v]]. Apply-
ing these specialization maps to the motivic measure of X yields new
(numerical) singularity invariants, which generalize the usual χ(X) and
H(X) for nonsingular X . Denef and Loeser call χ(μ(L(X))) the arc-
Euler characteristic of X .

For example the arc-Euler characteristic of {y2 − x3 = 0} is 1
2 and

the one of {xy = 0} is 2.

6 Motivic zeta functions

In this section M is a nonsingular irreducible algebraic variety of dimen-
sion m, and f : M → C is a non-constant regular function.

6.1. For each n ∈ N the morphism f : M → A1 = C induces a
morphism fn : Ln(M) → Ln(A1). A point α ∈ Ln(A1) corresponds to
an element α(t) ∈ C[t]/(tn+1); we denote as usual the largest e such that
te divides α(t) by ordtα ∈ {0, 1, · · · , n, +∞}. We set

Xn := {γ ∈ Ln(M) | ordtfn(γ) = n} for n ∈ N;

it is a locally closed subvariety of Ln(M).

Exercise. Denote X := {f = 0}. Then [Xn] = Lm[Ln−1(X)]− [Ln(X)]
for n ≥ 1, and [X0] = [M ] − [X ].

Definition. The motivic zeta function of f : M → C is the formal
power series

Z(T ) :=
∑
n≥0

[Xn](L−mT )n

in MC[[T ]].
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6.2. Considering the exercise above, it is not a surprise that for
X := {f = 0} the series J(T ) =

∑
n≥0[Ln(X)]T n and Z(T ) determine

each other. Indeed, one easily verifies that

J(T ) =
Z(LmT ) − [M ]

LmT − 1
.

6.3. The definition of Z(T ) is inspired by the p-adic Igusa zeta
function, associated to a polynomial f ∈ Zp[x1, · · · , xm], which is defined
as

Zp(s) :=
∫

Zm
p

|f(x)|sp|dx|

for s ∈ C with �(s) > 0. Recall that each z ∈ Zp \ {0} can be expressed
as z = p�u with � ∈ Z≥0 and u ∈ Z×

p . One denotes ordp(z) := � and
|z|p := p− ordp z = p−�. To compare with 6.1, note that Zp(s) can be
rewritten as

Zp(s) =
∑
n≥0

volume{x ∈ Zm
p | ordpf(x) = n}p−ns

=
1

pm

∑
n≥0

#{x ∈ (Z/pn+1Z)m | ordpf(x) = n}(p−mp−s)n.

6.4. Exercise. Write D for the (effective) divisor of zeros of f ,
i.e. D is “{f = 0} with multiplicities”. Then∫

L(M)

L−ordtDdμ = Z(L−1)

in M̂C, meaning in particular that the substitution in the right hand
side yields a well-defined element of M̂C.

6.5. As for the motivic volume, there is an important (similar)
formula for Z(T ) in terms of a resolution.

Theorem [DL2]. Let h : Y → M be an embedded resolution of
{f = 0}; i.e. h is a proper birational morphism from a nonsingular Y

such that h is an isomorphism on Y \ h−1{f = 0} and h−1{f = 0} is
a normal crossings divisor. Let Ei, i ∈ S, be the irreducible components
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of h−1{f = 0}. For i ∈ S we denote by Ni the multiplicity of Ei

in the divisor of f ◦ h on Y , and by νi − 1 the multiplicity of Ei in
the divisor of h∗ω, where ω is a local generator of Ωm

M . (Equivalently:
div(f ◦h) =

∑
i∈S NiEi and KY |M =

∑
i∈S(νi−1)Ei.) Set finally E◦

I :=
(∩i∈IEi) \ (∪� �∈IE�) for I ⊂ S. Then

Z(T ) =
∑
I⊂S

[E◦
I ]

∏
i∈I

(L − 1)T Ni

Lνi − T Ni
;

in particular Z(T ) is rational and belongs more precisely to the subring of
MC[[T ]] generated by MC and the elements T N

Lν−T N , where ν, N ∈ Z>0.

6.6. Corollaries.

(i) In the special case that X = {f = 0} is a hypersurface this yields
the stated rationality of J(T ) in (2.12).

(ii) Let M = Am and f ∈ Z[x1, · · · , xm]. Then by a similar formula
of Denef [De2] for the p-adic Igusa zeta functions Zp(s), Theorem 6.5
yields that Z(T ) specializes to the Zp(s) for all p except a finite number.
See [DL2] for a precise statement. Similarly J(T ) specializes to Jp(T )
for all p except a finite number [DL8, Theorem 6.1].

(iii) For any f : M → C we now explain how Z(T ) specializes to the
topological zeta function of f . Using Theorem 6.5 and the notation there,
we evaluate Z(T ) at T = L−s for any s ∈ N; this yields the well-defined
elements ∑

I⊂S

[E◦
I ]

∏
i∈I

L − 1
Lνi+sNi − 1

=
∑
I⊂S

[E◦
I ]

∏
i∈I

1
[Pνi+sNi−1]

in (the image in M̂C of) the localization of MC with respect to the
elements [Pj ]. Applying the Euler characteristic specialization map χ(·)
yields the rational numbers

∑
I⊂S

χ(E◦
I )

∏
i∈I

1
νi + sNi

for s ∈ N. The topological zeta function Ztop(s) of f is the unique
rational function in one variable s admitting the values above for s ∈ N.

Without the specialization argument above it is not at all clear that
Ztop(s) does not depend on the chosen resolution h : Y → M . In fact
Ztop(s) was first introduced in [DL1], in terms of a resolution, and p-adic
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Igusa zeta functions and the Grothendieck-Lefschetz trace formula were
needed to prove independence of the chosen resolution.

6.7. We just mention that there is an important generalization
of the motivic zeta function, working over a relative and equivariant
Grothendieck ring; it specializes by a limit procedure to objects in (an
equivariant version of) MC, which are shown to be a good virtual motivic
incarnation of the Milnor fibres of f at the points of {f = 0}. It is quite
remarkable that a definitely non-algebraic notion as the Milnor fibre has
such an algebraic incarnation. See [DL2][DL7].

Moreover these objects satisfy a motivic Thom-Sebastiani Theorem,
generalizing the known results of Varchenko and Saito. See [DL4].

6.8. Monodromy Conjecture.

There is an intriguing conjectural relation between the poles of the topo-
logical zeta function and the eigenvalues of the local monodromy of f .

Monodromy conjecture. If s0 is a pole of Ztop(s), then e2πis0

is an eigenvalue of the local monodromy action on the cohomology of the
Milnor fibre of f at some point of {f = 0}.

One can also state the analogous conjecture for the motivic zeta
function, but then one has to be careful with the notion of pole, see
[RV2]. Alternatively, we can formulate this monodromy conjecture for
Z(T ) as follows, without mentioning poles [DL2] :

Z(T ) belongs to the ring generated by MC and the elements T N

Lν−T N ,

where ν, N ∈ Z>0 and e2πi ν
N is an eigenvalue of the local monodromy

as above.

Actually, it was originally stated for the p-adic Igusa zeta function, being
even more remarkable, for then it relates number theoretical invariants
of f ∈ Z[x1, · · · , xm] to differential topological invariants of f , considered
as function Cn → C.

The conjecture was shown by Loeser for M = A2 [Loe1]; a shorter
proof in dimension 2 is in [Ro]. In dimension 3 there is a lot of ‘ex-
perimental evidence’ [Ve1], and by now various special cases are proved
[ACLM1][ACLM2][Loe2][RV1].
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Example. Let M = A2 and f = y2 − x3.
Exercise. Compute, using Theorem 6.5,

Z(T ) = L2(L − 1)
L5 − L3T + L3T 2 − T 5

(L5 − T 6)(L − T )

and
Ztop(s) =

5 + 4s

(5 + 6s)(1 + s)
.

(This is how we computed J(T ) in Example 2.14.) In particular, the
poles of Ztop(s) are −1 and −5/6. On the other hand, it is well known
that the monodromy eigenvalues of f are 1, e

πi
3 , and e−

πi
3 . Hence the

monodromy conjecture is indeed satisfied here.

Note. The previous example was too simple to exhibit the ‘typical’
situation. Each irreducible component Ei in Theorem 6.5 induces a
candidate-pole − νi

Ni
, and quite miraculously, for a generic example with

a lot of components Ei, ‘most’ of these candidates cancel. This experi-
mental fact is compatible with the monodromy conjecture, see [Ve1].

7 Batyrev’s stringy invariants

Using motivic integration, Batyrev [Ba1][Ba2] introduced new singular-
ity invariants for algebraic varieties with ‘mild’ singularities, more pre-
cisely with at worst log terminal singularities. He used them for instance
to formulate a topological mirror symmetry test for singular Calabi-Yau
varieties, to give a conjectural definition for stringy Hodge numbers, and
to prove a version of the McKay correspondence.

We first explain log terminal and related singularities; for this we
need the Gorenstein notion.

7.1. Let X be a normal algebraic variety of dimension d. In par-
ticular X is irreducible, Xsing has codimension at least 2 in X , and X
has a well defined canonical divisor KX (up to linear equivalence). One
can view (a representative of) KX as the divisor of zeroes and poles of
a rational differential d-form on X ; it is also the Zariski-closure of the
usual canonical divisor on Xreg.

When X is nonsingular, KX is a Cartier divisor, i.e. locally given
by one equation. This is not true in general.
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Definition. A normal variety X is Gorenstein if KX is a Cartier divisor.
Alternatively : X is Gorenstein if the rational differential d-forms on X ,
which are regular on Xreg, are locally generated by one element.

Example. Let X = {z2 = xy}; then those differential 2-forms are gen-
erated by dx∧dy

2z = dx∧dz
x = − dy∧dz

y (which is indeed regular on Xreg).

This notion is quite general; for instance all (normal) hypersurfaces and
even complete intersections are Gorenstein.

Note. In the literature one often uses the term Gorenstein alterna-
tively for varieties X for which all local rings OX,x(x ∈ X) are Goren-
stein rings, and then the property that KX is a Cartier divisor is called
1-Gorenstein.

7.2. We now introduce a certain ‘badness’ for singularities, in
terms of numerical invariants of a resolution.

Let X be Gorenstein of dimension d. Take a log resolution π : Y →
X of X and denote by Ei, i ∈ S, the irreducible components of the
exceptional locus Exc of h. We associate as follows an integer ai to each
Ei.

(1) Description with divisors. Since KX is Cartier, the pullback
π∗KX makes sense and one can consider the relative canonical divisor
KY |X = KY − π∗KX , which is supported on Exc. Then ai − 1 is the
multiplicity of Ei in KY |X , i.e. KY |X =

∑
i∈S(ai − 1)Ei.

(2) Description with differential forms. Take a general point Qi of
Ei and local coordinates y1, y2, · · · , yd around Qi such that the local
equation of Ei is y1 = 0. Let ωi be a local generator around π(Qi) of
the d-forms on X , which are regular on Xreg. (Such an ωi exists by the
Gorenstein property.) Then around Qi one can write π∗ωi as

π∗ωi = uyai−1
1 dy1 ∧ dy2 ∧ · · · ∧ dyd,

where u is regular and nonzero around Qi.

In general the ai ∈ Z, and when X is nonsingular they satisfy ai ≥ 2.

Terminology. One calls ai the log discrepancy of Ei with respect to X
(and ai − 1 the discrepancy).
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Example. The standard log resolution of X = {z2 = xy} has one excep-
tional curve E ∼= P1 with log discrepancy a = 1.

7.3. We also have to consider a technical generalization : the
normal variety X is called Q-Gorenstein if rKX is Cartier for some
r ∈ Z>0. In this case the log discrepancies are defined analogously by
KY |X =

∑
i∈S(ai −1)Ei, which should be considered as an abbreviation

of rKY |X = rKY − rKX =
∑

i∈S r(ai − 1)Ei. Now the r(ai − 1) ∈ Z,
and hence ai ∈ 1

r Z.

Example. Let X be the quotient of A2 by the action of μ3 = {z ∈ C |
z3 = 1} given by (x, y) �→ (εx, εy) for ε ∈ μ3. Concretely, X is given in
A4 by the equations

{u1u3 − u2
2 = u2u4 − u2

3 = u1u4 − u2u3 = 0} ,

in particular it is not a complete intersection. Here KX is not Cartier;
a representative of KX is for example {u1 = u2 = u3 = 0}. However,
3KX is Cartier; a representative is {u1 = 0}.

The standard log resolution of X has one exceptional curve E ∼= P1

with log discrepancy a = 2
3 .

A nice introduction to these notions is in [Re1].

7.4. Definition. (i) Let X be a Q-Gorenstein variety. Take a log
resolution π : Y → X of X ; let Ei, i ∈ S, be the irreducible components
of the exceptional locus of π with log discrepancies ai. Then X is called
terminal, canonical, log terminal and log canonical if ai > 1, ai ≥ 1,
ai > 0 and ai ≥ 0, respectively, for all i ∈ S.

One can show that these conditions do not depend on the chosen reso-
lution.

(ii) We say that X is strictly log canonical if it is log canonical but
not log terminal.

We should note that 0 is indeed the relevant ‘border value’ here; if
some ai < 0 on some log resolution, then one can easily construct log
resolutions with arbitrarily negative ai.

The log terminal singularities should be considered ‘mild’, the singu-
larities which are not log canonical ‘general’, and the strictly log canon-
ical ones as a special ‘border’ class.
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7.5. Example. (1) When X is a surface (d = 2) terminal is equiv-
alent to non-singular, the canonical singularities are precisely the so-
called ADE singularities or rational double points, and the log terminal
singularities are precisely the Hirzebruch-Jung or quotient singularities.

(2) Let X = {xk
1 + xk

2 + · · · + xk
d+1 = 0} in Ad+1. The origin

is the only singular point of X , and the blowing-up with the origin
as centre yields a log resolution π : Y → X of X with exceptional
locus consisting of one irreducible component E, which is isomorphic to
{xk

1 + xk
2 + · · · + xk

d+1 = 0} ⊂ Pd.

Exercise. (i) The log discrepancy of E with respect to X is d + 1 − k.
(ii) X is log terminal, strictly log canonical, and not log canonical

when k < d + 1, k = d + 1, and k > d + 1, respectively.

7.6. There are nice results of Ein, Mustaţǎ and Yasuda, relating
the previous notions with jet spaces.

Theorem [Mu1][EMY][EM]. Let X be a normal variety, which is
locally a complete intersection. Then X is terminal, canonical, and log
canonical if and only if Ln(X) is normal, irreducible, and equidimen-
sional, respectively, for every n.

7.7. Definition. Let X be a log terminal algebraic variety. Take
a log resolution π : Y → X of X . Let Ei, i ∈ S, be the irreducible
components of the exceptional locus of π with log discrepancies ai (∈
Q>0). Denote also E◦

I := (∩i∈IEi) \ (∪� �∈IE�) for I ⊂ S.
(i) The stringy Euler number of X is

est(X) :=
∑
I⊂S

χ(E◦
I )

∏
i∈I

1
ai

.

(ii) The stringy E-function of X is

Est(X) :=
∑
I⊂S

H(E◦
I )

∏
i∈I

uv − 1
(uv)ai − 1

.

(iii) The stringy E-invariant of X is

Est(X) :=
∑
I⊂S

[E◦
I ]

∏
i∈I

L − 1
Lai − 1

.
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Remarks. (1) Clearly est(X) ∈ Q; Est(X) is a rational function in u, v

(with ‘fractional powers’), and Est(X) lives in a finite extension of M̂C.
We have specialization maps Est(X) �→ Est(X) �→ est(X).

(2) Strictly speaking, Batyrev defined and used only the levels (i)
and (ii) [Ba2][Ba3].

When X is nonsingular, Est(X) = [X ] (this is 4.2), and of course
Est(X) = H(X) and est(X) = χ(X). So also these invariants are
new singularity invariants, generalizing [·], H(·) and χ(·), respectively,
for nonsingular X . (Just as the motivic volume and its specializations.
We give a comparing example in 7.11.)

7.8. The crucial point is that the defining expressions above do not
depend on the chosen resolution. We indicate three different arguments,
supposing for simplicity that X is Gorenstein, i.e. the ai ∈ Z>0.

(1) Let π : Y → X and π′ : Y ′ → X be two log resolutions of X . By the
formula of Proposition 3.6 we have in fact

∑
I⊂S

[E◦
I ]

∏
i∈I

L − 1
Lai − 1

=
∫
L(Y )

L−ordtKY |X dμ.

So we must show that
∫
L(Y )

L−ordtKY |X dμ =
∫
L(Y ′)

L−ordtKY ′|X dμ. To
this end we take a log resolution ρ : Z → X , dominating π and π′; i.e.

we have ρ : Z
σ→ Y

π→ X and ρ : Z
σ′
→ Y ′ π′

→ X . By the change of
variables formula in (3.8) we have∫

L(Y )

L−ordtKY |X dμ =
∫
L(Z)

L−ordt(σ
∗KY |X+KZ|Y )dμ

=
∫
L(Z)

L−ordt(KZ|X )dμ ,

and of course the same is true for the integral over L(Y ′).
This is essentially Batyrev’s proof.

(2) We can define Est(X) intrinsically, using motivic integration on X
[Ya1][DL6]. There is an ideal sheaf IX on X such that

Est(X) =
∫
L(X)

LordtIX dμ,
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using the setting of (3.5) and (3.7). More precisely, denoting by ωX the
sheaf of differential d-forms on X which are regular on Xreg, we have a
natural map Ωd

X → ωX whose image is IXωX . See [Ya1, Lemma 1.16].

(3) Using the Weak Factorization Theorem, see below, one essentially
has to show that the defining expressions in (7.7) do not change after
blowing-up Y in a nonsingular centre which intersects ∪i∈SEi trans-
versely. This is straightforward.

7.9. Weak Factorization Theorem [AKMW][W�l].
(1) Let φ : Y −→ Y ′ be a proper birational map between nonsingular

irreducible varieties, and let U ⊂ Y be an open set where φ is an isomor-
phism. Then φ can be factored as follows into a sequence of blow–ups
and blow–downs with smooth centres disjoint from U .

There exist nonsingular irreducible varieties Y1, . . . , Y�−1 and a se-
quence of birational maps

Y = Y0−
φ1→ Y1−

φ2→· · ·−φi−1→ Yi−1−
φi→ Yi

−φi+1→ · · ·−φ�−1→ Y�−1−
φ�→ Y� = Y ′

where φ = φ� ◦ φ�−1 ◦ · · · ◦ φ2 ◦ φ1, such that each φi is an isomorphism
over U (we identify U with an open in the Yi), and for i = 1, . . . , � either
φi : Yi−1−→ Yi or φ−1

i : Yi−→ Yi−1 is the blowing–up at a nonsingular
centre disjoint from U , and is thus a morphism.

(1′) There is an index i0 such that for all i ≤ i0 the map Yi → Y is
a morphism, and for i ≥ i0 the map Yi → Y ′ is a morphism.

(2) If Y \ U and Y ′ \ U are normal crossings divisors, then the
factorization above can be chosen such that the inverse images of these
divisors under Yi → Y or Yi → Y ′ are also normal crossings divisors,
and such that the centres of blowing–up of the φi or φ−1

i intersect these
divisors transversely.

Remark. (i) In [AKMW] and [W�l] the theorem is stated for a birational
map φ between complete Y and Y ′; the generalization to proper bira-
tional maps between not necessarily complete Y and Y ′ is mentioned by
Bonavero [Bo].

(ii) In [AKMW, Theorem 0.3.1] the first claim of (2) is not explicitly
stated, but can be read off from the proof (see [AKMW, 5.9 and 5.10]).

7.10. Important Intermezzo. Using weak factorization instead of
motivic integration, we can define Est(X) in a localization of (a finite
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extension of) MC, which is a priori finer than in (a finite extension of)
M̂C, since we do not know whether the natural map MC → M̂C is
injective.

This remark also applies e.g. to (4.1), yielding [X ] = [Y ] in the
localization of MC with respect to the [Pj] instead of merely in M̂C.

7.11. Example. Let X = {xk
1 + xk

2 + · · · + xk
d+1 = 0} ⊂ Ad+1.

Exercise. We use the notation E of Example 7.5.
(i) Est(X) = (L − 1)[E] + [E] L−1

Ld+1−k−1
,

(ii) μ(L(X)) = (L − 1)[E] + [E] L−1
Ld−1

,

(iii) [X ] = (L − 1)[E] + 1.

(Note also that (ii) and (iii) are consistent with Example 5.4.)

7.12. Applications.

(i) Topological mirror symmetry test for singular Calabi-Yau mirror
pairs [Ba2].
(ii) A conjectural definition of stringy Hodge numbers for certain canon-
ical Gorenstein varieties [Ba2].
(iii) A proof of a version of the McKay correspondence [Ba3][DL6][Ya1].
(iv) A new birational invariant for varieties of nonnegative Kodaira di-
mension, assuming the Minimal Model Program [Ve2, (2.8)].

8 Stringy invariants for general singularities

In this section X is a Q-Gorenstein variety.

8.1. For a log resolution π : Y → X of X , we use the notation Ei

and ai, i ∈ S, and E◦
I , I ⊂ S, as before. There are (at least) two nat-

ural questions concerning a possible generalization of Batyrev’s stringy
invariants beyond the log terminal case.

Question I. Suppose there exists at least one log resolution π : Y → X
of X for which all log discrepancies ai �= 0. Is (e.g.)∑

I⊂S

χ(E◦
I )

∏
i∈I

1
ai

independent of a chosen such resolution ?
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This question is still open (a positive answer would yield a general-
ized stringy invariant for those X admitting such a log resolution). Note
that, when using the weak factorization theorem to connect two such log
resolutions by chains of blowing-ups, log discrepancies on ‘intermediate
varieties’ could be zero, obstructing an obvious attempt of proof.

Question II. Do there exist any kind of invariants, associated to all
or ‘most’ Q-Gorenstein varieties, which coincide with Batyrev’s stringy
invariants if the variety is log terminal ?

Concerning this question, we obtained the following result [Ve4].
We associated invariants to ‘almost all’ Q-Gorenstein varieties, more
precisely to all Q-Gorenstein varieties without strictly log canonical sin-
gularities, which do generalize Batyrev’s invariants for log terminal va-
rieties. (Note that in particular log discrepancies can be zero in a log
resolution of a non log canonical variety !)
• To construct these invariants we have to assume Mori’s Minimal

Model Program (in fact the relative and log version).
• As in the previous section, we can work on any level : χ(·), H(·),

and [·]. For simplicity we treat here just the roughest level χ(·); the
other levels are analogous.

8.2. We associate to any Q-Gorenstein X without strictly log
canonical singularities a rational function zst(X ; s) in one variable s,
the stringy zeta function of X . It will turn out that for log terminal X ,
this rational function is in fact a constant and equal to est(X).

We just present the main idea of our construction. The ‘pragmatic’
idea is to split the log discrepancies ai of a log resolution π : Y → X as
ai = νi + Ni such that (νi, Ni) �= (0, 0) for all i, and to define zst(X ; s)
as ∑

I⊂S

χ(E◦
I )

∏
i∈I

1
νi + sNi

∈ Q(s).

This is done in a geometrically meaningful way via factoring π through
a certain ‘partial resolution’ p : Xm → X of X , which is called a relative
log minimal model of X . This is a natural object in the (relative, log)
Minimal Model Program; important here is that it is not unique and that
Xm can have certain mild singularities. (Its existence is the key point
in this Program and this is for the moment proved only in dimensions 2
and 3.)
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For the specialists : p is a proper birational morphism, Xm is Q-
factorial, the pair (Xm, Em) is divisorial log terminal, and KXm +Em is
p-nef, where Em denotes the reduced exceptional divisor of p. References
for these notions are e.g. in [KM][KMM][Ma].

We consider the factorization π : Y
h→ Xm p→ X . In general h is

only a birational map (maybe not everywhere defined), but we suppose
for the moment that it is a morphism. We justify this later. Denoting
as usual by Ei, i ∈ S, the irreducible components of the exceptional
divisor of π, we let Em

i , i ∈ Sm, be the images in Xm of those Ei which
‘survive’ in Xm, i.e. which are not contracted by h to varieties of smaller
dimension. Then∑

i∈S

aiEi =KY +
∑
i∈S

Ei − π∗KX

= KY +
∑
i∈S

Ei − h∗(KXm +
∑

i∈Sm

Em
i )

︸ ︷︷ ︸
(1)

+ h∗(KXm +
∑

i∈Sm

Em
i ) − h∗p∗KX︸ ︷︷ ︸

(2)

.

Both (1) and (2) are divisors on Y , supported on ∪i∈SEi. We write (1)
as

∑
i∈S νiEi; all νi ≥ 0 because the pair (Xm,

∑
i∈Sm Em

i ) has only
mild singularities (more precisely, because it is divisorial log terminal).
We can rewrite (2) as

h∗(KXm +
∑

i∈Sm

Em
i − p∗KX) = h∗(

∑
i∈Sm

aiE
m
i );

and it is well known that all ai, i ∈ Sm, are non-positive (more precisely,
this follows since KXm +

∑
i∈Sm Em

i is p-nef). So we can write (2) as∑
i∈S NiEi where all Ni ≤ 0.

With these definitions of νi and Ni we indeed have ai = νi + Ni for
i ∈ S, with moreover νi ≥ 0 and Ni ≤ 0. One can show that, if X has
no strictly log canonical singularities, the situation νi = Ni = 0 cannot
occur.

When X is log terminal, the morphism p : Xm → X has no excep-
tional divisors, so Sm = ∅, all Ni = 0 and νi = ai, and as promised
zst(X ; s) = est(X).
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In fact we FIRST choose a relative log minimal model p : Xm → X
of X , we secondly choose a log resolution h : Y → Xm of the pair
(Xm, Em), where Em is the reduced exceptional divisor of p, and then
we put π := p ◦ h.

The point is again that zst(X ; s) is independent of both choices, for
which a crucial ingredient is the Weak Factorization Theorem.

8.3. Theorem [Ve4]. Let X be any surface without strictly log
canonical singularities. Then

lim
s→1

zst(X ; s) ∈ Q.

(Recall that this is non-obvious since some ai can be zero. The clue
is that if ai = 0, then Ei must be rational and must intersect exactly
once or twice other components; this then easily implies the cancelling of
νi +sNi in the denominator of zst(X ; s).) So we can define in dimension
2 a generalized stringy Euler number est(X) as the limit above for any
such surface X . In fact we constructed this generalized est(X) in [Ve3]
by a ‘direct’ approach.

(i)

(1)

(k)

....................................................................................................................................................................................................................................................................................................................................................................

. . .

. . .

. . .

...

...

• • • • •

• • • •

• • • •

E
E

(i)
ri

E
(i)
ri−1 E

(i)
2 E

(i)
1

Figure 1

8.4. Example [Ve3]. Let P ∈ X be a normal surface singularity
with dual graph of its minimal log resolution π : X → S as in Figure 1.
There is a central curve E with genus g and self-intersection number −κ,
and all other curves are rational. Each attached chain E

(i)
1 − · · · − E

(i)
ri

is determined by two co-prime numbers ni and qi, which are the abso-
lute value of the determinant of the intersection matrix of E

(i)
1 , . . . , E

(i)
ri

and E
(i)
1 , . . . , E

(i)
ri−1, respectively. Finally, we denote by d the absolute
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value of the determinant of the total intersection matrix of π−1P . This
is a quite large class of singularities; it includes all weighted homoge-
neous isolated complete intersection singularities, for which the num-
bers {g; κ; (n1, q1), · · · , (nk, qk)} are called the Seifert invariants of the
singularity.

If P ∈ X is not strictly log canonical, then

est(X) = lim
s→1

zst(X ; s) =
1
a
(2 − 2g − k +

k∑
i=1

ni) + χ(X \ {P}) ,

where

a =
2 − 2g − k +

∑k
i=1

1
ni

κ −
∑k

i=1
qi

ni

=
∏k

i=1 ni

d
(2 − 2g − k +

k∑
i=1

1
ni

)

is the log discrepancy of E.
We note that some other log discrepancies might be zero. A partic-

ular example is the so-called triangle singularity, given by g = 0, κ = 1,
k = 3 and r1 = r2 = r3 = 1. So, concretely, there is a central rational
curve with self-intersection −1 to which three other rational curves are
attached. Then a = −1 and the three other log discrepancies are zero,
and est(X) = 1 − (n1 + n2 + n3) + χ(X \ {P}).

When such P ∈ X is a weighted homogeneous isolated hypersurface
singularity, this generalized stringy Euler number appears in some Taylor
expansion associated to it, studied by Némethi and Nicolaescu [NN].

8.5. Example. [Ve4] Here we mention a concrete example of a
threefold singularity P ∈ X , which has an exceptional surface with
log discrepancy zero in a log resolution, and such that nevertheless
lims→1 zst(X ; s) ∈ Q, i.e. such that the evaluation zst(X ; 1) makes sense.

Let X be the hypersurface {x4 + y4 + z4 + t5 = 0} in A4; its only
singular point is P = (0, 0, 0, 0). We sketch the following constructions
in Figure 2; we denote varieties and their strict transforms by the same
symbol.

The blowing-up π1 : Y1 → X with centre P is already a resolution of
X (Y1 is smooth). Its exceptional surface E1 is the affine cone over the
smooth projective plane curve C = {x4 +y4 +z4 = 0}. Let π2 : Y2 → Y1

be the blowing-up with centre the vertex Q of this cone, and exceptional
surface E2

∼= P2. Then E1 ⊂ Y2 is a ruled surface over C which intersects
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E2 in a curve isomorphic to C. The composition π = π1 ◦ π2 is a log
resolution of P ∈ X , and one easily verifies that the log discrepancies
are a1 = 0 and a2 = −1; in particular P ∈ X is not log canonical.

Now E1 ⊂ Y2 can be contracted (more precisely one can check that
the numerical equivalence class of the fibre of the ruled surface E1 is
an extremal ray). Let h : Y2 → Xm denote this contraction, and let
π = p ◦ h. As the notation suggests, one can verify that KXm + E2 is
p-nef, implying that (Xm, E2) is a relative log minimal model of P ∈ X .

E2

E2

E1

E1

C

C

..........
...................

.................................................................................................................................................................................................................
..............
......

.........
.................

.....................................................................................................................................................................................................................
..............
..... ........

..........
..............

....................
....................................

..............................................................................................................................................................................................................................................................................................................................................................................
........................

................
...........
.........
..

.........
.................

.....................................................................................................................................................................................................................
.............
......

.........
.................

.....................................................................................................................................................................................................................
.............
......

.........
.................

.....................................................................................................................................................................................................................
.............
......

.....................................................................................................................................................................................................................

.....................................................................................................................................................................................................................

• Q
.........
.................

.....................................................................................................................................................................................................................
.............
...... ........

..........
..............

.....................
....................................

............................................................................................................................................................................................................................................................................................................................................................................
........................

................
...........
.........
...

• P

................................................................................................................
.........
.....

...........
............

.............................................................................................................................. ...........
..........
..

..........................................................................................................................
........
.......

........

........
.......

............................................................................................................................................. .................
......

.......................................................................................................................................
......

.......................

π2

h

π

π1

p

Y2

Y1

X

Xm

Figure 2

Denoting as usual

KY2 = h∗(KXm + E2) + (ν1 − 1)E1 + (ν2 − 1)E2

and
h∗(a2E2) = N1E1 + N2E2
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we have clearly that ν2 = 0 and N2 = −1, and one computes that ν1 = 1
5

and N1 = − 1
5 . So

zst(X ; s)

=
χ(C)

(ν1 + sN1)(ν2 + sN2)
+

χ(E1 \ C)
ν1 + sN1

+
χ(E2 \ C)
ν2 + sN2

+ χ(X \ {P})

=
−4

(1
5 − 1

5s)(−s)
+

−4
1
5 − 1

5s
+

7
−s

+ χ(X \ {P}) =
13
s

+ χ(X \ {P}) ,

yielding lims→1 zst(X ; s) = zst(X ; 1) = 13 + χ(X \ {P}).

8.6. Question. Let X be a Q-Gorenstein variety of arbitrary di-
mension without strictly log canonical singularities. When is

lim
s→1

zst(X ; s) ∈ Q ?

9 Miscellaneous recent results

Here we gather a collection of various results, which were obtained after
the redaction of the survey paper [DL8].

• Aluffi noticed in [Al1] that the Euler characteristic formula in (4.2) im-
plies interesting similar statements about Chern-Schwartz-MacPherson
classes. Then in [Al2] he studies the birational behavior of Chern classes
with respect to the ‘motivic integration philosophy’. There he also in-
troduces stringy Chern classes of log terminal varieties, which was done
simultaneously by de Fernex, Lupercio, Nevins and Uribe in [dFLNU].

• Bittner [Bi2] calculated the relative dual of the motivic nearby fibre
and constructed a nearby cycle morphism on the level of the Grothen-
dieck group of varieties.

• More exotic motivic measures are introduced by Bondal, Larsen and
Lunts [BLL] and Drinfeld [Dr].

• Using arc spaces and motivic integration, Budur [Bu] relates the Hodge
spectrum of a hypersurface singularity to its jumping numbers (which
come from multiplier ideals).

• Campillo, Delgado and Gusein-Zade [CDG1][CDG2][CDG3], and Ebel-
ing and Gusein-Zade [EG1][EG2] studied filtrations on the ring of germs
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of functions on a germ of a complex variety, defined by arcs on the singu-
larity. An important technique is integration with respect to the Euler
characteristic over the projectivization of the space of function germs;
this notion is similar to (and inspired by) motivic integration.

• Cluckers and Loeser [CL1][CL2][CL3] built a more general theory for
relative motivic integrals, avoiding moreover the completion of Grothen-
dieck rings. These integrals specialize to both ‘classical’ and arithmetic
motivic integrals.

More ‘relative theory’ is in [Ni3].

• Dais and Roczen obtained formulas for the stringy Euler number and
stringy E-function for some special classes of singularities [Da][DR].

• Now available are the ICM 2002 survey [DL9] and the recent expository
paper of Hales [Hal3] on the theory of arithmetic motivic measure of
Denef and Loeser [DL5]. Related work is in [DL10] and [Ni3].

• In [dSL] du Sautoy and Loeser associate motivic zeta functions to a
large class of infinite dimensional Lie algebras.

• Ein, Lazarsfeld, Mustaţǎ and Yasuda have various other papers about
spaces of jets, relating them for instance to singularities of pairs, in
particular to the log canonical threshold, and to multiplier ideals [ELM]
[Mu2][Ya2].

• Koike and Parusiński [KP] associated motivic zeta functions to real
analytic function germs and showed that these are invariants of blow-
analytic equivalence. Fichou [Fi] obtained similar results in the context
of Nash funcion germs. Both constructions are useful for classification
issues.

• Gordon [Go] introduced a motivic analogue of the Haar measure for the
(non locally compact) groups G(k((t))), where G is a reductive algebraic
groups, defined over an algebraically closed field k of characteristic zero.

• Guibert [Gui] computed the motivic zeta function associated to irre-
ducible plane curve germs, yielding a new proof of the formula express-
ing the spectrum in terms of the Puiseux data. Here he studied also a
motivic zeta function for a family of functions and related it with the
Alexander invariants of the family; this is used to obtain a formula for
the Alexander polynomial of a plane curve.

• Guibert, Loeser and Merle [GLM1] introduced iterated motivic van-
ishing cycles and proved a motivic version of a conjecture of Steenbrink
concerning the spectrum of hypersurface singularities.

• Gusein-Zade, Luengo and Melle Hernández [GLM2] treat integration
over spaces of non-parametrized arcs and introduce motivic versions of
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the classical monodromy zeta function. They indicate a formula con-
necting the motivic zeta function with this monodromy zeta function.

• Arithmetic motivic integration in the context of p-adic orbital integrals
and transfer factors is considered by Gordon and Hales in [GH] and
[Hal2]. An introduction to this theory is [Hal1].

• Ishii and Kollár [IK] found counter examples in dimensions at least 4
to the Nash problem, which relates irreducible components of the space
of arcs through a singularity to exceptional components of a resolution.
(And they proved it in general for toric singularities.) Reguera [Reg]
showed in any dimension that the Nash problem is equivalent to the
so-called wedge problem.

For a toric variety, Ishii [Is] described precisely the relation between
arc families and valuations, and obtained the answer to the embedded
version of the Nash problem.

• Ito produced an alternative proof that birational smooth minimal
models have equal Hodge numbers [It1], and that Batyrev’s stringy E-
function is well defined [It2], using p-adic Hodge theory.

• Kapranov [Ka] introduced another motivic zeta function as the gener-
ating series for motivic measures of varying n-fold symmetric products of
a fixed variety. Larsen and Lunts [LL1][LL2] determined for which sur-
faces this is a rational function over K0(V arC). It is not known whether
it is always a rational function over MC. See also [DL10, §7] and [BDN].

• For toric surfaces, Lejeune-Jalabert and Reguera [LR] and Nicaise [Ni1]
computed an explicit formula for the series P (T ) and J(T ), respectively.
This last paper also contains a sufficient condition for the equality of
P (T ) and the arithmetic Poincaré series of a toric singularity, which is
always satisfied in the surface case. A counter example for this equality
in dimension 3 is given.

In [Ni2] Nicaise provides a concrete formula for P (T ) if the variety
has an embedded resolution of a simple form; this yields a short proof
of the formula for toric surfaces.

• Loeser [Loe3] studied the behavior of motivic zeta functions of preho-
mogeneous vector spaces under castling transformations; he deduced in
particular how the motivic Milnor fibre and the Hodge spectrum at the
origin behave under such transformations.

• In [NS] Nicaise and Sebag establish the motivic zeta function as a Weil
zeta function of the rigid Milnor fibre.

• Sebag [Se1][Se2] studied motivic integration and motivic zeta functions
in the context of formal schemes. Loeser and Sebag [LS] developed a
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theory of motivic integration for smooth rigid varieties, obtained a mo-
tivic Serre invariant, and provided new geometric birational invariants
of degenerations of algebraic varieties.

• The author introduces motivic principal value integrals and investi-
gates their birational behavior in [Ve5].

• Vojta provides in [Vo] a general reference for jet spaces and jet differ-
entials (at the level of EGA), using Hasse-Schmidt higher differentials.

• Yasuda [Ya1][Ya3] introduced so-called twisted jets and arcs over
Deligne-Mumford stacks and studied then motivic integration over them.
As applications he obtained a McKay correspondence for general orb-
ifolds (see also [LP]), and a common generalization of the stringy E-
function and the orbifold cohomology.

• Yokura [Yo] constructs Chern-Schwartz-MacPherson classes on pro-
algebraic varieties and relates this to the motivic measure.

References

[ACLM1] E. Artal Bartolo, P. Cassou-Noguès, I. Luengo and A. Melle Her-
nández, Monodromy conjecture for some surface singularities,
Ann. Scient. Ec. Norm. Sup., 35 (2002), 605–640.

[ACLM2] E. Artal Bartolo, P. Cassou-Noguès, I. Luengo and A. Melle Her-
nández, Quasi-ordinary power series and their zeta functions,
Mem. Amer. Math. Soc., 178 (2005), no. 841, vi+85pp.

[AKMW] D. Abramovich, K. Karu, K. Matsuki and J. W�lodarczyk, Torifica-
tion and factorization of birational maps, J. Amer. Math. Soc.,
15 (2002), 531–572.

[Al1] P. Aluffi, Chern classes of birational varieties, Int. Math. Res. Not.,
2004 (2004), 3367–3377.

[Al2] P. Aluffi, Modification systems and integration in their Chow
groups, Selecta Math., 11 (2005), 155–202.

[Ba1] V. Batyrev, Birational Calabi–Yau n–folds have equal Betti num-
bers, in “New Trends in Algebraic geometry, Euroconference on
Algebraic Geometry, (eds. K. Hulek et al), Warwick, 1996, Lon-
don Math. Soc. Lecture Note Ser. 264,”, CUP, 1999, pp. 1–11.

[Ba2] V. Batyrev, Stringy Hodge numbers of varieties with Gorenstein
canonical singularities, Proc. Taniguchi Symposium 1997, In ‘In-
tegrable Systems and Algebraic Geometry, Kobe/ Kyoto 1997’,
World Sci. Publ., 1999, 1–32.

[Ba3] V. Batyrev, Non–Archimedian integrals and stringy Euler numbers
of log terminal pairs, J. Europ. Math. Soc., 1 (1999), 5–33.



Arc spaces, motivic integration and stringy invariants 567

[BDN] F. Baldassarri, C. Deninger and N. Naumann, A motivic version
of Pellikaan’s two variable zeta function, math.AG/0302121.

[Bi1] F. Bittner, The universal Euler characteristic for varieties of char-
acteristic zero, Compositio Math., 140 (2004), 1011–1032.

[Bi2] F. Bittner, On motivic zeta functions and the motivic nearby fiber,
Math. Z., 249 (2005), 63–83.

[BLL] A. Bondal, M. Larsen and V. Lunts, Grothendieck ring of pre-
triangulated categories, Int. Math. Res. Not. , 2004 (2004),
1461–1495.

[BLR] S. Bosch, W. Lütkebohmert and M. Raynaud, “Néron Models”,
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[EM] L. Ein and M. Mustaţǎ, Inversion of adjunction for local complete
intersection varieties, Amer. J. Math., 126 (2004), 1355–1365.
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Finite Dehn surgery along A’Campo’s divide knots

Yuichi Yamada

Abstract.

We give two geometric methods of constructing plane curves giv-
ing cable knots of torus knots via A’Campo’s divide knot theory, re-
lated to both singularity theory and knot theory. We point out a
relationship between “area”of the plane curves and the coefficients of
finite Dehn surgery, which is Dehn surgery yielding three-dimensional
manifolds with finite fundamental group.

§1. Introduction

The divide is a relative, generic immersion of a finite number of
copies of an arc and a circle in the unit disk D in R2. N. A’Campo
formulated the following definition to associate to each divide P a link
L(P ) in the 3-dimensional sphere S3 ([1, 2, 3, 4]):

L(P ) = {(u, v) ∈ D × TuD |u ∈ P, v ∈ TuP, |u|2 + |v|2 = 1} ⊂ S3,

where TuP is the subset consisting of vectors tangent to P in the tangent
space TuD of D at u. The number of components of L(P ) is �arc +
2�circle, where �arc (and �circle, respectively) is the number of immersed
components of arcs (and circles) in P . In this paper, we will study the
case where P consists of one immersed arc, thus L(P ) is a knot, and we
say “a curve P gives a link L” if L(P ) = L.

The class of links of divides properly contains the class of the links
arising from isolated singularities of complex plane curves, for example,

Received March 12, 2004.
Revised June 2, 2004.
2000 Mathematics Subject Classification. Primary 57M25, 14H20; Sec-

ondary 55A25.
Key words and phrases. Curve singularity, Dehn surgery, Iterated torus

knots.
Partially supported by Grant-in-Aid for Scientific Research No.15740034,

Japan Society for the Promotion of Science.



574 Y.YAMADA

each torus link T (a, b) of type (a, b) with a, b > 0 appears as the link
of the singularity of the curve za − wb = 0 in C2 at the origin. In
particular, if a and b are coprime, then T (a, b) is a torus knot. A cable
knot of a (non-trivial) knot K is a knot in the boundary TK of a regular
neighborhood of K. A cable knot is called (p, q)-cable of K and denoted
by C(K; p, q) if it is homologous to plK + qmK in TK , where {mK , lK}
is a meridian-longitude system on TK . For the torus knot T (a, b), if the
pair (p, q) of coefficients satisfies the inequarity q > abp then the cable
knot C(T (a, b); p, q) also appears as the link of the singularity in C2, see
[11, p.51]. Note that it is well-known that the link of a singularity is a
torus knot, a cable knot or a knot obtained by iteration of cablings of
them, called an “iterated torus knot”.

In this paper, we give two geometric methods of constructing di-
vides that give some cable knots of torus knots. They are different from
A’Campo’s original method [4]. The first method, in the next section,
is a generalization of [14], in which the author and co-authors showed
that a billiard curve in a rectangle a× b gives a torus knot T (a, b) from
the view point of knot theory. The second one, in Section 3, is a modifi-
cation of A’Campo’s, but we will use fold-maps of rectangles instead of
immersions. In Section 4, we point out a relationship between such di-
vide representation of knots and finite Dehn surgery, i.e., Dehn surgery
yielding a 3-manifold whose fundamental group is finite. The reason why
we show such alternative methods is that ours seems more convenient
in 3-dimensional topology.

The author would like to thank Professor Tadashi Ashikaga and
Professor Masaharu Ishikawa [15, 16] for introducing to him A’Campo’s
theory. The author would like to thank Professor Mikami Hirasawa,
who checked some examples of theorems in this paper by more knot-
theoretical and visualized method in [18]. The author would like to
express sincere gratitude to the referee for reading the manuscript care-
fully and giving him valuable advice.

§2. Method 1. Billiard curve

Let X be the infinite 45◦ lattice defined by

X := {(x, y) ∈ R2| cosπx = cosπy}
in the real xy-plane. For a pair (a, b) of positive integers and (m, n) ∈ Z2,
by R(a × b)(m,n) we denote the rectangle at (m, n) of size a × b in the
following sense:

R(a × b)(m,n) := {(x, y) ∈ R2|m ≤ x ≤ m + a and n ≤ y ≤ n + b}.
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Fig. 1. P (2, 3; 2, 13), P (3, 4; 3, 37) and P (3, 4; 3, 35)

Fig. 2. B(2, 3)〈B+
0 (2)〉 and B(3, 4)〈B±

0 (3)〉

For such a rectangle or a union R of such rectangles, we regard X ∩R
as a piecewise linear curve (shortly, a PL curve), where we regard each
point in X ∩∂R as a break point if it is on the edges of R, or a endpoint
if it is on a corner of ∂R. From such a PL curve, we get a divide by
rounding the break points smoothly and setting it in the unit disk in R2
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by an isotopy. By X ∩ R, we also denote such a smooth divide derived
from the PL curve.

In [14], the author and co-authors proved the following proposition
and found a nice diagram of T (a, b) and Murasugi-sum structure of their
fiber surfaces from the view point of knot theory. (Proposition 2.1 itself
has been shown in [17], [5], or can be shown by more recent works [10],
[18].)

Proposition 2.1. ([14]) Let (a, b) be a pair of positive integers and
(m, n) any pair of integers. Then a divide X∩R(a×b)(m,n) gives a torus
link T (a, b).

Now, for a pair (a, b) of positive coprime integers and a positive
integer p, we define a region R(a, b; p, pab + 1) in R2 and a divide
P (a, b; p, pab + 1) as:

(+) R(a, b; p, pab + 1) := R(pa × pb)(0,0) ∪ R(1 × p)(−1,0),

P (a, b; p, pab + 1) := X ∩ (R(a, b; p, pab + 1) + �δ),

and also define a regionR(a, b; p, pab−1) in R2 and a divide P (a, b; p, pab−
1) as:

(−) R(a, b; p, pab − 1) := cl
(
R(pa × pb)(0,0)\R(1 × (p − 1))(0,0)

)
,

P (a, b; p, pab− 1) := X ∩ (R(a, b; p, pab − 1) + �δ),

where cl means the closure of the region, �δ = (δ1, δ2) ∈ Z2 with δ1+δ2 ≡
p + 1 mod 2 and +�δ means the parallel transformation by �δ in R2, see
Figure 1.

Theorem 2.2. For a pair (a, b) of positive coprime integers and a
positive integer p, the divide P (a, b; p, pab± 1) gives a (p, pab± 1)-cable
of the torus knot T (a, b), i.e.,

L(P (a, b; p, pab± 1)) = C(T (a, b); p, pab ± 1).

Proof. First, from the pair (a0, b0) := (a, b), we construct a word
w1w2 · · ·wn of two letters L (left) and R (right) by Euclidean algorithm,
see Figure 3:

If ai > bi, then wi+1 := L and (ai+1, bi+1) := (ai − bi, bi).
If ai < bi, then wi+1 := R and (ai+1, bi+1) := (ai, bi − ai).

By coprime-ness of (a, b), after some n steps, the pair (an, bn) becomes
(1, 1). Then this step is over.

Second, we regard the word as a rule of constructing the a × b rec-
tangle. In fact, R(a, b)(0,0) is obtained from R(1 × 1)(0,0) ruled by the
word in inversed order as follows (j = 1, 2, ..., n) (see also [19]):
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(3, 5) → (3, 2) → (1, 2) → (1, 1)
R L R

Fig. 3. Euclidean Algorithm

If wn+1−j = L, then we add a square from the right.
If wn+1−j = R, then we add a square from the top, see Figure 3.

This process corresponds to a blowing-up sequence of the singularity
za−wb = 0, thus also to a twisting sequence of torus knots. According to
growing up of the rectangle from R(1×1) to R(a×b), the corresponding
knot K changes from the unknot K0 := T (1, 1) to Kn := T (a, b) by
Proposition 2.1.

Finally, we starting with the region R((p + 1) × p)(−1,0) + �δ or
cl

(
R(p × p)(0,0)\R(1 × (p − 1))(0,0)

)
+�δ according to the sign at ±, which

gives C(T (1, 1); p, p ± 1) = T (p ± 1, p) regarded as a curve in TK0 . We
add p × p extended squares to the starting rectangle from the right or
the top according to the word wn+1−j is L or R (j = 1, 2, ..., n) as same
as in the last step. Then we have R(a, b; p, pab ± 1) and the divide
P (a, b; p, pab ± 1).

Generally, if a knot K ′ is obtained from K by a positive twisting
along a disk d, the homology class mK in TK becomes to mK′ in TK′

and the class lK in TK becomes to lK′ + lk(K, ∂d)2mK′ in TK′ , where
lk(K, ∂d) is the linking number of K and the boundary of d, see [20,
p.11]. In the divide theory, the intersection number between two divides
equals to the linking number of the corresponding components of the
link.

In our j-th process in the case of wn+1−j = R, the boundary of
the disk dj corresponds to the right edge whose length is bn+1−j , which
equals to the linking number lk(Kj−1, ∂dj).
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Thus plKj−1 + (pan+1−jbn+1−j ± 1)mKj−1 becomes to

p(lKj + b2
n+1−jmKj) + (pan+1−jbn+1−j ± 1)mKj

= plKj + {p(an+1−j + bn+1−j)bn+1−j ± 1}mKj

= plKj + (pan−jbn−j ± 1)mKj .

The case of wn+1−j = L is similar (a and b are changed). After the final
n-th step, we have the cable knot C(T (a, b); p, pab ± 1). The proof is
completed. Q.E.D.

§3. Method 2. Fold-immersion

Let P be a PL curve obtained by cutting out X ∩R from the lattice
X as in the last section.

Definition 3.1. For such a PL curve P , by b we denote the number
of break points of P on the edges of R. We say that a map f : [0, 1]2 →
R2 is a fold-immersion of [0, 1]2 along P if it satisfies the following
condition:

(1) f([0, 1]× { 1
2}) = P ,

(2) There exists a sequence 0 < t1 < t2 < · · · < tb < 1 such that
(i) f is an immersion over ([0, 1]\{t1, t2, · · · , tb}) × [0, 1] and
(ii) Near each {ti} × [0, 1], f is locally given as shown in

Figure 4. For example, in the case of Figure 4, f near
{ti} × [0, 1] is determined by the map

ϕ : (ti − ε, ti + ε) × [0, 1] → R2

(t, s) �→ (t + s, |t|).
If the break point is not on the bottom edge, then f is
locally given by the π/2, π or 3π/2 rotation of Figure 4 or
its reflection.

Fig. 4. Fold-map

We remark that triangle moves on divides shown in Figure 5 do not
change the ambient isotopy type of the links of the divides. Let B±

0 (p)
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Fig. 5. Triangle move

and B(a, b) be the billiard curves defined by

B+
0 (p) := X ∩ R((p + 1) × p)(0,−p),

B−
0 (p) := X ∩ cl

(
R(p × p)(0,−p)\R(1 × (p − 1))(0,−p)

)
and

B(a, b) := X ∩ R(a × b)(0,0).

By scaling smaller, we regard B±
0 (p) in the rectangle as a curve in

[0, 1]2. Then, the image of B±
0 (p) under a (generic) fold-immersion along

B(a, b) is well-defined up to triangle moves. We denote such a curve by
B(a, b)〈B±

0 (p)〉, see Figure 2, placed near Figure 1 for convenience.

Theorem 3.2. For a pair (a, b) of positive coprime integers and a
positive integer p, the divide B(a, b)〈B±

0 (p)〉 gives a (p, pab± 1)-cable of
T (a, b), i.e.,

L(B(a, b)〈B±
0 (p)〉) = C(T (a, b); p, pab ± 1).

Proof. It is easy to see that, for a nice choice of fold-immersion,
or in other words, by some triangle moves, the curve B(a, b)〈B±

0 (p)〉 is
isotopic to P (a, b; p, pab ± 1). Q.E.D.

We remark that A’Campo constructed in [3] the divide B(2, 3)〈B+
0 (2)〉

in our notation as the image of B(2, 9) under an immersion along B(2, 3)
and denoted by P2,9 ∗ P2,3, see Figure 6.

Fig. 6. Comparison
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§4. Area of divide and Dehn surgery

Let K be a knot in S3 and n an integer. By M(K, n) we denote the
3-manifold obtained by Dehn surgery along K with coefficient n, i.e.,
removing a solid torus VK along K and regluing it back such that the
meridian comes to a curve homologous to lK + n mK , where {mK , lK}
is a meridian-longitude system on the boundary of VK . Here we are
concerned with M(K, n) whose fundamental group π1(M(K, n)) is finite.
Such research is called “finite Dehn surgery” ([6, 9, 13]). Note that
H1(M(K, n);Z) ∼= Z/nZ.

What we would like to point out in this section is that in some
examples of integral finite surgery M(K, n), the knot K is given by a
plane curve as X ∩ R via A’Campo’s divide theory, and that in such a
case the coefficient n is near to the area A(R) of the region R in the
plane.

The links which can be obtained from the billiard curves by the
method in section 2 and 3 are only cable knots of torus knots. In [13]
and [6], it is proved that an iterated torus knot other than a torus
knot or a cable knot of a torus knot has no finite surgery. The cable
knots of torus knots with finite surgery, completely listed in [6], can be
obtained as the knots of billiard curves except for the following four
cases: C(T (2, 3); p, q) with (p, q) = (2, 9), (2, 15), (3, 16) and (3, 20). We
can state the following:

Theorem 4.1.
(i) Let R be a rectangle R(a × b)(m,n) with a pair (a, b) of any

coprime integers, K the knot of the billiard curve obtained
from R, and n a coefficient of finite surgery of S3 along K.
Then the inequality |n − A(R)| ≤ 1 holds.

(ii) Let R be a region defined by (+), K the knot of the billiard
curve obtained from R, and n a coefficient of finite surgery of
S3 along K. Then the inequality |n − A(R)| ≤ 1 holds.

(iii) Let R be a region defined by (−), K the knot of the billiard
curve obtained from R, and n a coefficient of finite surgery of
S3 along K. Then the inequality |n − A(R)| ≤ 2 holds.

Proof. We start with families of finite surgery along torus knots and
cable knots of torus knots.

Example 4.2. Each of the followings is finite surgery:
(1) ([21]) M(T (a, b), n ) with n = ab ± 1.
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(2) ([8, 13]) M(C(T (a, b); 2, 2ab± 1), n) with n = 4ab ± 1,
(3) ([13]) M(C(T (2, b); 3, 6b± 1), n) with n = 18b ± 2.

In (1) and (2) (or (3), respectively), resulting 3-manifolds are lens
spaces (or prism manifolds). The case (i) in the theorem is shown by (1)
above: K is the torus knot T (a, b) by Proposition 2.1 and the area of
R(a×b)(m,n) is ab. For (2) and (3), we have that A(R) = p2ab+p for R =
R(a, b; p, pab+1) and that A(R) = p2ab−p+1 for R = R(a, b; p, pab−1).
Thus, in these examples, the inequality |n − A(R)| ≤ 1 holds.

Next, we recall more “exceptional” examples from the list in [6].
In the left-hand side of Table 1, we picked up all examples of integral
finite surgery along knots of type C(T (a, b); p, pab ± 1) from Table 1 in
[6], which is the complete list of 37 examples by [13]. Four examples
marked by ∗ are included in Example 4.2 (3). In the right-hand side,
we represent each knot by a divide of type B(a, b)〈B±

0 (p)〉 (Method 2),
which can be deformed as X ∩R (Method 1) and write its area A(R).

(+) C(T (a, b); p, pab + 1) n B(a, b)〈B+
0 (p)〉 A(R)

C(T (2, 3); 2, 13) 27 B(2, 3)〈B+
0 (2)〉 26

C(T (2, 3); 3, 19) 56 ∗ B(2, 3)〈B+
0 (3)〉 57

C(T (2, 3); 4, 25) 99 B(2, 3)〈B+
0 (4)〉 100

C(T (2, 3); 4, 25) 101 B(2, 3)〈B+
0 (4)〉 100

C(T (2, 3); 5, 31) 154 B(2, 3)〈B+
0 (5)〉 155

C(T (2, 3); 6, 37) 221 B(2, 3)〈B+
0 (6)〉 222

C(T (2, 5); 2, 21) 43 B(2, 5)〈B+
0 (2)〉 42

C(T (2, 5); 3, 31) 92 ∗ B(2, 5)〈B+
0 (3)〉 93

C(T (2, 5); 4, 41) 163 B(2, 5)〈B+
0 (4)〉 164

C(T (3, 4); 3, 37) 110 B(3, 4)〈B+
0 (3)〉 111

C(T (3, 5); 3, 46) 137 B(3, 5)〈B+
0 (3)〉 138

(−) C(T (a, b); p, pab − 1) n B(a, b)〈B−
0 (p)〉 A(R)

C(T (2, 3); 2, 11) 21 B(2, 3)〈B−
0 (2)〉 23

C(T (2, 3); 3, 17) 50 B(2, 3)〈B−
0 (3)〉 52

C(T (2, 3); 3, 17) 52 ∗ B(2, 3)〈B−
0 (3)〉 52

C(T (2, 3); 4, 23) 91 B(2, 3)〈B−
0 (4)〉 93

C(T (2, 3); 4, 23) 93 B(2, 3)〈B−
0 (4)〉 93

C(T (2, 3); 5, 29) 146 B(2, 3)〈B−
0 (5)〉 146

C(T (2, 3); 6, 35) 211 B(2, 3)〈B−
0 (6)〉 211

C(T (2, 5); 2, 19) 37 B(2, 5)〈B−
0 (2)〉 39

C(T (2, 5); 3, 29) 88 ∗ B(2, 5)〈B−
0 (3)〉 88

C(T (2, 5); 4, 39) 157 B(2, 5)〈B−
0 (4)〉 157

C(T (3, 4); 3, 35) 106 B(3, 4)〈B−
0 (3)〉 106

C(T (3, 5); 3, 44) 133 B(3, 5)〈B−
0 (3)〉 133

Table 1: Integral finite surgeries along cables
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We have the theorem. Q.E.D.

Recent researchers’ interest seems to be the finite surgery along hy-
perbolic knots. In the recent work [22], the author pointed out that
every knot in a certain subfamily of Berge’s knots ([7]) yielding lens
spaces (It contains 19-surgery along the Pretzel knot of type (−2, 3, 7),
which was discovered in [12]), is a divide knot and given by a divide of
X ∩R type. For them, it holds that n = A(R).
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