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Zbigniew B locki

Abstract.

We survey recent developments relating the notions of the Berg-
man kernel and pluripotential theory and indicate some open prob-
lems.

§1. Introduction

We will discuss recent results relating the Bergman kernel and pluri-
potential theory. For n = 1 that there is such a relation is perhaps not
surprising, since then the Bergman kernel can be expressed in terms of
the Green function

KΩ = − 2

π

∂2gΩ

∂z∂w
.

No counterpart of this is known for n ≥ 2. Nevertheless, the pluricom-
plex Green function in several variables turned out to be a very useful
tool in the theory of the Bergman kernel and Bergman metric. We will
concentrate on the results that directly relate these two notions.

First we collect basic definitions, notations and assumptions. Good
general references are for example [19], [25], [20] (for the Bergman kernel)
and [23] (for pluripotential theoretic notions). Throughout Ω will always
denote a bounded pseudoconvex domain in Cn (if n = 1 then every
domain is pseudoconvex). The Bergman kernel KΩ(z, w), z, w ∈ Ω, is
determined by

f(w) =

∫

Ω

f(z)KΩ(z, w)dλ(z), w ∈ Ω, f ∈ H2(Ω),

where H2(Ω) is the (Hilbert) space of all holomorphic functions in Ω
that belong to L2(Ω). By kΩ we will denote the Bergman kernel on the
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diagonal

(1.1) kΩ(z) = KΩ(z, z) = sup

{ |f(z)|2
||f ||2 : f ∈ H2(Ω) \ {0}

}

, z ∈ Ω,

(||f || is the L2-norm). Then log kΩ is a smooth strongly plurisubhar-
monic function in Ω and the Bergman metric BΩ is the Kähler metric
given by the potential log kΩ, that is

B2
Ω(z; X) =

n
∑

j,k=1

∂2 log kΩ

∂zj∂zk
(z)XjXk, z ∈ Ω, X ∈ C

n.

The Bergman metric defines the Bergman distance in Ω which will be
denoted by distΩ. We will call Ω Bergman complete if it is complete
w.r.t. distΩ, and Bergman exhaustive if lim

z→∂Ω
kΩ(z) = ∞.

For a fixed w ∈ Ω the pluricomplex Green function with pole at w

is defined by gw := gΩ(z, w) = supBw, where

Bw = {u ∈ PSH(Ω) : u < 0, lim sup
z→w

(

u(z) − log |z − w|
)

< ∞}.

Then gw ∈ Bw and

cΩ(w) = exp lim sup
z→w

(

gw(z) − log |z − w|
)

is the logarithmic capacity of Ω w.r.t. w. One of the main differences
between one and several complex variables is the symmetry of gΩ: of
course it is always symmetric if n = 1 and usually not true for n ≥ 2
(the first counterexample was found by Bedford-Demailly [1]).

The domain Ω is called hyperconvex if it admits a bounded plurisub-
harmonic exhaustion function, that is there exists u ∈ PSH(Ω) such
that u < 0 in Ω and lim

z→∂Ω
u(z) = 0 (of course, if n = 1 then hypercon-

vexity is equivalent to the regularity of Ω). It was shown by Demailly
[12] that if Ω is hyperconvex then gΩ is continuous on Ω × Ω (off the
diagonal, vanishing on the boundary) but it is still an open problem if
it is continuous on Ω × ∂Ω (for partial results see [8], [7], [17] and [6]).

Acknowledgements. The author would like to thank the organizers
of the International Workshop on Potential Theory in Matsue 2004, es-
pecially professors Takeo Ohsawa and Hiroaki Aikawa, for the invitation
and hospitality.
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§2. Bergman completeness, Bergman exhaustivity and hyper-

convexity

In this section we will concentrate on the relations between these
three notions. We start with the following two results.

Theorem 2.1. (Ohsawa [26], [27]) If Ω is hyperconvex then it is
Bergman exhaustive.

Theorem 2.2. (Herbort [16], B locki-Pflug [7]) If Ω is hyperconvex
then it is Bergman complete.

Theorem (2.2) was proved independently in [16] and [7] ([7] heavily
relied on [9], where Theorem 2.2 was proved in particular for n = 1,
whereas [16] was written independently of both [7] and [9]).

We are now going to sketch the main ideas behind the proof of
Theorem 2.2. As a byproduct, the method also gives Theorem 2.1 (the
original Ohsawa proofs from [26] and [27] were different, we will discuss
the one from [27] later). First, we use the theory of the complex Monge-
Ampère operator to estimate the volume of the sublevel sets {gw < −1}
for w near the boundary. In [5] it was shown that for hyperconvex Ω
there exists a unique uΩ ∈ PSH(Ω)∩C(Ω) such that uΩ = 0 on ∂Ω and
(ddcuΩ)n = dλ. Then integrating by parts (see [4])

vol({gw < −1}) ≤
∫

Ω

|gw|n(ddcuΩ)n

≤ n! ||uΩ||n−1
L∞(Ω)

∫

Ω

|uΩ|(ddcgw)n(2.1)

≤ C(n, diam Ω) |uΩ(w)|.

In particular,

(2.2) Ω is hyperconvex ⇒ lim
w→∂Ω

vol({gw < −1}) = 0.

The above proof of (2.2) is taken from [7]. It was also independently
shown in [16] (the argument there was due to Coman), where a result
from [8] was used.

Before proceeding further, let us comment on the implication (2.2).
As noticed in [32] (see p. 53), the reverse implication is true if n = 1.
The following example from [16]

{(z, w) ∈ C
2 : |w| < e−1/|z| < e−1}

shows that it is no longer true for n ≥ 2 (see the review of [16] in
Mathematical Reviews). (2.1) also shows that gw → 0 in Ln(Ω) as
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w → ∂Ω from which one can easily get that gw → 0 in Lp(Ω) for every
p < ∞. The open problem of continuity of gΩ on Ω×∂Ω (for hyperconvex
Ω) is equivalent to locally uniform convergence gw → 0 in Ω as w → ∂Ω.

To finish the proof of Theorem 2.2 we use the following estimate
from [16] (it is proved using Hörmander’s L2-estimate for the ∂ operator
[18]; see also [9] and [6])

(2.3)
|f(w)|2
kΩ(w)

≤ cn

∫

{gw<−1}

|f |2dλ, f ∈ H2(Ω), w ∈ Ω.

Combining (2.2) with (2.3) we get, if Ω is hyperconvex,

(2.4) lim
w→∂Ω

|f(w)|2
kΩ(w)

= 0, f ∈ H2(Ω).

This is precisely the criterion of Kobayashi [24] and we conclude that Ω
is Bergman complete. In addition, if we use (2.3) with f ≡ 1 and (2.1)
we obtain the following quantitative version of Theorem 2.1, which also
gives a comparison between the Bergman kernel and the solution to the
complex Monge-Ampère equation

(2.5) kΩ ≥ 1

C(n, diam Ω) |uΩ|
.

The reverse implications in Theorems 2.1 and 2.2 are false even for
n = 1. Ohsawa [26] considered Zalcman-type domains

(2.6) ∆(0, 1) \
∞
⋃

k=1

∆(2−k, rk),

where ∆(z, r) denotes the disk centered ar z with radius r and rk is a se-
quence decreasing to 0 such that rk < 2−k and ∆(2−k, rk)∩∆(2−j , rj) =
∅ for k 6= j. From Wiener’s criterion it then follows that (2.6) is hyper-
convex if and only if

∞
∑

k=1

k

− log rk
= ∞.

On the other hand, Ohsawa [26] showed that if for example rk = 2−k3

(for k ≥ 2) then (2.6) is Bergman exhaustive. Chen [9] proved that then
(2.6) is also Bergman complete, we thus get a counterexample to reverse
implications in Theorems 2.1 and 2.2.

The relation between Bergman exhaustivity and Bergman complete-
ness is also of interest. The problem is related to the Kobayashi criterion
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(2.4). For if (2.4) was equivalent to Bergman completeness (this prob-
lem was posed by Kobayashi) then Bergman completeness would imply
Bergman exhaustiveness (putting f ≡ 1 in (2.4)). Let us first look at
(2.4). By (1.1) we have

|f(z)|
√

kΩ(z)
≤ |h(z)|

√

kΩ(z)
+ ||f − h||, f, h ∈ H2(Ω), z ∈ Ω,

and we easily see that to verify (2.4) it is enough to check it, for a given
sequence Ω 3 wj → w0 ∈ ∂Ω, for f belonging to a dense subspace
of H2(Ω). Therefore, if Ω is Bergman exhaustive and H∞(Ω, w0), the
space of holomorphic functions in Ω that are bounded near w0, is dense
in H2(Ω) for every w0 ∈ ∂Ω then Ω satisfies (2.4) and is thus also
Bergman complete. We use the following.

Theorem 2.3. (Hedberg [15], Chen [10]) If n = 1 then H∞(Ω, w0)
is dense in H2(Ω) for every w0 ∈ ∂Ω.

Corollary 2.1. (Chen [10]) If n = 1 then Bergman exhaustiveness
implies Bergman completeness.

The above results are false for n ≥ 2 and the counterexample is the
Hartogs triangle {(z, w) ∈ C

2 : |w| < |z| < 1}. They hold however if one
in addition assumes that for every w0 ∈ ∂Ω there exists a neighborhood
basis Uj of w0 such that Ω∪Uj is pseudoconvex for every j (in the case
of Hartogs triangle this is not true at the origin) - see [6].

The remaining problem is therefore whether Bergman complete-
ness implies Bergman exhaustiveness. It was settled in the negative
by Zwonek [33] who showed that the following domain

(2.7) ∆(0, 1) \
∞
⋃

k=2

k5−1
⋃

j=0

∆
(

k−5e2πij/k5

, e−k19
)

,

is Bergman complete but not Bergman exhaustive (see also [22]). Note
that any such an example, by Theorem 2.3, does not satisfy (2.4) which
shows that the Kobayashi criterion is not necessary for Bergman com-
pleteness.

It is possible to characterize Bergman exhaustive domains in terms
of potential theory in dimension 1.

Theorem 2.4. (Zwonek [34]) Assume n = 1. Then Ω is Bergman
exhaustive if and only if

lim
Ω3z→∂Ω

∫ 1/2

0

dt

−t3 log cap (∆(z, t) \ Ω)
= ∞.
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From Theorem 2.4 it follows in particular that (2.6) is Bergman
exhaustive if and only if

∞
∑

k=1

4k

− log rk
= ∞.

No characterization of Bergman completeness in terms of potential the-
ory is known. Jucha [21] however showed that (2.6) is Bergman complete
if and only if

∞
∑

k=1

2k

√− log rk
= ∞.

As a consequence, one can simplifiy the Zwonek example (2.7): it is

sufficient to take (2.6) with rk = 2−k24k

.
From the definition it easily follows that Bergman completeness is

a biholomorphically invariant notion, whereas Bergman exhaustiveness
is not: the Hartogs triangle is biholomorphic to ∆ × ∆∗, which is not
Bergman exhaustive. To author’s knowledge, no such example is known
for n = 1 (it would of course also show that the Kobayashi criterion is
not necessary for Bergman completeness).

In [6] it was shown that the Kobayashi criterion (2.4) for Bergman
completeness can be replaced with the following

lim sup
w→∂Ω

|f(w)|2
kΩ(w)

< ||f ||2, f ∈ H2(Ω) \ {0}.

It remains an open problem if this condition is necessary for Bergman
completeness.

§3. Other results

Diederich-Ohsawa [14] proved a quantitative estimate for the Berg-
man distance in smooth pseudoconvex domains. Pluripotential theory
turned out to be one of the main tools in establishing this result. The
estimate from [14] was improved in [6] with help of the following theorem.

Theorem 3.1. ([6]) Assume that Ω is psudoconvex and z, w ∈ Ω
are such that {gz < −1} ∩ {gw < −1} = ∅. Then distΩ(z, w) ≥ cn > 0.

On the other hand, the following estimate was used in [13] (see also
[11]) to show a quantitative bound for the Bergman metric in smooth
pseudoconvex domains.
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Theorem 3.2. (Diederich-Herbort [13]) There exists a positive con-
stant C, depending only on n and the diameter of Ω, such that for any
psudoconvex Ω

1

C
B{gw<−1}(w; X) ≤ BΩ(w; X) ≤ CB{gw<−1}(w; X), w ∈ Ω, X ∈ C

n.

No counterpart of Zwonek’s Theorem 2.4, characterizing the do-
mains where lim

z→∂Ω
kΩ(z) = ∞ in terms of potential theory, is known for

n ≥ 2. However, the domains with lim sup
z→∂Ω

kΩ(z) = ∞ are characterized

completely.

Theorem 3.3. (Pflug-Zwonek [29]) The following are equivalent

(1) Ω is an L2-domain of holomorphy (that is Ω is a domain of
existence of a function from H2(Ω));

(2) ∂Ω has no pluripolar part (that is if U is open then U ∩ ∂Ω is
either empty or non-pluripolar);

(3) lim sup
z→w

kΩ(z) = ∞, w ∈ ∂Ω.

The proof of Theorem 2.1 in [27] relied on the following quantitative
estimate.

Theorem 3.4. (Ohsawa [27]) Assume n = 1. There exists a positive
numerical constant C such that for any Ω

C
√

kΩ(w) ≥ cΩ(w), w ∈ Ω.

The above result of course gives Theorem 2.1 for n = 1 and also pro-
vides another quantitative bound for the Bergman kernel from below in
terms of potential theory, alternative to (2.5). Theorem 2.1 for arbitrary
n then follows easily from the Ohsawa-Takegoshi extension theorem [28].

Ohsawa [27] obtained C =
√

750π in Theorem 3.4. Berndtsson [3]

proved this estimate with C =
√

6π. The Suita conjecture [30] asserts
that the estimate holds with C =

√
π. This constant would be then

optimal - it is attained for the disk.
In fact, one can easily generalize Theorem 3.4 to higher dimensions.

Without loss of generality we may assume that Ω is hyperconvex (the
general case can be obtained by approximation). For a fixed w ∈ Ω by
[31] one can find ζ ∈ Cn, |ζ| = 1, such that

cΩ(w) = exp lim
λ→0

(gw(w + λζ) − log |λ|).

By D denote the one dimensional slice {λ ∈ C : w + λζ ∈ Ω} and by
g the Green function for D with pole at 0. Then g(λ) ≥ gw(w + λζ)
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and thus cD(0) ≥ cΩ(w). By Theorem 3.4 and the Ohsawa-Takegoshi
extension theorem

cΩ(w) ≤ cD(0) ≤ CS

√

kD(0) ≤ CSCOT

√

kΩ(w),

where CS is the constant from Theorem 3.4 and COT the constant from
the Ohsawa-Takegoshi extension theorem (Berndtsson [2] showed that
if Ω ⊂ {|z1| ≤ 1} then one can take COT = 4π).

We do not know if lim
w→∂Ω

cΩ(w) = ∞ for hyperconvex Ω (and n ≥
2). If this was the case then the above estimate would give another
quantitative version of Theorem 2.1.
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Neumann eigenfunctions and Brownian couplings

Krzysztof Burdzy

Abstract.

This is a review of research on geometric properties of Neumann
eigenfunctions related to the “hot spots” conjecture of Jeff Rauch.
The paper also presents, in an informal way, some probabilistic tech-
niques used in the proofs.

§1. Introduction

In 1974 Jeff Rauch stated a problem at a conference, since then re-
ferred to as the “hot spots conjecture” (the conjecture was not published
in print until 1985, in a book by Kawohl [K]). Informally speaking, the
conjecture says that the second Neumann eigenfunction for the Lapla-
cian in a Euclidean domain attains its maximum and minimum on the
boundary. There was hardly any progress on the conjecture for 25 years
but a number of papers have been published in recent years, on the con-
jecture itself and on problems related to or inspired by the conjecture.
This article will review some of this body of research and techniques used
in it, with focus on author’s own research and probabilistic methods used
in proofs of analytic results.

The paper is organized as follows. First, we will state and explain
the conjecture. Then we will review the main results on the conjecture
and related problems. Finally, we will review some techniques used in
the proofs.

In order to explain the intuitive contents of the hot spots conjec-
ture we will start with the heat equation. Suppose that D is an open
connected bounded subset of R

d, d ≥ 1. Let u(t, x), t ≥ 0, x ∈ D, be
the solution of the heat equation ∂u/∂t = ∆xu in D with the Neumann
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2000 Mathematics Subject Classification. Primary 35J05; Secondary

60J65, 35P05, 60H30.
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boundary conditions and the initial condition u(0, x) = u0(x). That is,
u(t, x) is a solution to the following initial-boundary value problem,

(1.1)























∂u

∂t
(t, x) = ∆xu(t, x), x ∈ D, t > 0,

∂u

∂n
(t, x) = 0, x ∈ ∂D, t > 0,

u(0, x) = u0(x), x ∈ D,

where n(x) denotes the inward normal vector at x ∈ ∂D. The long
time behavior of a “generic” solution (i.e., the solution corresponding
to a “typical” initial condition) can be derived from the properties of
the second eigenfunction using the following eigenfunction expansion.
Under suitable conditions on the domain, such as convexity or Lipschitz
boundary, and for a “typical” initial condition u0(x), we have

(1.2) u(t, x) = c1 + c2ϕ2(x)e−µ2t + R(t, x),

where c1 ∈ R and c2 6= 0 are constants depending on the initial condition,
µ2 > 0 is the second eigenvalue for the Neumann problem in D, ϕ2(x) is
a corresponding eigenfunction, and R(t, x) goes to 0 faster than e−µ2t,
as t → ∞. Note that the first eigenvalue is equal to 0 and the first
eigenfunction is constant. Suppose that ϕ2(x) attains its maximum at
the boundary of D. Under this assumption, for “most” initial conditions
u0(x), if zt is a point at which the function x → u(t, x) attains its
maximum, then the distance from zt to the boundary of D tends to
zero as t tends to ∞. In other words, the “hot spots” move towards the
boundary.

Hot Spots Conjecture (Rauch (1974)). The second eigenfunction for

the Laplacian with Neumann boundary conditions in a bounded Eu-

clidean domain attains its maximum at the boundary.

The above version of the hot spots conjecture is somewhat ambigu-
ous as it does not specify whether the maximum has to be strict, i.e.,
whether the eigenfunction can attain the same maximal value somewhere
in the interior of the domain; it does not address the question of what
might happen when the second eigenvalue is not simple, i.e., whether
all eigenfunctions corresponding to the second eigenvalue have to sat-
isfy the conjecture (in some domains, for example, the square, there are
infinitely many eigenfunctions corresponding to the second eigenvalue).
As we will see, it turns out that a precise statement of the conjecture
is not needed because the results do not depend in a subtle way on its
formulation.
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The hot spots conjecture can be justified by appealing to our physi-
cal intuition and by examples amenable to explicit analysis. Intuitively,
the “heat” and “cold” are substances that annihilate each other so it
is easy to believe that the hottest and coldest spots lie as far as pos-
sible from each other, hence on the boundary of the domain. One can
find explicit formulas for the eigenfunctions in some simple domains,
for example, in a rectangle [0, a] × [0, b] with a > b > 0, we have
ϕ2(x1, x2) = cos(πx1/a). All such explicit examples support the hot
spots conjecture, i.e., the second eigenfunction attains the maximum on
∂D in simple domains such as rectangles, discs and balls.

§2. Main theorems on the “hot spots” problem

For 25 years, from 1974 to 1999, almost nothing was known about
the “hot spots” conjecture. A notable exception was a result by Ka-
wohl that appeared in his book [K] in 1985. Kawohl proved that if a set
D ⊂ R

d is a cylindrical domain, i.e., if d > 1, and D can be represented
as D = D1 × [0, 1] for some D1 ⊂ R

d−1, then the hot spots conjecture
holds for D. This result has a simple proof based on the factorization
of eigenfunctions in cylindrical domains. Kawohl’s most lasting contri-
butions are the realization that one should restrict attention to some
classes of domains, and the statement of the currently most significant
open problem in the area—Kawohl suggested that the hot spot con-
jecture might not be true in general but it should be true for convex
domains.

The next paper on the hot spots conjecture, [BB1], appeared in
1999. The paper contained the proof of the hot spots conjecture for two
classes of planar domains: domains with a line of symmetry and “lip”
domains, to be described shortly. The results were not complete, in
the sense that the authors imposed some extra “technical” assumptions
on domains in each family. Those extra assumptions were removed for
symmetric domains by Pascu [P] and for “lip” domains in [AB2].

Recall that a function f is called Lipschitz with constant c if |f(x)−
f(y)| ≤ c|x − y| for all x and y. A “lip” domain is a bounded planar
domain such that its boundary consists of two graphs of Lipschitz func-
tions with the Lipschitz constant equal to 1. For example, any obtuse
triangle (i.e., a triangle with an angle greater than π) is a lip domain if
it is properly oriented. In Fig. 2.1, D1, D2 and the interior of D1 ∪ D2

are lip domains.

Theorem 2.1. The hot spots conjecture holds for D ⊂ R
2 if
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�

�

�

�

Figure 2.1.

(i) ([BB1], [P]) D is convex and has a line of symmetry, or
(ii) ([BB1], [AB2]) D is a lip domain.

The methods and techniques developed in [BB1] to prove the hot
spots conjecture for some classes of domains turned out to be useful also
in deriving negative results. The first of such results, [BW], appeared
in 1999. The authors showed that there exists a planar domain where
the second eigenvalue is simple and the eigenfunction corresponding to
the second eigenvalue attains its maximum in the interior of the do-
main. This result was strengthened in [BB2], where it was shown that
in some other planar domain, the second eigenvalue is simple and the
second eigenfunction attains both its minimum and maximum in the in-
terior of the domain. The domain constructed in [BB2] had many holes
and the one constructed in [BW] had 2 holes. The intuitive idea be-
hind the examples constructed in [BW] and [BB2] suggested that every
counterexample to the hot spots conjecture in the plane must have at
least two holes, and every counterexample in R

d, d ≥ 3, must have at
least d handles. This turned out not to be true—a new counterexample
([B2]) shows that there exists a planar domain with one hole and simple
second eigenvalue, and such that the second eigenfunction attains both
its maximum and minimum in the interior of the domain. The domain
is depicted in Fig. 2.2. Its shape is much simpler than that of exam-
ples in [BW] and [BB2]. The maximum and minimum of the second
eigenfunction are attained at the points marked on the figure.

Theorem 2.2. ([BW], [BB2], [B2]) The hot spots conjecture fails for

some domains D ⊂ R
2.

Before we discuss results related to the hot spots conjecture in var-
ious ways, we will state the most intriguing open problems in this area.
The first one was proposed by Kawohl in [K], and the second one is
known among the researchers interested in the subject.

Open problems. (i) ([K]) Does the hot spots conjecture hold for

bounded convex domains D ⊂ R
d for all d ≥ 1?
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D

Figure 2.2.

(ii)Does the hot spots conjecture hold for bounded simply connected

planar domains?

§3. Results related to the “hot spots” problem

The hot spots conjecture inspired a number of papers on the prop-
erties of Neumann eigenfunctions. We will review those that seem to be
the closest in spirit to the original conjecture. For a review of research
in related areas, see [NTJ].

First of all, we mention a paper by Hempel, Seco and Simon [HSS],
which appeared in 1991, long time before the current interest in the hot
spots conjecture. The authors studied the spectrum of the Neumann
Laplacian in bounded Euclidean domains with non-smooth boundaries.
Roughly speaking, their results show that the spectrum does not need
to be discrete, and in a sense, it can be completely arbitrary. For this
reason, the hot spots conjecture must be limited to domains where the
spectrum is discrete, such as domains with Lipschitz boundaries.

Athreya [A2] showed that some monotonicity properties of Neu-
mann eigenfunctions hold also for solutions of some semi-linear partial
differential equations related to a class of stochastic processes known as
“superprocesses.” He adapted the probabilistic techniques used in the
research on the hot spots conjecture to the new setting.

Jerison [J] found the location (in an asymptotic sense) of the nodal
line (i.e., the line where the eigenfunction vanishes) of the second Neu-
mann eigenfunction in long and thin domains. Strictly speaking, this
result is not directly related to the hot spots conjecture. However, the
information about the location of the nodal line can be effectively used
in the research on the hot spots conjecture. This was first done in [BB1],
where the nodal line was identified with the line of symmetry in domains
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possessing a line of symmetry. The knowledge of the nodal line can be
used to transform the Neumann problem to a problem with mixed Neu-
mann and Dirichlet conditions—a problem much easier than the original
one. Jerison and Nadirashvili considered in [JN] convex planar domains
with two perpendicular lines of symmetry, and showed that under these
strong assumptions one can provide some accurate information about
the second eigenfunction. The location of the nodal line for the second
eigenfunction is treated as a problem of its own interest in [AB1], where
probabilistic techniques are used to give some results in this direction.

Atar investigated in [A1] a class of multidimensional domains. Tech-
niques used in other papers on the hot spots problem seem to work only
in planar domains so [A1] is the only paper (except for an early re-
sult in [K]) that contains results on the multidimensional version of the
problem.

It was known for a long time, as a “folk law” among the experts in
the field, that the hot spots conjecture does not hold for manifolds, see,
e.g., remarks to this effect in [BB1] or [BB2]. However, the first rigorous
paper studying the hot spots problem for manifolds was published by
Freitas [F].

Although a paper by Ishige and Mizoguchi [IM] is not devoted to
the hot spots problem in the sense of this article, it is related because it
studies geometric properties of the heat equation solutions.

Two recent papers by Bañuelos and Pang, one of them joint with
Pascu ([BP] and [BPP]) are devoted to variations of the hot spots prob-
lem. The purpose of [BP] is to prove an inequality for the distribution of
integrals of potentials in the unit disk composed with Brownian motion
which, with the help of Lévy’s conformal invariance, gives another proof
of Pascu’s result [P]. The paper [BPP] investigates the “hot spots” prop-
erty for the survival time probability of Brownian motion with killing
and reflection in planar convex domains whose boundary consists of two
curves, one of which is an arc of a circle, intersecting at acute angles.
This leads to the “hot spots” property for the mixed Dirichlet-Neumann
eigenvalue problem in the domain with Neumann conditions on one of
the curves and Dirichlet conditions on the other.

§4. Review of selected probabilistic techniques

The following review of techniques used in proofs of results related
to the hot spots conjecture is highly subjective in its choices, dealing
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mostly with methods used by the author of this article in his own re-
search. The review will mainly focus on “essential probabilistic tech-
niques,” i.e., those techniques that involve stochastic processes and can-
not be easily translated into the language of analysis. A good way to
illustrate this idea is to look at an example of a probabilistic concept
that is not essential. The hitting distribution of Brownian motion on the
boundary of a set can be identified with the harmonic measure—the two
concepts are equivalent but knowing this equivalence does not immedi-
ately lead to any new results. We will focus on a probabilistic technique
called “couplings.” The technique was invented by Doeblin in 1930’s
and one can find a general review of this method in books by Lindvall
[L] and Mu-Fa Chen [C]. The most frequent application of the coupling
technique consists of a construction of two processes on the same prob-
ability space, run with the same clock. Often, the processes meet at a
certain time, called the coupling time. Typically, the processes are not

independent. One usually tries to find a coupling with as small coupling
time as possible. A distinguishing feature of applications of couplings
in the context of the hot spots conjecture is that the properties of the
coupling time usually do not matter, and in a somewhat perverse way,
the coupling time is infinite for some of the couplings. Couplings were
used for the first time to study the hot spots conjecture in [BB1] but
that paper owes a lot to an earlier project, [BK], devoted to a seemingly
unrelated problem.

Many proofs of results on the hot spots conjecture are based on the
eigenfunction expansion (1.2). First, a geometric property is proved for
the heat equation and then it is translated into a statement about the
second eigenfunction using (1.2), as t → ∞.

For an introductory presentation of probabilistic concepts used be-
low, such as Brownian motion, and their relationship to analysis, see a
book by Bass [B1].

Let Xt and Yt be reflected Brownian motions in D starting from
x ∈ D and y ∈ D, resp. Then we can represent the solution u(t, x) of
the heat equation (1.1) as u(t, x) = Eu0(Xt), and similarly u(t, y) =
Eu0(Yt). We have by (1.2),

ϕ2(x) − ϕ2(y) = c3e
µ2t(u(t, x) − u(t, y)) + R1(t, x, y)

= c3e
µ2t(Eu0(Xt) − Eu0(Yt)) + R1(t, x, y),

(4.1)

where R1(t, x, y) goes to 0 as t → ∞. Without loss of generality we
will assume that c3 > 0. Suppose that we can prove for some initial
condition u0 that for all t > 0,

(4.2) Eu0(Xt) − Eu0(Yt) ≤ 0.
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This and (4.1) will then show that ϕ2(x) ≤ ϕ2(y). If the last inequality
can be proved for an appropriate family of pairs (x, y), the hot spots
conjecture will follow. We will next present a technique of proving (4.2).

For x, y ∈ R
2, write x ≤ y if the angle between y−x and the positive

horizontal half-line is within [−π/4, π/4]. Suppose that D is a lip domain
(defined in Section 2) and x, y ∈ D, x ≤ y. Suppose that Xt and Yt are
reflected Brownian motions in D, driven by the same Brownian motion,
and starting from x and y, resp. In other words,

Xt = x + Bt +

∫ t

0

n(Xs)dLX
s ,

Yt = y + Bt +

∫ t

0

n(Ys)dLY
s ,

(4.3)

where n(z) is the unit inward normal vector at z ∈ ∂D and LX
s is the

local time of X on the boundary of D, i.e., LX is a non-decreasing
process that does not increase when X is inside D. In other words,

∫

∞

0

1D(Xs)dLX
s = 0.

Similar remarks apply to the formula for Yt. For domains which are
piecewise C2-smooth, the existence of processes satisfying (4.3) follows
from results of Lions and Sznitman [LS]. For lip domains, one can use
a recent result from [BBC]. The existence of a strong unique solution
to an equation analogous to (4.3) but in a multidimensional Lipschitz
domain remains an open problem at this time.

We have assumed that the domain D is a lip domain so if the normal
vector n(z) is well defined at z ∈ ∂D (this is the case for almost all
boundary points), it has to form an angle less than π/4 with the vertical.
Then easy geometry shows that the “local time push” in (4.3), i.e., the
term represented by the integral, is such that if x ≤ y then

(4.4) Xt ≤ Yt for all t ≥ 0.

Now consider a set A ⊂ D, such that both A and D\A have a non-empty
interior and ∂A∩∂(D\A) is a vertical line segment. Suppose that A lies
to the right of D \ A and let the initial condition be u0(z) = 1A(z). If
(4.4) is satisfied, then for any fixed time t ≥ 0, we may have Xt, Yt ∈ A,
or Xt, Yt ∈ D \ A, or Xt ∈ D \ A, Yt ∈ A, but we will never have
Xt ∈ A, Yt ∈ D \ A. This and the definition of u0 imply (4.2). We
combine this with (4.1) to conclude that ϕ2(x) ≤ ϕ2(y) for x ≤ y. Any
lip domain has the “leftmost” and “rightmost” points in the sense of the
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partial order “≤” (see Fig. 2.1) so our argument has shown that the
maximum and the minimum of the second eigenfunction are attained at
these two points. Hence, the hot spots conjecture holds in lip domains.

Planar domains with a line of symmetry have to be approached in
a different manner. Suppose that D ⊂ R

2 is symmetric with respect to
a vertical line K and let D1 be the part of D lying to the right of K.
Under some extra assumptions, the second eigenfunction ϕ2 in D with
the Neumann boundary conditions is antisymmetric with respect to K
(this follows from a simple symmetrization argument). Therefore, ϕ2

must vanish on K and we see that ϕ2 is the first eigenfunction for the
Laplacian in D1 with the Neumann boundary conditions on ∂D1 \ K
and Dirichlet boundary conditions on K. Such boundary conditions
correspond to the Brownian motion in D1 that is reflected on ∂D1 \ K
and killed on K.

We will choose the initial condition u0 to be identically equal to 1
in D1. Let T X

K be the hitting time of K by X and let T Y
K have the

analogous meaning for Y . The strategy now is to construct Brownian
motions Xt and Yt in D1, reflected on ∂D1 \ K, killed on K, starting
from x and y, and such that (4.2) holds not for a fixed time t but for
an appropriate stopping time T . Let T = T X

K . If we can show that X
must hit K before Y does, then (4.2) follows and we have ϕ2(x) ≤ ϕ2(y)
for this particular pair (x, y). We will not go into details of how it is
best to choose x and y and what assumptions one must make about
the geometry of D to carry out the argument outlined above. Instead,
we will describe a coupling of reflected Brownian motions (the “mirror”
coupling) that keeps the two Brownian particles in a relative position
that ensures that T X

K ≤ T Y
K .

Let us start by defining the mirror coupling for free Brownian mo-
tions in R

2. Suppose that x, y ∈ R
2, x 6= y, and that x and y are

symmetric with respect to a line M . Let Xt be a Brownian motion
starting from x and let τ be the first time t with Xt ∈ M . Then we let
Yt be the mirror image of Xt with respect to M for t ≤ τ , and we let
Yt = Xt for t > τ . The process Yt is a Brownian motion starting from
y. The pair (Xt, Yt) is a “mirror coupling” of Brownian motions in R

2.
Next we turn to the mirror coupling of reflected Brownian motions

in a half-plane H, starting from x, y ∈ H. One can construct reflected
Brownian motions Xt and Yt in H, starting from x and y, so that they
have the following properties. The processes Xt and Yt behave like free
Brownian motions coupled by the mirror coupling as long as they are
both strictly inside H. When one of the processes hits the boundary,
the two particles cannot behave as a “free” mirror coupling in the whole
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plane. We will describe their motion by specifying constraints on the
particles—otherwise they can move in an arbitrary way. Let M be the
line of symmetry for x and y and H = M ∩ ∂H. Then for every t, the
distance from Xt to H is the same as for Yt. Let Mt be the line of
symmetry for Xt and Yt. The “mirror” Mt may move, but only in a
continuous way, while the point Mt ∩ ∂H = H will never move. The
absolute value of the angle between the mirror and the normal vector to
∂H at H can only decrease. These properties are illustrated in Fig. 4.1.
The processes stay together after the first time they meet. The most
important property of the mirror coupling is that the two processes Xt

and Yt remain at the same distance from a fixed point, the “hinge” H .

X

Y
M

t

t
t

H

Figure 4.1.

When D is a polygonal domain, the processes Xt and Yt will reflect
on different sides of ∂D at different times. Since the reflecting particle
cannot sense the global shape of the domain, the above description of the
mirror coupling in a half-plane can be applied to describe the possible
motions of the mirror (the line of symmetry between the processes)
whenever only one of the processes is on the boundary. This simple
recipe breaks down when the two processes hit the boundary at the same
time. It is not obvious that two processes forming a mirror coupling can
indeed hit the boundary at the same time but we conjecture that it is
indeed true. The construction of the mirror coupling following the time
when the two processes are simultaneously on the boundary has not been
properly addressed in [BK] and [BB1]. In an earlier paper of Wang [W],
mirror couplings were used without any proof of their existence. This
unsatisfactory situation has been remedied recently as the full proof of
the existence of mirror couplings in piecewise smooth domains has been
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given in [AB2], and the motion of the mirror following the time when
both particles are on the boundary has been analyzed in [B2].

We will not present a detailed analysis of the motion of two particles
related by a mirror coupling in a planar domain. The arguments involve
no more than high school geometry.

The last coupling to be presented here is a “scaling coupling” in-
troduced by Pascu [P]. This coupling is the most complex of the three
couplings so we will only sketch the main ideas of this technique. The
main objective of any coupling technique is to construct two processes
whose relative motion is highly restricted, although each of the processes
by itself is a reflected Brownian motion. This can lead to a condition
such as (4.4) that can be in turn translated into an analytic statement
using a formula such as (4.2).

Pascu’s idea was to start with a planar Brownian motion Xt and
let Yt = Xat/

√
a, for some fixed a > 0. It is well known that Y is also

a planar Brownian motion. The novelty of this coupling lies in the fact
that although the shape of the trajectory of Y is a scaled image of the
shape of the trajectory of X , the corresponding pieces of the trajectory
occur at different times. In other words, the two processes run with
different clocks. This rules out straightforward reasoning such as that in
(4.1)-(4.4) but nevertheless Pascu managed to translate the information
about possible geometric positions of the two processes into an analytic
statement.

Two further technical aspects of scaling couplings should be men-
tioned here. The hot spots problem needs a construction of a pair of
reflected Brownian motions in a domain D, not free Brownian motions
in the whole plane. Hence, the simple scaling idea has to be modified
in a way somewhat reminiscent of the way the mirror coupling in the
plane is modified to handle reflected Brownian motions, because if X is
a reflected Brownian motion in D then Yt = Xat/

√
a is not. Second,

Pascu combined scaling couplings with conformal mappings in order to
be able to handle arbitrary convex domains with a line of symmetry
(the first step was to do the construction in a semi-disc). Conformal
mappings preserve reflected Brownian motions but they require a time
change. It was a very non-trivial observation of Pascu that the time
change involved in his argument had the properties needed to finish the
argument when the domain was convex.
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Brownian motion and harmonic measure in conic

sections

Tom Carroll

Abstract.

This is a survey of results on the exit time and the exit position
of Brownian motion from cones and parabola-shaped regions in Eu-
clidean space. The paper begins with a section on harmonic measure.

§1. Harmonic measure

1.1. The Dirichlet Problem and harmonic measure

Harmonic measure has long been a central theme of Potential The-
ory: that this is as true today as it was in the past is confirmed by the
recent publication of the major book Harmonic measure by Garnett and
Marshall [13].

The Dirichlet Problem is the boundary value problem for the Laplace
equation: given a region D in Rn and a bounded continuous function f
on the boundary of D, one is to find a function u on the closure D of
the region with the properties that

(i) u is continuous on D,
(ii) u is harmonic in D, that is ∆u ≡ 0 in D,
(iii) u|∂D = f

This boundary value problem arises in a number of physical contexts,
for example that of determining the steady state temperature inside a
region when the temperature on the boundary of the region is specified.
This physical interpretation also sheds light on a defining characteristic
of harmonic functions: they are the functions that satisfy the mean-
value property, in that the average value of a harmonic function over
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2000 Mathematics Subject Classification. 60J65, 30C35, 30C85, 31A15.
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mapping.
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a sphere is its value at the centre of the sphere [9, Theorem 1.9]1. If
the average steady state temperature on the sphere was, say, greater
than the temperature at its centre there would then be a net flow of
heat from the hotter sphere to its cooler centre. The temperature at
the centre would then increase and this would not, after all, be a steady
state temperature distribution.

The Dirichlet Problem as stated does not always have a solution:
and even when it does it may not be unique, depending on how one treats
points at infinity. Regions for which a solution exists, no matter what the
specified boundary function may be, are called regular for the Dirichlet
Problem. In the classical approach to characterizing such domains, a
boundary point ζ is said to be regular if there is a barrier at that point,
this being a function that is superharmonic and positive in D near ζ and
that tends to zero on approach to the boundary at ζ. A domain is then
proved to be regular if all of its boundary points are regular [15, Theorem
2.10] [1, Chapter 6]. The approach taken in Hayman and Kennedy’s
book is to deal first with bounded regular domains, and to consider
unbounded possibly irregular domains later when the extra machinery
needed, in particular that of polar sets, is in place [15, Section 5.7.1].
This is a dichotomy that may profitably be kept in mind.

A solution of the Dirichlet Problem corresponding to the continu-
ous boundary function f is called a harmonic extension of f . Such a
harmonic extension may be considered for more general boundary data
(with a suitable reformulation of condition (i)) [15, Theorems 2.10 and
2.17]. In particular, corresponding to a Borel measurable subset E of the
boundary of D, the boundary data f = 1E (so that f takes the value
1 on the part E of the boundary and 0 on the remaining boundary)
has a harmonic extension into D. This solution is called the harmonic

measure of E and is denoted by ω(x, E; D). As a function of x, there-
fore, it is harmonic. If x is held fixed and E varies, then ω(x, E; D) is
a measure on the boundary of D [15, Theorem 3.10]. The harmonic ex-
tension of a general Borel measurable function can then be constructed
by integration with respect to harmonic measure on the boundary. In-
tuitively, it helps to think of the harmonic measure of E as the solution
of the Dirichlet Problem with boundary data f = 1E . From a technical
point of view, it is best to construct harmonic measure as the measure

1This is but one of many possible references where a precise statement of this

theorem may be found. I have chosen not to give perfectly precise statements of

results in this article, with the excuse that specialists will know these results and

will not need to read this article, while the rest of us are now forewarned not to take

statements too literally and to consult at a minimum the cited references.
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ω(x, E; D) on the boundary of D for which
∫

∂D

f(ζ) dω(x, ζ; D)

returns the value at x of the harmonic extension of f into D for any
continuous bounded function f on the boundary of D.

The study of harmonic measure in planar domains is facilitated by
conformal mapping, as harmonic measure is conformally invariant. By
conformal invariance of harmonic measure we mean that, if f is analytic
and one-to-one in the planar domain D, then

ω(z, E; D) = ω (f(z), f(E); f(D)) .

To see why this holds true, we write h for the function ω (·, f(E); f(D)).
Then h ◦ f satisfies

∆(h ◦ f)(z) = (∆h)(f(z)) |f ′(z)|2, z ∈ D.

Thus h ◦ f is harmonic in D, since h is harmonic in f(D), and its
boundary values are 1E. Hence (h ◦ f)(z) = ω(z, E; D).

For example, to compute the harmonic measure ω(z, E; D) for a
simply connected planar domain D, one maps D conformally onto the
unit disk U by a map f for which f(z) = 0. Then

ω(z, E; D) = ω(0, F ; U), F = f(E),

the latter being the normalized angular measure of F on the unit circle.
While this ‘solves’ the problem in principle, in practice relatively few
explicit conformal mappings are known.

As a simple example that is relevant to the subject matter of this pa-
per, we will compute the rate of decay of harmonic measure in the infinite
strip S = {z : |Im z| < π/2}. We set Eρ = {z : |Im z| = π/2 and Re z >
ρ} and set ω(ρ) = w(0, Eρ; S).

f(z) =
ez − 1

ez + 1

is a conformal map of S onto the unit disk with f(0) = 0. For ρ > 0, the
image Fρ of Eρ under f is the shorter arc of the unit circle lying between
e−iθρ = f(ρ − iπ/2) and eiθρ = f(ρ + iπ/2). The harmonic measure of
this arc at 0 is its normalized angular measure, which is θρ/π.

Since

f
(

ρ + i
π

2

)

=
eρ+iπ/2 − 1

eρ+iπ/2 + 1
=

e2ρ − 1 + 2ieρ

1 + e2ρ
,
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f
S

ρ + iπ
2 Eρ

ρ − iπ
2

• 0

eiθρ

Fρ

e−iθρ

• 0
U

we see that

θρ = arg
[

e2ρ − 1 + 2ieρ
]

= arctan

(

2eρ

e2ρ − 1

)

.

Thus, in summary,

ω(ρ) = w(0, Eρ; S) = w(0, Fρ; U) =
1

π
arctan

(

2eρ

e2ρ − 1

)

,

from which it follows that

ω(ρ) =
2

π
e−ρ + O

(

e−3ρ
)

as ρ → ∞.

1.2. Brownian motion and harmonic measure

Brownian motion in Rn is a mathematical model of the position of
a particle that is subject to random buffeting with no preferred direction
and whose intensity is independent of position. The possible paths of the
particle are the continuous functions ω : [0,∞) → Rn. Brownian motion
may be viewed as a measure, known as Wiener measure, on this space of
continuous paths. We write Bt(ω) = ω(t) for the position of the particle
at time t if it follows the path ω. Then each Bt is a random variable on
path space. Wiener measure on path space is constructed so that (i) the
net displacements in disjoint time intervals are independent and (ii) the
net displacement Bt −Bs between time s and t (with s < t) is normally
distributed with mean zero and covariance matrix t−s times the identity
matrix. As is customary, we write Px to denote the probability (Wiener
measure) of events (measurable sets of paths) that gives full measure
to the paths with initial point x, and we write Ex for the expectation
(integral) with respect to Px.

For a region D, we write

τD = inf{t > 0: Bt 6∈ D}.

This is the first exit time of Brownian motion from the region D, and
plays a key role in this story. The exit time is a random variable, as its
value depends on the particular path. The first exit position of Brownian
motion from D is then BτD

.
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The connection between Brownian motion and harmonic measure,
first elucidated by Kakutani, is simply this: harmonic measure at x in
D is the exit distribution from D of Brownian motion with initial point
x [9, Section 1.4]. That is,

ω(x, E; D) = Px(τD < ∞, BτD
∈ E),

for each Borel measurable subset E of the boundary of D. In fact, for
any domain D and any bounded function f on the boundary of D

h(x) = Ex

[

f(BτD
) 1{τD<∞}

]

, x ∈ D,

is harmonic. This becomes ‘obvious’ once we remember that harmonic
functions are those with the mean-value property. To see why, let’s
consider a sphere Sx in D with centre x, and consider those paths that
first hit the sphere at a point y on the sphere, before then going on
to exit D. When we delete the initial sections between x and y, the
new paths constitute a new Brownian motion starting from y, and this
doesn’t change the exit position. Therefore the paths from x that exit
the sphere Sx at y contribute h(y) times the probability of first exiting
the sphere at y, and

h(x) = Ex

[

f(BτD
) 1{τD<∞}

]

=

∫

Sx

h(y) dσ(y),

where dσ is the distribution of the first hitting position on the sphere
of Brownian motion with initial point at its centre. But σ just has to
be the uniform distribution on the sphere, which gives the mean-value
property for h.

The probabilistic characterization of the regularity of a boundary
point for the Dirichlet Problem is more intuitive than that involving
the barrier function. A boundary point ζ of a region D is regular if
Pζ(τD = 0) = 1 [20, Section 9.2]: there must be enough boundary near
the boundary point ζ so that a Brownian motion with initial point ζ
will immediately hit the boundary with probability one. If ζ is a regular
boundary point, it is then not too hard to see that a Brownian motion,
whose initial point x is in D and is near ζ, will exit D near ζ with
high probability. If f is continuous at ζ, it will follow that f(BτD

) will
be close to f(ζ) with high probability. In effect, the function h will
be continuous at ζ. This is the probabilistic solution of the Dirichlet
problem [20, Section 9.2], [9, Section 1.6]. The case f = 1E is the
assertion that harmonic measure and hitting probabilities of Brownian
motion are one and the same.
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1.3. Distortion Theorems

In his 1930 thesis, Ahlfors proved a distortion theorem for confor-
mal mappings with which he settled the Denjoy conjecture and which
has since proved to be useful and influential. We follow the eminently
readable account in [2].

A domain D is said to be strip like if it is simply connected and
contains a curve β(t), 0 < t < 1, with Re β(t) → −∞ as t → 0 and
Re β(t) → ∞ as t → 1. Thus the curve determines two prime ends,
that we call −∞ and ∞. The domain D is then mapped conformally
onto the strip S by a map Φ with Re Φ(β(t)) → −∞ as t → 0 and
Re Φ (β(t)) → ∞ as t → 1. For each x, the intersection of the vertical line
Re z = x with D consists of open line segments, one of which separates
the two prime ends determined by the curve β. This crosscut of D is
traditionally labelled θx and its length is written as θ(x). Finally, we
write

u2(x) = sup
z∈θx

Re Φ(z) and u1(x) = inf
z∈θx

Re Φ(z).

Ahlfors’ Distortion Theorem If

∫ x2

x1

dx

θ(x)
> 2π, then

1

π

∫ x2

x1

dx

θ(x)
≤ u1(x2) − u2(x1) + 4.

θx1

θx2

D

Φ
S π

u1(x2) − u2(x1)

In geometric terms, this theorem is a lower bound on the area
π [u1(x2) − u2(x1)] of the largest rectangle contained in the image under
Φ of that part of D between the crosscuts θx1

and θx2
. The distortion

theorem shows that if the strip like domain is narrow, the conformal map
Φ must stretch the distance, in the image strip, between the images of
crosscuts in D.
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There are essentially two situations in which Ahlfors’ Distortion
Theorem underestimates the rate of growth of the mapping Φ. If, say,
vertical slits are removed from D then the integral

∫ x2

x1
dx/θ(x) will not

detect them, yet one knows that the mapping Φ will then grow much
faster. For example, in the case of the strip S with as many slits re-
moved as one may wish, the distortion theorem treats Φ as if it was
the identity map. The second situation in which Φ grows faster than

D

predicted by the Ahlfors Distortion Theorem is typified by taking the
strip S and bending it into the shape of a snake or the crenellations on
a castle, while leaving the lengths of the crosscuts unchanged.

πD

In 1942, Warschawski [24] proved an upper bound on the area
π [u2(x2) − u1(x1)] of the smallest rectangle that contains the image un-
der Φ of that part of Ω between the crosscuts θx1

and θx2
. His theorems

involve extra terms that measure the oscillation of the central line of the
strip like domain and the oscillation of the width of the domain. We
will state a special and slightly weaker case of his results that will be
sufficient for our purposes.

Distortion Theorem for certain symmetric domains Suppose

that D is a strip like domain that takes the form

D =

{

z : |Imz| <
1

2
θ(Rez)

}

,
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where θ is a non negative function on the real line with
∫ ∞

−∞

θ′(x)2

θ(x)
dx < ∞.

Then, for z = x + iy ∈ D and fixed x0,

Re Φ(z) = π

∫ x

x0

ds

θ(s)
+ O(1) as x → ∞.

1.4. Higher dimensional distortion theorems

The distortion theorems of Ahlfors and Warschawski may be viewed
as harmonic measure estimates. Suppose that we wish to estimate the
harmonic measure of the crosscut θx, with respect to that part Dx of D
to the left of θx, at some fixed point z0. Having mapped D onto the strip
S by the map Φ, we need the harmonic measure of the curve lx = Φ(θx)
with respect to that part Sx of the strip to the left of lx, evaluated at
the fixed point w0 = Φ(z0).

θx

• z0

Dx

Φ lxSx

•w0

ω(z0, θx; Dx) = ω(w0, lx; Sx)

We infer the position of lx from the distortion theorems, in which we
fix x1 and take x2 to be a varying x. Ahlfors lower bound on u1(x2) −
u2(x1) becomes, in effect, a lower bound on u1(x), and implies that lx
must lie at least a certain distance to the right in the strip S. This gives
an upper bound on the harmonic measure of lx, as harmonic measure of
a vertical cross cut in S decreases as the cross cut is moved to the right.
Warschawski’s upper bound on u2(x) shows that lx cannot be too far
to the right in the strip S, and therefore leads to a lower bound on the
harmonic measure of lx. We can then estimate the harmonic measure,
by using the example at the end of Section 1.1. One will ideally end up
with an estimate involving

exp

[

−π

∫ x

x0

ds

θ(s)

]

.
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There are harmonic measure versions of these distortion theorems, par-
ticularly upper bounds, that work in any finite dimension, and for non
simply connected domains in the plane. Tsuji, building on work of Car-
leman, proved just such an estimate from above involving a term analo-
gous to that arising in the simply connected planar case. For the many
developments in this area, the reader need go no further than the books
by Tsuji [23] and Ohtsuka [19], forgetting neither Baernstein’s account
[2], nor Haliste’s complete and careful exposition [14], nor Section 8.1.7
in Hayman [16].

§2. Cones

2.1. Burkholder’s 1977 paper on exit times of Brownian

motion

In [7], Burkholder studies Brownian motion in Rn with starting
point x ∈ Rn and an accompanying stopping time τ . With

B∗
τ = sup

t
|Bt∧τ |,

he proves that if one of the random variables
√

nτ + |x|2, |Bτ | or B∗
τ is

pth-power integrable, with p ∈ (0,∞), then so are they all. To deduce
that B∗

τ is pth-power integrable if |Bτ | is pth-power integrable, it is as-
sumed that Ex log τ < ∞ if the dimension is 2 and that Px(τ < ∞) = 1
in higher dimensions. The norms of these three random variables are
then comparable, with constants that depend only on p and n.

These results are applicable when τ is the first exit time from a
domain D in Rn, in which case he proves the additional result that τ 1/2

is pth-power integrable if and only if the function |x|p has a harmonic
majorant in D (this being a function u that is harmonic in D, and for
which |x|p ≤ u(x) for all x in D). In Section 4 of the paper, Burkholder
specializes to the case when D is the image of a conformal map F of the
unit disk in two dimensions, and brings Hp spaces into play.

2.2. Integrability of exit time and exit place for a cone

As a ‘simple’ application of his results, Burkholder works out every-
thing for a right circular cone

Γα = {x ∈ Rn \ {0}, 0 ≤ θ(x) < α}

where θ(x) is the angle between x and (1, 0, . . . , 0). Let us write Tα for
the exit time from Γα, and go through the argument in two dimensions.
If pα < π/2 the function

u(x) = |x|p cos(pθ)/ cos(pα)
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is harmonic in Γα, and |x|p ≤ u(x) there. In this case, |x|p has a

harmonic majorant and T
1/2
α is in Lp. In the case pα = π/2,

u(x) = |x|p cos(pθ)

is a harmonic function in Γα, vanishes on the boundary of Γα, and

satisfies 0 < u(x) ≤ |x|p in Γα. From this Burkholder deduces that T
1/2
α

is not in Lp. In fact, fixing any x in the cone, he chooses a sequence
of bounded domains Rj , each containing x, with Rj ⊂ Rj+1 and whose

union is the whole cone. He writes Tj for the exit time from Rj . If T
1/2
α

was pth-power integrable then so would B∗
Tα

. Moreover, for each j,

∣

∣u
(

BTj

)
∣

∣ ≤ |BTj
|p ≤ B∗

Tα
(since Tj ≤ Tα).

Since u is harmonic and bounded in Rj+1, {u(BTj∧t)}t≥0 is a martingale
and so, by optional stopping,

u(x) = Exu(BTj
).

Hence, by dominated convergence,

0 < u(x) = lim
j→∞

Exu(BTj
) = Ex

[

lim
j→∞

u(BTj
)

]

= Exu(BTα
) = 0,

a contradiction. Thus T
1/2
α 6∈ Lp if pα = π/2. Hence

T 1/2
α ∈ Lp ⇐⇒ α <

π

2p
.

The same method works for higher dimensional cones, with the role of
|x|p cos(pθ) being played by |x|ph(θ) where h is a certain hypergeometric
function. This function has a smallest positive zero θp,n with θp,n < π,
and then

T 1/2
α ∈ Lp ⇐⇒ α < θp,n.

2.3. Some further developments

Burkholder’s results, and the approach he took, gave rise to signifi-
cant further research, for example that of Essén and Haliste [12]. Sakai
[21] proved an interesting isoperimetric inequality in this area: if u is the
least harmonic majorant of |x|p in a bounded domain D that contains
0, then

u(0)1/p ≤ c r(D),

for some finite c depending only on p and the dimension. Here r(D) is
the volume radius of D, the radius of a ball in Rn with the same volume
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as D. He furthermore proved several interesting results about the best
constant c(p, n), bringing into play, as did Burkholder, exit times of
Brownian motion, Hardy spaces and estimates of solutions of Poisson
equations.

Expressions for the distribution function of the exit time from a
cone have been obtained by Spitzer [22] in the planar case, from which

the integrability result T
1/2
α ∈ Lp if and only if α < π/(2p) follows, by

DeBlassie [10] in higher dimensions, and also in Bañuelos and Smits [5].

§3. Paraboloids

3.1. Exit time

Relatively recently, Bañuelos, DeBlassie and Smits [4] set themselves
the task of uncovering the tail distribution of the exit time of Brownian
motion from another conic section, the parabola

P =
{

z : Re z > 0 and |Im z| <
√

Re z
}

in the plane. The exit time from any bounded domain is exponentially
integrable, while that from a cone is only power integrable. The authors’
goal was to find a domain for which the integrability of its exit time was
intermediate between these two extremes. The parabola can be fitted
inside a cone whose aperture is as small as one may wish, simply by
putting the vertex of the cone far out on the negative real axis and
the axis of the cone in the direction of the positive real axis. The exit
time from the parabola is less than that from the larger cone, and the
latter will be in Lp for large p because the aperture of the cone is small.
Consequently, the exit time τP from the parabola is pth-power integrable
for every finite p. On the other hand, Ex [exp(cτP)] cannot be finite
for any positive c, since P contains disks of arbitrarily large radius.
For a disk B of radius r and centre x contained in P , one has that
Ex [exp(cτP )] ≥ Ex [exp(cτB)], and the latter is infinite when c > a/r2,
for an absolute constant a.

The estimate obtained by Bañuelos, DeBlassie and Smits for the
distribution function of the exit time is

A1 ≤ lim inf
t→∞

t−1/3 log
1

Pz(τP > t)
≤ lim sup

t→∞
t−1/3 log

1

Pz(τP > t)
≤ A2

for some positive constants A1 and A2. This indicates that Pz(τα > t)
may be about the size of exp

[

−A t1/3
]

.
This estimate was extended to higher dimensions and to more gen-

eral paraboloids by Wembo Li [17], but it was Lifshits and Shi [18] who
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solved the problem completely. They showed that, for the exit time τα

from the parabola-shaped region

Pα = {(x, Y ) ∈ R ×Rn−1 : x > 0, |Y | < Axα}

(where A > 0 and 0 < α < 1),

lim
t→∞

t
α−1

α+1 log
1

Pz(τα > t)

exists, and they determined the finite, positive limit explicitly. In par-
ticular, they proved that

lim
t→∞

t−
1
3 log

1

Pz(τ1/2 > t)
=

3π2

8
.

The distribution function of the exit time from a related very general
class of unbounded domains is investigated in [11]. Using the results
of Lifshits and Shi, van den Berg [6] studied the behaviour of the heat
kernel in parabola-shaped regions.

3.2. Exit place

In [3], Bañuelos and the author investigated the rate of decay of
harmonic measure in the parabola-shaped regions Pα in Rn or, equiva-
lently, the distribution function of the exit position of Brownian motion
from such domains. Setting Eρ to be that part of the boundary of Pα

lying outside the ball of centre 0 and radius ρ, we wished to estimate

ω(ρ) = ω(z0, Eρ;Pα) = Pz0
(|Bτα

| > ρ) ,

for some fixed z0, say z0 = (1, 0, . . . , 0), as accurately as possible.
This problem is easy to solve in the case of two dimensions using

the techniques described earlier in this article. We map Pα onto the
strip S by a symmetric conformal mapping f with f(z0) = 0. The
part Eρ of the boundary of Pα starts from the cross cut at x = x(ρ),
where ρ − ρ2α−1 < x(ρ) < ρ. The length of the cross cut of Pα at x is
θ(x) = 2xα, which satisfies

∫ ∞ θ′(x)2

θ(x)
dx < ∞.

Thus the Distortion Theorem for Certain Symmetric Domains of Sec-
tion 1.3 is applicable and yields that the image of the cross cut θx(ρ) is
within a bounded distance of

π

2(1 − α)
x(ρ)1−α.
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Eρ

Pα

• z0

θx(ρ)

• ρ

f • 0 S

Fr(ρ)

f(θx(ρ))

Writing Fr for that part of the boundary of the strip S where the real
part is greater than r, the image of Eρ under f is Fr(ρ) where

r(ρ) =
π

2(1 − α)
x(ρ)1−α + O(1).

At the end of Section 1.1, we worked out the rate of decay of harmonic
measure in the strip, and found that

ω(0, Fr; S) =
2

π
e−r + o(1) as r → ∞.

Thus

ω(ρ) = ω(1, Eρ;Pα) = ω(0, Fr(ρ); S) ∼ exp

[

− π

2(1 − α)
x(ρ)1−α

]

.

A consequence of this is the following sharp integrability result,

E1

[

exp
(

b|Bτα
|1−α

)]

< ∞ ⇐⇒ b <
π

2(1 − α)
,

which is analogous to that of Burkholder for cones.
It does not seem to be so straightforward, however, to prove such

precise results in higher dimensions. At the beginning of my talk at
IWPT 2004, I asked the audience whether Pz0

(|Bτ | > ρ) is larger (for
large ρ) for the exit time τ from

(i) the parabola {(x, y) : x > 0 and |y| <
√

x} in the plane

or from

(ii) the paraboloid {(x, Y ) : x > 0 and |Y | <
√

x} in three dimensions.
The answer to this question follows from the explicit asymptotics

that we derive in [3]. Chris Burdzy was kind enough to explain to me
how he answered the question without knowing the exact asymptotics.
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Brownian motion {Bt} in the parabola-shaped regionPα may be thought
of as a one-dimensional Brownian motion {B1

t } in the x1-direction and
an independent Bessel process {Xt} of order n − 1 in the orthogonal
direction. He showed that, for fixed α and ρ, Pz0

(

B1,∗
τα

> ρ
)

, where

B1,∗
τα

= sup
t

B1
t∧τα

,

decreases as the dimension increases. [This probability is the harmonic
measure at z0 of the cross section θρ of Pα at x1 = ρ with respect to
that part of Pα to the left of this cross section.] The probability that
B1,∗

τα
> ρ is the probability that the one-dimensional Brownian motion

B1
t hits level ρ before the Bessel process Xs exceeds (B1

s )α. The Bessel
process of order n − 1 satisfies the stochastic differential equation

dXt = dZt +
n − 2

2

1

Xt
dt

while the Bessel process of order n corresponding to Pα, but one dimen-
sion higher, satisfies

dYt = dZt +
n − 1

2

1

Yt
dt,

where we may take {Zt} to be the same one dimensional Brownian
motion in each case and to be independent of {B1

t }. Since X0 = Y0 and
since the drift coefficient (n− 1)/2 for Yt is always greater than that for
Xt, which is (n− 2)/2, it follows from a general comparison result that,
for any time t, Yt ≥ Xt a.s. Thus Ys − (B1

s )α will become non negative
before Xs − (B1

s )α becomes non negative.
In [3], it is shown that the rate of decay of harmonic measure in Pα

satisfies, for each positive ε,

exp

[

−
√

λ1

1 − α
(1 + ε) ρ1−α

]

≤ ω(ρ) ≤ exp

[

−
√

λ1

1 − α
(1 − ε) ρ1−α

]

for all sufficiently large ρ, where λ1 is the smallest eigenvalue for the
Dirichlet Laplacian in the unit ball in Rn−1. The upper bound comes
from the Carleman estimate, which belongs to the family of upper
bounds for harmonic measure described in Section 1.4. Lower bounds
for harmonic measure, in situations such as that under consideration
here, are harder to obtain. In his lower bound on harmonic measure
mentioned in Section 1.3, Warschawski needed to take into account the
oscillation of the width and the oscillation of the central line of the do-
main. The central lines of our parabola-shaped domains don’t oscillate,
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while the width is increasing but not too quickly in that
∫

θ′(x)2/θ(x) dx
is finite. It is natural to expect that the upper bound for harmonic mea-
sure given by the Carleman method would be achieved in this case. The
problem, however, was how to prove this.

The harmonic measure ω(x, Eρ;Pα) has symmetry that it inherits
from the symmetry of the domain and that of its boundary values: at
(x, Y ) in Pα (where x ∈ R, Y ∈ Rn−1),

ω((x, Y ), Eρ;Pα) = u(x, |Y |)

for some function u(x, y) that is defined on the upper half of the domain
Pα in the plane. Whereas the harmonic measure satisfies Laplace’s equa-
tion, the function u satisfies

∆u + (n − 2)
uy

y
= 0.

We would like to transform from the parabola to the strip, as this worked
so well in two dimensions. However, unlike Laplace’s equation, this
Bessel type operator is not conformally invariant. Transformation to the
strip results in what is, at first sight, a messy expression that involves
both the mapping g from the strip to the parabola and its derivative.
The asymptotics of the mapping g and of g′ can be deduced relatively
easily from Warschawski’s work. However, the asymptotic estimates for
the derivative are restricted to sub strips Sρ = {z : |Im z| < ρ} where ρ <
π/2. To transform the partial differential equation ∆u+(n−2)uy/y = 0
successfully from the parabola Pα to the strip S we needed uniform esti-
mates on the derivative of the conformal mapping. These were obtained
as part of the results in [8] and lead directly to the following result:

Suppose that g is a symmetric conformal mapping of the infinite

strip S onto Pα, with g(x) → ∞ as x → ∞. There is a function ε(w) in

the strip S with ε(w) → 0 as Re w → ∞, uniformly in the imaginary part

of w. Moreover, whenever u(x, y) satisfies the p.d.e. ∆u+(n−2)uy/y = 0
in P+

α = {(x, y) : 0 < y < xα} then v = u ◦ g satisfies the p.d.e.

∆v + (n + ε(w) − 2)
vy

y
= 0

in the upper half of the strip.

The Bessel operator is, in some sense, asymptotically conformally
invariant. In our situation, the function v arises from the harmonic
measure of the exterior of a ball of radius ρ in Pα in Rn. We know the
rate of growth of the mapping from the planar parabola-shaped domain
onto the strip, from which we can deduce the boundary values for v.
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With a little more careful analysis involving the maximum principle,
the lower bound for harmonic measure follows.

These bounds on harmonic measure lead directly to integrability
results for the exit position, valid in each finite dimension:

E1

[

exp
(

b|Bτα
|1−α

)]

is finite if b <
√

λ1/(1 − α) and is infinite if b >
√

λ1/(1 − α). Just
as in Burkholder’s work on cones, we proved that B∗

τα
has the same

integrability properties.
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Radial limits of harmonic functions

Stephen J. Gardiner

Abstract.

A classical result of Alice Roth characterizes those functions on
the unit circle that can arise from taking radial limits of entire func-
tions. This paper describes recent progress on the characterization of
radial limit functions of harmonic functions defined either in the unit
ball or the whole of space. Some related open problems are posed.

§1. Introduction

Let T denote the unit circle. The starting point for this article is
the following question: which functions f : T → C can be expressed as

(1.1) f(eiθ) = lim
r→∞

g(reiθ) (0 ≤ θ < 2π)

for some entire function g? Such a function f must, of course, be a Baire-
one function, that is, the pointwise limit of a sequence from C(T). One
would expect, however, that only a restricted class of Baire-one functions
on T can arise in this manner. The answer to the above question is found
in the following classical result of Alice Roth [15], [16] (or see Chapter
IV, §5 of the book by Gaier [9]).

Theorem A. Let f : T → C. The following statements are equiva-
lent:

(a) there is an entire function g such that (1.1) holds;
(b) f is Baire-one, and is constant on each component of some

relatively open dense subset J of T.

Further, if (b) holds, then (a) holds with the additional property that the
convergence in (1.1) is locally uniform on J .
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To see that (a) implies (b) in this result, suppose that (a) holds, let

Kk =
{

eiθ :
∣

∣g(reiθ)
∣

∣ ≤ k for all r > 0
}

(k ∈ N),

and let Jk denote the interior of Kk relative to T. Then ∪kKk = T,
so the set J = ∪kJk, which is relatively open in T, must also be dense
in T by a Baire category argument. Since g is bounded on the set
{

reiθ : r > 0, eiθ ∈ Jk

}

, the radial limit function f must, by Montel’s
theorem, be constant on each component arc of Jk. Thus (b) follows
(and, indeed, the convergence in (1.1) is locally uniform in J). The
more difficult, and hence more interesting, part of the result is the con-
verse. The proof of this involved adapting ideas from Runge’s theorem
on rational approximation to deal with approximation on non-compact
sets, and foreshadowed much later celebrated work of Arakeljan [1], [2].

More recently, Boivin and Paramonov [6] obtained an analogue of
Roth’s result for radial limits of solutions of homogeneous elliptic partial
differential equations of order two with constant complex coefficients
in R2. In the particular case of harmonic functions the radial limit
functions are characterized as those Baire-one functions on T that are
first-degree polynomials of θ on each component arc of some relatively
open dense subset of T. The arguments used do not apply in higher
dimensions.

In Section 2 below we will remain in the context of the plane and
consider the nature of radial limit functions of harmonic functions that
are defined in the unit disc. The corresponding problem in higher dimen-
sions is still open. Then, in Section 3, we will move to higher dimensions
and see a characterization of radial limit functions of entire harmonic
functions. New features, and deeper arguments, apply in this setting.

§2. Radial limits of harmonic functions in the disc

We now consider the question: which functions f : T → R can be
expressed as

(2.1) f(eiθ) = lim
r→1−

h(reiθ) (0 ≤ θ < 2π)

for some harmonic function h on the unit disc D? To see what form the
result should take we can follow the pattern of the argument outlined in
Section 1. Let

Kk =
{

eiθ :
∣

∣h(reiθ)
∣

∣ ≤ k whenever 0 ≤ r < 1
}

(k ∈ N),
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and J = ∪kJk, where Jk denotes the interior of Kk relative to T. It is
not difficult to deduce from (2.1) that

HD

fχJk
(reiθ) → f(eiθ) as r → 1 − (eiθ ∈ Jk),

where HU
g denotes the (generalised) solution to the Dirichlet problem

on an open set U with boundary data g (the solution is given by a
Poisson integral in the present context) and χA denotes the characteristic
function of a set A. It follows from a converse of Fatou’s theorem, due
to Loomis [13] and valid for bounded boundary functions such as fχJk

,
that

(2.2)
1

2t

∫

(−t,t)

f(ei(θ+φ))dφ → f(eiθ) as t → 0+

when eiθ ∈ Jk. We will say that f is asymptotically mean-valued at eiθ

if (2.2) holds. One implication of the following result, taken from [11],
has now been established.

Theorem 1. Let f : T → R. The following statements are equiva-
lent:

(a) there is a harmonic function h on D such that (2.1) holds for all
θ;

(b) f is Baire-one, and there is a relatively open dense subset J of T

on which f is locally bounded and asymptotically mean-valued.

Further, if (b) holds, then (a) holds with the additional property that the
mapping w 7−→ sup0<r<1 |h(rw)| is locally bounded on J .

It remains to see why (b) implies (a). Suppose that condition (b)
holds, let {Jj} be the component arcs of J and let {Uj} be the cor-
responding sectors of D. We write Jj as

{

eiθ : |θ − θj | < aj

}

. A näıve
approach would now be to solve the Dirichlet problem in each sector Uj

with boundary data f on Jj and f(ei(θj±aj)) on the boundary radii. The
asymptotic mean value property of f could then be used in conjunction
with Fatou’s theorem to deduce that the resulting Dirichlet solution had
the desired radial limits at points of J j . There would remain, of course,
the problem of how to “stitch together” the various Dirichlet solutions
from different sectors to obtain a function that is harmonic on all of
the disc. However, before we even get that far with this approach, an
additional obstacle is that f

∣

∣

Jj
need not be integrable with respect to

harmonic measure for the sector Uj .
These difficulties can be overcome by refining our approach. Firstly,

we modify the region in which we solve the Dirichlet problem by the
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removal of radial slits from the sector Uj . More precisely, let

Sj,k(ρ) =
{

reiθ : 0 ≤ r ≤ ρ, |θ − θj | = aj

(

1 − 2−k
)}

(0 ≤ ρ < 1; k ≥ 1).

Then it is possible to choose a sequence (ρj,k)k≥1 in (0, 1), with limit
1, such that the function f (interpreted as 0 off T) is integrable with
respect to harmonic measure for the set

Vj = Uj\





⋃

k≥1

Sj,k(ρj,k)



 .

If we denote the resultant harmonic function on Vj by hj , then it can
be deduced, as above, from the asymptotic mean value property that

hj(rw) → f(w) as r → 1 − (w ∈ Jj).

Secondly, we must find some way of constructing a harmonic func-
tion on D that imitates the boundary behaviour of hj in Vj , for each
j, and also has the right behaviour along radii ending in the closed set
T\J . To do this, let ρj : Jj → (1− j−1, 1) be a continuous function such
that ρj(e

iθ) → 1 as θ → θj ± aj and such that the set

Ej = {rw : w ∈ Jj and ρj(w) ≤ r < 1}

does not intersect any of the radial slits {Sj,k(ρj,k) : k ≥ 1}. Then Ej is
a relatively closed subset of D such that Ej ⊂ Vj . The set

E0 =

{

rw : w ∈ T\J and
1

2
≤ r < 1

}

is also closed relative to D and is, in addition, nowhere dense. Since f
is Baire-one, we can choose a continuous function h0 on E0 such that

h0(rw) → f(w) as r → 1 − (w ∈ T\J).

The disjoint union E = ∪j≥0Ej is a relatively closed subset of D.
Further, if we define v on E by setting it equal to hj on Ej (j ≥ 0), then
v has radial limit function f . The theorem will therefore be established
if we can approximate v on E by a harmonic function on D in such a way
that the error of approximation tends to 0 at T. Since v is continuous
on E and harmonic on E◦, Corollary 3.21 of [10] (based on work of
Armitage and Goldstein [4]) tells us that this can be done provided D∗\E
is connected and locally connected, where D∗ denotes the Alexandroff
(or one-point) compactification of D. Our construction of E evidently
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guarantees these connectivity hypotheses (see §3.2 of [10] for a discussion
of local connectedness in this context), so the proof is complete.

Since our motivation came originally from classical function theory,
it is natural to pose the following question.

Problem 1. Which functions f : T → C can be expressed as

f(eiθ) = lim
r→1−

g(reiθ) (0 ≤ θ < 2π)

for some holomorphic function g on D?

Another obvious question concerns higher dimensions. Let S denote
the unit sphere in Rn.

Problem 2. Which functions f : S → R can be expressed as

f(w) = lim
r→1−

h(rw) (w ∈ S)

for some harmonic function h on the open unit ball of Rn?

We will see in the next section that moving from the context of the
plane to higher dimensions is not routine.

§3. Radial limits of harmonic functions in space

Now we develop the discussion of Section 1 in another direction by
asking the question: which functions f : S → R can be expressed as

(3.1) f(w) = lim
r→∞

h(rw) (w ∈ S)

for some harmonic function h on R
n? Let δ denote the Laplace-Beltrami

operator on S; thus the Laplacian on Rn can be expressed in polar co-
ordinates as

∆ =
∂2

∂r2
+

n − 1

r

∂

∂r
+

1

r2
δ.

If I is a relatively open subset of S and the entire harmonic function h
in (3.1) is bounded on the conical set {rw : r > 0, w ∈ I}, then a simple
dilation argument shows that δf = 0 on I . This observation, together
with a Baire category argument, shows that a function f of the form
(3.1) must, in addition to being Baire-one, satisfy the Laplace-Beltrami
equation δf = 0 on a relatively open dense subset of S. In the case
of two dimensions the latter equation reduces to ∂2f/∂θ2 = 0 and so
we arrive at the answer to the above question obtained by Boivin and
Paramonov (see Section 1). However, this Baire category argument can
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be applied also in relation to the δ-fine topology on S, that is, the coarsest
topology that makes all supersolutions of the Laplace-Beltrami equation
continuous. This allows us to conclude that any function f of the form
(3.1) must be a δ-fine solution of the Laplace-Beltrami equation on a
δ-finely open δ-finely dense subset of S. (We refer to Fuglede [8] for
these notions from fine potential theory.) The important point here is
that, when n ≥ 3, there exist compact subsets of S that are nowhere
dense in S and yet have non-empty δ-fine interior. This shows that the
answer to our question in higher dimensions will be more delicate.

In order to proceed we need some additional notation and termi-
nology. Given a compact subset J of S we write u ∈ L(J) if u is a
function on a relatively open subset I of S such that J ⊂ I and δu = 0
on I . Further, given z ∈ J , we denote by Nz(J) the collection of all
L(J)-representing measures for z, that is, probability measures µ on J
satisfying

u(z) =

∫

J

u dµ for every u ∈ L(J).

A bounded Borel function f on J will be called L-affine on J if

f(z) =

∫

f dµ whenever z ∈ J and µ ∈ Nz(J).

Clearly the collection of L-affine functions on J contains L(J).
We are now in a position to formulate the answer to our question in

the following result, which is taken from [12].

Theorem 2. Let f : S → R. The following statements are equiva-
lent:

(a) there is a harmonic function h on Rn such that (3.1) holds;
(b) there is a sequence of compacts Jk ↑ S such that, for each k, the

restriction f |Jk
is bounded, Baire-one and L-affine on Jk.

We will briefly outline below the main ideas of the proof and refer
to [12] for full details. Although some things have to be verified, the
implication (a) =⇒ (b) is not difficult. As usual, the main interest lies
in the proof of the converse. A key ingredient here is the result stated
below. It follows from an abstract result of Lukeš et al. [14] that deals
with approximation of bounded Baire-one functions in the context of
simplicial function spaces. It can be applied in the present situation
because of work of Bliedtner and Hansen [5] concerning simpliciality in
potential theory.

Theorem B. Let J be a compact subset of S and let f : J → R

be a bounded Baire-one function. If f is L-affine on J , then there is a
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bounded sequence (um) in C(J) such that each function um is L-affine
on J and um → f pointwise on J .

Now let f : S → R and suppose that condition (b) of Theorem
2 holds. We fix k temporarily. By Theorem B there is a sequence
(uk,m)m≥1 in C(Jk), and a positive constant ck, such that

• uk,m is L-affine on Jk for each m,
• |uk,m| ≤ ck on Jk for each m, and
• the sequence (uk,m)m≥1 converges to f pointwise on Jk.

Further, by an approximation result of Debiard and Gaveau [7], we may
assume that each function uk,m satisfies δuk,m = 0 on a neighbourhood

of Ik,m, where Ik,m is some relatively open neighbourhood of Jk in S.
(We may also assume that the sequence (Ik,m)m≥1 is decreasing.) Let
ωk denote the open set defined by

ωk =
⋃

m≥1

{

rz : z ∈ Ik,m+1 and ((m − 1)!)4 < r < ((m + 1)!)4
}

and let hk denote the solution to the Dirichlet problem on ωk with
boundary data gk where, for each m ≥ 1, the function gk is defined on
the boundary subset

{

x ∈ ∂ωk : ((m − 1)!)4m2 ≤ ‖x‖ < (m!)4(m + 1)2
}

by

gk(x) =
1

m

m
∑

l=1

uk,l

(

x

‖x‖

)

.

Careful estimation of harmonic measure can be used to show that

(3.2) hk(rz) → f(z) as r → ∞ (z ∈ Jk).

We now consider general values of k and define E = ∪kEk, where

Ek =







{rz : z ∈ J1 and r ≥ 1} (k = 1)

{rz : z ∈ Jk, dist(z, Jk−1) ≥
1
r

and r ≥ k} (k ≥ 2).

Clearly the set E is closed. We can obtain a harmonic function v on
a neighbourhood of E by defining v = hk on an appropriate neigh-
bourhood of Ek for each k. Further, it is readily seen that the set
(Rn ∪ {∞}) \E is connected and locally connected, where ∞ denotes
the point at infinity for Rn. Under these circumstances we can appeal
to another result from the theory of harmonic approximation (see [3],
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or Corollary 5.10 of [10]) to conclude that there is an entire harmonic
function h satisfying

|v(x) − h(x)| <
1

‖x‖
(x ∈ E).

Now let z ∈ S and k0 = min{k : z ∈ Jk}. For all sufficiently large
values of r we have rz ∈ Ek0

and so

|f(z) − h(rz)| ≤ |f(z) − v(rz)| +
1

r

= |f(z) − hk0
(rz)| +

1

r
→ 0 as r → ∞

by (3.2), as required.
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and toral endomorphisms
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Abstract.

We consider a subsemigroup T of the linear group G of the d-
dimensional Euclidean space V , which is “sufficiently large”. We
study the orbit closures of T in V and we apply the results to semi-
groups of endomorphisms of the d-dimensional torus. The method
uses the knowledge of the potential kernel of the Markov chain on V

defined by a probability measure supported on T . The condition of
being “large” is satisfied for example by a subsemigroup of SL(V ),
Zariski-dense in SL(V ).

§1. Introduction

We denote by G the linear group of the Euclidean space V = Rd,
by Td the d-dimensional torus Td = Rd/Zd, where Zd is the lattice of
integer points in Rd. We denote by Minv(d,Z) the subsemigroup of
elements g in G such that gZd ⊂ Zd. These elements are d× d matrices
with integer coefficients with non zero determinant. We observe that
such a matrix defines a surjective endomorphism of Td.

Let us consider, to begin, the simplest situation d = 1. A basic fact
of Diophantine approximation, is that, for given irrational α ∈ [0, 1[ and
ε ∈]0, 1[, there exists relatively prime integers p, q such that: q|α−p/q| =
{qα} < ε. Also, the set {{qα}; q ∈ N} is dense in T = R/Z. If α is
rational then {{qα}; q ∈ N} is finite. In [19], Hardy and Littlewood
have considered such properties when q belongs to a proper subset Q of
N. In particular they have shown that Q = {n2;n ∈ N} is such a set. We
observe that {n2;n ∈ N} is a multiplicative subsemigroup of N. Hence
one can ask for the validity of such properties for various subsets of N.
In [7], H. Furstenberg has proved that any “non lacunary” subsemigroup

Received July 4, 2005.
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T of N satisfies the required properties. In general, non lacunarity of
T means that T is not contained in a multiplicative semigroup of the
form qN = {qn;n ∈ N} where q is an integer. The simplest example of
such a semigroup is Q = {2m3n;m,n ∈ N}. In this case, non lacunarity
follows from the irrationality of Log2/Log3. This type of property has
been considered for d > 1 and T ⊂ Minv(d,Z) with T a commutative
semigroup, by D. Berend in particular [5]. Also, it can be considered
in the larger setting of multiparameter hyperbolic actions of groups or
semigroups on manifolds (see for example [21]). In particular, G.A.
Margulis has asked in [22] for necessary and sufficient conditions on a
semigroup T ⊂ Minv(d,Z) for the dichotomy of density or finiteness of
the T -orbits in Td.

Here, we give a brief exposition of some recent results on this prob-
lem; we concentrate mostly on the case where T is non commutative
and “large”. The condition of T being “large” can be made precise in
terms of Zariski closure of T . We recall that the Zariski closure of a set
X in G is the set of zeros of the polynomials on G which vanish on X .
The Zariski closure of T is a group with a finite number of connected
components. As this time two approaches on this problem have been
developed. A direct one, by A. Muchnik [23], extends the arguments
of D. Berend to the non necessarily commutative situation. A differ-
ent approach uses properties of potential kernels of random walks on
semi-simple groups ([17], [18]); it can be sketched as follows.

We denote by µ a finitely supported probability measure onMinv(d,Z)
and we assume that its support generates a “large” semigroup of G. In
this context we can obtain informations on orbit closures of T in Rd

from properties of µ-invariant measures and potential measures on Rd.
Then, using projection on Td and topological dynamics arguments, we
can describe the orbit closures of T on T

d. Let us consider in more
detail the case d = 1. Let T be the multiplicative semigroup of N

generated by a = 2, b = 3, and let µ = 1
2 (δa + δb). Then a ba-

sic fact, due to the irrationality of Log2/Log3, is that the semigroup
{mLoga + nLogb;m,n ∈ N} is “more and more dense ” in R at +∞.

This fact can be quantified by considering the potential measure

∞∑

0

µk

of the additive random walk on R defined by µ, the image of µ by the
map x → Logx. Then, according to the renewal theorem, this measure
looks like Lebesgue measure at +∞. Then, projecting on T = R/Z, and
using arguments of topological dynamics, one can prove that, for every
irrational α ∈ T, the orbit Tα accumulates at zero, hence is dense in T.
This line of reasoning remains valid for d > 1; one has to use matricial
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analogues of the renewal theorem; useful results in this direction can be
found in [2], [12], [14], [15], [17]. A noteworthy fact, in this context is
that the non lacunarity condition, is automatically satisfied , if T is non
commutative and “large” (see Proposition 2 and Corollary 5). In order
to describe a typical result in case d > 1, in a simplified situation, we
introduce some notations.

Definition 1. An element g in G is said to be proximal if we can
write

V = Rvg ⊕ V <
g ,

where gvg = λgvg , λg ∈ R, gV <
g = V <

g and the spectral radius of g in

V <
g is strictly less than |λg |.

Definition 2. An element g in G is said to be quasi-expanding if
its spectral radius is strictly greater than 1.

Definition 3. A semigroup T ⊆ G is said to be strongly irre-
ducible if there do not exist a finite union of proper subspaces which
is T -invariant.

For short, we will say that T satisfies condition (i−p) if T is strongly
irreducible and contains a proximal element. We will say that T satisfies
(i−p−e) if T satisfies (i−p) and moreover, T contains a quasi-expanding
element. The condition (i − p) is satisfied if the Zariski closure of T
contains SL(V ). The set of proximal elements in T will be denoted by
T prox. In this paper we sketch a proof of the following

Theorem 1 ([18]). Assume T is a subsemigroup of Minv(d,Z),
which satisfies (i− p− e). Then the T -orbits on Td are finite or dense.

Example 1. Let d = 2, a =

(
2 1
1 1

)
, b =

(
3 2
1 1

)
and let T

be the subsemigroup of SL(2,Z) generated by a, b. Then the conditions
of the theorem are clearly satisfied. Hence the T -orbits in T2 are finite
or dense.

Remark 1. a) The theorem gives a partial answer to the question
of G.A. Margulis [22]. For the general case, see section 3 below.

b) The theorem will follow from a description of the T -orbits in
V , where T is a general subsemigroup of G which satisfies (i − p −
e). Compactness of Td allows us to restrict the study to T -orbits which
accumulate at zero. The expansion property allows us to conclude that
such an orbit is “large” according to a well known principle in hyperbolic
dynamics.
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We need to consider the action of the semi-group T on P(V ), the
projective space of V , as well as on the factor space V/{±Id}. We denote
by π the projection of V onto V/{±Id} and by π(V ) the image of V \{0}.
The projection of v ∈ V \ {0} on P(V ) will be denoted v. The set of
accumulation points of a subset X of a topological space will be denoted
by Xac.

Definition 4. Let T be a subsemigroup of G which satisfies con-
dition (i − p). We denote by LT the subset of P(V ) defined by LT =

closure {vg ∈ P(V ); g ∈ T prox}. We denote by L̃T the inverse image of
LT in V \ {0}.

It is easy to show (see for example [15]) that LT is the unique T -
minimal subset of P(V ). Then theorem 1 will be a consequence of the

Theorem 2 ([18]). Assume T is a subsemigroup of G which satisfies
(i−p−e), Φ is a closed T -invariant subset of V \{0} such that 0 ∈ Φac.

Then π(Φ) ⊃ π(L̃T ).

Let µ be a probability measure on G, Tµ the closed subsemigroup of
G generated by its support Sµ. We observe that, if X is a G-space, the
action of G on X can be extended to probability measures as follows:

µ ∗ ρ =

∫
δgxdµ(g)dρ(x).

We will consider in particular the Markov operators P and P̃ on
P(V ) and π(V ) respectively defined by

P (v, .) = µ ∗ δv, P̃ (v, .) = µ ∗ δπ(v).

The space π(V ) can be written, using polar coordinates, in the form:

π(V ) = P(V ) × R
∗
+.

Furthermore, the group R∗
+ acts naturally on the right on π(V ) by di-

lations. We denote by ` the Lebesgue measure on the group R or R∗
+

(which is isomorphic to R). We know (see [15]) that, if Tµ satisfies
(i−p), there exists on P(V ) a unique µ-stationary measure ν(ν = µ∗ν).
The support of ν is LTµ

. If Sµ is compact, the limit of the sequence
1
n

∫
Log‖g‖dµn(g) is finite and it will be denoted γ(µ). With these no-

tations, theorem 2 will be a consequence of:

Theorem 3. Assume µ is a probability measure on G such that Sµ

is compact, Tµ satisfies (i−p− e), γ(µ) > 0. Then, for any v ∈ V \{0},
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we have the following weak convergence on π(V ):

lim
t→0

∞∑

0

µk ∗ δtπ(v) =
1

γ(µ)
ν ⊗ `.

If d = 1, this statement is called the renewal theorem (see [6], p
300-309). It leads to Theorem 2 and to the following corollary, once a
convenient measure µ on T has been chosen. It has the following purely
topological corollary;

Corollary 1. Assume T is a subsemigroup of G which satisfies
(i− p− e). Then, for any v ∈ V \ {0}, we have the convergence:

lim inf
t→0

tπ(Tv) ⊃ π(L̃T ).

The convergence above is taken as the Hausdorff convergence on
compact subsets of π(V ). The corollary says that T -orbits on V are
“large at the infinity”.

§2. Some extensions of the renewal theorem

We describe here a basic tool of the proof of Theorem 3.
The following is the classical renewal theorem;

Theorem 4. Let µ be a probability measure on R such that the
closed subgroup generated by its support is R. Assume that µ has finite
mean γ(µ) > 0. Then we have the following weak convergence:

lim
t→−∞

∞∑

0

µk ∗ δt =
1

γ(µ)
`,

where ` is Lebesgue measure.

In order to illustrate its meaning in dynamics, we consider the fol-

lowing special flow (X, θ̂t). Assume A = Sµ ⊂ R+ is finite and let
Ω = AN, ρ = µ⊗N. We consider the subset X of Ω × R:

X = {(ω, x) 0 ≤ x ≤ ω0},

and endow X with the probability measure ρ̂ which is the restriction of
1

γ(µ)ρ⊗ ` to X . We denote:

Sk(ω) = ω0 + · · · + ωk−1,
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and we observe that, for any x, t ∈ R+, there exists a unique k ∈ N such
that Sk(ω) ≤ x+ t < Sk+1(ω), we denote by θ the shift transformation

on Ω, and the flow θ̂t on X is defined by

θ̂t(ω, x) = (θkω, x+ t− Sk(ω)),

where k is as above.
Then θ̂t is the so called special flow under the function ω → ω0;

the measure ρ̂ is θ̂t-invariant. The renewal theorem, for µ as above, is
closely related to the following

Proposition 1. The flow θ̂t on (X, ρ̂) is mixing.

Proof. We denote by T the transformation on X × R defined by

T (ω, x) = (θω, x− ω0).

We observe that its adjoint with respect to ρ⊗ ` is the Markov kernel P̃
defined by

P̃ϕ(ω, x) =
∑

a∈A

ϕ(aω, x+ a)µ(a).

Furthermore t ∈ R acts by translation on X × R. In particular, for a
function ψ ∈ C(X × R), we have: (δt ∗ ψ)(ω, x) = ψ(ω, x− t).

On the other hand, for any ϕ ∈ C(X) we have, with k as above:

ϕ(θ̂t(ω, x)) = ϕoT k(ω, x+ t),

ϕ(θ̂t(ω, x)) =

∞∑

0

ϕoTn(ω, x+ t).

Then, for any ψ ∈ C(X), we have, using duality:

< ϕ ◦ θ̂t, ψ >bρ=< ϕ ◦ θ̂t, ψ >ρ⊗`=

∞∑

0

< ϕ, (P̃nδ−t)(ψ) >ρ⊗` .

If ψ is of the form ψ′ ⊗ u with ψ′ ∈ C(Ω) depending only of the first
r coordinates and u is continuous with compact support on R, we have
for n ≥ r:

(P̃nδ−t)(ψ) = (µn−r ∗ δ−t)(P̃
rψ),

where P̃ rψ depends only of the x-coordinate. Also:

∞∑

0

(P̃nδ−t)(ψ) =

r−1∑

0

(P̃nδ−t)(ψ) +

∞∑

0

(µk ∗ δ−t)(P̃
rψ).
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From the renewal theorem:

lim
t→+∞

∞∑

0

(P̃nδ−t)(ψ) =
1

γ(µ)
(ρ⊗ `)(ψ).

Hence, we have

lim
t→+∞

< ϕ ◦ θ̂t, ψ >bρ= ρ̂(ϕ)ρ̂(ψ),

for any ϕ ∈ C(X), ψ ∈ C(X) depending of finitely many coordinates.
A density argument in L2(X) allows to conclude. �

The renewal theorem admits a natural extension to “Gibbsian ran-
dom walks” defined in terms of a mixing subshift of finite type (Ω, θ)
endowed with a Gibbs measure ρ and a Hölder function f on Ω (See [11]
[12] [27]).

Definition 5. We say that the Hölder function f on the subshift
(Ω, θ) is arithmetic if there exists a Hölder function u on Ω such that
f + u ◦ θ − u takes its values in cZ for some c ∈ R.

We consider only a unilateral subshift (Ω, θ) where Ω ⊂ AN and A
is finite. We denote by p(ω, a) the conditional probability of ω−1 = a,

given ω = (ω0, ω1, · · · ). The Markov kernel P̃ on Ω × R is defined by:

P̃ϕ(ω, x) =
∑

a∈A

ϕ(aω, x+ f(ω))p(ω, a).

Then we have the following extension of the renewal theorem (See [12]):

Theorem 5. With the above notations, assume γ(f) =
∫
f(ω)dρ(ω) >

0 and f is non arithmetic. Then for any function ϕ on X×R, continuous
with compact support we have the following convergence:

lim
t→+∞

∞∑

0

P̃ kϕ ∗ δt =
1

γ(f)
(ρ⊗ `)(ϕ).

This theorem is also closely related to the mixing of special flows
over subshifts of finite type endowed with Gibbs measures.

Coming back to the matricial setting described in the introduction,
we give below some important tools of the proof of Theorem 3.

Proposition 2. Let T ⊂ G be a subsemigroup which satisfies con-
dition (i− p) . We denote

∑
T = {Log|λg| g ∈ T prox}.
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Then
∑

T generates a dense subgroup of R.

This result is proved in [18]. It is an analogue of the arithmetical
condition assumed in the above theorem.

Keeping with the analogy of the above theorem, we consider the
action of G on P(V ) and we denote g · b the result of the projective
action of g on b ∈ P(V ). Then we write the action of G on π(V ) as

g(b, x) = (g · b , ‖gb‖x)

The Markov operator on P(V ) (resp π(V )) associated with µ then can
be written as:

Pϕ(b) =

∫
ϕ(g · b)dµ(g), resp. P̃ϕ(b, x) =

∫
ϕ(g.b, x‖gb‖)dµ(g).

It is convenient to “decompose” the operator P̃ , using the Fourier oper-
ators P s (s ∈ R) which are defined on P(V ) by:

P sϕ(b) =

∫
ϕ(g.b)‖gb‖is dµ(g).

For ε ∈]0, 1], denote by Hε(P(V )) the space of ε-Hölder functions ϕ on
P(V ) defined by the condition:

[ϕ]ε = Sup
b,b′∈P(V )

|ϕ(b) − ϕ(b′)|

dε(b, b′)
< +∞,

where d(b, b′) is the distance on P(V ) defined by

d(b, b′) = ‖b ∧ b′‖ = |sin(b, b′)|.

This space is a Banach space with respect to the norm defined by:

‖ϕ‖ε = [ϕ]ε + |ϕ|∞.

The operators P s have nice spectral properties, due to the following:

Proposition 3. Assume that the probability measure µ has compact
support and Tµ satisfies condition (i−p). Then, for ε small, there exists
c0 ∈ [0, 1[ and c(ε) ∈ R+ such that

[Pϕ]ε ≤ c0[ϕ]ε,

[P sϕ]ε ≤ c0[ϕ]ε + c(ε)|ϕ|∞.
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This allows, using [20], to define a principal eigenvalue k(s) ∈ C

which plays the role of the Fourier transform in classical Probability
Theory. Theorem 3 can be proved along the lines of the classical analytic
proof of the renewal theorem (see [12]). On the other hand, Proposition
3 is a consequence of the properties of random walks on G, namely of the
fact that the top Lyapunov exponent of µ is is simple in the Lyapunov
spectrum of µ (see [9], [15]). In order to prove the corollary 1 , we make
use of two facts. If T is compactly generated, we can find µ such that
Tµ = T and γ(µ) > 0. Then the corollary follows from the fact that the

support of ν ⊗ ` is π(L̃T ). If T is not compactly generated, we proceed
by exhaustion.

§3. Orbit closures of semigroups of toral endomorphisms

We consider here natural extensions of Theorem 1 and we describe
some of the tools required in their proofs. We refer to [16] [17] [23] for
detailed proofs.

Theorem 6 ([23]). Assume T is a subsemigroup of Minv(d,Z)
which satisfy the conditions:

1) There is no T -invariant finite union of rational proper subspaces
in V .

2) There is no relatively compact T -orbit in V \ {0}.
3) The group generated by T is not a finite extension of a cyclic

group.
Then the T -orbits in Td are finite or dense.

This result answers the question of Margulis in case of Td(d ≥ 1),
since it is not difficult to show that the conditions of the theorem are
necessary for the dichotomy of density or finiteness of T -orbits in Td. It
can also be proved following the lines developed in section 2. We observe
that condition (1) implies that the Zariski closure of T in G is reductive.
An important component of the proof sketched here is the study of T -
orbits on V , for a general subsemigroup ofG such that its Zariski closure,
denoted Zc(T ), is semi-simple (see [17]). We sketch below some of the
corresponding tools and simplify some technical aspects of [17], using
the recent results of [16].

Let S be an R-algebraic and connected semi-simple group, µ a prob-
ability measure on S such that the semigroup Tµ generated by its sup-
port is Zariski dense in S. We consider an Iwasawa decomposition of
S : S = KAN ; we denote by M the centraliser of A in K, by [M,M] its
commutator subgroup. We choose a Weyl chamber A+ in the Lie alge-
bra A of A and we denote A+ = exp A+ ⊂ A. Then we have the polar
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decomposition S = KA
+
K and we denote by a(g) the A

+
-component

of g. If µ has compact support, we can define (see [15]) the Lyapunov
vector of µ by

λ(µ) = lim
1

n

∫
Log a(g)dµn(g) ∈ A

+
.

We denote by F = K/M the so-called Furstenberg boundary of S, and
we observe that the S-homogeneous space S/MN can be written as a
product (K/M)×A. Also the S-homogeneous space S/N can be written
as K × A. The group A acts on the right on these spaces. The result
of the action of a ∈ A on v ∈ S/MN (resp x ∈ S/N) will be simply
denoted va (resp xa). We denote by ` the Lebesgue measure of A and
write r = dimA. It is known that there exists on F a unique µ-stationary
measure ν, and its support ΛTµ

is the unique Tµ-minimal subset of F .

Also we have λ(µ) ∈ A+ (see [15]) and [9]. The following is proved in
[17], using results of [2].

Theorem 7. With the above notations, for any v ∈ S/MN , we
have the following weak convergence:

lim
t→+∞

t
r−1
2

∞∑

0

µk ∗ δve−tλ(µ) = cµν ⊗ `,

where cµ is a positive constant. Furthermore the measure ν ⊗ ` is µ-
invariant extremal .

We need also to consider the potential kernel of µ on S/N = K ×A
and the µ-stationary measures on K = S/AN .

Theorem 8 ([16]). With the above notations, the action of µ on
K = S/AN has only a finite number p ≤ 2r of extremal µ-stationary
probabilities σi(1 ≤ i ≤ p). Each of them is invariant under the right
action of the connected component of M and has projection ν on K/M .

The Tµ-minimal subsets of K are the supports Λ̂i
T of the measures σi

(1 ≤ i ≤ p).

In case S = SO(n, 1) and T is a Zariski dense sub semigroup of S,
the theorem implies that the action of T on SO(n) = K has a unique
minimal subset which is the inverse image in K of the unique T -minimal
subset ΛT of the boundary SO(n)/SO(n− 1) of SO(n, 1).

Corollary 2. Each measure σi ⊗ ` on S/N (1 ≤ i ≤ p) is µ-
invariant and extremal. For any x ∈ S/N , the cluster values, when
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t → +∞, of the family of potentials t
r−1
2

∞∑

0

µk ∗ δxe−tλ(µ) are positive

linear combinations of the measures σi ⊗ ` (1 ≤ i ≤ p).

Let T be a Zariski dense semigroup of S. Then it is known (see
for example [9], [24]) that T contains R-regular elements i.e. elements g
conjugate to elements of MA+. We denote by T prox the set of R-regular
elements in T . For such a g ∈ T prox we denote

λ(g) = λ(δg) ∈ A+,

and by CT we denote the closed subcone of A+ generated by such ele-
ments λ(g), g ∈ T prox. Also it is known that CT is convex and has non
empty interior C◦

T (see [3]). If T is compactly generated, it is possible to
find µ, as above, with Tµ = T and λ(µ) proportional to λ(g). Further-
more, for g ∈ T prox, the projection modulo [M,M] of a conjugate of g in
MA+ is uniquely defined. We denote this projection in MA/[M,M ] by
σ(g) and we consider the closed subgroup ∆T ⊂MA/[M,M ] generated
by the elements σ(g)(g ∈ T prox). Then we have the

Theorem 9 ([16]). Let T be a Zariski dense subsemigroup of the
semi-simple group S. Then, the closed subgroup ∆T ⊂MA/[M,M ] gen-
erated by the elements σ(g)(g ∈ T prox) has finite index in MA/[M,M ].

This result is a natural extension of Proposition 2. It extends also
an analogous, result of [4], where σ(g) is replaced by λ(g) ∈ A. Further-
more, we observe that a deep study of analogous properties of Zariski
dense subgroups of semi-simple groups has been developed by G. Prasad
and A.S Rapinchuk (see for example [25], Theorem 2). This approach,
based on embedding in linear groups over p-adic fields gives also, as a
by-product, the statement of Theorem 9, in the case where, for some
embedding j in GL(n,R), the coefficients of j(T ) belong to a number
field (G. Prasad, personal communication). Using Theorem 9, we get
the following corollaries.

Corollary 3. Let T be a Zariski dense subsemigroup of the semi-
simple group S, g an R-regular element of T such that λ(g) ∈ C◦

T . Let

Φ ⊂ G/N be a closed T -invariant subset, and x ∈ Λ̂i
T ⊂ K such that

g ∈ xMA+x−1, g−Nx ⊂ Φ.

Then Φ contains Λ̂i
TA.

This corollary leads to a description of the closed T -invariant subsets
Φ of V (dimV > 1), such that 0 ∈ Φac, without assuming irreducibility
of T , as in Theorem 2.
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Corollary 4. Let T be a subsemigroup of GL(V ) such that its
Zariski closure is semi-simple, Φ a closed T -invariant subset of V such
that 0 ∈ Φac. Then there exists a non zero vector u ∈ V , a conjugate
Au of A in S, and an index i ∈ [1, p] such that:

0 ∈ Auu ⊂ Φ,

Φ ⊃ Λ̂i
TAuu.

From this we deduce the

Corollary 5 ([17]). Let T be a subsemigroup of Minv(d,Z) such
that its Zariski closure in GL(V ) is semi-simple. Assume that T does
not preserve a finite union of rational subspaces. Then every T -orbit in
T

d is finite or dense.

It can be shown (see [17]) that any infinite closed T -invariant subset
X of T

d contains 0 as an accumulation point. Hence, lifting X to R
d,

Corollary 5 follows from Corollary 4.
As already said before, a proof of Theorem 6 can also be obtained

along these lines. In this more general case, the Zariski closure of T
is reductive, hence one needs to show a renewal theorem for reductive
groups.

Conditions (2) and (3) in Theorem 6 need to be added to the hy-
pothesis of Theorem 8, in view of the presence of a non trivial center in
this reductive group.

§4. Final comments

Let G be a connected Lie group, G/H a non compact homogeneous
space of G, µ a probability measure on G such that the semi-group Tµ

generated by the support of µ is “large”. For example if µ has a density
which is positive and continuous at e, one has Tµ = G. If G is algebraic,
one can require Tµ to be Zariski dense in G.

It would be interesting to describe, in some special cases, the Radon
measures on G/H which are extremal solutions of the equation µ∗λ = λ.
This is closely related to the description of the Martin boundary of the
Markov chain on G/H defined by µ, i.e to the limits of the normalized

potentials associated with

∞∑

0

µk ∗ δx(x ∈ G/H) when x goes to the in-

finity. It should be possible to obtain from these informations properties
of the T -orbit closures in G/H at infinity. In the situation considered
in this paper one has G = GL(V ), G/H = V \ {0}. The case where G
is the affine group of V and G/H = V is also of interest for geometrical
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reasons. For a study of recurrence relations with random coefficients in
such a setting, see [10].

From the analytic point of view, if µ has a density, very little seems
to be known on the Martin boundary of (G/H, µ) even if H = {e}. If
G/H is a symmetric space and µ is defined by the heat kernel at time
one, the Martin boundary has been calculated in ([13]). For G/H = G,
the extremal solutions of the equation µ ∗ λ = λ have been calculated
in some cases (see [1], [2], [7], [11], [13], [26]). The knowledge of such
measures for G/H 6= G, should also be useful for the study of orbit
closures Tx (x ∈ G/H) at the infinity, since it corresponds to a simpler
situation.
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Densities and harmonic measure

Joaquim Ortega-Cerdà

Abstract.

Several notions of densities related to zero sequences, interpolat-
ing sequences and sampling sequences of holomorphic functions are
presented. Some ties with harmonic measure estimates are shown.

§1. Introduction

In this survey we will present several notions of densities and its
relation to some classical problems in function theory. We show how
some of these densities can be computed through precise estimates of
the harmonic measure on conveniently crafted domains. This new inter-
pretation of the densities may be useful in the extension of the classical
function theory in the disk to other domains or Riemann surfaces.

The results that we present here are not new, and we will point to
the sources along the exposition. There exists a nice book [16] with the
state of the art on the problems of interpolation and sampling sequences.
If one is interested in an (elementary) survey on motivation of these
problems and its conection to signal analysis see for instance [3] and the
references therein.

§2. Different densities

Given a sequence of points Λ in R or C we will define different quan-
tities D(Λ) that try to provide a mathematical definition to the intuitive
concept of the density of the sequence. There are several possibilities
as we will see, and each of these appeared in the literature to deal with
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different problems of function theory. The heuristic principle behind all
the results that we present is that the density of the zero sequence of an
holomorphic function is controlled by the growth of such function. Of
course this is what lies behind Nenvanlinna theory but to begin with we
would like to recall a classical result, the Beurling-Malliavin theorem:

2.1. The Beurling-Malliavin density

The Paley-Wiener PWτ space consists of entire functions of expo-
nential type lower or equal than τ (|f(z)| ≤ Ceτ |=z|) and f ∈ L2(R).

Let us first discuss uniqueness sets Λ ⊂ R for PWτ , that is, sets
for which f ∈ PWτ and f(λ) = 0 ∀λ ∈ Λ implies f ≡ 0. Since every
f ∈ PWτ is entire, it is clear that every set Λ with a finite accumulation
point is a uniqueness set; it is also transparent that a finite set cannot
be a uniqueness set, so we assume from now on that Λ is an infinite
sequence without acumulation points. It is intuitively clear that Λ must
be dense in some sense, so that f|Λ = 0 implies f = 0. Now, if f ∈ PWτ

and f(α) = 0, then the function g(z) = f(z) (z−β)
(z−α) is again in PWτ and

g(β) = 0; this means that we can move arbitrarily any finite number of
points of Λ without changing the problem. Consequently, the control
on the density of the sequences Λ should be asymptotic, depending just
on how Λ behaves “at infinity”. In a series of deep and very celebrated
papers, Beurling and Malliavin (see for instance [6]) proved some re-
sults giving an almost complete description of uniqueness sets for PWτ .
They introduced a density DBM (Λ), called now the Beurling-Malliavin

density, and proved the following

Theorem 2.1. If a real sequence Λ satisfies DBM (Λ) > 2τ then Λ
is a uniqueness set for PWτ . Conversely if Λ is a uniqueness set for

PWτ then DBM (Λ) ≥ 2τ .

The definition of DBM (Λ) is complicated, but geometric in nature.
It is called a density because the number DBM (Λ) depends on how many
points does Λ have in big intervals. It is closely related to the classical
density

D (Λ) = lim
r→0

nΛ(r)

2r
,

where nΛ(r) indicates the number of points of Λ in [−r, r]. In particular,
DBM (Λ) ≥ D(Λ). The precise definition is the following: Let Λ be a
sequence of real numbers contained in (0, +∞). We fix A > 0 and we
let

SA(Λ) =

{

t > 0;
nΛ(τ) − nΛ(t)

τ − t
> A for some τ > t

}

.
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The set SA(Λ) is of the form
⋃

k(ak, bk) and we define

‖SA(Λ)‖ =
∑

k

(bk − ak)2

a2
k

.

Finally the density DBM (Λ) is the infimum of all A such that ‖SA(Λ)‖ <
∞. If the sequence Λ is real but not strictly positive we define Λ+ =
Λ ∩ (0, +∞), Λ− = −(Λ ∩ (−∞, 0)) and

DBM (Λ) = max(DBM (Λ+),DBM (Λ−)).

The exact description of the uniqueness sets for PWτ remains how-
ever unsolved.

2.2. The Beurling-Nyquist density

If one is interested instead in a uniqueness problem with stability,
then the problem becomes the following. Describe the sequences Λ ⊂ R

such that

(2.1)
∑

Λ

|f(λ)|2 .

∫

R

|f |2 .
∑

Λ

|f(λ)|2,

for all functions f ∈ PWτ . For simplicity we will assume that Λ is
separated, i.e. infλ6=λ′ |λ−λ′| > 0. The separated sequences that satisfy
(2.1) are called sampling sequences for the Paley-Wiener space and they
are very important in signal analysis because these are the sequences that
allow a stable discretization of band-limited and finite energy signals.
Their description can almost be achieved with a density very much like
in the case of uniqueness sequences with the Beurling-Malliavin theorem.
The following result was proved by Beurling (see [1]):

Theorem 2.2. If Λ is a uniformly separated real sequence and

D−
BN (Λ) > τ then Λ is a sampling sequence for PWτ . Conversely if

Λ is a sampling sequence for PWτ then D−
BN (Λ) ≥ τ .

The lower Beurling-Nyquist density D−
BN (Λ) is defined as

D−
BN (Λ) = lim

r→∞
min
x∈R

#(Λ ∩ (x, r + x))

r
.

The corresponding upper Beurling-Nyquist density D+
BN (Λ) is defined

as

D+
BN (Λ) = lim

r→∞
max
x∈R

#(Λ ∩ (x, r + x))

r
,

which is related to the following interpolation problem. For which sep-
arated Λ ⊂ R, the restriction PWτ → `2, f → {f(λ)} is onto? This
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sequences are called interpolating sequences and they are relevant in
one wants to codify a discrete signal over a continuous band-limited
signal. The corresponding theorem by Beurling states

Theorem 2.3. If Λ is a separated real sequence such that D+
BN (Λ) <

τ then Λ is an interpolating sequence for PWτ . Conversely if Λ is an

interpolating sequence then D+
BN (Λ) ≤ τ .

Again the critical case where D+
BM (Λ) = D−

BM (Λ) = τ is not cov-
ered by the theorems. Sampling and interpolating sequences for the
Paley-Wiener space have been recently described in [10] and [16] but
the notions involved are more delicate.

2.3. The Bergman space, Seip’s density

There are similar notions of sampling and interpolation for the
Bergman space. The weighted Bergman space Bτ is defined as the holo-
morphic functions in the disk such that

‖f‖2
Bτ

:=

∫

D

|f |2(1 − |z|)2τ−1 < +∞.

A sequence Λ ⊂ D is separated in this context if infλ6=λ′ ρ(λ, λ′) > 0,
where ρ(z, w) = |z − w|/|1 − w̄z| is the pseudohyperbolic distance.

The sampling sequences for the Bergman space are those sequences
Λ such that

‖f‖2
Bτ

'
∑

|f(λ)|2(1 − |λ|)2τ+1.

and Λ is an interpolating sequence for the Bergman space whenever for
any sequence of values {vλ} such that

∑

|vλ|
2(1− |λ|)2τ+1 < +∞ there

is a function in Bτ such that f(λ) = vλ. Again there is a correspond-
ing notion of density that describes the uniformly separated sampling
(or interpolating) sequences in the Bergman space. This density was
introduced by Seip in [13] and it is defined as

D+
S (Λ) = lim sup

r→1
sup
z∈D

∑

ρ(λ,z)<r 1 − ρ(z, λ)

log 1/(1− r)
,

D−
S (Λ) = lim inf

r→1
inf
z∈D

∑

ρ(λ,z)<r 1 − ρ(z, λ)

log 1/(1− r)
.

The corresponding theorem is

Theorem 2.4. A separated sequence Λ is interpolating for Bτ if

and only if D+
S (Λ) < τ and it is sampling if and only if D−

S (Λ) > τ .



Densities and harmonic measure 71

2.4. Korenblum density

We introduce now a new density that almost describes the zeros
in the Bergman space in the same sense that the Beurling-Malliavin
almost describes the zeros of the Paley-Wiener space. This density was
introduced by Korenblum in [7].

Given a finite set E of points in T we define the Beurling-Carleson
entropy of E as

κ̂(E) =
∑

k

|Ik|

2π

(

log
2

π
|Ik | + 1

)

,

where Ik are the arcs complementary to E in T. To each set E we
associate to it the Korenblum flower F (E) as the union of Stolz regions
with vertex on E, i.e. {z ∈ D; d( z

|z| , E) ≤ 1 − |z|}. Finally let σ(Λ, E)

be the Blashke sum of the points of Λ that are inside the Korenblum
flower, i.e.

σ(Λ, E) =
∑

λ∈Λ∩F (E)

log 1/|λ|.

The density DK(Λ) is defined as the infimum of all A > 0 such that

sup
E⊂T

(σ(Λ, E) − Aκ̂(E)) < +∞.

The following theorem is a refinement of Seip [15] and [14] of a previous
work by Korenblum [7]

Theorem 2.5. If Λ is a sequence in the unit disk such that DK(Λ) >
τ then Λ is a uniqueness set for Bτ and conversely if Λ is a uniqueness

set for Bτ then DK(Λ) ≥ τ .

In this context it should be noted that the original paper by Ko-
renblum studied the zeros of functions in A−∞ = ∪τ>0Bτ . The zeros,
in view of Theorem 2.5 are the sequences such that DK(Λ) < ∞. The
necessity of the density condition in the work of Korenblum was proved
with a delicate study of the distortion of certain conformal mappings.
There is a more elementary proof due to Bruna and Massaneda [2] that
uses some estimates of the harmonic measure and that allows them to
work in higher dimensions.

We will sketch this potential theoretic proof. Suppose that f ∈ Bτ

with f(0) = 1 and Z(f) = Λ. Denote by u = log |f |, u is a subharmonic
function in the disk with the growth u+ ≤ C log 1/(1 − |z|2). Take any
of the star shaped regions of Korenblum F (E). Then

(2.2) 0 = u(0) =

∫

∂F (E)

u(ζ)dω(0, ζ) −

∫

F (E)

g(0, ζ, F (E))∆u(ζ),
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where g(0, ζ, F (E)) is the Green function of F (E) with pole at 0 and
ω(0, ζ) the hamonic measure evaluated at the origin. With a careful
estimate of the harmonic measure it follows that

∫

∂F (E)

log
1

1 − |z|2
dω(0, ζ) ≤ cκ̂(E),

and more easily g(0, y, F (E)) ≥ c(1 − |y|) for |y| > 1/2. Thus the
necessary condition of Korenblum follows from (2.2) because ∆u =
C

∑

λ∈Λ δλ.
This is part of a more general scheme, where the study of the zeros

sequences of holomorphic functions is seen to be equivalent to the study
of the Poisson equation ∆u = µ, where µ is a positive measure. We are
interested in finding solutions u to the equation without any boundary
restriction but with some growth estimates. The conection is clear since
for any holomorphic function f , u = log |f | is a subharmonic function
and viceversa for any solution u of ∆u =

∑

Λ δλ there is an holomorphic
function f such that u = log |f | and f vanishes on Λ. This connection
has been exploited in many situations, see for instance [4].

2.5. Weighted densities

The study of these densities suggests the following pattern: The
functions in the Paley-Wiener space are charactrized by the growth eτ |=z|

and the functions in the Bergman-space by eτ log 1/(1−|z|2). In all cases
the growth is of the type eφ(z) where φ is a subharmonic function. This
is very natural since log |f | is subharmonic whenever f is holomorphic,
but the striking point is that the densities in both cases are related to
∆φ, in the case of the Paley-Wiener case this corresponds to τ times the
Lebesgue meaure on the real line and in the weighted Bergman space
to τ times the invariant measure on the disk. This is no coincidence,
in general the density of the sampling, interpolating and zero sequences
must be measured in the geometry of the manifold endowed with a metric
related to the Laplacian of the weight.

Consider for instance the following situation. Take φ a subharmonic
function in C with some mild regularity (doubling Laplacian, i.e. there
is a C > 0 such that for all disks D, µ(2D) ≤ Cµ(D) where µ de-
notes the positive measure µ = ∆φ. Let ρ(z) be the radius such that
µ(D(z, ρ(z))) = 1 (one has to think of ρ2 as a sort of regularized ∆φ).
Let Fφ be the space of entire functions f such that fe−φ ∈ L∞(C). The
problem of describing interpolating and sampling sequences is the nat-
ural one in this setting. To solve it one has to introduce some densities
tied to the metric in C induced by ρ.
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Definition 2.1. A sequence Λ is ρ-separated if there exists δ > 0
such that

|λ − λ′| ≥ δ max(ρ(λ), ρ(λ′)) λ 6= λ′.

Definition 2.2. Assume that Λ is a ρ-separated sequence and recall
that we denote µ = ∆φ.

The upper uniform density of Λ with respect to ∆φ is

D+
∆φ(Λ) = lim sup

r→∞
sup
z∈C

#
(

Λ ∩ D(z, rρ(z))
)

µ(D(z, rρ(z)))
.

The lower uniform density of Λ with respect to ∆φ is

D−
∆φ(Λ) = lim inf

r→∞
inf
z∈C

#
(

Λ ∩ D(z, rρ(z))
)

µ(D(z, rρ(z)))
.

The following theorem proved in [8] is

Theorem 2.6. Let φ be a subharmonic function with a doubling

Laplacian.

(i) A sequence Λ is sampling for Fφ , if and only if Λ contains a

ρ-separated subsequence Λ′ such that D−
∆φ(Λ′) > 1/2π.

(ii) A sequence Λ is interpolating for Fφ, if and only if Λ is ρ-
separated and D+

∆φ(Λ) < 1/2π.

§3. Riemann surfaces

This section is more especulative. All these results concern the study
of function spaces defined on the whole C or in a disk with different
growths. It is also possible to study the same problems in Riemann
surfaces or in several complex variables. We will not deal with the mul-
tidimensional situation, although there has been some recent progress
(see [9]), but we will rather concentrate on the Riemann surfaces. There
are two (at least) possible approaches to define the right density that
governs the interpolating or sampling sequences for holomorphic L2 func-
tions in the surface. Both use some potential theory to define them. In
the first one as developed in [12] they compute the density of a sequence
using instead of disks, the sublevel sets of the Green function. With
these densities they have obtained some sufficient conditions (although
not necessary) for a sequence to be sampling or interpolating in the
Riemann surface. When restricted to the disk one reobtains Seip’s char-
acterization for the Bergman space.

The second approach consists in using some harmonic measure es-
timates to provide an alternative definition of the densities. We will
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present the result in the disk. By its invariant nature this new def-
inition can be transported to any Riemann surface. We are inspired
by a following result [5] due to Garnett Gehring and Jones. We need
some notation. For a z ∈ D, let D(z, r) be the pseudohyperbolic disk
D(z, r) = {w ∈ D; ρ(z, w) < r}. As usual if A is a portion of the bound-
ary of an open set Ω and z ∈ Ω, then ω(z, A, Ω) denotes the harmonic
measure of A from the point z.

Theorem 3.1. A separated sequence Λ is an interpolating sequence

for H∞ if and only if

inf
λ∈Λ

ω(λ, ∂D, D \
⋃

λ′ 6=λ

D(λ′, c)) > 0

for some 0 < c < 1.

To obtain a counterpart of this result, we define the following den-
sities. Set

Ω(z, r) = Ω(Λ; z, r) = D \
⋃

1/2<ρ(λ,z)<r

D(λ, 1 − r),

which is a finitely connected domain. We see that the uniform pseudo-
hyperbolic radius of the little disks tends to 0 as r → 1. This decay is
tuned with the growth of r in such a way that the numbers

D−
h (Λ) = lim inf

r→1−

inf
z∈D

log
1

ω(z, ∂D, Ω(z, r))

and

D+
h (Λ) = lim sup

r→1−

sup
λ∈Λ

log
1

ω(λ, ∂D, Ω(λ, r))

are positive when Λ is uniformly dense. In fact, we have the following
precise characterization that is proved in [11]

Theorem 3.2. For a separated sequence Λ in D we have

D−
S (Λ) = D−

h (Λ) and D+
S (Λ) = D+

h (Λ).

This theorem is proved with a direct proof that the harmonic mea-
sure density is comparable to the “geometric” density. It will be inter-
esting to prove that whenever D+

h (Λ) < τ then Λ is interpolating for Bτ ,
directly without using Seip’s characterization of interpolating sequences.
This will possibly allow the generalization of such notions to Riemann
surfaces.
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Sobolev type spaces on metric measure spaces

Nageswari Shanmugalingam

Dedicated to Professor C. David Minda on his 61st birthday

Abstract.

The aim of this note is to summarise some of the approaches
to extending Sobolev space theory to metric measure spaces. In
particular, we will give a brief survey of Haj lasz-Sobolev, Newton-
Sobolev, and the Korevaar-Schoen type Sobolev spaces on metric
measure spaces.

§1. Introduction

Many developments in the study of quasiconformal mappings and
quasiregular mappings between domains in manifolds were aided by
Sobolev space theory. The groundbreaking paper [19] by Heinonen and
Koskela already had indications that an analog of Sobolev space the-
ory for metric measure spaces is desirable in the study of quasiconfor-
mal mappings. Meanwhile, certain degenerate elliptic partial differential
equations were reformulated in terms of elliptic partial differential equa-
tions on Carnot groups such as the Heisenberg groups and were then
studied using modifications of standard techniques of elliptic PDE the-
ory; see for example [16], [15], [11], [7], and the references therein. It
was therefore clear that a viable Sobolev space theory on metric measure
spaces would aid in further development of the study of quasiconformal
mappings between metric measure spaces and of the study of a wide
class of partial differential equations.
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Using a characterization of Sobolev functions on Euclidean spaces,
Haj lasz formulated a theory of Sobolev type function spaces on metric
measure spaces in [12]; this theory was developed further in [13] and
[9]. Following the definition of upper gradients given by Heinonen and
Koskela in [19], the author and Cheeger independently proposed a the-
ory of Sobolev type spaces on metric measure spaces; see [37] and [8].
Concurrently, using the theory of strongly local Dirichlet forms as a
model, Korevaar and Schoen developed a theory of Sobolev mappings
from Riemannian domains into metric space targets in [29], and they
used this theory to study harmonic mappings in [30]. Their approach
was modified by Koskela and MacManus in [33] to obtain another version
of Sobolev type space of functions on metric measure spaces; see also
[34] for a discussion connecting this Korevaar-Schoen type Sobolev space
theory with the theory of Dirichlet forms on metric measure spaces.

In this note we will describe the above-mentioned function spaces
and the connections between them without proofs. This note is arranged
as follows. The next section will summarise the notations used through-
out this paper. The third and fourth sections will discuss the Haj lasz
and Newtonian approaches to defining Sobolev type spaces on metric
measure spaces. The final section will describe a Korevaar-Schoen ap-
proach to constructing Sobolev type spaces on metric measure spaces
and discuss the relationships between the three Sobolev type spaces
under certain conditions. While no proofs are provided in this note,
references to articles where the proofs can be found are given. However,
the references given are not exhaustive, and many good references are
left out for brevity of exposition.

§2. Notations

In this note X = (X, d, µ) denotes a metric measure space with
metric d and measure µ. Given r > 0 and x ∈ X , the (open) metric
ball centered at x with radius r is denoted B(x, r). We will assume
throughout that µ is a Borel regular measure such that bounded sets
have finite measure and non-empty open sets have positive measure.
The Lebesgue measure of sets A ⊂ R

n is denoted |A|.
We fix an index 1 ≤ p < ∞. Measurable functions f : X → R are

said to be in the class Lp(X) if the integral ‖f‖p
Lp(X) :=

∫
X
|f |p dµ is

finite. We say that f ∈ L
p
loc(X) if f ∈ Lp(Y ) for every bounded subset

Y ⊂ X . The integral average of a function f ∈ L1
loc(X) on a measurable
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set A ⊂ X with µ(A) > 0 is denoted fA:

fA :=
1

µ(A)

∫

A

f(y) dµ(y).

Given functions f ∈ L1
loc(X), we define the Hardy-Littlewood maximal

function Mf on X by

Mf(x) = sup
r>0

|f |B(x,r).

The measure µ is said to be doubling if there is a constant C ≥ 1 such
that for every x ∈ X and r > 0 we have µ(B(x, 2r)) ≤ C µ(B(x, r)). The
standard Lebesgue measure on R

n for example is a doubling measure.
It is known that if µ is a doubling measure, then the Hardy-Littlewood
maximal function operator M : Lp(X) → Lp(X) is a bounded sublinear
operator for all p > 1; see for example [17]. Furthermore, M : L1(X) →
wk−L1(X) boundedly. Here wk−L1(X) is the collection of all functions
f on X for which there is a constant Cf > 0 such that for all t > 0,

µ({x ∈ X : |f(x)| ≥ t}) ≤
Cf

t
.

The norm on wk −L1(X) is obtained by associating to each function f

in this class the infimum/minimum of all such numbers Cf .
A metric space is said to be proper if closed and bounded subsets

of the space are compact in the metric topology. An easy topological
argument shows that if X is a complete metric space and µ is a doubling
measure on X then X is proper.

§3. The Haj lasz-Sobolev spaces

The following theorem was proven by Haj lasz in [12]. Recall that
a domain Ω is a p-extension domain if and only if there is a bounded
linear extension operator E : W 1,p(Ω) → W 1,p(Rn) with Ef = f on Ω.

Theorem 3.1 (Haj lasz). Let Ω ⊂ R
n be a bounded domain or Ω =

R
n, and 1 < p < ∞. Suppose in addition that Ω is a p-extension domain.

Then a function f : Ω → R is in the class W 1,p(Ω) if and only if there

is a non-negative function g ∈ Lp(Rn) and a set Z ⊂ Ω with |Z| = 0
such that whenever x, y ∈ Ω \ Z,

(3.1) |f(x) − f(y)| ≤ |x − y| (g(x) + g(y)) .
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The function g is called a Haj lasz gradient of f . For functions f ∈
W 1,p(Rn) it can be shown via a “telescoping sequence of balls” argument
that M |∇f | is a Haj lasz gradient of f .

It is clear that equation (3.1) can be used to extend the notion of
Sobolev spaces to metric measure spaces. This is done in [12] as follows.

Definition 3.1. Given a function f : X → R, we say that a non-
negative function g : X → R is a Haj lasz gradient for f if there exists a
set Z ⊂ X with µ(Z) = 0 so that whenever x, y ∈ X \ Z,

(3.2) |f(x) − f(y)| ≤ d(x, y) (g(x) + g(y)) .

For functions f ∈ Lp(X) we define the Haj lasz-Sobolev norm of f by

‖f‖M1,p(X) := ‖f‖Lp(X) + inf
g
‖g‖Lp(X),

where the infimum is taken over all Haj lasz gradients g of f . We denote
by M1,p(X) the collection of all (equivalence classes of) functions f ∈
Lp(X) for which the norm ‖f‖M1,p(X) is finite.

Lipschitz functions in M1,p(X) form a dense subclass of M1,p(X).
If the measure µ is doubling, then functions in the class M 1,p(X) always
satisfy a weak (1, p)-Poincaré inequality: there are constants C > 0 and
λ ≥ 1 such that for all f ∈ M1,p(X) and all Haj lasz gradients g ∈ Lp(X)
of f ,

1

µ(B(x, r))

∫

B(x,r)

|f−fB(x,r)| dµ ≤ C r

(
1

µ(B(x, λr))

∫

B(x,λr)

gp dµ

)1/p

whenever B(x, r) ⊂ X is a ball in X with radius r. Such Poincaré
inequalities play a crucial role in potential theory. For example, using
such inequalities it can be shown that solutions to the Dirichlet problem
with boundary data from M1,p(X) always exist. Poincaré inequalities
are also useful in the study of p-extension domains; see [14] for an elegant
discussion of extension and trace theorems.

It should be noted however that by definition, if f ∈ M 1,p(X) and
F ∈ Lp(X) such that F = f µ-a.e. in X , then F ∈ M 1,p(X). This is one
of the differences between the Haj lasz-Sobolev space and the Newton-
Sobolev space discussed in the next section. Another crucial difference
is as follows. If U ⊂ X is a non-empty open set and f ∈ M 1,p(X) is
constant on U , it is not clear that we can choose a Hj lasz gradient g of
f in Lp(X) so that g = 0 µ-a.e. in U . Such a truncation property for
gradients is crucial in the current techniques used in the study of PDEs;
for example, the truncation property is essential in the Nash-Moser proof
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and in the DeGiorgi proof of Harnack inequalities for energy minimizers
and harmonic functions, and the lack of this truncation property in the
Haj lasz-Sobolev space makes the related potential theory difficult.

§4. Newtonian spaces

In [19], Heinonen and Koskela propose an alternative to distribu-
tional derivatives in the setting of metric measure spaces. Recall that
if f : R

n → R is a C1-function, then by the fundamental theorem of
calculus, for every pair of points x, y ∈ R

n and every rectifiable curve γ

joining x and y in R
n,

(4.1) |f(x) − f(y)| ≤

∫

γ

|∇f | ds.

However, if Ω ⊂ R
n is a domain and f ∈ W 1,p(Ω), then the collection

of non-constant compact rectifiable curves γ in Ω for which (4.1) fails
is a zero p-modulus collection of curves ; that is, there is a non-negative
Borel measurable function ρ0 ∈ Lp(Ω) such that for every such curve γ

we have
∫

γ
ρ0 ds = ∞. Using this fact as a motivation, Heinonen and

Koskela proposed the following alternative to distributional derivatives
for functions on metric measure spaces.

Definition 4.1. A family Γ of non-constant compact rectifiable
curves in a metric measure space X is said to be a zero p-modulus family
if there exists a non-negative Borel measurable function ρ0 ∈ Lp(X) such
that for all curves γ ∈ Γ the path integral

∫
γ

ρ0 ds = ∞. Given a function

f : X → R, we say that a non-negative Borel measurable function ρ on
X is an upper gradient of f if for all non-constant compact rectifiable
curves γ in X ,

(4.2) |f(x) − f(y)| ≤

∫

γ

|∇f | ds.

Here x and y denote the endpoints of γ. If (4.2) fails only for a zero
p-modulus family of curves, then we say ρ is a p-weak upper gradient of
f .

It can be shown that if f is a Lipschitz function on X , then the local
Lipschitz constant function ρ given by

ρ(x) = lim sup
y→x

|f(y) − f(x)|

d(y, x)



82 N. Shanmugalingam

is an upper gradient of f ; see [17]. On the other hand, if (ρn)n is
a sequence of upper gradients of a function f on X such that each
ρn ∈ Lp(X) and ρn → ρ in Lp(X), then the Borel function ρ, though
may not be an upper gradient of f , is necessarily a p-weak upper gradient
of f ; see for example the discussion in [23].

Using the above definition of p-weak upper gradients given in [19],
the author proposed in [37] the following version of Sobolev spaces, called
Newtonian spaces.

Definition 4.2. Given a function f : X → R such that f belongs
to an equivalence class in Lp(X), the Newtonian norm of f is given by

‖f‖N1,p(X) := ‖f‖Lp(X) + inf
ρ
‖ρ‖Lp(X),

where the infimum is taken over all upper gradients (or equivalently, all
p-weak upper gradients) of f . We say that two functions f1, f2 on X are
equivalent, denoted f1 ∼ f2, if ‖f1 − f2‖N1,p(X) = 0. It is easy to see
that ∼ defines an equivalence class on the collection of all functions f

on X for which ‖f‖N1,p(X) is finite. The Newton-Sobolev space N 1,p(X)
is the collection of all such equivalence classes of functions.

It can be shown that N1,p(X), equipped with the above norm, is in-
deed a lattice and a normed vector space that is also a Banach space; see
[37]. It should be noted that perturbations of functions in the Haj lasz
space M1,p(X) on sets of µ-measure zero are again in the Haj lasz space,
and hence it is easy to see that M 1,p(X) is a Banach space. How-
ever, perturbations of functions from N 1,p(X) on sets of µ-measure zero
usually does not yield a function in N 1,p(X); therefore the proof that
N1,p(X) is a Banach space is more involved. On the other hand, if two
functions f1 and f2 are in N1,p(X) and f1 = f2 µ-a.e. we can see that
f1 ∼ f2 and hence they belong to the same equivalence class in N 1,p(X).

Using the techniques found in the book [36] by Ohtsuka, it can be
shown that whenever X is a domain in R

n, equipped with the Euclidean
metric and the standard Lebesgue measure, N 1,p(X) = W 1,p(X) both
isometrically and isomorphically; see [37].

Given f ∈ N1,p(X), there are infinitely many p-weak upper gradi-
ents for f in Lp(X). Indeed, if ρ is a p-weak upper gradient of f and
g ∈ Lp(X) is a non-negative Borel measurable function, then ρ + g is
also a p-weak upper gradient of f . The following lemma is very useful
in associating to each f ∈ N 1,p(X) a unique p-weak upper gradient.

Lemma 4.1. Let f ∈ N1,p(X). Then the collection of all p-weak

upper gradients of f in Lp(X) forms a convex subset of Lp(X). If 1 <

p < ∞, then there is a unique p-weak upper gradient ρf ∈ Lp(X) of f
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such that whenever ρ ∈ Lp(X) is another p-weak upper gradient of f ,

we have ρf ≤ ρ µ-a.e.

Such a p-weak upper gradient is called the minimal p-weak upper
gradient of f .

The following lemma shows that the truncation property holds true
for the class N1,p(X).

Lemma 4.2. If U ⊂ X is a closed or an open set and f ∈ N 1,p(X)
such that f is constant µ-a.e. in U , then ρf = 0 µ-a.e. in U .

On the other hand, unlike the Haj lasz-Sobolev class, functions in
N1,p(X) need not satisfy a Poincaré inequality. We say that N 1,p(X)
satisfies a weak (1, p)-Poincaré inequality on X if there exist constants
C > 0 and λ ≥ 1 such that whenever f ∈ N 1,p(X) and B(x, r) is a ball
in X ,

1

µ(B(x, r))

∫

B(x,r)

|f−fB(x,r)| dµ ≤ C r

(
1

µ(B(x, λr))

∫

B(x,λr)

ρ
p
f dµ

)1/p

.

Clearly, if X has no non-constant compact rectifiable curve, then 0
would be an upper gradient for every function on X ; in this case,
N1,p(X) = Lp(X), and for every f ∈ N1,p(X) we have ρf = 0. In
this event the above inequality can not be satisfied. Examples of such
metric spaces include the so-called snow-flaked Euclidean space X = R

n

with metric d(x, y) = |x − y|ε for some fixed 0 < ε < 1. Other examples
of metric spaces where Poincaré inequalities do not hold for N 1,p(X)
include certain fractal sets such as the Sierpinski gasket. However, there
are many examples of non-Euclidean metric measure spaces supporting
a Poincaré inequality; see [35], [6], [32], [31], and the references therein.
Given that functions from N1,p(X) and their upper gradients satisfy
the truncation property of Lemma 4.2, whenever the measure on X is
doubling and X supports a weak (1, p)-Poincaré inequality, many of the
classical methods of analysing harmonic functions in Euclidean domains
can be modified to study energy minimizers and p-harmonic functions
on domains in X ; see for example [27], [26], [25], [28], [5], [4], [38], [3],
[21], and [22].

While in general the Banach space N 1,p(X) may not be reflexive,
the following weak closure result from [23] demonstrates that one can
almost apply Mazur’s lemma to bounded sequences in N 1,p(X).

Lemma 4.3. Let 1 < p < ∞. If X is complete and (fj)j is a

sequence of functions in Lp(X) with upper gradients (gj)j in Lp(X), such

that fj weakly converges to f and gj weakly converges to g in Lp(X),
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then g is a weak upper gradient of f after modifying f on a set of measure

zero, and there is a convex combination sequence f̃j =
∑N(j)

k=j λk,jfk and

g̃j =
∑N(j)

k=j λk,jgk with
∑N(j)

k=j λk,j = 1, λk,j ≥ 0, so that f̃j converges

to f and g̃j converges to g in Lp(X).

In [8], Cheeger independently developed a theory of Sobolev type
spaces on metric spaces using the notion of upper gradients, and he
used this theory to prove a Rademacher-type differentiability theorem for
Lipschitz functions on metric measure spaces whose measure is doubling
and supports a weak (1, p)-Poincaré inequality. The approach in [8] is
as follows.

Definition 4.3. Given f ∈ Lp(X), we say that f ∈ H1,p(X) if the
following norm is finite:

‖f‖H1,p(X) := ‖f‖Lp(X) + inf
(fj ,ρj)j

lim inf
j→∞

‖ρj‖Lp(X),

where the infimum is taken over all sequences of function-upper gradient
pairs (fj , ρj)j with fj → f in Lp(X).

Using the uniform convexity of Lp(X) and Lemma 4.3, it is clear that
whenever 1 < p < ∞ and X is complete we have H1,p(X) = N1,p(X);
however, we can modify functions from H1,p(X) on sets of µ-measure
zero, whereas (as mentioned above), we cannot do so to functions from

N1,p(X). If X is not complete, then H1,p(X) = N1,p(X̂) where X̂

is the completion of X . In general, H1,1(X) 6= N1,1(X) as H1,1(Rn)
corresponds to the class of functions of bounded variation.

As mentioned above, it is not in general true that N 1,p(X) is re-
flexive. However, in the event that 1 < p < ∞ and the measure on
X is doubling and supports a weak (1, p)-Poincaré inequality, one of
the results in [8] demonstrates the reflexivity of H1,p(X) and hence of
N1,p(X). To prove this, a linear derivation operator on H1,p(X) is con-
structed in [8] as follows.

Theorem 4.1 (Cheeger). Let the measure on X be doubling, 1 <

p < ∞, and assume that X admits a (1, p)-Poincaré inequality. Then

there exists a countable collection (Uα, Xα) of measurable sets Uα and

Lipschitz “coordinate” functions Xα = (Xα
1 , . . . , Xα

k(α)) : X → R
k(α)

such that µ
(
X \

⋃
α Uα

)
= 0, µ(Uα) > 0, and for all α the following

hold.

The functions Xα
1 , . . . , Xα

k(α) are linearly independent on Uα and

1 ≤ k(α) ≤ N , where N is a constant depending only on the doubling

constant of µ and the constant from the Poincaré inequality. If f : X →
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R is Lipschitz, then there exist unique bounded measurable vector-valued

functions dαf : Uα → R
k(α) such that for µ-a.e. x0 ∈ Uα,

lim
r→0+

sup
x∈B(x0,r)

|f(x) − f(x0) − dαf(x0) · (Xα(x) − Xα(x0))|

r
= 0.

Furthermore, there is a constant C > 0 such that for all Lipschitz func-

tions f on X,
1

C
gf ≤ |dαf | ≤ C gf µ-a.e. on Uα for each α.

Since a weak (1, p)-Poincaré inequality holds on X , Lipschitz func-
tions form a dense subclass of N1,p(X) = H1,p(X); see [8] and [37].
Hence the discussion by Franchi, Haj lasz, and Koskela in [9] demon-
strates that the linear derivation operator dα can be extended to oper-
ate also on functions in N1,p(X). Thus we have a natural embedding of
N1,p(X) into Lp(X) × Lp(X : R

N ) (which is a uniformly convex space
and hence is reflexive), resulting in N 1,p(X) being reflexive itself. A
further advantage of having this linear derivation operator for functions
in N1,p(X) is that associated to (Cheeger) p-harmonic functions there
is an Euler-Lagrange equation. The Euler-Lagrange equations are quite
useful in the study of potential theory; see for example the discussions
in [22] and [18]. It should be noted here that the map f 7→ ρf is rarely
a linear map; also in general ρf1−f2

6= |ρf1
− ρf2

|.

§5. Sobolev spaces of Korevaar-Schoen, and the connection

between the various Sobolev type spaces

Using the notion of energy integral proposed by Korevaar and Schoen
in [29], Koskela and MacManus studied the following version of Sobolev
spaces on metric measure spaces in [33] (see also [20] for a more general
discussion).

Definition 5.1. Given f : X → R, we define the Korevaar-Schoen
energy of f to be the number E(f), where

E(f) := sup
B

(
lim sup

ε→0

∫

B

∫

B(x,ε)

|f(x) − f(y)|p

µ(B(x, ε)) εp
dµ(y) dµ(x)

)
,

the supremum being taken over all balls B ⊂ X . We say that f ∈
KSp(X) if the norm ‖f‖KS1,p(X) := ‖f‖Lp(X) + E(f)1/p is finite.

The motivation behind such an energy construction is the theory of
Dirichlet forms. The early work of Beurling and Deny in [2] and [1],
applied to strongly local Dirichlet forms, yields a representation of such
Dirichlet forms associated with the above energy for p = 2.
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In the study of the relationships between the Haj lasz-Sobolev spaces,
the Newtonian spaces, the collection of all pairs of functions satisfying
a weak (1, p)-Poincaré inequality, and in the case of p = 2 the theory of
Dirichlet forms, the Sobolev spaces KS1,p(X) of Korevaar-Schoen play
an important connective role; see [20] and [34]. The paper [34] studies
the connection between N1,p(X) and domains of various Dirichlet forms
on X using the space KS1,p(X); a discussion of Dirichlet forms is beyond
the scope of this note, but an excellent discussion can be found in the
book [10] by Fukushima, Ōshima, and Takeda.

In what follows, we say that the metric measure space X supports
a weak (1, p)-Poincaré inequality if there are constants C > 0 and λ ≥ 1
such that whenever f : X → R is a measurable function with p-weak
upper gradient ρ and B(x, r) is a ball in X ,

1

µ(B(x, r))

∫

B(x,r)

|f−fB(x,r)| dµ ≤ C r

(
1

µ(B(x, λr))

∫

B(x,λr)

ρ
p
f dµ

)1/p

.

In what follows, P 1,p(X) consists of all functions f ∈ Lp(X) for
which there exists a non-negative function g ∈ Lp(X) so that whenever
B(x, r) is a ball in X ,

1

µ(B(x, r))

∫

B(x,r)

|f−fB(x,r)| dµ ≤ C r

(
1

µ(B(x, λr))

∫

B(x,λr)

gp dµ

)1/p

.

Theorem 5.1. Fix 1 < p < ∞. If X is complete and the measure

on X is doubling and supports a (1, p)-Poincaré inequality, then the nat-

ural mapping between the following spaces are isometric isomorphisms

as Banach spaces:

H1,p(X) = N1,p(X) = M1,p(X) = KS1,p(X) = P 1,p(X).

If p = 1, then M1,p(X) ⊂ N1,p(X) ⊂ H1,p(X).

The fact that H1,p(X) = N1,p(X) holds true even without the as-
sumption of the doubling property of the measure nor the Poincaré in-
equality; see for example [37]. In [37] it is also proven that even without
the assumption of a Poincaré inequality M 1,p(X) ⊂ N1,p(X); however,
we do need the measure µ to be doubling here. It is also shown in
[37] that if X supports a weak (1, q)-Poincaré inequality in addition for
some 1 ≤ q < p, then M1,p(X) = N1,p(X). The proof of this fact
uses a telescoping sequence of balls concentric with points in the met-
ric space, and when these points are Lebesgue points of the function
f ∈ N1,p(X) the weak (1, q)-Poincaré inequality is applied to these balls
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in order to control the values of f at these points in terms of the Hardy-
Littlewood maximal function Mρ

q
f of ρ

q
f . If q < p and ρf ∈ Lp(X), then

(Mρ
q
f )1/q ∈ Lp(X). We need this better Poincaré inequality q < p since

it is not in general true that (Mρ
p
f )1/p ∈ Lp(X). However, it is a deep

result of Keith and Zhong [24] that if X is complete as a metric space and
the measure on X is doubling and supports a weak (1, p)-Poincaré in-
equality, then there exists 1 ≤ q < p such that X supports a weak (1, q)-
Poincaré inequality. Hence we have the validity in the above theorem of
the statement that N1,p(X) = M1,p(X) under the assumptions that X is
proper and supports a weak (1, p)-Poincaré inequality. See Theorem 4.5
of [33] for a proof of the equality KS1,p(X) = M1,p(X) = P 1,p(X).
Again, in [33] Koskela and MacManus require X to support a weak
(1, q)-Poincaré inequality in addition for some 1 ≤ q < p, but because of
the results of Keith and Zhong in [24] we have the validity of the above
theorem.
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Univ. Jyväskylä, Jyväskylä, 2001, pp. 147–168, MR MR1886620
(2003b:31006).



Sobolev-type spaces 89

[23] Sari Kallunki and Nageswari Shanmugalingam, Modulus and contin-
uous capacity, Ann. Acad. Sci. Fenn. Math., 26 (2001), 455–464,
MR MR1833251 (2002c:31008).

[24] Stephen Keith and Xiao Zhong, The poincaré inequality is an open
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the Poincaré inequality on metric spaces, Indiana Univ. Math. J., 49

(2000), 333–352, MR MR1777027 (2001g:46076).
[32] Pekka Koskela, Upper gradients and Poincaré inequalities, Lecture notes
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Abstract.

We discuss quasisymmetric extension of embeddings that are
close to similarities, due to Tukia and Väisälä, and smooth quasi-
conformal approximation of such extensions. The smoothing is done
by convolution with a variable kernel in conjunction with the Tukia-
Väisälä extension procedure. We can apply these to the study of
branch sets of smooth quasiregular maps, and quasiconformal dimen-
sion of self-similar fractals.

§1. Branch sets of smooth quasiregular maps

A continuous mapping f : D → Rn in the Sobolev space W 1,n
loc (D,Rn)

is K-quasiregular, K ≥ 1, if

|f ′(x)|n ≤ KJf (x), a.e. x ∈ D.

Here n ≥ 2, D ⊂ Rn is a domain, |f ′(x)| is the operator norm of the
differential of f , and Jf (x) = det f ′(x) is the Jacobian determinant. In
the plane, 1-quasiregular maps are precisely analytic functions of a single
complex variable. Quasiregular mappings were introduced by Yu. G.
Reshetnyak [25] under the name “mappings of bounded distortion”. A
deep theorem of Reshetnyak states that nonconstant quasiregular maps
are discrete and open. See [26] for historical accounts.

The branch set Bf of a continuous, discrete, and open mapping
f : D → Rn is the closed set of points in D where f does not define

Received April 11, 2005.
Revised June 30, 2005.
2000 Mathematics Subject Classification. Primary 30C65; Secondary

28A78.
Key words and phrases. branch sets, quasiregular maps, quasiconformal

dimensions.
Partially supported by the National Science Foundation under Grant No.

DMS-0400810.



92 J.-M. Wu

a local homeomorphism. Černavskĭı [9], [10] proved that the topological
dimensions of the branch set and its image satisfy

dim Bf = dim f(Bf ) ≤ n − 2.

The possible values of the topological dimension of branch sets of quasireg-
ular maps are unknown.

On the other hand, if Bf is not empty, then Λn−2(f(Bf )) > 0 by
a theorem of Martio, Rickman and Väisälä [23], and Λn−2(Bf ) > 0
when n = 3 by a result of Martio and Rickman [22]. Here Λr is the
r-dimensional Hausdorff measure.

Branch sets of quasiregular mappings may exhibit complicated topo-
logical structure and may contain, for example, many wild Cantor sets
of classical geometric topology. For recent developments and many in-
teresting open questions, see [14], [15], [16], [27].

Quasiregular mappings of R2 can be smooth without being locally
homeomorphic, for example, f(z) = z2. When n ≥ 3, sufficiently smooth
nonconstant quasiregular mappings are locally homeomorphic.

Theorem 1.1. Every nonconstant Cn/(n−2)-smooth quasiregular
mapping must be locally homeomorphic when n ≥ 3.

Theorem 1.1 is due to Martio, Rickman and Väisälä [26, p. 12]; the
exponent n/(n−2) is derived from Morse-Sard Theorem and the theorem
on Λn−2(f(Bf )) mentioned earlier. Church [11] has proved Theorem 1.1
for Cn mappings.

In [34], Väisälä asked whether C1-smoothness implies local homeo-
morphism in Theorem 1.1. Work of Bonk and Heinonen [6] showed that
the exponent n/(n− 2) in Theorem 1.1 is sharp when n = 3.

Theorem 1.2. For every ε > 0, there exists a C3−ε-smooth quasireg-
ular mapping F : R3 → R3 whose branch set BF is homeomorphic to
R1 and has Hausdorff dimension 3 − δ(ε) with δ(ε) → 0 as ε → 0.

It is proved in [19] that the exponent n/(n − 2) in Theorem 1.1 is
sharp when n = 4; and the authors answered Väisälä’s question in the
negative for all dimensions.

Theorem 1.3. For every ε > 0, there exists a C2−ε-smooth quasireg-
ular mapping F : R4 → R4 whose branch set BF is homeomorphic to
R2 and has Hausdorff dimension 4 − 2ε. For any n ≥ 5, there exists
ε(n) > 0 and a C1+ε(n)-smooth quasiregular map F : Rn → Rn whose
branch set BF is homeomorphic to Rn−2.

Bonk and Heinonen first constructed a quasiconformal mapping g
in R3 with uniformly expanding behavior on a line L. Then g is ap-
proximated outside L by a C∞-smooth quasiconformal mapping G by
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applying a theorem of Kiikka on smoothing [21]. The map G−1 has the
correct order of smoothness on R3; postcomposing G−1 with a winding
map produces the desired quasiregular map F . As explained in [6], it
is unclear how to construct a quasiconformal mapping g in Rn, n ≥ 4,
which is uniformly expanding on codimension two subspaces. Moreover,
the smoothing procedure of Kiikka works in dimensions 2 and 3 only.

We discuss these issues and related topics on quasisymmetric exten-
sion, smooth approximation, existence of snowflake surfaces and quasi-
conformal deformation of self-similar fractals in the following sections.

§2. Quasiconformal extensions

One of the most important results on quasiconformal mappings is
the Extension Theorem.

Theorem 2.1. Every quasiconformal mapping f : Rn−1 → Rn−1

(quasisymmetric if n = 2) has a quasiconformal extension in Rn
+ =

Rn−1 × [0,∞).

This was proved by Beurling and Ahlfors [2] for n = 2, later by
Ahlfors [1] for n = 3 and by Carleson [8] for n ≤ 4. Finally, Tukia and
Väisälä [30] proved the Extension Theorem for all n ≥ 2.

Ahlfors showed that every planar quasiconformal map is a com-
position of mappings with dilatation arbitrarily close to 1, and that
mappings in the plane with small dilatation can be extended to quasi-
conformal homeomorphisms of R3. Whether any quasiconformal map
in dimension 3 or higher can be decomposed into mappings of dilatation
arbitrarily close to 1 remains unanswered. Carleson constructed a piece-
wise linear approximation g of f , extended g to Rn

+ , and performed a
limiting process. The approximation of Moise used is valid for dimen-
sions 2 and 3 only. Tukia and Väisälä extended the given map on Rn−1

to a homeomorphism in Rn
+, then applied an approximation procedure

of D. Sullivan to obtain the quasiconformality.
Extending a quasisymmetric homeomorphism defined on a subset of

Rn to a quasiconformal homeomorphism of Rn can be difficult and is not
always possible. For example, a smooth homeomorphism from a circle
onto a knotted curve in R3 can not be extended to a homeomorphism of
R3 for a topological reason; certain smooth homeomorphisms between a
Jordan curve with two inward spikes and a Jordan curve with one inward
spike and one outward spike can not be extended to be quasiconformal
on R2 for an analytical reason.

To study extension of quasisymmetric maps on subsets of Rn, Tukia
and Väisälä [31], [35], introduced the notion of s-quasisymmetric maps, a
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restricted class of quasisymmetric maps which are locally uniformly close
to similarities, and the notion of quasisymmetric extension property .

An embedding f : X → Y of metric spaces is called s-quasisymmetric
(s-QS), if f is quasisymmetric and satisfies

|f(a) − f(x)| ≤ (t + s)|f(b) − f(x)|

whenever a, b, x ∈ X with |a − x| ≤ t|b − x| and t ≤ 1/s for some
s > 0. When X is a connected compact subset of Rp and Y = Rn

with 1 ≤ p ≤ n, the above definition is equivalent to the existence of
a small κ > 0 so that for every bounded S ⊂ X , there is a similarity
h : Rp → Rn so that

(2.2) ||h − f ||S ≤ κL(h) diam S,

where L(h) is the similarity ratio.
A subset A of Rn has the quasisymmetric extension property (QSEP)

in Rn if every s-QS f : A → Rn has an s1-QS extension g : Rn → Rn

whenever 0 < s ≤ s0(n, A), where s1 = s1(s, n, A) → 0 as s → 0. See
[35, p. 239]. Since the extended map is quasisymmetric, it is necessarily
quasiconformal.

It is not easy to determine whether a given set possesses the exten-
sion property. Tukia and Väisälä proved the following.

Theorem 2.3. Let A be a subset of Rn, n ≥ 2, belonging to one
the following classes:

(a) Rp or Sp, with 1 ≤ p ≤ n − 1,
(b) A a closed thick set in Rp,1 ≤ p ≤ n such that either A or

Rp \ A is bounded,
(c) a compact (n − 1)-dimensional C1-manifold with or without

boundary,
(d) a finite union of simplices of dimensions n and n − 1.

Then A has the quasisymmetric extension property in Rn.

A set A ⊂ Rp is thick in Rp if there are constants r0 > 0 and β > 0
so that if 0 < r ≤ r0 and y ∈ A, then there is a simplex ∆ in Rp with
∆0 ⊂ A ∩ B(y, r) and Λp(∆) ≥ βrp.

We outline the Tukia-Väisälä extension procedures in the case when
A is a thick set satisfying (b) in Theorem 2.3 with p = n. Let f be an
s-quasisymmetric map defined on A and W be a fixed Whitney triangu-
lation of Rn \A. At each vertex P of a simplex in W , choose hP , a sim-
ilarity that approximates the mapping f on the ball B(P, C dist(P, A))
∩A, for some fixed C > 1, uniformly in the sense of (2.2); then de-
fine f(P ) to be hP (P ). After f has been defined at all vertices in W ,
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extend f by the unique affine extension in each simplex in W . Since
A is thick, information of f on A is abundant and is sufficient to show
the consistency of the affine maps associated with neighboring simplices.
Since f is locally uniformly close to similarities and A or Rn \A is rela-
tively compact, degree theory can then be applied to prove f is injective,
surjective and sense preserving when s is small. Intricate estimates cou-
pled with the thickness condition guarantee that the extension is indeed
s1−quasisymmetric.

The extension procedure and the estimates are sensitive to the na-
ture of the sets; for each class of the sets in Theorem 2.3, the proof has to
be somewhat altered. Examples of sets which do not have the extension
property are give in [35].

It would be interesting to know to what extent the thickness condition
can be weakened. And it was asked in [35], whether the manifold in (c)
and the simplices in (d) can have dimension p ≤ n − 2, and whether
every compact polyhedron in Rn has QSEP.

Tukia-Väisälä extension procedure is especially useful in extending
quasisymmetric maps on fractals, when the mappings in question are
more likely to be compositions of close-to-similarities. We shall apply
Theorem 2.3 to study Theorem 1.3 in section 5, and quasiconformal
dimension of Sierpinski gaskets in section 6.

§3. Smoothing

Quasiconformal mappings in R2 or R3 can be approximated by C∞-
diffeomorphisms. Kiikka [21] proved the following.

Theorem 3.1. Let g : Ω → Ω′ be a K-quasiconformal mapping
between domains in Rn, n = 2 or 3. Then for any positive continuous
function ε on Ω, there exists a K̃-quasiconformal C∞-diffeomorphism g̃
such that |g̃(x) − g(x)| < ε(x) for all x ∈ Ω. The constant K̃ depends
only on K.

In the proof, Kiikka used difficult work of Moise and of Munkres
on smooth approximation of piecewise differentiable homeomorphisms,
when dimension is 2 or 3. This kind of approximation for general qua-
siconformal maps can not exist for dimension higher than 5 [29], and is
a long standing open question in dimension 4 [13].

Let A be a set in a class described in Theorem 2.3, and g be a
s-quasisymmetric map on A with a very small s. Tukia-Väisälä ’s con-
struction guarantees a quasiconformal extension, again called g, to Rn.

Sometimes it is desirable to have a smooth extension outside A. To
this end, we convolve g with a variable kernel. Let δA be a regularized
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C∞ distance function to A, see for example, [28, p. 170]. Fix a C∞

function ϕ on Rn which is nonnegative, radial, supported in B(0, 1),

and satisfies
∫

Rn ϕ(x) dx = 1, supRn

∣

∣

∣

∂ϕ
∂xi

∣

∣

∣
≤ C, supRn

∣

∣

∣

∂2ϕ
∂xi∂xj

∣

∣

∣
≤ C.

Then the map

G(x) =







1

δn
A(x)

∫

Rn

g(y)ϕ
( x − y

δA(x)

)

dy, x ∈ Rn \ A,

g(x), x ∈ A

is C∞-smooth outside A.
Smoothing by convolution, in general, does not preserve injectiv-

ity or quasiconformality. To obtain injectivity, quasiconformality, and
the correct order of smoothness, convolution must be applied in con-
junction with the Tukia-Väisälä construction. Closeness to similarities
uniformly at all points on A and in all scales assures the essential in-
equalities required more or less preserved after convolution, whence the
quasiconformality. See [19] for details.

Sometimes it is further necessary to know that an extension or its
inverse is smooth in the entire Rn. While this is not always possible,
we discuss one particular situation when this can be done. Let g be
the restriction of the quasiconformal mapping in Theorem 4.1 to the
hyperplane Rn−1 on which the snowflake property holds, and A be its
image. When ε is very small, g is s-QS for a very small s. We can re-
extend g to a global quasiconformal map on Rn following Tukia-Väisälä
method; then apply convolution to this newly extended map to obtain
a map G : Rn → Rn that agrees with g on Rn−1 and is C∞ outside.
The snowflake property of g on Rn−1 ensures that A is a thick set and
that the gradient of g−1 is Hölder continuous on A. The function G−1

can then be shown to be C1+δ in the entire Rn for some δ > 0. Again
see [19] for details.

§4. Snowflake Embeddings

Existence of quasisymmetric embedding f of Rn−1 in Rn that has
the snowflake property:

C−1|x − y|φ(|x − y|) ≤ |g(x) − g(y)| ≤ C|x − y|φ(|x − y|),

for some φ(t) → ∞ as t → 0, was raised in [17]. Existence of snowflake
embeddings that can be further extended to become quasiconformal on
Rn has been proved by Bishop [5], and David and Toro [12]. A spe-
cial case of a theorem on embedding Reifenberg flat metric spaces into
Euclidean spaces due to David and Toro can be stated as follows.
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Theorem 4.1. For each n ≥ 2 and 0 < ε < ε0(n), there exists a
K-quasiconformal map g : Rn → Rn with

C−1|x − y|1/(1+ε) ≤ |g(x) − g(y)| ≤ C|x − y|1/(1+ε)

for all x, y ∈ Rn−1, |x− y| ≤ 1 and some C = C(n) > 1 . Furthermore,
K → 1 as ε → 0.

The exponent in Theorem 4.1 necessarily satisfies 1/(1 + ε) > (n − 1)/n.
The method of David and Toro is incisive, however does not give esti-
mates of the number ε0(n). It is not clear whether the exponent can
be made arbitrarily close to (n − 1)/n; equivalently, whether there is
a snowflake embedding of Rn−1 to a surface in Rn having Hausdorff
dimension arbitrarily close to n.

It is generally believed that in order to show the order of smoothness
is sharp in Theorem 1.1, a snowflake embedding from Rn−2 to a surface
in Rn having Hausdorff dimension arbitrarily close to n must be found.
In R4, product of two planar snowflake curves is the image of a snowflake
embedding from R2. The method of taking products breaks down for
n ≥ 5.

Therefore, it is not only intrinsically interesting but also useful to
know whether there is a nearly space filling snowflake embedding from
Rp into Rn for every p, 1 ≤ p < n. Paradoxically, this might be more
easily achieved by subspaces Rp of a smaller dimension. Method of Bonk
and Heinonen in [6] gives an affirmative answer for the case p = 1.

§5. Theorem 1.3

When n = 4, let Γ be a standard infinite snowflake curve of Haus-
dorff dimension 2 − ε . The product set Γ × Γ is to be the branch set
of a C2−ε-smooth quasiregular map F . Note that there is a canonical
map g from R2 to Γ×Γ. This map can be written as a composition g =
gm−1◦· · ·◦g0 such that each gj satisfies a snowflake property, has a prod-
uct of snowflake curves as its image, and is s-quasisymmetric for a small
s. Construction of Tukia and Väisälä for part (a) and (b) of Theorem
2.3 can be adapted to extend gj to be quasiconformal on R4. Smooth-
ing outside products of snowflake curves via convolution with a variable
kernel produces new quasiconformal maps Gj . The inverses G−1

j can be

shown to be C1+εj for some εj > 0, in the entire R4, following the reason-
ing in Section 3. Postcompose the inverse of Gm−1 ◦Gm−2◦· · ·◦G0 with
a winding map ω : R4 → R4, ω(x1, x2, r, θ) = (x1, x2, r cos 2θ, r sin 2θ),
yields the desired C2−ε−quasiregular map F , having Γ×Γ as its branch
set.
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The method of taking products does not work in Rn, n ≥ 5, unless
there exists an appropriate embedding of the (n − 2)-fold product Γ ×
· · · × Γ → Rn. For n ≥ 5, Theorem 4.1 of David–Toro [12] provides a
snowflake-type embedding g : Rn−2 ↪→ Σ ⊂ Rn−1. Embed both Rn−2

and the image Σ in Rn, and extend g directly to a global quasiconformal
map on Rn by applying part (a) of Theorem 2.3. Smooth the extension
outside Rn−2 by a convolution, then postcompose the inverse with a
winding map. The codimension two snowflake-type surfaces Σ ⊂ Rn

can then be realized as the branch set of a C1+ε(n)-smooth branched
quasiregular map in Rn, n ≥ 5. This answers Väisälä’s question in the
negative for all dimensions.

See [19] for details.

§6. Quasiconformal dimension of some self-similar sets

Problems on raising or lowering Hausdorff dimension of sets in Rn

through quasiconformal homeomorphism of Rn have been studied for
some time. Bishop [3] showed that for sets of positive dimension there is
never an obstruction to raising dimension by quasiconformal maps. In
fact, for any compact set E in Rn with dim(E) > 0 and any 0 < γ < n
there is a quasisymmetric map h : Rn → Rn such that dim(h(E)) > γ.
On the other hand, examples of Bishop and Tyson [4] [32] showed that
the corresponding statement for lowering dimension can fail.

Given a metric space (X, d), the notion of conformal dimension was
introduced by Pansu [24]:

C dim X ≡ inf{dimY : (Y, d̃) quasisymmetrically equivalent to(X, d)}.

A variety of problems on conformal dimension has been studied; some
have applications to geometric group theory. See, for example, work of
Bonk-Kleiner [7] and Keith-Laakso [20] . Less studied is the quasicon-
formal dimension of a set E in Rn defined as follows [33]:

QC dim E ≡ inf{dim f(E) : f quasiconformal homeomorphism of Rn}.

Clearly,

topological- dim E ≤ C dim E ≤ QC dim E ≤ Hausdorff-dim E.

Analysis on self-similar fractals has been actively pursued in recent
years. Sierpinski gasket due to its simplicity, and Sierpinski carpet due
to its appearance in the boundary of Gromov hyperbolic groups [18] are
particularly intriguing. One of the most challenging questions in this
area is to determine the conformal dimension and the quasiconformal



Quasisymmetric extension, smoothing and applications 99

dimension of the Sierpinski carpet in Rn, for any n ≥ 2. The analogous
problem on the Sierpinski gasket SGn in Rn is easier [33].

Theorem 6.1. For each n ≥ 2, QC dim SGn = 1.

Recall that topological dimension of SGn is 1 and Hausdorff dimen-

sion of SGn is log(n+1)
log 2 . Theorem 6.1 says that SGn can be mapped by

quasiconformal self-maps of Rn onto sets of Hausdorff dimension arbi-
trarily close to its topological dimension.

The conclusion of Theorem 6.1 remains true for the invariant sets of
a large class of postcritically finite iterated function systems satisfying
a so-called gasket type property [33].

We describe the role of Tukia-Väisälä extension in studying quasi-
conformal dimension of fractals. Depending on the nature of the invari-
ant set S in Rn, a quasisymmetric map f is selected to map S onto the
invariant set of an isomorphic function system having a smaller Haus-
dorff dimension. Selection of f is largely based on intuition; this step
gives an upper bound of the conformal dimension of S. To obtain an
upper bound for the quasiconformal dimension, f needs to be extended
to be quasiconformal on Rn. Imagining extending a map from the Sier-
pinski gasket in R3 to R3 by hand, it can be quite a task; Tukia-Väisälä
extension procedure makes this process manageable. Under some extra
conditions, the canonical map between invariant sets of two isomorphic
systems can be decomposed into s-quasisymmetric maps, for a very small
s. To do this a flow of function systems has to be produced so that the
corresponding invariant sets are isotopic. Sums of orthogonal maps are
not orthogonal. Therefore the flow can not be expressed algebraically
as linear combinations; it has to be built geometrically and combinato-
rially. The construction of the flow can be quite daunting even for the
Sierpinski gasket in R3, or a polygasket in R2 [33]. Finally the Tukia-
Väisälä procedure is applied to each of the maps in the decomposition,
then the extensions are recomposed.
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Wiener criterion for Cheeger p-harmonic functions

on metric spaces

Jana Björn

Abstract.

We show that for Cheeger p-harmonic functions on doubling met-
ric measure spaces supporting a Poincaré inequality, the Wiener cri-
terion is necessary and sufficient for regularity of boundary points.

§1. Introduction

The well-known Wiener criterion in Rn states that a boundary point
x ∈ ∂Ω is regular for p-harmonic functions (i.e. every solution of the
Dirichlet problem with continuous boundary data is continuous at x) if
and only if

∫ 1

0

(

Capp(B(x, t) \ Ω, B(x, 2t))

tn−p

)1/(p−1)
dt

t
= ∞,

where Capp is the p-capacity on Rn. For p = 2, this was proved by
Wiener [30]. For 1 < p < ∞, the sufficiency part of the Wiener criterion
is due to Maz′ya [25] and has been extended to more general equations in
Gariepy–Ziemer [10], Heinonen–Kilpeläinen–Martio [12] and Danielli [8].
The necessity part for 1 < p < ∞ was proved by Kilpeläinen–Malý [19]
and extended to weighted equations by Mikkonen [26]. For subelliptic
operators, the Wiener criterion was proved in Trudinger–Wang [29].

In the last decade, there has been a lot of development in the theory
of p-harmonic functions on doubling metric measure spaces support-
ing a Poincaré inequality. The Dirichlet problem for such p-harmonic
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mate, Wiener criterion.



104 J. Björn

functions has been solved for rather general boundary data (includ-
ing Sobolev and continuous functions) in e.g. Cheeger [7], Shanmu-
galingam [27] and [28], Kinnunen–Martio [22] and Björn–Björn-Shan-
mugalingam [2] and [3].

In Björn–MacManus–Shanmugalingam [6], the sufficiency part of
the Wiener criterion was proved in linearly locally connected spaces.
The proof in [6] applies both to Cheeger p-harmonic functions and to
p-harmonic functions defined using the upper gradient. In this note, we
show that for Cheeger p-harmonic functions the assumption of linear
local connectedness can be omitted. Moreover, for Cheeger p-harmonic
functions, the Wiener condition is also necessary, i.e. we have the fol-
lowing result.

Theorem 1.1. Let X be a complete metric measure space with a
doubling measure µ supporting a p-Poincaré inequality. Let Ω ⊂ X be
open and bounded. Then the point x ∈ ∂Ω is Cheeger p-regular if and
only if for some δ > 0,

(1.1)

∫ δ

0

(

Capp(B(x, t) \ Ω, B(x, 2t))

t−pµ(B(x, t))

)1/(p−1)
dt

t
= ∞.

Much of the theory of p-harmonic functions on metric spaces has
been done for p-harmonic functions defined using the upper gradient.
All those proofs go through for Cheeger p-harmonic functions as well
(just replacing gu by |Du| throughout). On the other hand, certain
results and methods which apply to Cheeger p-harmonic functions can-
not be used for p-harmonic functions defined using the upper gradients.
The proof of Theorem 1.1 is one such example: it uses Wolff potential
estimates for supersolutions, as in Kilpeläinen–Malý [19]. For other ex-
amples, see e.g. Björn–MacManus–Shanmugalingam [6] or Björn–Björn–
Shanmugalingam [2].

Acknowledgement. The author is supported by the Swedish Research
Council and Gustaf Sigurd Magnuson’s fund of the Royal Swedish Acad-
emy of Sciences.

§2. Preliminaries

We assume throughout the paper that X = (X, d, µ) is a complete
metric space endowed with a metric d and a positive complete Borel
measure µ such that 0 < µ(B) < ∞ for all balls B ⊂ X (we make the
convention that balls are nonempty and open). We also assume that the
measure µ is doubling , i.e. that there exists a constant C > 0 such that



Wiener criterion for Cheeger p-harmonic functions on metric spaces 105

for all balls B = B(x,r) := {y ∈ X : d(x, y) < r} in X ,

µ(2B) ≤ Cµ(B),

where λB = B(x, λr). Note that some authors assume that X is proper
(i.e. that closed bounded sets are compact) rather than complete, but,
since µ is doubling, X is complete if and only if X is proper.

Throughout the paper, 1 < p < ∞ is fixed. In [13], Heinonen and
Koskela introduced upper gradients as a substitute for the modulus of
the usual gradient. The advantage of this new notion is that it can easily
be used in metric spaces.

Definition 2.1. A nonnegative Borel function g on X is an upper
gradient of an extended real-valued function f on X if for all nonconstant
rectifiable curves γ : [0, lγ ] → X, parameterized by arc length ds,

(2.1) |f(γ(0)) − f(γ(lγ))| ≤

∫

γ

g ds

whenever both f(γ(0)) and f(γ(lγ)) are finite, and
∫

γ g ds = ∞ other-

wise. If g is a nonnegative measurable function on X such that (2.1)
holds for p-almost every curve, (i.e. it fails only for a curve family with
zero p-modulus, see Definition 2.1 in Shanmugalingam [27]), then g is a
p-weak upper gradient of f .

We further assume that X supports a weak p-Poincaré inequality,
i.e. there exist constants C > 0 and λ ≥ 1 such that for all balls B ⊂ X ,
all measurable functions f on X and all upper gradients g of f ,

(2.2)

∫

B

|f − fB | dµ ≤ C(diam B)

(
∫

λB

gp dµ

)1/p

,

where fB :=
∫

B f dµ = µ(B)−1
∫

B f dµ.
By Keith–Zhong [17] it follows that X supports a weak q-Poincaré

inequality for some q ∈ [1, p), which was earlier a standard assump-
tion. As X is complete, it suffices to require that (2.2) holds for all
compactly supported Lipschitz functions, see Heinonen–Koskela [14] or
Keith [15], Theorem 2. There are many spaces satisfying these assump-
tions, such as Riemannian manifolds with nonnegative Ricci curvature
and the Heisenberg groups. For a list of examples see e.g. Björn [5], and
for more detailed descriptions see Heinonen–Koskela [13] or the mono-
graph Haj lasz–Koskela [11]. The following Sobolev type spaces were
introduced in Shanmugalingam [27].
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Definition 2.2. For u ∈ Lp(X), let

‖u‖N1,p(X) =

(
∫

X

|u|p dµ + inf
g

∫

X

gp dµ

)1/p

,

where the infimum is taken over all upper gradients of u. The Newtonian
space on X is the quotient space

N1,p(X) = {u : ‖u‖N1,p(X) < ∞}/∼,

where u ∼ v if and only if ‖u− v‖N1,p(X) = 0.

Every u ∈ N1,p(X) has a unique minimal p-weak upper gradient
gu ∈ Lp(X) in the sense that for every p-weak upper gradient g of u,
gu ≤ g µ-a.e., see Corollary 3.7 in Shanmugalingam [28]. Theorem 6.1
in Cheeger [7] shows that for Lipschitz f ,

gf (x) = lim sup
y→x

|f(y) − f(x)|

d(x, y)
.

Cheeger [7] uses a different definition of Sobolev spaces which leads to
the same space, see Theorem 4.10 in [27]. Cheeger’s definition yields the
notion of partial derivatives in the following theorem, see Theorem 4.38
in [7].

Theorem 2.3. Let X be a metric measure space equipped with a
doubling Borel regular measure µ. Assume that X admits a weak p-
Poincaré inequality for some 1 < p < ∞.

Then there exists N ∈ N and a countable collection (Uα, Xα) of
measurable sets Uα and Lipschitz “coordinate” functions Xα : X →
Rk(α), 1 ≤ k(α) ≤ N , such that µ

(

X \
⋃

α Uα

)

= 0 and for every
Lipschitz f : X → R there exist unique bounded vector-valued functions
dαf : Uα → Rk(α) such that for µ-a.e. x ∈ Uα,

lim
r→0+

sup
y∈B(x,r)

|f(y) − f(x) − 〈dαf(x), Xα(y) − Xα(x)〉|

r
= 0,

where 〈 · , · 〉 denotes the usual inner product in Rk(α).

Cheeger shows that for µ-a.e. x ∈ Uα, there is an inner product
norm | · |x on Rk(α) such that for all Lipschitz f ,

(2.3) gf (x)/C ≤ |dαf(x)|x ≤ Cgf (x),

where C is independent of f and x, see p. 460 in [7]. We can assume that
the sets Uα are pairwise disjoint and let Df(x) = dαf(x) for x ∈ Uα.
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We shall in the following omit the subscript x in the norms | · |x and use
the notation

(2.4) |Df | = |Df(x)| := |dαf(x)|x.

Thus, (2.3) can be written as

(2.5) gf/C ≤ |Df | ≤ Cgf µ-a.e. in X.

The differential mapping D : f 7→ Df is linear and satisfies the Leibniz
and chain rules. Also, Df = 0 µ-a.e. on every set where f is constant.
See Cheeger [7] for these properties.

By Theorem 4.47 in [7] and Theorem 4.10 in Shanmugalingarm [27],
Lipschitz functions are dense in N1,p(X). Using Theorem 10 in Franchi–
Hajlasz–Koskela [9] or Keith [16], the “gradient” Du extends uniquely
to the whole N1,p(X) and it satisfies (2.5) for every u ∈ N 1,p(X).

Definition 2.4. The p-capacity of a set E ⊂ X is the number

Cp(E) := inf
u

‖u‖p
N1,p ,

where the infimum is taken over all u ∈ N 1,p(X) such that u ≥ 1 on E.

For various properties as well as equivalent definitions of the p-
capacity we refer to Kilpeläinen–Kinnunen–Martio [18] and Kinnunen–
Martio [20], [21]. The p-capacity is the correct gauge for distinguishing
between two Newtonian functions. If u ∈ N 1,p(X), then u ∼ v if and
only if u = v outside a set of p-capacity zero. Moreover, Corollary 3.3
in Shanmugalingam [27] shows that if u, v ∈ N 1,p(X) and u = v µ-a.e.,
then u ∼ v.

To be able to compare the boundary values of Newtonian functions
we need a Newtonian space with zero boundary values. Let

N1,p
0 (Ω) = {f |Ω : f ∈ N1,p(X) and f = 0 in X \ Ω}.

Throughout the paper, Ω ⊂ X will be a nonempty bounded open set
in X such that Cp(X \ Ω) > 0. (If X is unbounded then the condition
Cp(X \ Ω) > 0 is of course immediately fulfilled.)

§3. p-harmonic functions and regularity

There are two ways of generalizing p-harmonic functions to metric
spaces, one based on the scalar-valued upper gradient gu and the other
using the vector-valued Cheeger gradient Du. In this paper, we are
concerned with Cheeger p-harmonic functions given by the following
definition.
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Definition 3.1. A function u ∈ N1,p
loc (Ω) is Cheeger p-harmonic

in Ω if it is continuous and for all Lipschitz functions ϕ with compact
support in Ω,

(3.1)

∫

Ω

|Du|p dµ ≤

∫

Ω

|Du + Dϕ|p dµ,

or equivalently,
∫

Ω

|Du|p−2Du · Dϕ dµ = 0,

where · denotes the inner product giving rise to the norm | · | from (2.4)
(note that it depends on x).

As mentioned in the introduction, all properties which have been
proved for p-harmonic functions defined using the upper gradient, also
hold for Cheeger p-harmonic functions and will be used here without fur-
ther notice. By Kinnunen–Shanmugalingam [24], every function satisfy-
ing (3.1) has a locally Hölder continuous representative which satisfies
the Harnack inequality and the maximum principle. It is this represen-
tative that we call Cheeger p-harmonic.

The Dirichlet problem for Cheeger p-harmonic functions and rather
general boundary data was solved using the Perron method in Björn–
Björn-Shanmugalingam [3]. The construction is based on Cheeger p-
superharmonic functions. The upper Perron solution for f : ∂Ω → R

is
Pf(x) := inf

u
u(x), x ∈ Ω,

where the infimum is taken over all Cheeger p-superharmonic functions
u on Ω bounded below such that

lim inf
Ω3y→x

u(y) ≥ f(x) for all x ∈ ∂Ω.

The lower Perron solution is defined by Pf = −P (−f), and if both
solutions coincide, we let Pf := Pf = Pf and f is called resolutive.
Note that we always have Pf ≤ Pf , by Theorem 7.2 in Kinnunen–
Martio [22]. The following comparison principle holds: If f1 ≤ f2 on
∂Ω, then Pf1 ≤ Pf2 in Ω.

The following theorem is proved in [3], Theorems 5.1 and 6.1.

Theorem 3.2. Let f ∈ C(∂Ω) or f ∈ N 1,p(X). Then f is resolu-

tive. Moreover, if f ∈ N1,p(X), then Pf − f ∈ N1,p
0 (Ω).

By Theorem 7.7 in Kinnunen–Martio [22], every Cheeger p-super-
harmonic function is a pointwise limit of an increasing sequence of p-
supersolutions. A function u ∈ N1,p

loc (Ω) is a p-supersolution in Ω if for
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all nonnegative Lipschitz functions ϕ with compact support in Ω,

∫

Ω

|Du|p−2Du · Dϕ dµ ≥ 0.

We also have the following simple lemma.

Lemma 3.3. Assume that f : ∂Ω → R is resolutive. Let Ω′ ⊂ Ω be
open and define h : ∂Ω′ → R by

h(x) =

{

f(x), if x ∈ ∂Ω ∩ ∂Ω′,

P f(x), if x ∈ Ω ∩ ∂Ω′.

Then h is resolutive with respect to Ω′ and the Perron solution for h in
Ω′ is PΩ′h = Pf |Ω′ .

Proof. Let u be a Cheeger p-superharmonic function admissible in
the definition of Pf = Pf . Then it is easily verified (using the lower
semicontinuity of u) that limΩ′3y→x u(y) ≥ h(x) for all x ∈ ∂Ω′. Hence

u is admissible in the definition of the upper Perron solution P Ω′h for h
in Ω′ and taking infimum over all such u shows that P Ω′h ≤ Pf in Ω′.
Applying the same argument to −f , we obtain

PΩ′h = −PΩ′(−h) ≥ −P (−f) = Pf ≥ P Ω′h ≥ PΩ′h.

�

Definition 3.4. A point x ∈ ∂Ω is Cheeger p-regular if

lim
Ω3y→x

Pf(y) = f(x) for all f ∈ C(∂Ω).

In Björn–Björn [1], regular boundary points have been character-
ized by means of barriers. Theorems 4.2 and 6.1 in [1] also give other
equivalent characterizations of regularity. In particular, Theorem 6.1(f)
in [1] shows that regularity is a local property:

Theorem 3.5. Let x ∈ ∂Ω and δ > 0. Then x is Cheeger p-regular
with respect to Ω if and only if it is Cheeger p-regular with respect to
Ω ∩ B(x, δ).

§4. Proof of Theorem 1.1: sufficiency

We start by defining the relative capacity which appears in the
Wiener criterion.
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Definition 4.1. Let B ⊂ X be a ball and E ⊂ B. The relative
capacity of E with respect to B is

Capp(E, B) = inf
u

∫

B

|Du|p dµ,

where the infimum is taken over all u ∈ N 1,p
0 (B) such that u ≥ 1 on E.

Lemma 3.3 in Björn [4] (combined with (2.5)) shows that the capac-
ities Capp and Cp are in many situations equivalent and have the same

zero sets. Moreover, Capp(B, 2B) is comparable to r−pµ(B).
Unless otherwise stated, the letter C denotes various positive con-

stants whose exact values are unimportant and may vary with each
usage. The constant C is allowed to depend on the fixed parameters
associated with the geometry of the space X .

Definition 4.2. Let B be a ball and K ⊂ B be compact. The
Cheeger p-potential for K with respect to B is the Cheeger p-harmonic
function in B \K with boundary data 1 on ∂K and 0 on ∂B. We extend

the Cheeger p-potential u by 1 on K to have u ∈ N 1,p
0 (B).

Lemma 3.2 in Björn–MacManus–Shanmugalingam [6] shows that
the Cheeger p-potential u is a p-supersolution in B. Hence, by Propo-
sition 3.5 in [6], there is a unique regular Radon measure ν ∈ N 1,p

0 (B)∗

such that

(4.1)

∫

B

|Du|p−2Du · Dϕ dµ =

∫

B

ϕ dν for all ϕ ∈ N1,p
0 (B).

The sufficiency part of Theorem 1.1 will follow from the following
lemma. It was proved in [6], Lemma 5.7, for p-harmonic functions de-
fined using the upper gradient under the additional assumption that X
is linearly locally connected. Here we show it without this assumption,
but only for Cheeger p-harmonic functions. Estimates of this type ap-
peared first in Maz′ya [25], where they were used to prove the sufficiency
part of the Wiener criterion for nonlinear elliptic equations.

Lemma 4.3. Let B = B(x, r) and K ⊂ B be compact. Let u be the
Cheeger p-potential for K with respect to 4B. Then for 0 < ρ ≤ r and
y ∈ B(x, ρ),

1 − u(y) ≤ exp

(

−C

∫ r

ρ

(

Capp(B(x, t) ∩ K, B(x, 2t))

t−pµ(B(x, t))

)1/(p−1)
dt

t

)

.

Lemma 4.3 follows from the following lemma by iteration and the
comparison principle in the same way as Lemma 5.7 in [6].
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Lemma 4.4. Let B, K and u be as in Lemma 4.3. Then

inf
B

u ≥ C

(

Capp(K, 4B)

r−pµ(B)

)1/(p−1)

.

Proof. Let ν be the Radon measure given by (4.1). By Lemma 3.10
in [6], we have supp ν ⊂ K and ν(K) = Capp(K, 4B). Lemma 4.8 in [6]
then yields

inf
B

u ≥ inf
2B

u + C

(

ν(B)

r−pµ(B)

)1/(p−1)

≥ C

(

Capp(K, 4B)

r−pµ(B)

)1/(p−1)

.

�

The following corollary is proved in a similar way as Theorem 6.18
in Heinonen–Kilpeläinen–Martio [12]. See also Maz′ya [25].

Corollary 4.5. Let f : ∂Ω → R be bounded and resolutive, and
x ∈ ∂Ω. Then for all sufficiently small 0 < ρ ≤ r,

sup
Ω∩B(x,ρ)

(Pf − f(x)) ≤ sup
∂Ω∩B(x,4r)

(f − f(x))

+ sup
∂Ω

(f − f(x)) exp

(

−C

∫ r

ρ

(

Capp(B(x, t) \ Ω, B(x, 2t))

t−pµ(B(x, t))

)1/(p−1)
dt

t

)

.

Proof. Let B = B(x, r), m = sup∂Ω∩4B f and M = sup∂Ω f . Note
that by the maximum principle, Pf ≤ M in Ω. We can assume that
f(x) = 0. Let u be the Cheeger p-potential for K = B \ Ω in 4B. Let
h be as in Lemma 3.3 with Ω′ := Ω ∩ 4B. Then it is easily verified that
h ≤ m + M(1 − u) on ∂Ω′. Lemma 3.3 and the comparison principle
show that

Pf = PΩ′h ≤ PΩ′(m + M(1 − u)) = m + M(1 − u) on Ω′

and Lemma 4.3 finishes the proof. �

To conclude the proof of the sufficiency part of Theorem 1.1, let
f ∈ C(∂Ω) and ε > 0 be arbitrary. There exists r > 0 such that
sup∂Ω∩B(x,4r) |f − f(x)| ≤ ε. Condition (1.1) and Corollary 4.5 then
imply that for sufficiently small ρ we have

sup
Ω∩B(x,ρ)

|Pf − f(x)| ≤ 2ε.

Thus, Pf is continuous at x and as f ∈ C(∂Ω) was arbitrary, x is
Cheeger p-regular.
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§5. Proof of Theorem 1.1: necessity

To obtain the necessity part of Theorem 1.1, we first formulate an
estimate for p-supersolutions by means of Wolff potentials. It is similar
to Theorem 1.6 in Kilpeläinen–Malý [19] and Corollary 4.11 in [6].

Lemma 5.1. Let u be a nonnegative p-supersolution in 5B, where
B = B(x, r). Let ν be the Radon measure given by (4.1). Then

lim
ρ→0

ess inf
B(x,ρ)

u ≤ C

(

ess inf
3B

u +

∫ r

0

(

ν(B(x, t))

t−pµ(B(x, t))

)1/(p−1)
dt

t

)

.

Proof. It can be shown as in the proof of Theorem 3.13 in Mikko-
nen [26] that the above estimate holds with ess inf3B u replaced by
(

∫

1

2
B

uγ dµ
)1/γ

for all γ > p− 1 (and C depending on γ). Theorem 4.3

in Kinnunen–Martio [23] shows that for γ close to p − 1,

(
∫

1

2
B

uγ dµ

)1/γ

≤ C ess inf
3B

u,

which concludes the proof. �

Corollary 5.2. Let u ∈ N1,p
0 (5B) be the Cheeger p-potential for a

compact K ⊂ B in 5B, where B = B(x, r). Then

lim inf
y→x

u(y) ≤ C

∫ 2r

0

(

Capp(B(x, t) ∩ K, B(x, 2t))

t−pµ(B(x, t))

)1/(p−1)
dt

t
.

Proof. Let ν be the Radon measure given by (4.1). For 0 < t ≤ r,

let νt be the restriction of ν to B(x, t) and ut ∈ N1,p
0 (5B) be the p-

supersolution in 5B associated with νt as in (4.1), see Proposition 3.9 in
Björn–MacManus–Shanmugalingam [6]. It satisfies

(5.1)

∫

5B

|Dut|
p−2Dut · Dϕ dµ =

∫

5B

ϕ dνt for all ϕ ∈ N1,p
0 (5B).

Inserting ϕ = (ut−u)+ as a test function in both (4.1) and (5.1), a simple
comparison yields D(ut − u)+ = 0 µ-a.e. in 5B (see e.g. Lemma 2.8
in [26]). Hence ut ≤ u ≤ 1 in 5B and Lemma 3.10 in [6] implies
(5.2)

νt(B(x, t)) ≤ Capp(K ∩ B(x, t), 5B) ≤ Capp(K ∩ B(x, 2t), B(x, 4t)).

Let a = inf3B u. Then a > 0 by the maximum principle, and Lemma 5.4
in [6] shows that

Capp(3B, 5B) ≤ Capp({x : u ≥ a}, 5B) ≤ Ca1−pCapp(K, 5B).
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It follows that

a ≤ C

(

Capp(K, 5B)

r−pµ(B)

)1/(p−1)

≤ C

∫ 2r

r

(

Capp(K ∩ B(x, t), B(x, 2t))

t−pµ(B(x, t))

)1/(p−1)
dt

t
.(5.3)

Inserting (5.2) and (5.3) into Lemma 5.1 finishes the proof of the corol-
lary. �

To conclude the proof of the necessity part of Theorem 1.1, we apply
Corollary 5.2 to K = B(x, r) \ Ω. Let ur be the corresponding Cheeger
p-potential with respect to B(x, 5r). If the integral in Theorem 1.1
converges, we can use Corollary 5.2 to find r > 0 sufficiently small so
that

lim inf
y→x

ur(y) < 1.

As ur is the solution of the Dirichlet problem in B(x, 5r) \ K with the
continuous boundary data 1 on K and 0 on ∂B(x, 5r), we see that x is
not Cheeger p-regular for the open set B(x, 5r) \ K. Theorem 3.5 then
shows that x is not Cheeger p-regular for Ω either.
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[12] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory
of Degenerate Elliptic Equations, Oxford Univ. Press, Oxford, 1993.

[13] J. Heinonen and P. Koskela, Quasiconformal maps in metric spaces with
controlled geometry, Acta Math., 181 (1998), 1–61.

[14] J. Heinonen and P. Koskela, A note on Lipschitz functions, upper gra-
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Abstract.

In this survey, we describe joint work in collaboration with A.
Stokolos, O. Svensson and T. Weiss. We consider the following ques-
tion: How sharp is the Stolz approach region condition for the almost
everywhere convergence of bounded harmonic functions? The issue
was first settled in the rotation invariant case in the unit disc by Lit-
tlewood in 1927 and later examined, under less stringent conditions,
by Aikawa in 1991. We show that our results are, in a precise sense,
sharp.

§1. How sharp are the Stolz approach regions?

In this survey, we describe joint work in collaboration with A. Stoko-
los, O. Svensson and T. Weiss. Proofs appear elsewhere [8].

1.1. The unit disc in the plane

Consider the space H∞ of all bounded holomorphic functions in the
unit disc D in C. How sharp is the Stolz (nontangential) approach

(1.1) Γα(eiθ) =
{

z ∈ D : |z − eiθ| < (1 + α)(1 − |z|)
}

for the a. e. boundary convergence of H∞ functions?
A family γ = {γ(θ)}θ∈[0,2π) of subsets of D, called an approach, may

have the following properties:
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c: each γ(θ) is a curve in D ending at eiθ;
tg: each γ(θ) ends tangentially at eiθ;
aecv: each h ∈ H∞ converges a. e. along γ(θ) to its Stolz bound-

ary values.

The Strong Sharpness Statement is the following claim.

(SSS) There is no approach γ satisfying (c)&(tg)&(aecv).

This claim is coherent with a principle — implicit in Fatou [10]
— whose first rendition is found in Littlewood [20], who showed that
there is no rotation invariant approach γ satisfying (c)&(tg)&(aecv).
Another rendition of this principle (with stronger conclusions) has been
given by Aikawa [1], who proved that, if (u) is the condition:

u: the curves {γ(θ)}θ are uniformly bi-Lipschitz equivalent;

then there is no approach γ satisfying (u) and (c)&(tg)&(aecv).
Our first result1 is a theorem of Littlewood type where the tangential

curve is allowed to vary its shape, and we do not require uniformity
in the order of tangency. Moreover, we show that, in a precise sense,
Theorem 1.1 is sharp.

Theorem 1.1 (A sharp Littlewood type theorem). Let γ : [0, 2π) →
2D be such that

(c?): for each θ ∈ [0, 2π), the set {eiθ} ∪ γ(θ) is connected;
(tg): for each α > 0 and θ ∈ [0, 2π) there exists δ > 0 such that

if z ∈ γ(θ) ∩ Γα(eiθ) then |z − eiθ| > δ;
(reg): for each open subset O of D the set

{θ ∈ [0, 2π) : γ(θ) ∩ O 6= ∅}

is a measurable subset of [0, 2π).

Then there exists h ∈ H∞ with the property that, for almost every θ ∈
[0, 2π), the limit of h(z) as z → eiθ and z ∈ γ(θ) does not exist.

• Condition (c?) is strictly weaker than (c) but it cannot be relaxed
to the minimal condition one may ask for:

(apprch): eiθ belongs to the closure of γ(θ) for all θ

since Nagel and Stein [21] showed that there is a rotation invariant ap-
proach γ satisfying (apprch) and (tg)&(aecv). This discovery dis-
proved a conjecture of Rudin [24], prompted by his construction of a
highly oscillating inner function in D. Thus, (c?) identifies the property
of curves relevant to a theorem of Littlewood type.

1A preliminary version of this result was announced in Di Biase et al [7].
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• It is not easy to see (reg) fail. The images of radii by an inner
function satisfy (reg): this example prompted Rudin [24] to ask about
the truth value of (SSS). Observe that (reg) is a qualitative condition,
while (u) is quantitative. The former is perhaps more commonly met
than the latter. Furthermore, the conditions are independent of each
other.

• Since our hypothesis do not impose any smoothness, neither on
γ(θ) nor on the domain, a version of our theorem can be formulated, and
proved as well, for domains with rough boundary, such as NTA domains
in R

n; see Theorem 1.3 below.
• Is it possible to prove Theorem 1.1 without assuming (reg)? Sev-

eral theorems in Analysis do fail if we omit some regularity conditions,
while others (typically those involving null sets) remain valid without
‘regularity’ hypothesis2. This question brings us back to the truth value
of (SSS), and we prove the following result.

Theorem 1.2. It is neither possible to prove the Strong Sharpness
Statement, nor to disprove it.

The proof uses a combination of methods of modern logic (developed
after 1929) and harmonic analysis, based upon an insight about the loca-
tion of the link that makes the combination possible. See Theorem 2.1,
Theorem 2.2 and Theorem 2.3.

1.2. Nontangentially accessible domains in R
n

Let h∞ be the space of bounded harmonic functions on a bounded
domain D ⊂ R

n. Assume that D is NTA — as defined by Jerison and
Kenig [17]. How sharp is the so-called corkscrew approach

(1.2) Γα(w)
def

= {z ∈ D : |z − w| < (1 + α)dist(z, ∂D)}

for the boundary convergence for h∞ functions, a. e. relative to harmonic
measure?

Observe that D may be twisting a. e. relative to harmonic measure.
In this case, the ‘corkscrew’ approach (1.2) does not look like a sectorial
angle at all.

2A regularity hypothesis in a theorem is one which is not (formally) nec-
essary to give meaning to the conclusion of the theorem. A priori it is not
clear which theorems belong to which group. Egorov’s theorem on pointwise
convergence belongs to the first; see Bourbaki [2], p. 198. One example in the
second group can be found in Stein [25], p. 251.
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Theorem 1.1 lends itself to the task of formulating3 the appropriate
sharpness statement for NTA domains, without any further restrictions
on the domain.

Theorem 1.3. If D is an NTA domain in R
n and γ = {γ(w)}w∈∂D

is a family of subsets of D such that

(c?): for each w ∈ ∂D, γ(w) ∪ {w} is connected;
(tg): for each α > 0 and w ∈ ∂D there exists δ > 0 such that

if z ∈ γ(w) ∩ Γα(w) then |z − w| > δ;
(reg): for each open subset O of D the set

{w ∈ ∂D : γ(w) ∩ O 6= ∅}

is a measurable subset of ∂D (i. e. its characteristic function
is resolutive);

then there exists h ∈ h∞ such that for almost every w ∈ ∂D, with respect
to harmonic measure, the limit of h(z) as z → w and z ∈ γ(w) does not
exist.

• A condition such as rotation invariance, in place of (reg), would
have no meaning, since in this context there is no group suitably acting,
not even locally.

• Observe that (c?) cannot be relaxed to the weaker condition

(1.3) w belongs to the closure of γ(w) , for each w ∈ ∂ D .

Indeed, the first-named author showed the existence, for NTA domains
in R

n, of an approach γ, satisfying (1.3) and (tg), along which all h∞

functions converge to their boundary values taken along (1.2), a. e. rel-
ative to harmonic measure4.

§2. Overview of the proofs

The core of the problem belongs to harmonic analysis, so we re-
strict ourselves, without loss of generality, to the space h∞ of bounded
harmonic functions on D.

3In formulating (and proving) our Theorem 1.1 we also had this goal in
mind.

4In Di Biase [5], the existence is showed by reducing the problem to the
discrete setting of a (not-necessarily-homogeneous) tree, rather than on the
action of a group on the space. In general, in this context, there is no group
suitably acting on the space.
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The boundary of D, denoted by ∂ D, is naturally identified to the
quotient group R /2π Z, from which it inherits the Lebesgue measure m;
thus, m(∂ D) = 2π.

If h ∈ h∞, the Fatou set of h, denoted by F(h) ⊂ ∂ D, is the set
of points w ∈ ∂ D, such that the limit of h(z) as z → w and z ∈ Γα(w)
exists for all α > 0; this limit is denoted h[(w). Now, m(F(h)) = 2π
and h[ ∈ L∞(∂ D); see Fatou [10].

The Poisson extension P : L∞(∂ D) → h∞ recaptures h from h[,
since h = P [h[].

If γ is a subset of D× ∂ D and w ∈ ∂ D, the shape of γ at w is the
set

γ(w)
def

= {z ∈ D : (z, w) ∈ γ} ⊂ D .

An approach is a subset γ of D× ∂ D such that (apprch) holds for
all θ. One may think of γ as a family {γ(θ)}θ∈[0,2π) of subsets of D. If

h ∈ h∞ and γ is an approach, then define the following two subsets of
∂ D: C(h, γ) is the set

{w ∈ F(h); h(z) converges to h[(w) as z → w and z ∈ γ(w)}

and D(h, γ) is the subset

{w ∈ ∂ D; h(z) does not have any limit as z → w and z ∈ γ(w)} .

If γ is an approach and u : D → R a function on D, the function on
∂ D given by

γ?(u)(w)
def

= sup{|u(z)| : z ∈ γ(w)}

is called the maximal function of u along γ at w ∈ ∂ D.

Lemma 2.1. The following properties of an approach γ are equiv-
alent:

(a) γ? maps all continuous functions (on D) to measurable func-
tions (on ∂ D);

(b) for every open Z ⊂ D, the boundary subset

γ↓(Z)
def

= {w ∈ ∂ D : Z ∩ γ(w) 6= ∅} ⊂ ∂ D

is a measurable subset of ∂ D.

The subset in (b) is called the shadow projected by Z along γ. The
proof of Lemma 2.1 is left to the reader5. The approach γ is called: regu-
lar if it satisfies (a) or (b) in Lemma 2.1; rotation invariant if (z, w) ∈ γ

5This circle of ideas is based on the work of E. M. Stein. Cf. Fefferman
and Stein [11].
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implies (eiθz, eiθw) ∈ γ for all θ, z, w. A rotation invariant approach is
regular.

2.1. The Independence Theorem

2.1.1. Preliminary Remarks Modern logic gives us tools that show
that some statements can be neither proved nor disproved. The basic
idea is familiar: if different models (or ‘concrete’ representations) of some
axioms exhibit different properties, then these properties do not follow
from those axioms. For example, the existence of a single, ‘concrete’
non commutative group shows that commutativity can not be derived
from the group axioms. Similarly, the existence of different models of
geometry shows that Euclid’s Fifth Postulate does not follow from the
others. Since the currently adopted system of axioms for Mathematics is
ZFC6, to prove a theorem amounts to deduce the statement from ZFC.
A model of ZFC stands to ZFC as, say, a ‘concrete’ group stands to
the axioms of groups. If ZFC is consistent, then it has several, different
models. Gödel showed, in his completeness theorem, that a statement
can be deduced from ZFC if and only if it holds in every model of ZFC;
in particular, if it holds in some models but not in others, then it follows
that it can be neither proved nor disproved. The tangential boundary
behaviour of h∞ functions is radically different in different models of
ZFC7.

2.1.2. The Independence Result

Theorem 2.1. There is a model of ZFC in which there exists an
approach γ satisfying (c) and (tg) and such that C(h, γ) has measure
equal to 2π for every h ∈ h∞.

Theorem 2.2. There is a model of ZFC in which for every approach
satisfying (c?) and (tg) there exists h ∈ h∞ such that D(h, γ) has outer
measure equal to 2π.

Theorem 2.1 and Theorem 2.2, together with Gödel’s completeness
theorem, imply Theorem 1.2.

2.1.3. A Consequence of ZFC The following result shows that The-
orem 2.2 cannot be improved8. Observe that while Theorem 2.1 only
holds in some models of ZFC but not in others (and therefore, by Gödel’s

6Acronym for Zermelo, Fraenkel and the Axiom of Choice. See Cohen [4],
Drake [9], Jech [16], Kunen [19].

7Since an approach is a fairly arbitrary subset of D×∂ D, in retrospect

this result can be rationalized, but other examples in Analysis show that this
rationalization is not a priori infallible.

8Theorem 2.3 in itself does not say whether (SSS) can be proved or not.
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completeness theorem, the corresponding statement can not be deduced
from ZFC) the following theorem can be deduced from ZFC and there-
fore it holds in any model of set theory (see the discussion in 2.1.1 ).

Theorem 2.3 (A consequence of ZFC). There exists an approach
γ satisfying (c) and (tg) such that for each h ∈ h∞, the set C(h, γ) has
outer measure equal to 2π.

Remark 2.1. We quote a remark made by Gödel in [12] about the
Continuum Hypothesis, or Cantor’s conjecture.

Only someone who [. . . ] denies that the concepts
and axioms of classical set theory have any meaning
(or any well-defined meaning) could be satisfied with
such a solution, not someone who believes them to
describe some well-determined reality. For in this re-
ality Cantor’s conjecture must be either true or false,
and its undecidability from the axioms as knows to-
day can only mean that these axioms do not contain a
complete description of this reality; and such a belief
is by no means chimerical, since it is possible to points
out ways in which a decision of the question, even if it
is undecidable from the axioms in their present form,
might nevertheless be obtained.

It seems to us that Gödel’s remark applies equally well to (SSS), for
those who share the Platonist viewpoint of Gödel.

§3. How un-Stolz are the sharp approach regions in C
n?

The theory of the boundary behaviour (from the viewpoint of the
almost everywhere convergence) of holomorphic functions in the Hardy
spaces, defined on a bounded pseudoconvex domain D with smooth
boundary in C

n, has been so far been sufficiently understood in a few
cases only: the unit ball in C

n (Koranyi [18]; Hakim and Sibony [13];
Hirata [14]); finite type domains in C

2 (Nagel et al [22]); convex finite
type in C

n (Di Biase and Fischer [6]). The task is to give a precise
(possibly intrinsic) description of the sharp approach, together with a
proof of its sharpness, as well as a local Fatou theorem, coupled with
the study of the area function, the maximal function along the sharp
approach, and the Lp estimates relating these operators to each other,
as well as a Calderón-Stein theorem, and so forth.

In the few cases that are sufficiently understood, a family of balls
in the boundary (having certain covering and doubling properties) plays
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an important role in the theory; see Hörmander [15], Nagel et al [23],
Stein [26]. However, in general, this structure seems to be missing; see
Chirka[3] (whose results appear to have a conditional nature, i.e. condi-
tional upon the occurrence of certain covering and doubling properties
of certain boundary balls, that are rather difficult to verify).

In the few cases that are sufficiently understood, two features have
been observed. The first one is that the sharp approach has a shape
whose section, taken along a complex tangential direction, depends on
the direction itself; [18]. For example, if D is the unit ball in C

n, the
shape of the sharp approach at a boundary point w can be described as
the locus in the domain of the following inequality:

dist(z, ∂D)

dist(z, w + T c
w(∂D))

≥ C > 0

where T c
w(∂D) is the complex tangent space at w. The second feature is

that the shape of the approach does change near weakly pseudoconvex
points and yields sharper estimates for the associated maximal operator;
see Nagel et al [22], [23] for the case n = 2 and [6] for convex finite type
domains in C

n.
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Abstract.

Our aim in this paper is to deal with continuity properties for
weakly monotone Sobolev functions of variable exponent.

§1. Introduction

This paper deals with continuity properties of weakly monotone
Sobolev functions. We begin with the definition of weakly monotone
functions. Let D be an open set in the n-dimensional Euclidean space
Rn (n ≥ 2). A function u in the Sobolev space W 1,q

loc (D) is said to be
weakly monotone in D (in the sense of Manfredi [12]), if for every rela-
tively compact subdomain G of D and for every pair of constants k ≤ K
such that

(k − u)+ and (u − K)+ ∈ W 1,q
0 (G),

we have

k ≤ u(x) ≤ K for a.e. x ∈ G,

where v+(x) = max{v(x), 0}. If a weakly monotone Sobolev function is
continuous, then it is monotone in the sense of Lebesgue [11]. For mono-
tone functions, see Koskela-Manfredi-Villamor [9], Manfredi-Villamor
[13, 14], the second author [17], Villamor-Li [20] and Vuorinen [21, 22].

Following Kováčik and Rákosńık [10], we consider a positive contin-
uous function p(·) : D → (1,∞) and the Sobolev space W 1,p(·)(D) of
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all functions u whose first (weak) derivatives belong to Lp(·)(D). In this
paper we consider the function p(·) satisfying

|p(x) − p(y)| ≤ a log(log(1/|x − y|))
log(1/|x − y|) +

b

log(1/|x − y|)

whenever |x − y| < 1/2, for a ≥ 0 and b ≥ 0.
Our first aim is to discuss the continuity for weakly monotone func-

tions u in the Sobolev space W 1,p(·)(D). For the properties of Sobolev
spaces of variable exponent, we refer the reader to the papers by Diening

[2], Edmunds-Rákosńık [3], Kováčik-Rákosńık [10] and R
◦
užička [19].

We know that if p(x) ≥ n for all x ∈ D, then all weakly mono-
tone functions in W 1,p(·)(D) are continuous in D (see Manfredi [12] and
Manfredi-Villamor [13]). We show that u is continuous at x0 ∈ D when
p(·) is of the form

p(x) = n − a log(log(1/|x − x0|))
log(1/|x − x0|)

(p(x0) = n)

for x ∈ B(x0, r0), where 0 < r0 < 1/2 and a ≤ 1.
Our second aim is to prove the existence of boundary limits of weakly

monotone Sobolev functions on the unit ball B, when p(·) satisfies the
inequality

∣

∣

∣

∣

p(x) −
{

n +
a log(e + log(1/ρ(x)))

log(e/ρ(x))

}∣

∣

∣

∣

≤ b

log(e/ρ(x))

for a ≥ 0 and b ≥ 0, where ρ(x) = 1− |x| denotes the distance of x from
the boundary ∂B. Continuity of Sobolev functions has been obtained by
Harjulehto-Hästö [7] and the authors [4]. Of course, our results extend
the non-variable case studied in [17].

§2. Weakly monotone Sobolev functions

Throughout this paper, let C denote various constants independent
of the variables in question.

We use the notation B(x, r) to denote the open ball centered at x of
radius r. If u is a weakly monotone Sobolev function on D and q > n−1,
then

(1) |u(x) − u(x′)|q ≤ Crq−n

∫

A(y,2r)

|∇u(z)|qdz
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for almost every x, x′ ∈ B(y, r), whenever B(y, 2r) ⊂ D (see [12, Theo-
rem 1]) and A(y, 2r) = B(y, 2r) \ B(y, r). If we define u∗(x) by

u∗(x) = lim sup
r→0

1

|B(x, r)|

∫

B(x,r)

u(y)dy,

then we see that u∗ satisfies (1) for all x, x′ ∈ B(y, r). Note here that
u∗ is a quasicontinuous representative of u and it is locally bounded on
D. Hereafter, we identify u with u∗.

Example 2.1. Let 1 < q < ∞ and A : Rn×Rn → Rn be a mapping
satisfying the following assumptions for some measurable function α and
constant β such that 0 < α(x) ≤ β < ∞ for a.e. x ∈ Rn:

(i) the mapping x 7→ A(x, ξ) is measurable for all ξ ∈ Rn,
(ii) the mapping ξ 7→ A(x, ξ) is continuous for a.e. x ∈ Rn,
(iii) A(x, ξ) · ξ ≥ α(x)|ξ|q for all ξ ∈ Rn and a.e. x ∈ Rn,
(iv) |A(x, ξ)| ≤ β|ξ|q−1 for all ξ ∈ Rn and a.e. x ∈ Rn.

Then a weak solution of the equation

(2) − divA(x,∇u(x)) = 0

in an open set D is weakly monotone (see [9, Lemma 2.7]). In the special
case α(x) ≥ α > 0, according to the well-known book by Heinonen-
Kilpeläinen-Martio [8], a weak solution of (2) is monotone in the sense
of Lebesgue.

§3. Continuity of weakly monotone functions

For an open set G in Rn, define the Lp(·)(G) norm by

‖f‖p(·) = ‖f‖p(·),G = inf

{

λ > 0 :

∫

G

∣

∣

∣

∣

f(y)

λ

∣

∣

∣

∣

p(y)

dy ≤ 1

}

and denote by Lp(·)(G) the space of all measurable functions f on G
with ‖f‖p(·) < ∞. We denote by W 1,p(·)(G) the space of all functions

u ∈ Lp(·)(G) whose first (weak) derivatives belong to Lp(·)(G). We define
the conjugate exponent function p′(·) to satisfy 1/p(x) + 1/p′(x) = 1.

Let B(x, r) be the open ball centered at x and radius r > 0, and let
B = B(0, 1). Consider a positive continuous function p(·) on [0, 1] such
that infr∈[0,1] p(r) > 1 and

∣

∣

∣

∣

p(r) −
{

n − a log(e + log(1/r))

log(e/r)

}
∣

∣

∣

∣

≤ b

log(e/r)
(p(0) = n)
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for a ≥ 0 and b ≥ 0.
Our aim in this section is to prove that if a ≤ 1, then functions in

W 1,p(·)(B) are continuous at the origin, in spite of the fact that p−(B) =
infx∈B p(x) < n. For this purpose, we prepare the following result.

Lemma 3.1. Let p(x) = p(|x|) for x ∈ B. Let u be a weakly
monotone Sobolev function in W 1,p(·)(B). If a < 1, then

|u(x) − u(0)|n ≤ C(log(1/r))a−1

∫

B(0,R)

|∇u(y)|p(y)dy,

and if a = 1, then

|u(x) − u(0)|n ≤ C(log(log(1/r)))−1

∫

B(0,R)

|∇u(y)|p(y)dy

whenever |x| < r < 1/4, where R =
√

r when a < 1 and R = e−
√

log(1/r)

when a = 1.

Proof. Let u be a weakly monotone Sobolev function in W 1,p(·)(B).
Set p1(r) = p(r)/q, where n − 1 < q < n. Then, as in (1), we apply
Sobolev’s theorem on the sphere S(0, r) to establish

|u(x) − u(0)|q ≤ Crq−(n−1)

∫

S(0,r)

|∇u(y)|qdS(y)

for |x| < r. By Hölder’s inequality we have

|u(x) − u(0)|q ≤ Crq−(n−1)

(

∫

S(0,r)

dS(y)

)1/p′

1(r)

×
(

∫

S(0,r)

|∇u(y)|qp1(r)dS(y)

)1/p1(r)

≤ Crq−(n−1)/p1(r)

(

∫

S(0,r)

|∇u(y)|p(r)dS(y)

)1/p1(r)

,

which yields

|u(x) − u(0)|p(r) ≤ Cr(log(1/r))a

∫

S(0,r)

|∇u(y)|p(y)dS(y)

for |x| < r. Since u is bounded on B(0, 1/2), we see that

|u(x) − u(0)|n ≤ Cr(log(1/r))a

∫

S(0,r)

|∇u(y)|p(y)dS(y).
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Hence, by dividing both sides by r(log(1/r))a and integrating them on
the interval (r, R), we obtain

|u(x) − u(0)|n ≤ C(log(1/r))a−1

∫

B(0,R)

|∇u(y)|p(y)dy when a < 1

and

|u(x) − u(0)|n ≤ C(log(log(1/r)))−1

∫

B(0,R)

|∇u(y)|p(y)dy when a = 1

whenever |x| < r < 1/4. �

Lemma 3.1 yields the following result.

Theorem 3.2. Let u be a weakly monotone Sobolev function in
W 1,p(·)(B). If a < 1, then u is continuous at the origin and it satisfies

lim
x→0

(log(1/|x|))(1−a)/n|u(x) − u(0)| = 0;

if a = 1, then

lim
x→0

(log(log(1/|x|)))1/n|u(x) − u(0)| = 0.

Remark 3.3. Consider the function

u(x) =
xn

|x|

for x = (x1, ..., xn). If we define u(0) = 0, then u is a weakly monotone
quasicontinuous representative in Rn. Note that u is not continuous at
0 and if a > 1, then

∫

B

|∇u(x)|p(x)dx < ∞;

if a ≤ 1, then
∫

B

|∇u(x)|p(x)dx = ∞.

This shows that continuity result in Theorem 3.2 is good as to the size
of a.

Remark 3.4. Let ϕ be a nonnegative continuous function on the
interval [0, r0] such that

(i) ϕ(0) = 0 ;
(ii) ϕ′(t) ≥ 0 for 0 < t < r0 ;
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(iii) ϕ′′(t) ≤ 0 for 0 < t < r0 .

Then note that

(3) ϕ(s + t) ≤ ϕ(s) + ϕ(t)

for s, t ≥ 0 and s + t ≤ r0. Consider

ϕ(r) =
log(log(1/r))

log(1/r)
,

1

log(1/r)

for 0 < r ≤ r0; set ϕ(r) = ϕ(r0) for r > r0. Then we can find r0 > 0
such that ϕ satisfies (i) - (iii) on [0, r0], and hence (3) holds for all s ≥ 0
and t ≥ 0. Hence if we set

p(r) = n +
a log(e + log(1/r))

log(e/r)
+

b

log(e/r)
,

then we can find c > 0 and r0 > 0 such that

|p(s) − p(t)| ≤ |a| log(log(1/|s − t|))
log(1/|s − t|) +

c

log(1/|s − t|)

whenever |s − t| < r0.

§4. 0-Hölder continuity of continuous Sobolev functions

Consider a positive continuous function p(·) on the unit ball B such
that p−(B) = infx∈B p(x) > 1 and

∣

∣

∣

∣

p(x) −
{

p0 +
a log(e + log(1/ρ(x)))

log(e/ρ(x))

}∣

∣

∣

∣

≤ b

log(e/ρ(x))

for all x ∈ B, where 1 < p0 < ∞ and ρ(x) = 1−|x| denotes the distance
of x from the boundary ∂B. Then note that

p′(x) − p′0 = − p(x) − p0

(p(x) − 1)(p0 − 1)

= −p(x) − p0

(p0 − 1)2
+

(p(x) − p0)
2

(p(x) − 1)(p0 − 1)2
,

where p′0 = p0/(p0 − 1). Hence we have the following result.

Lemma 4.1. There exist positive constants r0 and C such that

|p′(x) − {p′0 − ω(ρ(x))}| ≤ C/ log(1/ρ(x))



Weakly monotone Sobolev functions of variable exponent 133

for x ∈ B, where ω(t) = (a/(p0 − 1)2) log(log(1/t))/ log(1/t) for 0 < r ≤
r0 < 1/e; set ω(t) = ω(r0) for r > r0.

We see from Sobolev’s theorem that all functions u ∈ W 1,p(·)(B) are
continuous in B when p(x) > n in B. In what follows we discuss the
0-Hölder continuity of u. Before doing so, we need the following result.

Lemma 4.2. Let p0 = n and let u be a continuous Sobolev function
in W 1,p(·)(B) such that ‖|∇u|‖p(·) ≤ 1. If a > n − 1, then

∫

B∩B(x,r)

|x − y|1−n|∇u(y)| ≤ C(log(1/r))−A,

where A = (a − n + 1)/n.

Proof. Let f(y) = |∇u(y)| for y ∈ B and f = 0 outside B. For
0 < µ < 1, we have

∫

B(x,r)

|x − y|1−nf(y)dy

≤ µ

{

∫

B(x,r)∩B

(|x − y|1−n/µ)p′(y)dy +

∫

B(x,r)

f(y)p(y)dy

}

≤ µ

{

µ−n/(n−1)

∫

B(x,r)∩B

|x − y|(1−n)p′(y)dy + 1

}

.

Applying polar coordinates, we have
∫

B(x,r)∩B

|x − y|(1−n)p′(y)dy

≤ C

∫

{t:|t−ρ(x)|<r}

|ρ(x) − t|(1−n)(n′−ω0(t))+n−1dt

= C

∫

{t:|t−ρ(x)|<r}

|ρ(x) − t|(n−1)ω0(t)−1dt,

where ω0(t) = ω(t)−C/ log(1/t). If r ≤ ρ(x)/2 and |ρ(x)− t| < ρ(x)/2,
then

ω0(t) ≥ ω(r) − C/ log(1/r),

so that
∫

{t:|t−ρ(x)|<r}

|ρ(x) − t|(n−1)ω0(t)−1dt ≤ C(log(1/r))1−a/(n−1).
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If r > ρ(x)/2, then |t| < 3|ρ(x) − t| when |ρ(x) − t| ≥ ρ(x)/2. Hence, in
this case, we obtain

∫

{t:|t−ρ(x)|<r}

|ρ(x) − t|(n−1)ω0(t)−1dt

≤
∫

{t:|t−ρ(x)|<ρ(x)/2}

|ρ(x) − t|(n−1)ω0(t)−1dt

+ C

∫

{t:|t|<3r}

|t|(n−1)ω0(t)−1dt

≤ C(log(1/r))1−a/(n−1),

so that
∫

B(x,r)∩B

|x − y|(1−n)p′(y)dy ≤ C(log(1/r))1−a/(n−1).

Consequently it follows that

∫

B(x,r)

|x − y|1−nf(y)dy ≤ µ
(

Cµ−n/(n−1)(log(1/r))1−a/(n−1) + 1
)

.

Now, letting µ−n/(n−1)(log(1/r))1−a/(n−1) = 1, we establish

∫

B(x,r)

|x − y|1−nf(y)dy ≤ C(log(1/r))(n−1−a)/n,

as required. �

Now we are ready to show the 0-Hölder continuity of Sobolev func-
tions in W 1,p(·)(B) .

Theorem 4.3. Let p0 = n and u be a continuous Sobolev function
in W 1,p(·)(B) such that ‖|∇u|‖p(·) ≤ 1. If a > n − 1, then

|u(x) − u(y)| ≤ C(log(1/|x − y|))−A

whenever x, y ∈ B and |x − y| < 1/2.

Proof. Let x, y ∈ B and r = |x − y| ≤ ρ(x). Then we see from
Lemma 4.2 that

|u(x) − u(y)| ≤ C

∫

B(x,r)

|x − z|1−n|∇u(z)|dz ≤ C(log(1/r))−A.
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If r = |x−y| < 1/2, ρ(x) < r and ρ(y) < r, then we take xr = (1−r)x/|x|
and yr = (1 − r)y/|y| to establish

|u(x) − u(y)| ≤ |u(x) − u(xr)| + |u(xr) − u(yr)| + |u(yr) − u(y)|
≤ C(log(1/r))−A,

which proves the assertion. �

Remark 4.4. Let p(·) be as above, and consider the function

u(x) = [log(e + log(1/|x − ξ|))]δ ,

where ξ ∈ ∂B and 0 < δ < (n − 1)/n. We see readily that u(ξ) = ∞
and it is monotone in B. Further, if a ≤ n − 1, then

∫

B

|∇u(x)|p(x)dx < ∞,

so that Theorem 4.3 does not hold for a ≤ n − 1.

§5. Tangential boundary limits of weakly monotone Sobolev

functions

Let G be a bounded open set in Rn. Consider a positive continuous
function p(·) on Rn satisfying

(p1) p−(G) = infG p(x) > 1 and p+(G) = supG p(x) < ∞;

(p2) |p(x) − p(y)| ≤ a log(log(1/|x − y|))
log(1/|x − y|) +

b

log(1/|x − y|)
whenever |x − y| < 1/e, where a ≥ 0 and b ≥ 0.

For E ⊂ G, we define the relative p(·)-capacity by

Cp(·)(E; G) = inf

∫

G

f(y)p(y)dy,

where the infimum is taken over all nonnegative functions f ∈ Lp(·)(G)
such that

∫

G

|x − y|1−nf(y)dy ≥ 1 for every x ∈ E.

From now on we collect fundamental properties for our capacity (see
Meyers [15], Adams-Hedberg [1] and the authors [6]).
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Lemma 5.1. For E ⊂ G, Cp(·)(E; G) = 0 if and only if there exists

a nonnegative function f ∈ Lp(·)(G) such that

∫

G

|x − y|1−nf(y)dy = ∞ for every x ∈ E.

For 0 < r < 1/2, set

h(r; x) =















rn−p(x)(log(1/r))a if p(x) < n,

(log(1/r))a−(n−1) if p(x) = n and a < n − 1,
(log(log(1/r)))−a if p(x) = n and a = n − 1,
1 if p(x) > n or p(x) = n, a > n − 1

Lemma 5.2. Suppose p(x0) ≤ n and a ≤ n−1. If B(x0, r) ⊂ G and
0 < r < 1/2, then

Cp(·)(B(x0, r); G) ≤ Ch(r; x0).

Lemma 5.3. If f is a nonnegative measurable function on G with
‖f‖p(·) < ∞, then

lim
r→0+

h(r; x)−1

∫

B(x,r)

f(y)p(y)dy = 0

holds for all x except in a set E ⊂ G with Cp(·)(E; G) = 0.

Let p(·) be as in Section 4; that is, we assume that p(x) > n and

(4)

∣

∣

∣

∣

p(x) −
{

n +
a log(e + log(1/ρ(x)))

log(e/ρ(x))

}∣

∣

∣

∣

≤ b

log(e/ρ(x))

for x ∈ B, where a ≥ 0 and b > 0. Then p1(x) ≤ p(x) ≤ p2(x) for x ∈ B,
where

p1(x) = n +
a log(e + log(1/ρ(x)))

log(e/ρ(x))
− b

log(e/ρ(x))
,

p2(x) = n +
a log(e + log(1/ρ(x)))

log(e/ρ(x))
+

b

log(e/ρ(x))
.

For simplicity, set

p(x) = p1(x) = p2(x) = n
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outside B. Then we can find b′ > b such that for i = 1, 2

|pi(x) − pi(y)| ≤ a log(e + log(1/|x − y|))
log(e/|x − y|) +

b

log(e/|x − y|)

≤ a log(log(1/|x − y|))
log(1/|x − y|) +

b′

log(1/|x − y|)

whenever |x − y| is small enough, say |x − y| < r0 < 1/e.
Since G has finite measure, we find a constant K > 0 such that

(5) Cp(·)(E; G) ≤ KCp2(·)(E; G)

whenever E ⊂ G. Hence, in view of Lemma 5.2, we obtain

(6) Cp(·)(B(x0, r); 2B) ≤ Ch(r; x0)

for x0 ∈ ∂B, where 2B = B(0, 2).

Corollary 5.4. If f is a nonnegative measurable function on 2B
with ‖f‖p(·) < ∞, then

lim
r→0+

h(r; x)−1

∫

B(x,r)

f(y)p(y)dy = 0

holds for all x ∈ ∂B except in a set E ⊂ ∂B with Cp(·)(E; 2B) = 0.

If u is a weakly monotone function in W 1,p(·)(B), then, since p(x) >
n for x ∈ B by our assumption, we see that u is continuous in B and
hence monotone in B in the sense of Lebesgue. We now show the exis-
tence of tangential boundary limits of monotone Sobolev functions u in
B when a ≤ n − 1.

For ξ ∈ ∂B, γ ≥ 1 and c > 0, set

Tγ(ξ, c) = {x ∈ B : |x − ξ|γ < cρ(x)}.

Theorem 5.5. Let p(·) be a positive continuous function on 2B
such that p(x) ≥ n for x ∈ 2B and

∣

∣

∣

∣

p(x) −
{

n +
a log(e + log(1/ρ(x)))

log(e/ρ(x))

}∣

∣

∣

∣

≤ b

log(e/ρ(x))

for x ∈ B, where a ≥ 0 and b > 0. If u is a monotone function in
W 1,p(·)(B) (in the sense of Lebesgue), then there exists a set E ⊂ ∂B
such that

(i) Cp(·)(E; 2B) = 0 ;
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(ii) if ξ ∈ ∂B \ E, then u(x) has a finite limit as x → ξ along the
sets Tγ(ξ, c).

If a > n − 1, then the above function u has a continuous extension
on B = B ∪ ∂B in view of Theorem 4.3, and hence the exceptional set
E can be taken as the empty set.

To prove Theorem 5.5, we may assume that

p(x) = n +
a log(e + log(e/ρ(x)))

log(e/ρ(x))
− b

log(e/ρ(x))

for x ∈ B.
We need the following two results. The first one follows from in-

equality (1) (see e.g. [9] and [5]).

Lemma 5.6. Let u be a monotone Sobolev function in W 1,p(·)(B).
If ξ ∈ ∂B, x ∈ B and n − 1 < q < n, then

|u(x) − u(x̃)|q ≤ C(log(2r/ρ(x)))q−1

∫

E(x)

|∇u(y)|qρ(y)q−ndy,

where x̃ = (1 − r)ξ, r = |ξ − x| and E(x) = ∪y∈xx̃B(y, ρ(y)/2) with

xx̃ = {tx + (1 − t)x̃ : 0 < t < 1}.

Lemma 5.7. Let u be a monotone Sobolev function in W 1,p(·)(B).
Let ξ ∈ ∂B and a ≥ 0. Suppose

(log(1/r))n−1−a

∫

B∩B(ξ,2r)

|∇u(y)|p(y)dy ≤ 1.

If x ∈ Tγ(ξ, c), x̃ = (1 − r)ξ and r = |ξ − x|, then

|u(x) − u(x̃)|n ≤ C(log(1/r))n−1−a

∫

B∩B(ξ,2r)

|∇u(y)|p(y)dy.

Proof. First note that

ρ(y) ≥ C(ρ(x) + |x − y|) for y ∈ E(x).
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Take q such that n − 1 < q < n; when a > 0, assume further that
a > (n − q)/q. Set p1(x) = p(x)/q. Then we have for µ > 0

∫

E(x)

|∇u(y)|qρ(y)q−ndy

≤ µ

{

∫

E(x)

(ρ(y)(q−n)/µ)p′

1(y)dy +

∫

E(x)

|∇u(y)|qp1(y)dy

}

= µ

{

∫

E(x)

(ρ(y)(q−n)/µ)p′

1(y)dy + F

}

,

where F =
∫

E(x)
|∇u(y)|p(y)dy. Note from Lemma 4.1 that

|p′1(y) − {n/(n− q) − ω(ρ(y))}| ≤ C/ log(1/ρ(y))

for y ∈ E(x), where ω(t) = (aq2/(n− q)2) log(log(1/t))/ log(1/t). Hence

n/(n − q) − ω1(ρ(y)) ≤ p′1(y) ≤ n/(n − q) − ω2(ρ(y)),

where ω1(t) = ω(t)+C/ log(1/t) and ω2(t) = ω(t)−C/ log(1/t). Suppose

(log(1/r))−1+aq/(n−q)F > 1.

Since p′1(y) ≤ n/(n − q), we have for 0 < µ < 1,
∫

E(x)

(ρ(y)(q−n)/µ)p′

1(y)dy

≤ Cµ−n/(n−q)

∫

E(x)

(ρ(x) + |x − y|)(q−n)(n/(n−q)−ω2(ρ(y)))dy

≤ Cµ−n/(n−q)

∫ 2r

0

(ρ(x) + t)−n(log(1/(ρ(x) + t)))−aq/(n−q)tn−1dt

≤ Cµ−n/(n−q)(log(1/r))1−aq/(n−q)

whenever x ∈ Tγ(ξ, c). Considering

µ−n/(n−q)(log(1/r))1−aq/(n−q) = F,

we obtain
∫

E(x)

|∇u(y)|qρ(y)q−ndy

≤ C
{

(log(1/r))−1+aq/(n−q)F
}−(n−q)/n

F

= C
{

(log(1/r))(n−q)/q−a

∫

E(x)

|∇u(y)|p(y)dy
}q/n

.
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Consequently it follows from Lemma 5.6 that

|u(x) − u(x̃)|n ≤ C(log(1/r))n−1−a

∫

B∩B(ξ,2r)

|∇u(y)|p(y)dy

whenever x ∈ Tγ(ξ, c).

Next consider the case when (log(1/r))−1+aq/(n−q)F ≤ 1. Set p+ =
supB∩B(ξ,2r) p(y) and and p+

1 = supB∩B(ξ,2r) p1(y) = p+/q. For µ > 1,
we apply the above considerations to obtain

∫

E(x)

(ρ(y)(q−n)/µ)p′

1(y)dy

≤ Cµ−(p+

1
)′
∫

E(x)

(ρ(x) + |x − y|)(q−n)(n/(n−q)−ω2(ρ(y)))dy

≤ Cµ−(p+

1
)′(log(1/r))1−aq/(n−q).

If we take µ satisfying µ−(p+

1
)′(log(1/r))1−aq/(n−q) = F , then we have

∫

E(x)

|∇u(y)|qρ(y)q−ndy

≤ C
{

(log(1/r))(n−q)/q−a

∫

E(x)

|∇u(y)|p(y)dy
}1/p+

1

.

Since (log(1/r))ω(r) is bounded above for small r > 0, Lemma 5.6 yields

|u(x) − u(x̃)|p+ ≤ C(log(1/r))n−1−a

∫

B∩B(ξ,2r)

|∇u(y)|p(y)dy

whenever x ∈ Tγ(ξ, c), which proves the required assertion. �

Proof of Theorem 5.5. Consider E = E1 ∪ E2, where

E1 = {ξ ∈ ∂B :

∫

B

|ξ − y|1−n|∇u(y)|dy = ∞}

and

E2 = {ξ ∈ ∂B : lim sup
r→0+

(log(1/r))n−1−a

∫

B(ξ,r)

|∇u(y)|p(y)dy > 0}.

We see from Lemma 5.1 and Corollary 5.4 that E = E1 ∪E2 is of Cp(·)-
capacity zero. If ξ 6∈ E1, then we can find a line L along which u has a
finite limit `. In view of inequality (1), we see that u has a radial limit `
at ξ, that is, u(rξ) tends to ` as r → 1 − 0. Now we insist from Lemma
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5.7 that if ξ ∈ ∂B \ E, then u(x) tends to ` as x tends to ξ along the
sets Tγ(ξ, c). �

Remark 5.8. If a > n − 1, then we do not need the monotonicity
in Theorem 5.5, because of Theorem 4.3.

Finally we show the nontangential limit result for weakly monotone
Sobolev functions. Recall that a quasicontinuous representative is locally
bounded.

Theorem 5.9. Let p(·) be a positive continuous function on B such
that

∣

∣

∣

∣

p(x) −
{

p0 +
a log(e + log(1/ρ(x)))

log(e/ρ(x))

}∣

∣

∣

∣

≤ b

log(e/ρ(x))
,

where −∞ < a < ∞, b ≥ 0 and n − 1 < p0 ≤ n. If u is a weakly
monotone function in W 1,p(·)(B) (in the sense of Manfredi), then there
exists a set E ⊂ ∂B such that

(i) Cp(·)(E; 2B) = 0 ;
(ii) if ξ ∈ ∂B \ E, then u(x) has a finite limit as x → ξ along the

sets T1(ξ, c).

To prove this, we need the following lemma instead of Lemma 5.7,
which can be proved by use of (1) with q = p− = infz∈B(x,ρ(x)/2) p(z).

Lemma 5.10. Let p and u be as in Theorem 5.9. If y ∈ B(x, r) with
r = ρ(x)/4, then

|u(x) − u(y)|p− ≤ Crp0−n(log(1/r))−a

(

rn +

∫

B(x,2r)

|∇u(z)|p(z)dz

)

.
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[ 7 ] P. Harjulehto and P. Hästö, Lebesgue points in variable exponent
spaces, Reports of the Department of Mathematics, 364, University
of Helsinki.

[ 8 ] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear potential theory of
degenerate elliptic equations, Oxford Univ. Press, 1993.

[ 9 ] P. Koskela, J. J. Manfredi and E. Villamor, Regularity theory and traces
of A-harmonic functions, Trans. Amer. Math. Soc., 348 (1996), 755–
766.
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Martin kernels of general domains

Kentaro Hirata

Abstract.

This note consists of our recent researches on Martin kernels of
general domains. In particular, minimal Martin boundary points of a
John domain, the boundary behavior of quotients of Martin kernels,
and comparison estimates for the Green function and the Martin
kernel are studied.

§1. Introduction

This note is a summary of our recent researches on the Martin
boundary and the Martin kernel of general domains. To begin with,
let us recall the notion of the Martin boundary and the Martin kernel.
Let Ω be a Greenian domain in R

n, where n ≥ 2, possessing the Green
function GΩ for the Laplace operator. Let x0 ∈ Ω be fixed, and let
{yj} be a sequence in Ω with no limit point in Ω. If ω is an open sub-
set of Ω such that the closure ω is compact in Ω, then there exists j0

such that {GΩ(·, yj)/GΩ(x0, yj)}∞j=j0
is a uniformly bounded sequence

of positive harmonic functions in ω. Therefore there is a subsequence of
{GΩ(·, yj)/GΩ(x0, yj)}j converging to a positive harmonic function in Ω.
The collection of all such limit functions in Ω gives an ideal boundary
of Ω, referred to as the Martin boundary of Ω and denoted by ∆(Ω).
For ζ ∈ ∆(Ω), we write KΩ(·, ζ) for the positive harmonic function in
Ω corresponding to ζ, and call KΩ the Martin kernel. We say that a
positive harmonic function h is minimal if every positive harmonic func-
tion less than or equal to h coincides with a constant multiple of h. The
collection of all minimal elements in ∆(Ω) is called the minimal Martin
boundary of Ω, and is denoted by ∆1(Ω). The importance of the Martin
boundary appears in the representation theorem for positive harmonic
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2000 Mathematics Subject Classification. 31C35, 31B05, 31B25.
Key words and phrases. Martin kernel, boundary behavior, comparison

estimate, John domain, uniform domain.
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functions h in general domains: there exists a measure µh on ∆(Ω) such
that µh(∆(Ω) \∆1(Ω)) = 0 and

h(x) =

∫

∆(Ω)

KΩ(x, ζ)dµh(ζ) for x ∈ Ω.

So, for general domains, it is valuable to investigate the Martin boundary
and the behavior of the Martin kernel.

This note is organized as follows. In Section 2, we state the results,
obtained in [2], about the number of minimal Martin boundary points
of John domains. In Sections 3 and 4, we give the results, studied in
[17] and [18], about the boundary behavior of the Martin kernels and
comparison estimates for the Green function and the Martin kernel.

Acknowledgement

The author is very grateful to the referee for careful reading and
helpful comments.

§2. Minimal Martin boundary points of John domains

From the viewpoint of the representation theorem, the most inter-
esting problem is to investigate that for what kind of domains the Martin
boundary and the minimal Martin boundary are homeomorphic to the
Euclidean boundary. For instance, see [19] for Lipschitz domains, [20]
for NTA domains, and [1] for uniform domains. However, in general,
the Martin boundary need not to be homeomorphic to the Euclidean
boundary. There may be even infinitely many minimal Martin bound-
ary points at a Euclidean boundary point (cf. [22, Example 3]). Here,
a Martin boundary point at y ∈ ∂Ω (the Euclidean boundary of Ω) is
a positive harmonic function in Ω which can be obtained as the limit
of {GΩ(·, yj)/GΩ(x0, yj)}j for some sequence {yj} in Ω converging to y.
It is also interesting to investigate that for what kind of domains the
number of minimal Martin boundary points at every Euclidean bound-
ary point is finite. For example, see [7] for Denjoy domains, [5, 6] and
[13] for Lipschitz-Denjoy domains, [15] for sectorial domains, and [21] for
quasi-sectorial domains. One of the main interests of these papers was
to give a criterion for the number of minimal Martin boundary points
at a fixed Euclidean boundary point. As a generalization of some parts
of them, we study minimal Martin boundary points of John domains.
A domain Ω is said to be a general John domain with John constant
cJ > 0 and John center K0, a compact subset of Ω, if each point x in Ω
can be connected to some point in K0 by a rectifiable curve γ in Ω such
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that
dist(z, ∂Ω) ≥ cJ`(γ(x, z)) for all z ∈ γ,

where dist(z, ∂Ω) stands for the distance from z to ∂Ω and `(γ(x, z))
denotes the length of the subarc γ(x, z) of γ from x to z. Note that
every general John domain is bounded. We can obtain the following.

Theorem 2.1 ([2, Theorem 1.1]). Let Ω be a general John domain
with John constant cJ , and let y ∈ ∂Ω. Then the following statements
hold:

(i) The number of minimal Martin boundary points at y is bounded
by a constant depending only on cJ and n.

(ii) If cJ >
√

3/2, then the number of minimal Martin boundary
points at y is at most two.

Remark 2.2. The bound cJ >
√

3/2 in Theorem 2.1(ii) is sharp. See
[2, Remark 1.1].

For a class of general John domains represented as the union of open
convex sets, we give a sufficient condition for the Martin boundary to
be homeomorphic to the Euclidean boundary. For 0 < θ < π, we write
Γθ(z, w) = {x ∈ R

n : ∠xzw < θ} for the open circular cone with vertex
at z, axis [z, w] and aperture θ. Let A0 ≥ 1 and ρ0 > 0. We consider a
bounded domain Ω with the following properties:

(I) Ω is the union of a family of open convex sets {Cλ}λ∈Λ such
that

B(zλ, ρ0) ⊂ Cλ ⊂ B(zλ, A0ρ0);

(II) for each y ∈ ∂Ω, there are positive constants θ1 ≤ sin−1(1/A0)
and ρ1 ≤ ρ0 cos θ1 such that

⋃

w∈Ω
Γθ1

(y,w)∩B(y,2ρ1)⊂Ω

Γθ1
(y, w) ∩ B(y, 2ρ1) is connected and non-empty.

Obviously, a bounded domain satisfying (I) is a general John domain

with John center {zλ}λ∈Λ and John constant A−1
0 .

Theorem 2.3 ([2, Theorem 1.2]). Let Ω be a bounded domain satis-
fying (I). If y ∈ ∂Ω satisfies (II), then there is a unique Martin boundary
point at y and it is minimal. Furthermore, if every Euclidean boundary
point satisfies (II), then the Martin boundary of Ω is homeomorphic to
the Euclidean boundary.

Remark 2.4. The bounds θ1 ≤ sin−1(1/A0) and ρ1 ≤ ρ0 cos θ1 are
sharp. See [2, Examples 8.1 and 8.2].
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Theorem 2.3 is a generalization of Ancona’s result [4]. He considered
a bounded domain represented as the union of open balls with the same
radius. His key lemma [4, Lemme 1] relies on the reflection with respect
to a hyperplane, and is applied to a ball by the Kelvin transform. This
approach is not applicable to our domains. Our approach is based on a
new geometrical notion, the system of local reference points. We define
the quasi-hyperbolic metric on Ω by

kΩ(x, y) = inf
γ

∫

γ

ds(z)

dist(z, ∂Ω)
for x, y ∈ Ω,

where the infimum is taken over all rectifiable curves γ in Ω connecting x
to y and ds stands for the line element on γ. Let N ∈ N and 0 < η < 1.
We say that y ∈ ∂Ω has a system of local reference points of order N with
factor η if there exist Ry > 0 and Ay > 1 with the following property:
for each positive R < Ry there are N points y1 = y1(R), · · · , yN =
yN (R) ∈ Ω ∩ ∂B(y, R) such that dist(yj , ∂Ω) ≥ A−1

y R for j = 1, · · · , N
and

min
j=1,··· ,N

{kΩ∩B(y,η−3R)(x, yj)} ≤ Ay log
R

dist(x, ∂Ω)
+ Ay

for x ∈ Ω ∩ B(y, ηR). For example, if Ω is a (sectorial) domain in R
2

whose boundary near y ∈ ∂Ω lies on m-distributed rays emanating from
y, then y has a system of local reference points of order N = m. For a
general John domain Ω with John constant cJ , we can show that

• each y ∈ ∂Ω has a system of local reference points of order N
with N ≤ N(cJ , n) < ∞. Moreover, if cJ >

√
3/2, then we

can let N ≤ 2 by choosing a suitable factor η.
• if Ω satisfies (I) and y ∈ ∂Ω satisfies (II), then y has a system

of local reference points of order 1.

These observations played essential roles in the proofs of Theorems 2.1
and 2.3. Indeed, Theorems 2.1 and 2.3 can be reunderstood as follows.

Proposition 2.5 ([2, Proposition 2.3]). Let Ω be a general John
domain, and suppose that y ∈ ∂Ω has a system of local reference points
of order N . Then the following statements hold:

(i) The number of minimal Martin boundary points at y is bounded
by a constant depending only on N .

(ii) If N ≤ 2, then there are at most N minimal Martin boundary
points at y. Moreover, if N = 1, then there is a unique Martin
boundary point at y and it is minimal.
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In Proposition 2.5(ii), the condition N ≤ 2 may be omitted, and we
expect that the number of minimal Martin boundary points at y is at
most N even for N ≥ 3. We raise the following question.

Problem. Let Ω be a general John domain and let N ≥ 3. Suppose
that y ∈ ∂Ω has a system of local reference points of order N . Is the
number of minimal Martin boundary points at y at most N?

§3. Boundary behavior of quotients of Martin kernels

In [9, 10], Burdzy obtained a result on the angular derivative prob-
lem of analytic functions in a Lipschitz domain. The important step was
to study the boundary behavior of the Green function. We now write 0

for the origin of R
n to distinguish from 0 ∈ R, and denote x = (x′, xn) ∈

R
n−1 × R and e = (0′, 1). Suppose that φ : R

n−1 → R is a Lipschitz
function such that φ(0′) = 0, and put Ωφ = {(x′, xn) : xn > φ(x′)}. We
set
(3.1)

I+ =

∫

{|x′|<1}

max{φ(x′), 0}
|x′|n dx′, I− =

∫

{|x′|<1}

max{−φ(x′), 0}
|x′|n dx′.

Theorem A. Let I+ and I− be as in (3.1). Then the following
statements hold:

(i) If I+ < ∞ and I− = ∞, then

lim
t→0+

GΩφ
(te, e)

t
= ∞.

(ii) If I+ = ∞ and I− < ∞, then

lim
t→0+

GΩφ
(te, e)

t
= 0.

(iii) If I+ < ∞ and I− < ∞, then the limit of GΩφ
(te, e)/t, as

t → 0+, exists and

0 < lim
t→0+

GΩφ
(te, e)

t
< ∞.

Burdzy’s approach was based on probabilistic methods. Analytic
proofs were given by Carroll [11, 12] and Gardiner [16]. As we see from
their proofs, the convergence of the integrals I+ and I− are related to
the minimal thinness of the differences Ωφ \ R

n
+ and R

n
+ \ Ωφ, where
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R
n
+ = {(x′, xn) : xn > 0}. A subset E of Ω is said to be minimally thin

at ξ ∈ ∆1(Ω) with respect to Ω if

ΩR̂E
KΩ(·,ξ)(z) < KΩ(z, ξ) for some z ∈ Ω,

where ΩR̂E
u denotes the regularized reduced function of a positive su-

perharmonic function u relative to E in Ω. We say that a function f ,
defined on a minimal fine neighborhood U of ξ, has minimal fine limit l
at ξ with respect to Ω if there is a subset E of Ω, minimally thin at ξ
with respect to Ω, such that f(x) → l as x → ξ along U \ E, and then
we write

mf
Ω

- lim
x→ξ

f(x) = l.

Theorem A was shown by using Näım’s characterization [23, Théorème
11] of the minimal thinness for a difference of domains in terms of the
boundary behavior of the quotient of the Green functions.

We are now interested in the boundary behavior of Martin kernels.
In this case, we can not apply the Näım’s characterization. Alternatively,
we can characterize the minimal thinness for a difference of domains in
terms of the boundary behavior of the quotient of the Martin kernels
(see [17, Lemma 3.1]), and then obtain the following general result.

Theorem 3.1 ([17, Theorem 2.1]). Suppose that Ω and D are Gree-
nian domains such that Ω ∩ D is a non-empty domain. Let ξ ∈ ∆1(Ω),
where ξ is in the closure of Ω ∩ D in the Martin compactification of
Ω. Let ζ ∈ ∆1(D), where ζ is in the closure of Ω ∩ D in the Martin
compactification of D. If Ω \D is minimally thin at ξ with respect to Ω,
then KD(·, ζ)/KΩ(·, ξ) has a finite minimal fine limit at ξ with respect
to Ω. Furthermore, the following statements hold:

(i) If D \ Ω is not minimally thin at ζ with respect to D, then

mf
Ω

- lim
x→ξ

KD(x, ζ)

KΩ(x, ξ)
= 0.

(ii) If D \ Ω is minimally thin at ζ with respect to D, where ζ is
the point such that

(3.2) KD(·, ζ) −DR̂
D\Ω
KD(·,ζ) = α

(
KΩ(·, ξ) −ΩR̂

Ω\D

KΩ(·,ξ)

)
on Ω ∩ D

for some positive constant α, then

0 < mf
Ω

- lim
x→ξ

KD(x, ζ)

KΩ(x, ξ)
< ∞.
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(iii) If D \ Ω is minimally thin at ζ with respect to D, where ζ is
a point such that (3.2) is not satisfied, then

mf
Ω

- lim
x→ξ

KD(x, ζ)

KΩ(x, ξ)
= 0.

As a consequence of Theorem 3.1, we can obtain a result correspond-
ing to Theorem A. Note that Ωφ has a unique Martin boundary point
at the origin 0, so we write KΩφ

(·,0) for the Martin kernel at 0.

Corollary 3.2 ([17, Theorem 1.1]). Let I+ and I− be as in (3.1).
Then the following statements hold:

(i) If I+ < ∞ and I− = ∞, then

lim
t→0+

tn−1KΩφ
(te,0) = 0.

(ii) If I+ = ∞ and I− < ∞, then

lim
t→0+

tn−1KΩφ
(te,0) = ∞.

(iii) If I+ < ∞ and I− < ∞, then the limit of tn−1KΩφ
(te,0), as

t → 0+, exists and

0 < lim
t→0+

tn−1KΩφ
(te,0) < ∞.

Remark 3.3. When I+ = ∞ and I− = ∞, the limit of tn−1KΩφ
(te,0)

may take any values 0, positive and finite, or ∞ (see [17, Example 1.2]).

§4. Comparison estimates for the Green function and the

Martin kernel

For two positive functions f1 and f2, the symbol f1 ≈ f2 means that
there exists a constant A > 1 such that A−1f2 ≤ f1 ≤ Af2. ¿From The-
orem A and Corollary 3.2, we expect the following relationship between
the Green function and the Martin kernel:

GΩφ
(te, e)KΩφ

(te,0) ≈ t2−n for 0 < t < 2−1,

or, more generally, if Ω is a Lipschitz domain and ξ ∈ ∂Ω, then
(4.1)
GΩ(x, x0)KΩ(x, ξ) ≈ |x−ξ|2−n for x ∈ Γα(ξ) \ B(x0, 2

−1 dist(x0, ∂Ω)),

where Γα(ξ) = {x ∈ Ω : |x−ξ| < α dist(x, ∂Ω)} with α > 1 large enough.
If we restrict to the case of bounded Lipschitz domains Ω in R

n with
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n ≥ 3, then only the upper estimate in (4.1) can be obtained from the
following 3G inequality:

GΩ(x, z)GΩ(x, y)

GΩ(z, y)
≤ A(|x − y|2−n + |x − z|2−n) for x, y, z ∈ Ω,

which was first proved by Cranston, Fabes and Zhao [14] in the study of
conditional gauge theory for the Schrödinger operator. See also Bogdan
[8]. Recently, Aikawa and Lundh [3] extended this inequality to the case
of bounded uniformly John domains in R

n with n ≥ 3.
Now, let Ω be a bounded Lipschitz domain in R

n with n ≥ 3 and
let {yj} be a sequence in Ω converging to ξ ∈ ∂Ω. Then, substituting
z = x0 and y = yj into the 3G inequality and letting j → ∞, we obtain
the upper estimate: for x ∈ Ω \ B(x0, 2

−1 dist(x0, ∂Ω)),

GΩ(x, x0)KΩ(x, ξ) ≤ A(|x − ξ|2−n + |x − x0|2−n) ≤ A′|x − ξ|2−n.

The lower estimate in (4.1) does not follow from the 3G inequality,
but the boundary Harnack principle would enable us to obtain (4.1). We
consider (4.1) in a uniform domain. A domain Ω is said to be uniform
if there exists a constant A1 > 1 such that each pair of points x and y
in Ω can be connected by a rectifiable curve γ in Ω such that

`(γ) ≤ A1|x − y|,
min{`(γ(x, z)), `(γ(z, y))} ≤ A1 dist(z, ∂Ω) for all z ∈ γ.

It is known that if Ω is a uniform domain, then there is a unique (mini-
mal) Martin boundary point at each Euclidean boundary point (cf. [1]).
As above, we write KΩ(·, ξ) for the Martin kernel at ξ ∈ ∂Ω. Our conclu-
sions are different between n ≥ 3 and n = 2, so we state them separately.
See [18] for their proofs.

Theorem 4.1. Let Ω be a uniform domain in R
n, where n ≥ 3,

and let ξ ∈ ∂Ω. Then
(4.2)
GΩ(x, x0)KΩ(x, ξ) ≈ |x−ξ|2−n for x ∈ Γα(ξ) ∩ B(ξ, 2−1 dist(x0, ∂Ω)),

where the constant of comparison depends only on α and Ω.

When n = 2, the comparison estimate (4.2) does not hold in general
as seen in the following example.

Example 4.2. Suppose that n = 2. Let Ω = B(0, 1) \ {0} and
let x0 = (1/2, 0). Then Ω is a uniform domain, and we have for x ∈
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B(0, 1/4) \ {0},

KΩ(x,0)GΩ(x, x0) =
− log |x|

log 2
log

(
1

2

|x − 4x0|
|x − x0|

)
≈ log

1

|x| .

We say that ξ ∈ ∂Ω satisfies the exterior condition if there exists a
positive constant κ such that for each r > 0 sufficiently small, there is
xr ∈ B(ξ, r) \ Ω with B(xr , κr) ⊂ R

n \ Ω.

Theorem 4.3. Let Ω be a uniform domain in R
2. Then the follow-

ing statements hold:

(i) If ξ ∈ ∂Ω satisfies the exterior condition, then

GΩ(x, x0)KΩ(x, ξ) ≈ 1 for x ∈ Γα(ξ) ∩ B(ξ, 2−1 dist(x0, ∂Ω)),

where the constant of comparison depends only on α and Ω.
(ii) If ξ ∈ ∂Ω is an isolated point and Ω is bounded, then there

exists δ > 0 such that

GΩ(x, x0)KΩ(x, ξ) ≈ log
1

|x − ξ| for x ∈ B(ξ, δ) \ {ξ},

where the constant of comparison is independent of x.

Finally, we note that if Ω is a Lipschitz domain, then every ξ ∈ ∂Ω
satisfies the exterior condition and so Theorem 4.3(i) holds.
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potentiel, Ann. Inst. Fourier, Grenoble, 7 (1957), 183–281.

Kentaro Hirata

Department of Mathematics

Hokkaido University

Sapporo 060-0810

Japan

E-mail address: hirata@math.sci.hokudai.ac.jp



Advanced Studies in Pure Mathematics 44, 2006

Potential Theory in Matsue

pp. 155–166

Singular directions of meromorphic solutions of

some non-autonomous Schröder equations

Katsuya Ishizaki and Niro Yanagihara

Abstract.

Let s = |s|e2πλi be a complex constant satisfying |s| > 1 and
λ 6∈ Q. We show that for a transcendental meromorphic solution
f(z) of some non-autonomous Schröder equation f(sz) = R(z, f(z)),
any direction is a Borel direction.

§1. Introduction

Let R(z, w) be a rational function in z and w of degw R(z, w) at
least 2, and let s ∈ C be a constant of modulus bigger than 1. This note
is devoted to investigate singular directions of meromorphic solutions of
functional equations of the form

(1.1) f(sz) = R(z, f(z)), d = degw[R(z, w)] ≥ 2.

In this note “meromorphic” means “meromorphic in the complex plane
C”, and we assume that the reader is familiar with the Nevanlinna the-
ory, see e.g., [1], [4]. By a simple transformation, we can assume that
R(0, 0) = 0. In order to state an existence theorem of a meromorphic
solution for (1.1), we write

R(z, w) =
∑

n+m≥1

an,mznwm.
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Under the assumption that either

(1.2) a1,0 6= 0 and sn 6= a0,1 for all n ∈ N,

or

(1.3) a1,0 = 0 and s = a0,1,

the equation (1.1) admits the unique meromorphic solution f(z) 6≡ 0
with f(0) = 0 for the case (1.2), and also the unique solution f(z) with
f(0) = 0, f ′(0) = 1, for the case (1.3). For the proof, see [8, p.153].
When f(z) is transcendental, the order of growth ρ = ρ(f) is given by
ρ = log d/ log |s|, d = degw R(z, w), and there holds

(1.4) K1r
ρ < T (r, f) < K2r

ρ,

with some positive constants K1, K2, where T (r, f) is the Nevanlinna
characteristic of f(z), see [8, p.159].

Let dω = {z = reiω, r > 0} be a ray and Ω(ω, α), α ∈ (0, π), be a
sector Ω(ω, α) = {z ; | arg[z] − ω| < α}. When ω is fixed, we write for

Ω(ω, α) simply as Ωα. Further we define Ω
(r)
α = Ωα ∩ {|z| < r}.

Let f(z) be a transcendental meromorphic function of order ρ > 0.
Let dω be fixed. For any a ∈ C ∪ {∞}, write zeros of f(z) − a in Ωα =
Ω(ω, α) as z∗

n(a, Ωα), n = 0, 1, · · · , multiple zeros counted only once. On
the other hand, zeros of f(z)−a, counted with multiplicity, are denoted
as zn(a, Ωα). We say dω to be a Borel direction of divergence type in the

sense of Tsuji (resp. in the sense of Valiron), for f(z) [6, p.274] (resp.
[7]), if for any a ∈ C, with at most two possible exception(s),

∞
∑

n=0

1

|z∗n(a, Ωα)|ρ
= ∞ for any α > 0,

(

resp.

∞
∑

n=0

1

|zn(a, Ωα)|ρ
= ∞ for any α > 0

)

.

In the following, we call a Borel direction of divergence type simply as a
Borel direction.

Obviously, if c is a Borel exceptional value in the sense of Valiron,
then c is so in the sense of Tsuji, too, but the converse is not true. We
write s as

(1.5) s = |s|e2πλi, |s| > 1, λ ∈ [0, 1).

In the autonomous case, i.e., R(z, w) does not contain z, we proved
[2] that for a meromorphic solution g(z) of the equation g(sz) = R(g(z)),
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any direction dω is a Borel direction in the sense of both Valiron as well
as Tsuji, supposed λ /∈ Q. Further, a Borel exceptional value c, if any,
must be a Picard exceptional value, i.e. g(z) 6= c for any z ∈ C.

§2. Non-autonomaus Schröder equations and a main result

In order to consider the non-autonomous case where R(z, w) con-
tains z, we need to make some provisions. Write R(z, w) in (1.1)

R(z, w) =
P (z, w)

Q(z, w)
,

P (z, w) =

p
∑

j=0

aj(z)wj , Q(z, w) =

q
∑

k=0

bk(z)wk,

where aj(z), bk(z) are polynomials. We have d = max(p, q) ≥ 2.

Proposition 1. By some linear transformation

(2.1) L[w] =
αw + β

γw + δ
, α, β, γ, δ ∈ C, αδ − βγ 6= 0,

the equation (1.1) can be reduced to the following form

L[f(sz)] = R◦(z, L[f(z)]), R◦(z, w) =
P ◦(z, w)

Q◦(z, w)
,

P ◦(z, w) =

d
∑

j=0

a◦
j (z)wj , Q◦(z, w) =

d
∑

k=0

b◦k(z)wk ,

in which we have

(2.2)
degw[P ◦(z, w)] = degw[Q◦(z, w)] = d,

deg[a◦
j (z)] = deg[b◦k(z)] = D.

We remark that the conditions (2.2) are satisfied with any quadruple
α, β, γ, δ ∈ C, αδ − βγ 6= 0 for other than a finite number of exception.

Proof of Proposition 1 Let

f(sz) =

∑p

j=0 aj(z)f(z)j

∑q

k=0 bk(z)f(z)k
, max(p, q) = d.

Put f(z) = f1(z) + α. Then

f1(sz) =

∑d
j=0 a

[1]
j (z)f1(z)j

∑q
k=0 b

[1]
k (z)f1(z)k

,
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where

a
[1]
j (z) =







































∑p

m=j

(

m

j

)

αm−jam(z) − α
∑min(q,j)

m=j

(

m

j

)

αm−jbm(z),

for j ≤ p, when p ≤ d,

−α

{

∑d
m=j

(

m

j

)

αm−jbm(z)

}

, for j > p,

for j > p, when p < q = d,

b
[1]
k (z) =

q
∑

m=k

(

m
k

)

αm−kbm(z), for k ≤ q.

Hence, except a finite number of values α, we have

deg[a
[1]
0 (z)] = max

j,k
(deg[a

[1]
j (z)], deg[b

[1]
k (z)]),

deg[b
[1]
0 (z)] = max

k
deg[b

[1]
k (z))].

Put f1(z) = 1/f2(z). Then

f2(sz) =

∑q

j=0 a
[2]
j (z)f2(z)j

∑d

k=0 b
[2]
k (z)f2(z)k

,

deg[b
[2]
d (z)] = max

j,k
(deg[a

[2]
j (z)], deg[b

[2]
k (z)]).

Put f2(z) = f3(z) + β, f3(z) = 1/f4(z), and f4(z) = f5(z) + γ, then we

obtain (2.2) for a
[5]
j (z), b

[5]
k (z), except for a finite number of values β, γ.

We have thus proved Proposition 1.

Write the coefficients of wj in P (z, w) and those of wk in Q(z, w) as

aj(z) = a
(j)
D zD + a

(j)
D−1z

D−1 + · · · + a
(j)
0 ,

bk(z) = b
(k)
D zD + b

(k)
D−1z

D−1 + · · · + b
(k)
0 ,

with a
(j)
D 6= 0 and b

(k)
D 6= 0 for 0 ≤ j, k ≤ d, and put

(2.3)
P ∗

j (w) = a
(j)
D wj + a

(j−1)
D wj−1 + · · · + a

(0)
D , 0 ≤ j ≤ d,

Q∗
d(w) = b

(d)
D wd + b

(d−1)
D wd−1 + · · · + b

(0)
D .

The main result in this note is the following
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Theorem 1. Suppose λ /∈ Q in (1.5) and R(z, w) in (1.1) satisfies
(2.2). Assume that P ∗

d (w) and Q∗
d(w) for R(z, w) defined in (2.3) are

relatively prime. Let (1.1) have a transcendental meromorphic solution
f(z). Then any dω0 (ω0 ∈ [0, 2π)) is a Borel direction in the sense of
Tsuji for f(z).

Remark 1. We can assume without losing generality that P ∗
j (w)

and Q∗
d(w) are relatively prime for each j, 1 ≤ j ≤ d − 1, which can be

attained by a suitable choice of α, β, γ, δ ∈ C in (2.1).

On the contrary to autonomuous case, a Borel exceptional value need
not be a Picard exceptional value (see the end of Section 1). Further,
Borel exceptional value in the sense of Tsuji may be not exceptional in
the sense of Valiron. We can see these in Examples 1 and 2 below.

Example 1. Consider the equation [8, p.158]

(2.4) f1(sz) =
1 + z

1 − z
f1(z)2, s = |s|e2πiλ, λ ∈ [0, 1) \ Q, |s| > 2.

If we put f1(z) = 1 + h1(z), then

h1(sz) =
2z

1 − z
+ 2

1 + z

1− z
h1(z) +

1 + z

1 − z
h1(z)2 = 2z + 2h1(z) + · · · ,

and we have that a1,0 = 2 6= 0, a0,1 = 2 6= sn for any n ∈ N, hence
there is the unique solution h1(z) 6≡ 0, h1(0) = 0. Therefore, there is
the unique non-trivial solution for (2.4) which is given by

f1(z) =

∞
∏

n=1

(

1 + z
sn

1 − z
sn

)2n−1

.

Hence f1(z) has two Borel exceptional values 0,∞ in the sense of Tsuji.
They are not a Borel exceptional values in the sense of Valiron.

Example 2. Consider also the equation

(2.5) f2(sz) = (1 + z)f2(z)2, s = |s|e2πiλ, λ ∈ [0, 1) \ Q, |s| > 2.

As in Example 1, there is the unique solution which is given by

f2(z) =

∞
∏

n=1

(

1 +
z

sn

)2n−1

.

f2(z) has a Borel exceptional value 0 in the sense of Tsuji, which is not
exceptional in the sense of Valiron. For f2(z), ∞ is exceptional in the
sense of Valiron (in fact, Picard exceptional).
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We observe primeness in the examples above. For the equation (2.4)
we have, putting g1(z) = 1/(f1(z) − 1),

g1(sz) =
(−1 + 1

z
)g1(z)2

2g1(z)2 + 2(1 + 1
z
)g1(z) + (1 + 1

z
)
.

We have P ∗
2 (w) = −w2 and Q∗

2(w) = 2w2 + 2w + 1 which are relatively
prime.

For the equation (2.5), we see that P ∗
2 (w) and Q∗

2(w) are not rela-
tively prime, and the assumption in Theorem 1 is not satisfied. But if
we put g2(z) = 1/(f2(z) − 1), then we get

zg2(sz) =
g2(z)2

g2(z)2 + 2(1 + 1
z
)g2(z) + (1 + 1

z
)

= R2(z, g2(z)).

For R2(z, w), we have that P ∗
2 (w) = w2 and Q∗

2(w) = w2 + 2w + 1 are
relatively prime. Hence the arguments in the proof of Theorem 1 stated
in Sections 4, 5 can be applied to R2(z, g2(z)). But we do not know
whether for m ∈ Z with some K > 0,

T (r; Ωα; zmg2(z)) ≤ KT (r; Ωα; g2(z)) + O((log r)2)

holds or not. Therefore, our Theorem 1 can not be applied to (2.5).

§3. Characteristic functions in a sector

Following Tsuji [6, p.272], we define the sectorial characteristic of a
meromorphic function w(z). Fix ω ∈ [0, 2π). With Ωα0 = Ω(ω, α0) and

Ω
(r)
α0 as in Section 1, we define

S(r; Ωα0 ; w) =
1

π

∫∫

Ω
(r)
α0

(

|w′(teiθ)|

1 + |w(teiθ)|2

)2

tdtdθ,

T (r; Ωα0 ; w) =

∫ r

0

S(t; Ωα0 ; w)

t
dt.

Let n(r, b; Ωα; w), Ωα = Ω(ω, α), be the number of zeros of w(z) − b

contained in Ω
(r)
α , multiple zeros counted only once, and put

N(r, b; Ωα; w) =

∫ r

1

n(t, b; Ωα; w)

t
dt.

Then by [6, p.272, Theorem VII.3], we have with any α > α0,

(3.1) T (r; Ωα0 ; w) ≤ 3

3
∑

i=1

N(2r, bi; Ωα; w) + O((log r)2).
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We note that (3.1) is generalized by Toda [5].

§4. A preliminary Lemma

Let R(z, w) is a rational function in w whose coefficients are rational
functions. Suppose that R(z, w) satisfies the condition in Theorem 1.

Lemma 1. Write Ω(ω, α) as Ωα. We have for a constant K

T (r; Ωα; R(z, f(z))) ≤ KT (r; Ωα; f(z)) + O((log r)2).

Proof of Lemma 1 Let a(z) be a rational function satisfying a(z) →
M 6= 0,∞ as z → ∞. Then |M |/2 ≤ |a(z)| ≤ 2|M | for |z| ≥ r0 with
sufficiently large r0, and we have

|(af)′|

1 + |af |2
≤

|a′f |

1 + |af |2
+

|af ′|

1 + |af |2

≤
1

2
·
|a′|

|a|
+

|af2|

1 + |af |2
·

|f ′|

1 + |f |2
+

|a|

1 + |af |2
·

|f ′|

1 + |f |2

≤
1

2
·
|a′|

|a|
+

|af |2

1 + |af |2
·

1

|a|
·

|f ′|

1 + |f |2
+ 2|M |

|f ′|

1 + |f |2

≤
1

2
·
|a′|

|a|
+ 2(

1

|M |
+ |M |) ·

|f ′|

1 + |f |2
.

Hence we get

(4.1) T (r; Ωα; a(z)f(z)) ≤ 8(|M |−1+|M |)2T (r; Ωα; f(z))+O((log r)2).

Note that, if a(z) = M a constant, then O((log r)2) in (4.1) can be
omitted.

We have for c ∈ C

(4.2) K1(c)T (r; Ωα; f) ≤ T (r; Ωα; f − c) ≤ K2(c)T (r; Ωα; f),

where Kj(c), j = 1, 2, are constants depending on c. In fact, (4.2) is
trivial when c = 0. Suppose c 6= 0. If |f(z)| ≤ 2|c|,

1

1 + 9|c|2
≤

1 + |f(z)|2

1 + |f(z) − c|2
≤ 1 + 4|c|2,

and if |f(z)| > 2|c|, we obtain from |c/f(z)| < 1/2,

4

9
≤

1 + |f(z)|2

1 + |f(z) − c|2
=

1 + 1/|f(z)|2

|1 − c/f(z)|2 + 1/|f(z)|2
≤ 4.
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When c(z) is a rational function with c(z) → M ∈ C as z → ∞, by the
similar calculation as above we infer that

K1(c)T (r; Ωα; f) ≤ T (r; Ωα; f − c) + O((log r)2)(4.3)

≤ K2(c)T (r; Ωα; f) + O((log r)2).

In fact, |c(z)| ≤ M1 with some M1 > |M |, for large |z|. Since we have

|f ′ − c′|

1 + |f − c|2
≤

1 + |c|2

1 + |f − c|2
|c′|

1 + |c|2
+

1 + |f |2

1 + |f − c|2
|f ′|

1 + |f |2

and

1 + |c|2

1 + |f − c|2
≤ 1 + 4M2

1 ,
1 + |f |2

1 + |f − c|2
≤ max

(

1 + 4M2
1 , 4 +

1

M2
1

)

,

we obtain the second inequality in (4.3). Thus for a meromorphic func-

tion g(z), we see T (r; Ωα; g + c) + O((log r)2) ≤ K̃2(c)T (r; Ωα; g) +

O((log r)2) with a constant K̃2(c). Set g(z) = f(z) − c(z) in this in-
equality, we get the first inequality in (4.3).

By (4.1) and (4.2), we see that, with a constant KL

T (r; Ωα; f) ≤ KLT (r; Ωα; L[f ]), L[w] =
αw + β

γw + δ
,

where α, β, γ, δ ∈ C, αδ − βγ 6= 0.
We have for ` ≥ 2,

|(f(z)`)′|

1 + |f(z)`|2
= `

|f(z)`−1| + |f(z)`+1|

1 + |f(z)`|2
|f ′(z)|

1 + |f(z)|2
≤ `

|f ′(z)|

1 + |f(z)|2
,

since x`−1 + x`+1 − 1− x2` = −(1− x`−1)(1 − x`+1) ≤ 0 for x ≥ 0, and
hence

T (r; Ωα; f(z)`) ≤ `2T (r; Ωα; f(z)).

For R(z, w) = P (z, w)/Q(z, w), define P ∗
j (w) and Q∗

d(w) as in (2.3).

We assume that P ∗
d (w), Q∗

d(w) are relatively prime, following Theorem 1.
Then, as stated in Remark 1, we can assume that P ∗

j (w), Q∗
d(w) are

relatively prime, without losing generality. Of course we assume (2.2).
Write P (z, w) = ad(z)P1(z, w), Q(z, w) = bd(z)Q1(z, w) and R1(z, w) =
P1(z, w)/Q1(z, w). Note that

P1(z, w) = wd +

d−1
∑

j=0

a[j](z)wj , a[j](z) =
aj(z)

ad(z)
= a

[j]
0 +

∞
∑

n=1

a
[j]
n

zn
,

Q1(z, w) = wd +

d−1
∑

j=0

b[j](z)wj , b[j](z) =
bj(z)

bd(z)
= b

[j]
0 +

∞
∑

n=1

b
[j]
n

zn
,
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with a
[j]
0 6= 0 and b

[j]
0 6= 0. Since limz→∞ a(z) 6= 0,∞, where a(z) =

ad(z)/bd(z), we have by (4.1) for a constant Ka

T (r; Ωα; R(z, f(z))) ≤ KaT (r; Ωα; R1(z, f(z))) + O((log r)2).

Hence we may treat P (z, w) = P1(z, w), Q(z, w) = Q(z, w). We write
R1(z, f(z)) = w1 + w2, where

w1 =

∑d−1
j=0 a[j](z)f(z)j

Q1(z, f(z))
, w2 =

f(z)d

Q1(z, f(z))
.

We will show that, with some constant K1,

(4.4) T (r; Ωα; w1+w2) ≤ K1{T (r; Ωα; w1)+T (r; Ωα; w2)}+O((log r)2).

In fact, we have

|(w1 + w2)
′|

1 + |w1 + w2|2
≤

1 + |w1|
2

1 + |w1 + w2|2
|w′

1|

1 + |w1|2
+

1 + |w2|
2

1 + |w1 + w2|2
|w′

2|

1 + |w2|2
.

If either |w1| ≥ 2|w2| or |w2| ≥ 2|w1|, then

1 + |w1|
2

1 + |w1 + w2|2
≤ 4 (or ≤ 1),

1 + |w2|
2

1 + |w1 + w2|2
≤ 1 (or ≤ 4).

If 2|w1| > |w2| > (1/2)|w1|, then

|f(z)|2 ≤ 2
(

|a[d−1](z)||f(z)d−1| + · · · + |a[0](z)|
)

and a[j](z), 0 ≤ j ≤ d − 1, are bounded as z → ∞. Hence f(z) must be
bounded. Since P ∗

d (w), Q∗
d(w) are relatively prime by the assumption,

|P ∗
d (w)|2+|Q∗

d(w)|2 ≥ K ′ > 0 with a constant K ′. Hence |P1(z, f(z))|2+
|Q1(z, f(z))|2 ≥ K∗ with a constant K∗ > 0, if |z| is sufficiently large.
Thus we have

1 + |w1|
2

1 + |w1 + w2|2
≤
√

K1/2,
1 + |w2|

2

1 + |w1 + w2|2
≤
√

K1/2

with some K1, for |z| ≥ r0 if r0 is large, which shows (4.4). Next, write

P2(z, w) = a[d−1](z)wd−1 + P3(z, w), P3(z, w) =

d−2
∑

j=0

a[j](z)wj
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and w1 = P3(z, w)/Q1(z, w) and w2 = a[d−1](z)wd−1/Q1(z, w). Since
P ∗

d−1(w) and Q∗
d(w) are relatively prime, we obtain (4.7) as above. Ap-

plying these arguments repeatedly, we have

T (r; Ωα; R(z, f(z))) ≤ K2

d
∑

j=0

T (r; Ωα;
f(z)j

Q1(z, f(z))
) + O((log r)2)

≤ K2

d
∑

j=0

T (r; Ωα;
Q1(z, f(z))

f(z)j
) + O((log r)2)

≤ K3

∑

0≤j,k≤d

T (r; Ωα; f(z)|k−j|) + O((log r)2)

≤ KT (r; Ωα; f(z)) + O((log r)2).

with some constants K2, K3, K, making use of (4.3). We have thus
proved Lemma 1.

§5. Proof of Theorem 1

Let T (r, f) be the characteristic function of f(z) in the sense of
Shimizu–Ahlfors. As in [6, p.274], we see from (1.4) that there is ω∗ ∈
[0, 2π) such that

∫ ∞ T (r; Ω(ω∗, α0); f)

rρ+1
dr = ∞,

for any α0 ∈ (0, π). Define R0(z, w) = w and

Rm(z, w) = R(sm−1z, Rm−1(z, w)) for m ≥ 1.

Then we have

f(smz) = R(sm−1z, f(sm−1z)) = Rm(z, f(z)).

It is not difficult to see that Rm(z, w) satisfies (2.2) from the assumption
for R(z, w), and also see that P ∗

dm(w) and Q∗
dm(w) corresponding to

Rm(z, w) are relatively prime. We can assume that P ∗
j (w) and Q∗

dm(w)
corresponding to Rm(z, w) are relatively prime, for each j < dm by a
suitable linear transformation, if necessary.

Take ω0 ∈ [0, 2π) and α ∈ (0, π) arbitrarily. Let m ∈ N be so large
that α0 = |ω0 +2πmλ−ω∗| < α/8, mod 2π, see e.g., [3]. Then we have
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∫ ∞ T (r; Ω(ω0, α/2); Rm(z, f(z)))

rρ+1
dr

=

∫ ∞ T (r; Ω(ω0, α/2); f(smz))

rρ+1
dr

≥ C

∫ ∞ T (|s|mr; Ω(ω∗, α0); f(z))

rρ+1
dr = ∞.

for some positive constant C. Thus by Lemma 1
∫ ∞ T (r; Ω(ω0, α/2); f(z))

rρ+1
dr = ∞.

By means of Tsuji’s result (3.1), for any distinct three values bi ∈ C ∪
{∞}, 1 ≤ i ≤ 3,

3
∑

i=1

∫ ∞ N(2r, bi; Ω(ω0, α); f(z))

rρ+1
dr = ∞,

which implies our assertion.

Acknowledgement. We thank the referee for careful reading of the
manuscript and for valuable suggestions.
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Schröder functions, to appear in Math. Proc. Camb. Phil. Soc.

[ 3 ] L. Kuipers and H. Niederreiter, Uniform distribution of sequences, John
Wiley & Sons, New York-London-Sydney, 1974, MR0419394.

[ 4 ] I. Laine, Nevanlinna theory and complex differential equations, de
Gruyter Studies in Mathematics, 15. Walter de Gruyter, Berlin, 1993,
MR1207139.

[ 5 ] N. Toda, Sur les directions de Julia et de Borel des fonctions algebroides,
Nagoya Math. J., 34 (1969), 1–23, MR0255830.

[ 6 ] M. Tsuji, Potential theory in modern function theory, Maruzen, Tokyo,
1959, MR0114894590.

[ 7 ] G. Valiron, Recherches sur le théorème de M. Borel dans la théorie des
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Integral Representation for Space-Time Excessive

Functions

Klaus Janssen

Abstract.

We study space-time excessive functions with respect to a basic
submarkovian semigroup P. It is shown that under some regularity
assumptions many space-time excessive functions on a half-space have
a Choquet-type integral represention by suitably choosen densities of
the adjoint semigroup P

∗. If P is a convolution semigroup which
is absolutely continuous with respect to the Haar measure, then all
space-time excessive functions admit such an integral representation.

§1. Introduction

Let 4 :=
∑n

i=1
∂2

∂x2

i

denote the Laplace operator on E := Rn. We

consider the heat operator 1
2 4 − ∂

∂t on the half space E×]0,∞[. It is
well known that the positive solutions v of

1

2
4 v − ∂v

∂t
≤ 0

on E×]0,∞[ (called supercaloric functions) admit a Choquet-type inte-
gral representation by minimal supercaloric functions (c.f. [15]). More-
over, these minimal supercaloric functions are just the densities of the
Gaussian semigroup P = (Pt)t>0 which has the generator 1

24.

It is a remarkable fact that all this remains true also in the degener-
ate case n = 0 (where E = {0} is just a one-point set); in this case the
above integral representation is exactly the standard correspondence be-
tween distribution functions v on ]0,∞[ and measures ρ on [0,∞[ given
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I want to thank Prof. M. Nishio for his support. His generous invitation to

Japan made it possible for me to participate in the Potential Theory meeting
in Matsue.
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by

v(s) = ρ([0, s[ for s > 0,

or, written in a fancier way,

v(s) =

∫
1]s0,∞[(s)dρ(s0) for s > 0,

where {1]s0,∞[ : s0 ≥ 0} is the set of normalized minimal supercaloric
functions.

In this paper we show that a similar result holds in great generality:
We replace the above Gaussian semigroup by a general basic semigroup P

(i.e. there exists some measure µ such that εxPt is absolutely continuous
with respect to µ for all x and t). Under some regularity assumptions
concerning the adjoint semigroup P∗ the appropriately choosen densities
of P∗ turn out to be minimal space-time excessive functions, which then
give a Choquet-type integral representation of a large class of space-time
excessive functions.

In the special setting of convolution semigroups which are absolutely
continuous with respect to the Haar measure, all space-time excessive
functions on a half-space are represented in this way. In particular, all
excessive functions of the parabolic operator of order α (c.f. [7]) on the
upper halpf plane admit this Choquet-type integral representation.

§2. Notations and Preliminaries

In the following we fix the central potential theoretic notions which
will be used througout. As basic references we use [5] or [3] and [6].
(E, E) will always denote a standard Borel measurable space, i.e. E may
be identified with a Borel subset of a completely metrizable separable
space equipped with it’s Borel field E .

We denote by pE the convex cone of positive numerical E-measurable
functions on E.

Remember that a kernel P on (E, E) is a family (P (x, ·))x∈E of
measures on (E, E) such that for f in pE the function

Pf(x) =

∫
f(y)P (x, dy), x ∈ E

is in pE .
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Then, for every measure µ on (E, E) the measure µP satisfies

∫
fd(µP ) =

∫
Pfdµ for f ∈ pE .

We assume to be given a measurable semigroup P = (Pt)t>0 of
substochastic kernels on (E, E) (i.e. we have PsPt = Ps+t, Pt1 ≤ 1, and
(x, t) → Ptf(x) is E ⊗ B(]0,∞[) - measurable for every f in pE).

Examples 2.1. i) The trivial example is given by the one-point set
E = {0} and the semigroup Pt(0, ·) = ε0 for t > 0.
ii) The standard example is the Gaussian semigroup on E := Rn which
is given by the Lebesgue densites pt(x, y) = qt(x − y) with

qt(x) =
1

√
2πt

n exp(−|x|2
2t

), t > 0, x, y ∈ Rn.

iii) More general examples are given by semigroups associated with sec-
ond order linear parabolic or elliptic differential operators on a domain of
Rn (c.f. [2]) or suitable pseudo-differential operators (c.f. [8]). In partic-
ular, absolutely continouous convolution semigroups on Rn fit into this
setting (c.f. [1]).

In the general setting we denote by V = (Vλ)λ≥0 the associated
resolvent defined by

Vλf(x) :=

∞∫

0

e−λtPtf(x)dt, x ∈ E, f ∈ pE , λ ≥ 0.

V := V0 is called the potential kernel of P. The resolvent V determines
the semigroup P uniquely.

Remember that a set N ∈ E is called a set of potential zero if
V 1N = 0. We say that some property holds V-a.e. if this property holds
except on a set of potential zero.

Remember that v ∈ pE is called an excessive function (with respect
to the given semigroup P) if supt>0 Ptv = v, or equivalently, Ptv ↑ v
for t ↓ 0. For f in pE the potential V f generated by f is an excessive
function.

We denote S := S(P) := {v : v is excessive, v < ∞ V-a.e.}.
A σ-finite measure η on (E, E) is called an excessive measure if ηPt ↑
η for t ↓ 0. Exc := Exc(P) denotes the convex cone of all excessive
measures.
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The set of potential measures

Pot := Pot(P) := {µV : µ is a measure such that µV is σ-finite }

is a convex subcone of Exc.
In this paper we study space-time excessive functions. Therefore we

associate with the given semigroup P on E the space-time semigroup

Q = (Qt)t>0 on E×]0,∞[ defined by

ε(x,s)Qt = 1]t,∞[(s)(εxPt ⊗ εs−t), x ∈ E, s > 0

for t > 0. Q is again a measurable semigroup of substochastic kernels.
We denote by W = (Wλ)λ≥0 the resolvent associated with Q.

Of course, there are variants of these space-time semigroups, some
of them will appear later.

Examples 2.2. i) In the trivial example E = {0} and Pt = ε0 for t >
0 it is easily seen that a positive function v belongs to S(Q) if and only
if v is finite, increasing, and left continuous (or: lower semicontinuous)
on ]0,∞[. A measure η belongs to Exc (Q) if and only if η has a finite,
decreasing, and right continuous (or: lower semicontinouous) Lebesgue
density v with respect to Lebesgue measure λλ on ]0,∞[.
ii) For the Gaussian semigroup the cone of space-time excessive functions
is just the cone of supercaloric functions mentioned in the introduction.
iii) In general, for f in pE the function

v(x, s) := Psf(x), x ∈ E, s > 0

is excessive with respect to Q, since

Qtv(x, s) = 1]t,∞[(s)PtPs−tf(x) = 1]t,∞[(s)v(x, s) ↑ v(x, s)

for t > 0, t ↓ 0.

In this paper we are interested in Choquet-type integral represen-
tations for space-time excessive functions, i.e for functions which are
excessive with respect to Q.

Remark 2.1. The following general results on Choquet-type integral
representations of excessive measures and functions are known:
i) Under very general assumptions every excessive measure η has a
unique representation as a mixture of minimal excessive measures, i.e.

η(A) =

∫
F

ν(A)dρ(ν) for A ∈ E ,
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where ρ is a measure on the space F of suitably normalized minimal
excessive measures.
Here, νε Exc is called minimal if ν = ν1 + ν2 for ν1, ν2 ∈ Exc can only
hold if ν1 and ν2 are proportional to ν (c.f. [17]).
ii) If the potential kernel V is proper, then the corresponding integral
representation of every excessive function by minimal excessive functions
holds if and only if V is basic, i.e. εxV � µ for all x for some σ-finite
measure µ (c.f. [3] and [10]).

Consequently, a Choquet-type integral representation for all space-
time excessive functions exists if and only if the potential kernel W
is basic, i.e. for some σ-finite measure m on E×]0,∞[ all the mea-
sures εx,sW are absoluteley continuous with respect to m. It is well
known that under this assumption there exists a σ-finite measure µ on
(E, E) such that εxPt � µ for all x ∈ E, t > 0, hence the following
Assumption 3.1 is quite natural.

§3. Choquet-type integral representation of space-time exces-

sive functions

To obtain the wanted integral representation we need the existence
of a nice dual semigroup P∗.

Assumption 3.1. P and P∗ are substochastic measurable semi-
groups on a standard Borel measurable space (E, E) which are in duality
and absolutely continuous with respect to some σ-finite measure µ, i.e.

εxPt � µ, εxP ∗
t � µ for all x ∈ E, t > 0 and

∫
Ptf · gdµ =

∫
f · P ∗

t gdµ for all t > 0, f, g ∈ pE .

From [19] we know that we can choose very nice densities for the
associated space-time potential kernels W and W ∗:

Theorem 3.1. There exists a unique B(]0,∞[)⊗E ⊗E-measurable
function p : ]0,∞[×E × E → R̄+ such that for s, t > 0, x, y ∈ E and
f ∈ pE the following is true:
i) Ptf(x) =

∫
f(z)pt(x, z)dµ(z)

ii) P ∗
t f(x) =

∫
f(z)pt(z, x)dµ(z)

iii) ps+t(x, y) =
∫

ps(x, z)pt(z, y)dµ(z)

Conclusion 3.1. i) For s0 ≥ 0 and x0 ∈ E the function

wx0,s0
(x, s) := 1]s0,∞[(s)ps−s0

(x, x0), x ∈ E, s > 0
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belongs to S(Q), since the Chapman-Kolmogorov equation, Theorem 3.1.iii,
gives

Qtwx0,s0
= 1]s0+t,∞[wx0,s0

.

ii) By Fubini’s theorem we conclude that for every σ-finite measure ρ on
E × [0,∞[ the function

wρ(x, s) :=

∫
1]s0,∞[(s)ps−s0

(x, x0)dρ(x0, s0), x ∈ E, s > 0

is space-time excessive.
Moreover, if ρ is concentrated on E × {0}, then wρ is ”invariant up to
the exit from E×]0,∞[” for the space-time process, i.e. Qtw

ρ(x, s) =
wρ(x, s) for all 0 < t < s, x ∈ E.

For our main result we need an additional regularity hypothesis:

Assumption 3.2. P∗ is a right semigroup on E, i.e. there exists
an associated right Markov process (c.f. [14]).

Remark 3.1. If V ∗ is a proper kernel, then Assumption 3.2 is equiva-
lent with the following potential theoretic properties of the convex cones
S∗, Exc∗, P ot∗ with respect to P∗ (c.f. [16] for details):
i) S∗ is inf-stable, 1 ∈ S∗, σ(S∗) = E ,
ii) E is *semisaturated, i.e. Pot∗ is hereditary in Exc∗ (i.e. for η ∈ Exc∗

satisfying η ≤ µV ∗ ∈ Exc∗ we have η = νV ∗ for some measure ν).
If P∗ induces a strong harmonic space in the sense of [4], or if P∗ induces
a balayage space in the sense of [2], then Assumption 3.2 is satisfied.

In the following result we use the functions wx0,s0
and wρ introduced

in Conclusion 3.1.

Theorem 3.2. We assume Assumption 3.1 and Assumption 3.2.
Then the following is true:
i) Let v ∈ S(Q) satisfy v ≤ wρ0 ∈ S(Q) for some measure ρ0 on E ×
[0,∞[.
Then there exists a unique measure ρ on E × [0,∞[ such that v = wρ,
i.e.

v(x, s) =

∫
wx0,s0

(x, s)dρ(x0, s0), x ∈ E, s > 0.

For all x0 ∈ E and s0 ≥ 0 the function wx0,s0
is a minimal element of

S(Q).
ii) Every v ∈ S(Q) decomposes uniquely into v = wρ + v′, where ρ is
a unique measure on E × [0,∞[ and v′ ≥ wτ holds only for the zero
measure τ .
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Proof. i) Let m = µ ⊗ λλ. We denote by Q∗ the semigroup on
E×]0,∞[ given by

εx,sQ
∗
t = εxP ∗

t ⊗ εs+t, x ∈ E, s > 0, t > 0,

and we denote by W∗ the associated resolvent. Then W is in strong
duality with W∗with respect to m, and

Θ : v → vm

is a bijection from S(Q) onto Exc (Q∗). Obviously, Exc (Q∗) = Exc (Q̄∗)
for the extended semigroup Q̄∗ on E × [0,∞[ given by

εx,sQ̄
∗
t = εxP ∗

t ⊗ εs+t, x ∈ E, s ≥ 0, t > 0

since m(E × {0}) = 0 and since all measures in Exc(Q̄∗) are absolutely
continuous w.r. to m (c.f. [3] for general details of this identification).
Since P∗ admits an associated right Markow process, this remains true
for Q̄∗. Consequently, every Q̄∗-excessive measure vm ≤ wρ0m = ρ0W̄

∗

is of the form vm = ρW̄ ∗ for a suitable unique measure ρ. Inverting the
mapping Θ shows that v = wρ.
Applying this to wx0,s0

= wρ for ρ := ε(x0,s0) gives the minimality of
wx0,s0

for x0 ∈ E, s0 ≥ 0.
ii) For general v ∈ S(Q) the measure vm decomposes uniquely as vm =
ρW̄ ∗ + v′m, where v′m ≥ τW̄ ∗ holds only for τ = 0 (i.e. v′m is the
harmonic part of vm with respect to Q̄∗ according to [6]). Transporting
this decomposition by the inverse of Θ gives the stated result. �

Remark 3.2. Simple examples show that in general it is not true
that every space-time excessive funtion admits a representation as in
Theorem 3.2.i. A setting where this is true is described below in Ap-
plication 3.1. Motivated by § 3 in [15] one might conjecture that it is
sufficient that E be thermically closed, i.e. f ≤ Ptf for all t > 0 for
every P-subharmonic f ∈ pE .
In the setting of uniformly elliptic differential operators in gradient
form on a domain in Rn Murata gave sufficient conditions for the non-
existence of a non-zero positive space-time harmonic function on E×]0,∞[
with boundary values 0 on E × {0} (c.f. Theorem 4.2 in [12]).

Remember that u ∈ S is called quasibounded iff u can be written
as a countable sum of bounded elements of S. It is well known that
in classical potential theory associated with Laplace’s equation a poten-
tial is quasibounded if and only if the associated Riesz measure does
not charge polar sets. The same result is true for the potential theory
associated with the heat equation according to [18].
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Corollary 3.1. Let h ∈ S(P) be invariant, i.e. Pth = h < ∞ V -a.e.
for all t > 0 . Then every h-quasibounded v ∈ S(Q) admits a unique
integral representation

v(x, s) =

∫
wx0,s0

(x, s)dρ(x0, s0), x ∈ E, s > 0.

Here v ∈ S(Q) is called h-quasibounded if v =
∑

n∈N
vn for some se-

quence (vn) ⊂ S(Q) such that vn ≤ cnh for suitable constants cn for all
n in N.

Proof. For ρ0 := (hµ) ⊗ ε0 we have obviously h = wρ0 , hence the
stated integral representation holds for every h-bounded vn in S(Q).
Summing these formulae for n in N gives the wanted result. �

Application 3.1. Let G be a locally compact abelian group with
countable base of the topology, and let (µt)t>0 be a convolution semi-
group of measures on G such that all measures µt are absolutely contin-
uous with respect to the Haar measure. Let (Pt)t>0 be the associated
semigroup of convolution kernels on G (c.f. [1]). The reflected measures
given by ∫

fdµ∗
t =

∫
f(−x)dµt(x), t > 0, f ∈ pE

define a dual basic convolution semigroup. (Pt)t>0 and (P ∗
t )t>0 are

strong Feller kernels. Consequently, the Assumptions 3.1 and 3.2 are
satisfied (in fact, the associated Markov processes are very nice Lévy
Processes). The densities of (Pt)t>0 according to Theorem 3.1 are of the
form pt(x, y) = qt(x − y) for t > 0, x, y ∈ G for suitable densities qt of
µt with respect to the Haar measure on G.

In this particular case we have the following

Result. For every v ∈ S(Q) there exists a unique measure ρ on
E × [0,∞[ such that

v(s, x) =

∫
1]s0,∞[(s)qs−s0

(x − x0)dρ(x0, s0), x ∈ G, s > 0

Proof. Let v ∈ S(Q). We use the notations of the proof of The-
orem 3.2. Then vm ist in Exc (Q∗). Obviously, vm is also an ex-
cessive measure with respect to the space-time convolution semigroup
(µ∗

t ⊗ εt)t>0 on the group G × R.
Let κ∗ :=

∫ ∞

0
µ∗

t ⊗εtdt denote the associated potential kernel measure on
G×R. From Theorem 16.7 in [1] we know that vm decomposes uniquely
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as vm = ρ ∗ κ∗ + ρ1, where ρ1 is invariant with respect to (µ∗
t ⊗ εt)t>0.

Since vm is supported by E× [0,∞[ we conclude ρ1 = 0, and ρ is a mea-
sure supported by E×[0,∞[. Consequently, we have vm = ρ∗κ∗ = wρm,
and the stated integral representation v = wρ follows. �

Examples 3.1. As examples of Application 3.1 we obtain an explicit
integral representation of all space-time excessive functions in the fol-
lowing cases:
i) the Brownian semigroup with densities given in Example 2.1.ii.
ii) the symmetric stable semigroup of order 1 (the Cauchy semigroup)
with densities

qt(x) =
at

(t2+ | x |2)n+1
2

, x ∈ Rn, t > 0

for a = Γ(n+1
2 )/π(n+1)/2.

Similar results hold for more general α-stable semigroups (c.f. [7] and
[13]), except that there the densities are not elementary functions (only
their Fourier transforms are explicitly given).

Remark 3.3. We formulated our results for a basic semigroup. The
standard example for such a semigroup is determined by some second
order elliptic linear partial differential operator L on a domain E in
Rn, where the coefficients of L depend on the space variables in E and
have to be reasonably nice and not to degenerate. More generally, one
may consider coefficients which are also time dependent. This leads to
transition families P = (Ps,t)s<t which are no longer time homogeneous.
Nevertheless, our reasoning carries over to this more general setting
due to the fact that in [19] the existence of nice densities of such non-
homogeneous families P has been proven.
Some examples of harmonic spaces associated with such time dependant
differential operators appear in [9].

Remark 3.4. In [11] Murata proved for a large class of uniformly
elliptic differential operators L in gradient form on a domain E in Rn

that the Martin boundary for the associated heat operator is given by
(E×{0})∪(∂×]0,∞[), where ∂ is the Martin boundary of E with respect
to L. It should be true in our setting that the Martin-Poisson space as-
sociated with the space-time semigroup Q is given by (E ∪ ∂)× [0,∞[),
where ∂ denotes the set of suitably normalized minimal P-harmonic func-
tions (c.f. [3] for details).
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Remark 3.5. It is easily verified, that the integral representation
of Corollary 3.1 for v ∈ S(Q) holds already, if v is only wρ0 -quasi-
bounded for some general wρ0 ∈ S(Q). The proof is the same as that of
Corollary 3.1.
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D-40225 Düsseldorf, Germany

E-mail address: janssenk@uni-duesseldorf.de



 



Advanced Studies in Pure Mathematics 44, 2006

Potential Theory in Matsue

pp. 179–191

A decomposition of the Schwartz class by a

derivative space and its complementary space

Takahide Kurokawa

Abstract.

Let D(Rn) be the class of all C∞−functions on Rn with compact
support. For a multi-index α we denote Dα(Rn) = {Dαϕ : ϕ ∈
D(Rn)}. We give a direct sum decomposition of D(Rn) by Dα(Rn)
and its complementary space.

§1. Introduction

Let Rn be the n-dimensional Euclidean space. The points of Rn are
ordered n-tuples x = (x1, · · · , xn), which each xi is a real number. If
α = (α1, · · · , αn) is an n-tuple of nonnegative integers, then α is called
a multi-index, and we let |α| = α1 + · · · + αn and α! = α1! · · ·αn!. The
partial derivative operators are denoted by Dj = ∂/∂xj for 1 ≤ j ≤ n,
and the higher order derivatives by

Dα = Dα1

1 · · ·Dαn
n =

∂|α|

∂xα1

1 · · · ∂xαn
n

.

Following L.Schwartz [4] the notation D(Rn) (the Schwartz class) stands
for the class of all infinitely differentiable functions on Rn with compact
support.

L.Schwartz uses the following fact about D(Rn) in the discussion of
primitives of distributions [4: sections 4 and 5 in Chap.II].

Fact. Let θ0(t) ∈ D(R1) be a function which satisfies

∫ ∞

−∞

θ0(t)dt = 1.

Received March 17, 2005.
Revised April 28, 2005.
2000 Mathematics Subject Classification. Primary 46E10.
Key words and phrases. Schwartz class, derivative space, complementary

space.
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Then ϕ ∈ D(Rn) can be decomposed uniquely as follows:

(1.1) ϕ(x) = χ(x) + λ(x2, · · · , xn)θ0(x1)

where χ ∈ D1(Rn) = {D1ϕ : ϕ ∈ D(Rn)} and λ ∈ D(Rn−1). Namely, if
we put

U1(Rn) = {λ(x2, · · · , xn)θ0(x1) : λ ∈ D(Rn−1)},

then
D(Rn) = D1(Rn) ⊕ U1(Rn)

where the symbol ⊕ means a direct sum.
Moreover some authors deal with orthogonal decompositions of the

Lebesgue spaces and the Sobolev spaces related to certain kinds of dif-
ferential operators ([1], [2], [3]).

In this article we are concerned with a direct sum decomposition of
the Schwartz class D(Rn) related to the higher order differential operator
Dα. Namely we treat the following problem.

Problem. Let α be a nonzero multi-index and Dα(Rn) = {Dαϕ :
ϕ ∈ D(Rn)}. Give a direct sum decomposition of D(Rn) by means of
Dα(Rn) and its complementary space.

The next section is devoted to study of the problem.

§2. A decomposition of the Schwartz class

As we saw in section 1, D(Rn) = D1(Rn)⊕U1(Rn). In order to give
a direct sum decomposition of D(Rn) by means of Dα(Rn), we must con-
struct the complementary space of Dα(Rn). We need two preparations.
For a multi-index α = (α1, · · · , αn) we set

Mα = {j ∈ {1, · · · , n} : αj 6= 0}

and for j = 1, · · · , n let

Rn,j = {(x1, · · · , xn) ∈ Rn : xj = 0}.

First we note that

Lemma 2.1. (cf. [4: Section 5 in Chap. II]) Let f ∈ D(Rn)
and α be a nonzero multi-index. Then the following two conditions are
equivalent:

(I) There exists u ∈ D(Rn) such that Dαu = f .
(II)

∫ ∞

−∞

f(x1, · · · , xj , · · · , xn)x`
jdxj = 0

for j ∈ Mα, ` = 0, · · · , αj − 1 and any (x1, · · · , 0, · · · , xn) ∈ Rn,j.
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Secondly, we need the following fact: For a nonnegative integer m,
there exist functions {θj}j=0,1,··· ,m ⊂ D(R1) which satisfy the condition

(2.1)

∫ ∞

−∞

θj(t)t
idt =

{
1, j = i
0, j 6= i

(j, i = 0, 1, · · · , m).

The first step is

Lemma 2.2. For a nonnegative integer m there exists a function
θ(t) ∈ D(R1) such that

(2.2)

∫ ∞

−∞

θ(t)tidt =

{
1, i = 0
0, i = 1, · · · , m.

Proof. We take a function η(t) ∈ D(R1) such that

(2.3)

∫ ∞

−∞

η(t)dt = 1.

We put

θ(t) = η(t) +

m∑

j=1

cjη
(j)(t)

where η(j) is the derivative of order j of η and cj (j = 1, · · · , m) are
constants. We show that we can choose cj (j = 1, · · · , m) such that

θ(t) satisfies (2.2). Since
∫∞

−∞
η(j)(t)dt = 0 (j = 1, · · · , m), by (2.3) we

have ∫ ∞

−∞

θ(t)dt = 1.

Hence we must choose the constants cj (j = 1, · · · , m) which satisfy

(2.4)

m∑

j=1

cj

∫ ∞

−∞

η(j)(t)tidt = −

∫ ∞

−∞

η(t)tidt, i = 1, 2, · · · , m.

We show that the linear equation (2.4) with respect to cj (j = 1, 2, · · · , m)
has a solution. We consider the coefficient matrix

A =

(∫ ∞

−∞

η(j)(t)tidt

)

i,j=1,··· ,m

.

We see that for j > i

∫ ∞

−∞

η(j)tidt = (−1)ii!

∫ ∞

−∞

η(j−i)(t)dt = 0
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and ∫ ∞

−∞

η(j)(t)tjdt = (−1)jj!

∫ ∞

−∞

η(t)dt = (−1)jj!.

Therefore the matrix A is a triangular matrix and the diagonal elements
are (−1)jj! (j = 1, · · · , m). Hence the determinant of A is not zero.
Consequently the linear equation (2.4) has a solution. Thus we obtain
the lemma. �

Using Lemma 2.2 we prove

Lemma 2.3. For a nonnegative integer m, there exist functions
θj(t) ∈ D(R1) (j = 0, 1, · · · , m) which satisfy (2.1).

Proof. By Lemma 2.2 there exists a function θ(t) ∈ D(R1) which
satisfies (2.2). We put

θj(t) =
(−1)j

j!
θ(j)(t), j = 0, 1, · · · , m.

Then for j > i by integration by parts we have

∫ ∞

−∞

θj(t)t
idt =

(−1)j

j!

∫ ∞

−∞

θ(j)(t)tidt =
(−1)j+ii!

j!

∫ ∞

−∞

θ(j−i)(t)dt = 0.

For j < i (≤ m) it follows from integration by parts and (2.2) that

∫ ∞

−∞

θj(t)t
idt = (−1)2j

(
i
j

)∫ ∞

−∞

θ(t)ti−jdt = 0

where

(
i
j

)

= i!
j!(i−j)! . Moreover, for j = i by integration by parts and

(2.2) we see that

∫ ∞

−∞

θj(t)t
jdt = (−1)2j j!

j!

∫ ∞

−∞

θ(t)dt = 1.

Thus the functions θj (j = 0, 1, · · · , m) satisfy (2.1). The lemma was
proved. �

From now on let α = (α1, · · · , αn) be a nonzero multi-index with Mα =
{j1, · · · , jk} and m = maxi=1,··· ,n(αi − 1). For the nonnegative integer
m we take the functions {θj(t)}j=0,1,··· ,m ⊂ D(R1) in Lemma 2.3.

In the decomposition (1.1) of ϕ ∈ D(Rn), λ(x2, · · · , xn) is given by

λ(x2, · · · , xn) =

∫ ∞

−∞

ϕ(x1, · · · , xn)dx1.
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Indeed, if we put

χ(x) = ϕ(x) −

∫ ∞

−∞

ϕ(x1, · · · , xn)dx1θ0(x1),

then
∫ ∞

−∞

χ(x1, · · · , xn)dx1

=

∫ ∞

−∞

ϕ(x1, · · · , xn)dx1 −

∫ ∞

−∞

ϕ(x1, · · · , xn)dx1

∫ ∞

−∞

θ0(x1)dx1 = 0

because of
∫∞

−∞
θ0(x1)dx1 = 1. Hence by Lemma 2.1 we see that χ ∈

D1(Rn).
Taking the above situation into account, we introduce linear opera-

tors T α and Uα on D(Rn). First, for ϕ ∈ D(Rn) and 1 ≤ i ≤ n, 0 ≤
` ≤ m, we put

Si,`ϕ(x) =
∑̀

j=0

(∫ ∞

−∞

ϕ(x1, · · · , xi, · · · , xn)xj
i dxi

)

θj(xi).

We note that Si,`ϕ ∈ D(Rn). For 1 ≤ p ≤ k, let Mα,p denote the
collection of subsets of Mα which have p elements. For {i1, · · · , ip} ∈
Mα,p we set

Sα(i1,··· ,ip) = Si1,αi1
−1 · · ·Sip,αip−1.

For ϕ ∈ D(Rn), by Fubini’s theorem Sα(i1,··· ,ip)ϕ(x) is given by

(2.5) Sα(i1,··· ,ip)ϕ(x) =

αi1
−1

∑

s1=0

· · ·

αip−1
∑

sp=0

(∫ ∞

−∞

· · ·

∫ ∞

−∞

ϕ(x1, · · · , xn)xs1

i1
· · ·x

sp

ip
dxi1 · · · dxip

)

θs1
(xi1 ) · · · θsp

(xip
).

In particular, the order in the definition of Sα(i1,··· ,ip) is irrelevant.
Next, for 1 ≤ i ≤ n and 0 ≤ ` ≤ m we set

Ti,` = I − Si,`.

Further we define

T α = Tj1,αj1
−1 · · ·Tjk,αjk

−1.
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It follows from the definition that

(2.6) T α = (I − Sj1,αj1
−1) · · · (I − Sjk ,αjk

−1)

= I −

k∑

p=1

(−1)p+1
∑

{i1,··· ,ip}∈Mα,p

Sα(i1,··· ,ip).

Finally we define

(2.7) Uα = I − T α =

k∑

p=1

(−1)p+1
∑

{i1,··· ,ip}∈Mα,p

Sα(i1,··· ,ip).

For a subset {k1, · · · , ks} ⊂ {1, · · · , n}, the notation f({xk1
, · · · , xks

}c)
stands for a function of the remaining variables of {xk1

, · · · , xks
}. For

example, f({x1}
c) = f(x2, · · · , xn).

Referring to (2.5) and (2.7) we define tensor product functions of
order α (associated with {θj}j=0,1,··· ,m) as follows. If a function f ∈
D(Rn) which has the following form

(2.8) f(x) =
k∑

p=1

(−1)p+1
∑

{i1,··· ,ip}∈Mα,p

αi1
−1

∑

s1=0

· · ·

αip−1
∑

sp=0

λi1 ,··· ,ip;s1,··· ,sp
({xi1 , · · · , xip

}c)θs1
(xi1 ) · · · θsp

(xip
)

satisfies the conditions

(2.9) (i) λi1,··· ,ip;s1,··· ,sp
∈ D(Rn−p),

(2.10) (ii) for 2 ≤ p ≤ k, {i1, · · · , ip} ∈ Mα,p and

0 ≤ s1 ≤ αi1 − 1, · · · , 0 ≤ sp ≤ αip
− 1,

λi1,··· ,ip;s1,··· ,sp
({xi1 , · · · , xip

}c)

=

∫ ∞

−∞

· · ·

∫ ∞

−∞

λi`;s`
({xi`

}c)xs1

i1
· · ·
︷︸︸︷

xs`

i`
· · ·x

sp

ip
dxi1 · · ·

︷︸︸︷

dxi`
· · · dxip

(` = 1, 2, · · · , p),
then we call f a tensor product function of order α, where the symbol
︷︸︸︷ indicates that the variable underneath is deleted. We denote by
Uα(Rn) the set of all tensor product functions of order α.

A fundamental property of tensor product functions of order α is
the following.
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Lemma 2.4. Let f be a tensor product function of order α with the
form (2.8). Then

∫ ∞

−∞

· · ·

∫ ∞

−∞

f(x1, · · · , xn)xt1
k1

· · ·x
tq

kq
dxk1

· · · dxkq

= λk1,··· ,kq ;t1,··· ,tq
({xk1

, · · · , xkq
}c)

for 1 ≤ q ≤ k, {k1, · · · , kq} ∈ Mα,q and 0 ≤ t1 ≤ αk1
− 1, · · · , 0 ≤ tq ≤

αkq
− 1.

Proof. First we prove

(2.11)

∫ ∞

−∞

f(x1, · · · , xj , · · · , xn)xt
jdxj = λj;t({xj}

c)

for j = j1, · · · , jk and t = 0, 1, · · · , αj − 1. For {i1, · · · , ip} ∈ Mα,p we
put

I i1,··· ,ip({xj}
c) =

αi1
−1

∑

s1=0

· · ·

αip−1
∑

sp=0

∫ ∞

−∞

λi1 ,··· ,ip;s1,··· ,sp
({xi1 , · · · , xip

}c)

×θs1
(xi1) · · · θsp

(xip
)xt

jdxj .

Then we have
∫ ∞

−∞

f(x1, · · · , xj , · · · , xn)xt
jdxj

=
k∑

p=1

(−1)p+1
∑

{i1,··· ,ip}∈Mα,p

I i1,··· ,ip({xj}
c)

=

k−1∑

p=1

(−1)p+1(Ip({xj}
c) + Jp({xj}

c)) + (−1)k+1Ik({xj}
c)

where

Ip({xj}
c) =

∑

{i1,··· ,ip}∈Mα,p,j∈{i1 ,··· ,ip}

I i1,··· ,ip({xj}
c) (p = 1, · · · , k)

and

Jp({xj}
c) =

∑

{i1,··· ,ip}∈Mα,p,j /∈{i1,··· ,ip}

I i1,··· ,ip({xj}
c) (p = 1, · · · , k−1).

We show that for p = 1, 2, · · · , k − 1

(2.12) Jp({xj}
c) = Ip+1({xj}

c).
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First we consider Jp({xj}
c). For j /∈ {i1, · · · , ip}, let i`−1 < j < i` (` =

1, 2, · · · , p + 1) with i0 = 0 and ip+1 = n + 1. Then by (2.10)

∫ ∞

−∞

λi1 ,··· ,ip;s1,··· ,sp
({xi1 , · · · , xip

}c)xt
jdxj

= λi1,··· ,i`−1,j,i`,··· ,ip;s1,··· ,s`−1,t,s`,··· ,sp
({xi1 , · · · , xi`−1

, xj , xi`
, · · · , xip

}c)

where

λi1,··· ,i`−1,j,i`,··· ,ip;s1,··· ,s`−1,t,s`,··· ,sp
=

{
λj,i1,··· ,ip;t,s1,··· ,sp

if ` = 1,
λi1,··· ,ip,j;s1,··· ,sp,t if ` = p + 1.

Hence

(2.13) Jp({xj}
c) =

∑

{i1,··· ,ip}∈Mα,p,j /∈{i1,··· ,ip}

αi1
−1

∑

s1=0

· · ·

αip−1
∑

sp=0

λi1,··· ,i`−1,j,i`,··· ,ip;s1,··· ,s`−1,t,s`,··· ,sp
({xi1 , · · · , xi`−1

, xj , xi`
, · · · , xip

}c)

×θs1
(xi1 ) · · · θsp

(xip
)

with i`−1 < j < i`. Next we consider Ip+1({xj}
c). For {i1, · · · , ip+1} ∈

Mα,p+1 with {i1, · · · , ip+1} 3 j, let j = i`. Since

∫ ∞

−∞

θs`
(xi`

)xt
jdxj =

∫ ∞

−∞

θs`
(xj)x

t
jdxj =

{
1, s` = t,
0, s` 6= t

by (2.1), we have

I i1,··· ,ip+1({xj}
c)

=

αi1
−1

∑

s1=0

· · ·

αip+1
−1

∑

sp+1=0

∫ ∞

−∞

λi1,··· ,ip+1;s1,··· ,sp+1
({xi1 , · · · , xip+1

}c)

×θs1
(xi1 ) · · · θsp+1

(xip+1
)xt

jdxj

=

αi1
−1

∑

s1=0

· · ·

αip+1
−1

∑

sp+1=0

λi1,··· ,ip+1;s1,··· ,sp+1
({xi1 , · · · , xip+1

}c)

×θs1
(xi1) · · ·

︷ ︸︸ ︷

θs`
(xi`

) · · · θsp+1
(xip+1

)

∫ ∞

−∞

θs`
(xj)x

t
jdxj

=

αi1
−1

∑

s1=0

· · ·

αi`−1
−1

∑

s`−1=0

αi`+1
−1

∑

s`+1=0

· · ·

αip+1
−1

∑

sp+1=0

λi1,··· ,i`,··· ,ip+1;s1,··· ,s`−1,t,s`+1,··· ,sp+1
({xi1 , · · · , xi`

, · · · , xip+1
}c)
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×θs1
(xi1 ) · · · θs`−1

(xi`−1
)θs`+1

(xi`+1
) · · · θsp+1

(xip+1
).

By putting u1 = s1, · · · , u`−1 = s`−1, u` = s`+1, · · · , up = sp+1, we have

I i1,··· ,ip+1({xj}
c) =

αi1
−1

∑

u1=0

· · ·

αi`−1
−1

∑

u`−1=0

αi`+1
−1

∑

u`=0

· · ·

αip+1
−1

∑

up=0

λi1,··· ,i`,··· ,ip+1;u1,··· ,u`−1,t,u`,··· ,up
({xi1 , · · · , xi`

, · · · , xip+1
}c)

×θu1
(xi1 ) · · · θu`−1

(xi`−1
)θu`

(xi`+1
) · · · θup

(xip+1
)

with i` = j. Moreover, for {i1, · · · , ip+1} ∈ Mα,p+1 with {i1, · · · , ip+1} 3
j = i` we put

m1 = i1, · · · , m`−1 = i`−1, m` = i`+1, · · · , mp = ip+1.

We denote Mα,p,j = {{i1, · · · , ip} ∈ Mα,p : j ∈ {i1, · · · , ip}} and
M c

α,p,j = {{i1, · · · , ip} ∈ Mα,p : j /∈ {i1, · · · , ip}}. We note that the
above correspondence {i1, · · · , ip+1} → {m1, · · · , mp} is a one-to-one
and onto mapping from Mα,p+1,j to M c

α,p,j . Hence

(2.14) Ip+1({xj}
c)

=
∑

{i1,··· ,ip+1}∈Mα,p+1,j∈{i1,··· ,ip+1}

αi1
−1

∑

u1=0

· · ·

αi`−1
−1

∑

u`−1=0

αi`+1
−1

∑

u`=0

· · ·

αip+1
−1

∑

up=0

λi1,··· ,i`,··· ,ip+1;u1,··· ,u`−1,t,u`,··· ,up
({xi1 , · · · , xi`

, · · · , xip+1
}c)

×θu1
(xi1 ) · · · θu`−1

(xi`−1
)θu`

(xi`+1
) · · · θup

(xip+1
)

=
∑

{m1,··· ,mp}∈Mα,p,j /∈{m1,··· ,mp}

αm1
−1

∑

u1=0

· · ·

αmp−1
∑

up=0

λm1,··· ,m`−1,j,m`,··· ,mp;u1,··· ,u`−1,t,u`,··· ,up
({xm1

, · · · , xm`−1
, xj ,

xm`
, · · · , xmp

}c)θu1
(xm1

) · · · θup
(xmp

)

with i` = j and m`−1 < j < m`. Comparing (2.13) and (2.14) we
obtain (2.12). Therefore, by (2.1)

∫ ∞

−∞

f(x1, · · · , xj , · · · , xn)xt
jdt = I1({xj}

c)

=

αj−1
∑

s=0

∫ ∞

−∞

λj;s({xj}
c)θs(xj)x

t
jdxj = λj;t({xj}

c).
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Thus we obtain (2.11). Next, for 2 ≤ q ≤ k, {k1, · · · , kq} ∈ Mα,q and
0 ≤ t1 ≤ αk1

− 1, · · · , 0 ≤ tq ≤ αkq
− 1, by (2.10) and (2.11) we have

∫ ∞

−∞

· · ·

∫ ∞

−∞

f(x1, · · · , xn)xt1
k1

· · ·x
tq

kq
dxk1

· · · dxkq

=

∫ ∞

−∞

· · ·

∫ ∞

−∞

(∫ ∞

−∞

f(x1, · · · , xn)xt1
k1

dxk1

)

xt2
k2

· · ·x
tq

kq
dxk2

· · · dxkq

=

∫ ∞

−∞

· · ·

∫ ∞

−∞

λk1;t1({xk1
}c)xt2

k2
· · ·x

tq

kq
dxk2

· · · dxkq

= λk1,k2,··· ,kq ;t1,t2,··· ,tq
({xk1

, xk2
, · · · , xkq

}c).

We have completed the proof of the lemma. �

We state properties of the operators T α and Uα which are important for
a direct sum decomposition of D(Rn). We denote by ej the multi-index
which has 1 in the jth spot and 0 everywhere else (j = 1, 2, · · · , n).

Lemma 2.5. Let γ = (γ1, · · · , γn) be a multi-index with γj = 0 and

0 ≤ ` ≤ m. Then for ϕ ∈ Dγ(Rn), Tj,`ϕ ∈ Dγ+(`+1)ej (Rn).

Proof. We note that j /∈ Mγ by the condition γj = 0. Let ϕ ∈

Dγ(Rn). In order to show that Tj,`ϕ ∈ Dγ+(`+1)ej (Rn), by Lemma 2.1
it suffices to prove

∫ ∞

−∞

Tj,`ϕ(x1, · · · , xi, · · · , xn)xs
i dxi = 0

for s = 0, 1, · · · , γi − 1 if i ∈ Mγ and s = 0, 1, · · · , ` if i = j. First, let
i ∈ Mγ . Then by the condition ϕ ∈ Dγ(Rn) and Lemma 2.1 we have

∫ ∞

−∞

Tj,`ϕ(x1, · · · , xi, · · · , xn)xs
i dxi

=

∫ ∞

−∞

ϕ(x1, · · · , xi, · · · , xn)xs
i dxi

−

∫ ∞

−∞

(
∑̀

t=0

(∫ ∞

−∞

ϕ(x1, · · · , xi, · · · , xj , · · · , xn)xt
jdxj

)

θt(xj)

)

xs
i dxi

=

∫ ∞

−∞

ϕ(x1, · · · , xi, · · · , xn)xs
i dxi

−
∑̀

t=0

(∫ ∞

−∞

(∫ ∞

−∞

ϕ(x1, · · · , xi, · · · , xj , · · · , xn)xs
i dxi

)

xt
jdxj

)

θt(xj)

= 0
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for s = 0, 1, · · · , γi − 1. Next, let i = j. Then for s = 0, 1, · · · , ` we
see that

∫ ∞

−∞

Tj,`ϕ(x1, · · · , xj , · · · , xn)xs
jdxj

=

∫ ∞

−∞

ϕ(x1, · · · , xj , · · · , xn)xs
jdxj

−

∫ ∞

−∞

(
∑̀

t=0

(∫ ∞

−∞

ϕ(x1, · · · , xj , · · · , xn)xt
jdxj

)

θt(xj)

)

xs
jdxj

=

∫ ∞

−∞

ϕ(x1, · · · , xj , · · · , xn)xs
jdxj

−
∑̀

t=0

(∫ ∞

−∞

ϕ(x1, · · · , xj , · · · , xn)xt
jdxj

)∫ ∞

−∞

θt(xj)x
s
jdxj

=

∫ ∞

−∞

ϕ(x1, · · · , xj , · · · , xn)xs
jdxj −

∫ ∞

−∞

ϕ(x1, · · · , xj , · · · , xn)xs
jdxj

= 0

because the functions {θj}j=0,1,··· ,m satisfy (2.1). Thus we obtain the
lemma. �

Lemma 2.6. (i) If ϕ ∈ D(Rn), then T αϕ ∈ Dα(Rn).
(ii) If ϕ ∈ D(Rn), then Uαϕ ∈ Uα(Rn).

Proof. (i) By using Lemma 2.5 repeatedly we obtain (i).
(ii) Let ϕ ∈ D(Rn). By (2.5) and (2.7) Uαϕ has the following

form:

Uαϕ(x) =

k∑

p=1

(−1)p+1
∑

{i1,··· ,ip}∈Mα,p

αi1
−1

∑

s1=0

· · ·

αip−1
∑

sp=0

(∫ ∞

−∞

· · ·

∫ ∞

−∞

ϕ(x1, · · · , xn)xs1

i1
· · ·x

sp

ip
dxi1 · · · dxip

)

θs1
(xi1 ) · · · θsp

(xip
).

For {i1, · · · , ip} ∈ Mα,p and 0 ≤ s1 ≤ αi1 − 1, · · · , 0 ≤ sp ≤ αip
− 1 we

set

λi1,··· ,ip;s1,··· ,sp
({xi1 , · · · , xip

}c)

=

∫ ∞

−∞

· · ·

∫ ∞

−∞

ϕ(x1, · · · , xn)xs1

i1
· · ·x

sp

ip
dxi1 · · · dxip

.
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It is clear that λi1,··· ,ip;s1,··· ,sp
∈ D(Rn−p). Moreover, for 2 ≤ p ≤ k

and 1 ≤ ` ≤ p we have

λi1,··· ,ip;s1,··· ,sp
({xi1 , · · · , xip

}c)

=

∫ ∞

−∞

· · ·

∫ ∞

−∞

(∫ ∞

−∞

ϕ(x1, · · · , xi`
, · · · , xn)xs`

i`
dxi`

)

×xs1

i1
· · ·
︷︸︸︷

xs`

i`
· · ·x

sp

ip
dxi1 · · ·

︷︸︸︷

dxi`
· · · dxip

=

∫ ∞

−∞

· · ·

∫ ∞

−∞

λi`;s`
({xi`

}c)xs1

i1
· · ·
︷︸︸︷

xs`

i`
· · ·x

sp

ip
dxi1 · · ·

︷︸︸︷

dxi`
· · · dxip

.

Thus Uαϕ satisfies (2.9) and (2.10), and hence Uαϕ is a tensor product
function of order α. The lemma was proved. �

Lemma 2.7. (i) If ϕ ∈ Dα(Rn), then T αϕ = ϕ.
(ii) If ϕ ∈ Uα(Rn), then Uαϕ = ϕ.

Proof. (i) Let ϕ ∈ Dα(Rn). For p = 1, 2, · · · , k and {i1, · · · , ip} ∈

Mα,p, since Sα(i1,··· ,ip)ϕ is given by (2.5), we see that Sα(i1,··· ,ip)ϕ = 0
by the condition ϕ ∈ Dα(Rn), Lemma 2.1 and Fubini’s theorem. Hence
(2.6) implies that T αϕ = ϕ.

(ii) Let ϕ ∈ Uα(Rn) and ϕ have the form (2.8). Then by (2.5),
(2.7) and Lemma 2.4 we have

Uαϕ(x) =

k∑

p=1

(−1)p+1
∑

{i1,··· ,ip}∈Mα,p

αi1
−1

∑

s1=0

· · ·

αip−1
∑

sp=0
(∫ ∞

−∞

· · ·

∫ ∞

−∞

ϕ(x1, · · · , xn)xs1

i1
· · ·x

sp

ip
dxi1 · · · dxip

)

θs1
(xi1 ) · · · θsp

(xip
)

=

k∑

p=1

(−1)p+1
∑

{i1,··· ,ip}∈Mα,p

αi1
−1

∑

s1=0

· · ·

αip−1
∑

sp=0

λi1,··· ,ip;s1,··· ,sp
({xi1 , · · · , xip

}c)θs1
(xi1 ) · · · θsp

(xip
)

= ϕ(x).

Hence we obtain (ii). �

Now we establish our main result.

Theorem 2.1. D(Rn) = Dα(Rn) ⊕ Uα(Rn).
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Proof. Since ϕ = T αϕ + Uαϕ for ϕ ∈ D(Rn), Lemma 2.6 gives
D(Rn) = Dα(Rn) + Uα(Rn). Moreover, let ϕ ∈ Dα(Rn) ∩ Uα(Rn).
Then Lemma 2.7 implies

ϕ = T αϕ + Uαϕ = ϕ + ϕ = 2ϕ.

Hence ϕ = 0. Therefore Dα(Rn) ∩ Uα(Rn) = {0}. Thus we obtain
the theorem. �

Remark 2.1. We note that Lemmas 2.6 (i) and 2.7 (i) (resp. Lemmas
2.6 (ii) and 2.7 (ii)) imply T α(D(Rn)) = Dα(Rn) (resp. Uα(D(Rn)) =
Uα(Rn)). Moreover, (T α)−1(0) = Uα(Rn) and (Uα)−1(0) = Dα(Rn).
We give the proof of (Uα)−1(0) = Dα(Rn). Let ϕ ∈ Dα(Rn). Then
Uαϕ = ϕ − T αϕ = ϕ − ϕ = 0 by Lemma 2.7 (i). Hence Dα(Rn) ⊂
(Uα)−1(0). Conversely let ϕ ∈ (Uα)−1(0). Then 0 = Uαϕ = ϕ − T αϕ.
Hence ϕ = T αϕ ∈ Dα(Rn) by Lemma 2.6 (i). Therefore (Uα)−1(0) ⊂
Dα(Rn). The proof of (T α)−1(0) = Uα(Rn) is the same.
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Abstract.

We show that f ∈ Lp(X; m) implies |f |dm ∈ S1

K for p > D with
D > 0, where S1

K is a subfamily of Kato class measures relative to
a semigroup kernel pt(x, y) of a Markov process associated with a
(non-symmetric) Dirichlet form on L2(X; m). We only assume that
pt(x, y) satisfies the Nash type estimate of small time depending on
D. No concrete expression of pt(x, y) is needed for the result.

§1. Introduction

A measurable function f on R
d is said to be in the Kato class Kd if

lim
r→0

sup
x∈Rd

∫

|x−y|<r

|f(y)|
|x − y|d−2

dy = 0 for d ≥ 3,

lim
r→0

sup
x∈Rd

∫

|x−y|<r

(log |x − y|−1)|f(y)|dy = 0 for d = 2,

sup
x∈Rd

∫

|x−y|<1

|f(y)|dy < ∞ for d = 1.
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Let Mw = (Ω, Bt, Px)x∈Rd be a d-dimensional Brownian motion on R
d.

The following theorem is shown in Aizenman and Simon [1]:

Theorem 1.1 (Theorem 1.3(ii) in [1]). f ∈ Kd if and only if

sup
x∈Rd

Ex

[∫ t

0

|f(Bs)|ds

]
= sup

x∈Rd

∫

Rd

(∫ t

0

ps(x, y)ds

)
|f(y)|dy

t→0−−−→ 0,

where pt(x, y) := 1
(2πt)d/2

exp[− |x−y|2
2t ] is the heat kernel of Mw.

Zhao [13] extends this in more general setting including a subclass
of Lévy processes, but his result does not assure the low dimensional
case even if the process is Mw. The following is also shown in [1]:

Theorem 1.2 (cf. Theorem 1.4(iii) in [1]). Lp(Rd) ⊂ Kd holds if
p > d/2 with d ≥ 2, or p ≥ 1 with d = 1.

Note that there is an f ∈ Ld/2(Rd) \ Kd for d ≥ 2. Indeed,
taking g ∈ C0([0, 2/e[→ [0,∞]) with g(r) := 1/(r2 log r−1) if d ≥ 3,
:= 1/(r2(log r−1)1+ε), ε ∈]0, 1[ if d = 2 for r ∈ [0, 1/e], f(x) := g(|x|)
does the job through the proof of Proposition 4.10 in [1]. Here (4.10) in

[1] should be changed to
∫ 1/e

0
r(log r−1)|V (r)|dr < ∞ if d = 2.

In the framework of strongly local regular Dirichlet forms with the
notions of volume doubling and weak Poincaré inequality, Biroli and
Mosco [3] gave a similar result with Theorem 1.2 (see Proposition 3.7
in [3]). Their definition of Kato class depends on the volume growth
of balls. The purpose of this note is to show that Theorem 1.2 holds
true in more general context replacing Kd with S1

K the family of Kato
class smooth measures in the strict sense in terms of semigroup kernel of
Markov processes associated with (non-symmetric) Dirichlet forms (see
Theorem 2.1 below).

Finally we will announce the content of [10]. In [10], we extend
Theorem 1.1, that is, under some conditions, we establish Kd,β = S1

K in
the framework of symmetric Markov processes which admits a semigroup
kernel possessing upper and lower estimates, which includes the low
dimensional case. Here Kd,β is the family of Kato class measures in terms
of a Green kernel depending on d, β > 0. In particular, Theorem 2.1
below can be strengthened by replacing Lp(X ; m) with Lp

unif
(X ; m).

§2. Result

Let X be a locally compact separable metric space and m a posi-
tive Radon measure with full support. Let X∆ := X ∪ {∆} be a one
point compactification of X . We consider and fix a (non-symmetric)
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regular Dirichlet form (E ,F) on L2(X ; m). Then there exists a pair of

Hunt processes (M, M̂), M = (Ω, Xt, ζ, Px), M̂ = (Ω̂, X̂t, ζ̂, P̂x) such
that for each Borel u ∈ L2(X ; m), Ttu(x) = Ex[u(Xt)] m-a.e. x ∈ X

and T̂tu(x) = Êx[u(X̂t)] m-a.e. x ∈ X for all t > 0, where (Tt)t>0

(resp. (T̂t)t>0) is the semigroup associated with (E ,F) (resp. (Ê ,F)),

where Ê(u, v) := E(v, u) for u, v ∈ F is the dual form of (E ,F). Here

ζ := inf{t ≥ 0 | Xt = ∆} (resp. ζ̂ := inf{t ≥ 0 | X̂t = ∆}) de-

notes the life time of M (resp. M̂). Further, we assume that there
exists a kernel pt(x, y) defined for all (t, x, y) ∈]0,∞[×X × X such that

Ex[u(Xt)] = Ptu(x) :=
∫

X pt(x, y)u(y)m(dy) and Êx[u(X̂t)] = P̂ u(x) :=∫
X

p̂t(x, y)u(y)m(dy) for any x ∈ X , bounded Borel function u and
t > 0, where p̂t(x, y) := pt(y, x). pt(x, y) is said to be a semigroup ker-
nel, or sometimes called a heat kernel of M on the analogy of heat kernel
of diffusions. Then Pt and P̂t can be extended to contractive semigroups
on Lp(X ; m) for p ≥ 1. The following are well-known:

(a) pt+s(x, y) =

∫

X

ps(x, z)pt(z, y)m(dz), ∀x, y ∈ X , ∀t, s > 0.

(b) pt(x, dy) = pt(x, y)m(dy), ∀x ∈ X , ∀t > 0.

(c)

∫

X

pt(x, y)m(dy) ≤ 1, ∀x ∈ X , ∀t > 0.

The same properties also hold for p̂t(x, y).

Definition 2.1 (Kato class S0
K , Dynkin class S0

D). For a positive
Borel measure µ on X , µ is said to be in Kato class relative to the
semigroup kernel pt(x, y) (write µ ∈ S0

K) if

lim
t→0

sup
x∈X

∫

X

(∫ t

0

ps(x, y)ds
)
µ(dy) = 0(2.1)

and µ is said to be in Dynkin class relative to the semigroup kernel
pt(x, y) (write µ ∈ S0

D) if

sup
x∈X

∫

X

(∫ t

0

ps(x, y)ds
)
µ(dy) < ∞ for ∃t > 0.(2.2)

Clearly, S0
K ⊂ S0

D. The notions Ŝ0
K and Ŝ0

D are similarly defined by
replacing pt(x, y) with p̂t(x, y).

Definition 2.2 (Measures of finite energy integrals: S0, S00, cf. [6]).
A Borel measure µ on X is said to be of finite energy integral with respect
to (E ,F) (write µ ∈ S0) if there exists C > 0 such that

∫

X

|v|dµ ≤ C
√
E1(v, v), ∀v ∈ F ∩ C0(X).
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In that case, for every α > 0, there exist Uαµ, Ûαµ ∈ F such that

Eα(Uαµ, v) = Eα(v, Ûαµ) =

∫

X

v(x)µ(dx), ∀v ∈ F ∩ C0(X).

Moreover we write µ ∈ S00 (resp. µ ∈ Ŝ00) if µ(X) < ∞ and Uαµ ∈
F ∩ L∞(X ; m) (resp. Ûαµ ∈ F ∩ L∞(X ; m)) for some/all α > 0.

Definition 2.3 (Smooth measures in the strict sense: S1, cf. [6]).
A Borel measure µ on X is said to be a smooth measure in the strict
sense with respect to (E ,F) (write µ ∈ S1) if there exists an increasing
sequence {En} of Borel sets such that X =

⋃∞
n=1 En, ∀n ∈ N, IEnµ ∈ S00

and Px(limn→∞ σX\En
≥ ζ) = 1, ∀x ∈ X . Here ζ is the life time of M.

The family of smooth measure in the strict sense with respect to (Ê ,F)

(write Ŝ1) can be similarly defined.

Definition 2.4. We define S1
K := S0

K ∩ S1, S1
D := S0

D ∩ S1, Ŝ1
K :=

Ŝ0
K ∩ Ŝ1 and Ŝ1

D := Ŝ0
D ∩ Ŝ1.

We fix D > 0 and assume the Nash type estimate: for each t0 > 0
we have

∃CD,t0 > 0 s.t. sup
x,y∈X

pt(x, y) ≤ CD,t0 t
−D, ∀t ∈]0, t0[.(2.3)

Remark 2.1. The condition (2.3) implies the following:

(a) ∃CD,t0 > 0 s.t. ||Pt||1→∞ ≤ CD,t0 t
−D for any t ∈]0, t0[.

(b) For each p ≥ 1, ∃CD,p,t0 > 0 s.t. ||Pt||p→∞ ≤ CD,p,t0 t
−D/p for

any t ∈]0, t0[.

If (E ,F) is a symmetric Dirichlet form, (2.3) is equivalent to one (hence
all) of (a),(b). If further D > 1, (2.3) is also equivalent to the Sobolev
inequality (see [5]): there exists C∗

D > 0 and γ > 0 such that

(c) ||u|| 2D
D−1

≤ C∗
DEγ(u, u) for all u ∈ F .

Next theorem extends Theorem 1.2 and the lower estimate of p in
this theorem is best possible as remarked after Theorem 1.2.

Theorem 2.1. Suppose (2.3) and p > D with D ∈ [1,∞[ or p ≥ 1

with D ∈]0, 1[. Then f ∈ Lp(X ; m) implies |f |dm ∈ S1
K ∩ Ŝ1

K .

§3. Proof of Theorem 2.1

We set rα(x, y) :=

∫ ∞

0

e−αtpt(x, y)dt. First we show the following:
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Lemma 3.1. µ ∈ S0
K is equivalent to

lim
α→∞

sup
x∈X

∫

X

rα(x, y)µ(dy) = 0(3.1)

and µ ∈ S0
D is equivalent to

sup
x∈X

∫

X

rα(x, y)µ(dy) < ∞, ∃α > 0.(3.2)

Proof. We first show (2.1)⇒(3.1). Take α0 > 0 with α ≥ α0,
∫

X

rα(x, y)µ(dy)

=

∫

X

∫ t

0

e−αsps(x, y)dsµ(dy) +

∫

X

∫ ∞

t

e−αsps(x, y)dsµ(dy)

≤
∫

X

∫ t

0

ps(x, y)dsµ(dy) + e−(α−α0)t

∫

X

∫ ∞

t

e−α0sps(x, y)dsµ(dy).

Here
∫

X

∫ ∞

t

e−α0sps(x, y)dsµ(dy) =

∫

X

∞∑

k=1

∫ (k+1)t

kt

e−α0sps(x, y)dsµ(dy)

=
∞∑

k=1

∫

X

∫ t

0

e−α0(u+kt)pu+kt(x, y)duµ(dy).

Since pu+kt(x, y) =

∫

X

pkt(x, z)pu(z, y)m(dz),

∫

X

∫ ∞

t

e−α0sps(x, y)dsµ(dy)

=

∞∑

k=1

e−α0kt

∫

X

pkt(x, z)

∫

X

∫ t

0

e−α0upu(z, y)duµ(dy)m(dz)

≤
∞∑

k=1

e−α0kt

∫

X

pkt(x, z)

∫

X

∫ t

0

pu(z, y)duµ(dy)m(dz).

From (2.1), Nt := sup
z∈X

∫

X

∫ t

0

pu(z, y)duµ(dy) < ∞. Then

sup
x∈X

∫

X

rα(x, y)µ(dy)(3.3)

≤ sup
x∈X

∫

X

∫ t

0

ps(x, y)dsµ(dy) +
e−αt

1 − e−α0t
Nt.
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Therefore

lim
α→∞

sup
x∈X

∫

X

rα(x, y)µ(dy) ≤ sup
x∈X

∫

X

∫ t

0

ps(x, y)dsµ(dy)
t→0−−−→ 0.

Next we show (3.1)⇒(2.1). We have

sup
x∈X

∫

X

∫ t

0

ps(x, y)dsµ(dy) ≤ eαt sup
x∈X

∫

X

rα(x, y)µ(dy).(3.4)

Therefore

lim
t→0

sup
x∈X

∫

X

∫ t

0

ps(x, y)dsµ(dy) ≤ sup
x∈X

∫

X

rα(x, y)µ(dy)
α→∞−−−−→ 0.

The implications (3.2)⇐⇒(2.2) are clear from (3.3) and (3.4). �

Lemma 3.2. The following are equivalent to each other.

(a) µ ∈ S0
D.

(b) sup
x∈X

∫

X

(∫ t

0

ps(x, y)ds
)
µ(dy) < ∞ for ∀t > 0.

(c) sup
x∈X

∫

X

rα(x, y)µ(dy) < ∞ for ∀α > 0.

Proof. We first show (a)=⇒(b). Suppose that (a) holds for some
t0 > 0. For any t > 0, we take n ∈ N with t ≤ nt0. We have

sup
x∈X

∫

X

(∫ t

0

ps(x, y)ds
)
µ(dy)

≤ sup
x∈X

n∑

k=1

∫

X

pkt0(x, z)
(∫ t0

0

∫

X

ps(z, y)µ(dy)ds
)
m(dz)

≤n sup
x∈X

∫ t0

0

(∫

X

ps(x, y)µ(dy)
)
ds < ∞.

(b)=⇒(c) is clear from (3.3) and (c)=⇒(a) is clear. �

Proposition 3.1. Suppose that µ ∈ S0
D is a positive Radon measure

on X. Then µ ∈ S1.

Proof. It suffices to show that for a positive Radon measure µ ∈
S0

D, IKµ ∈ S0 for any compact set K. Indeed, there exists an increasing
sequence {Gn} of relatively compact open set with

⋃∞
n=1 Gn = X . Then

we see IGnµ ∈ S00 for each n ∈ N, which implies µ ∈ S1 by Thoerem
5.1.7(iii) in [6]. Though the framework of Thoerem 5.1.7(iii) in [6] is
symmetric, its proof only depends on the quasi-left-continuity of M and
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remains valid in the present context. We show IKµ ∈ S0 for a compact
set K. Fix α > 0 and set Rαµ(x) :=

∫
X rα(x, y)µ(dy). First we show

Rα(IKµ) ∈ L2(X ; m).

‖Rα(IKµ)‖2
2 ≤ ‖Rα(IKµ)‖∞‖Rα(IKµ)‖1

= ‖Rα(IKµ)‖∞〈IKµ, R̂α1〉

=
1

α
‖Rα(IKµ)‖∞µ(K) < ∞.

Next we prove Rα(IKµ) ∈ F . It suffices to show

sup
β>0

E(β)
α (Rα(IKµ), Rα(IKµ)) < ∞,

where E(β)
α (u, v) := β(u − βRβ+αu, v)m for u, v ∈ L2(X ; m). Then

sup
β>0

E(β)
α (Rα(IKµ), Rα(IKµ)) = sup

β>0
β(Rβ+α(IKµ), Rα(IKµ))m

= ‖Rα(IKµ)‖∞ sup
β>0

β〈IKµ, R̂β+α1〉

≤ ‖Rα(IKµ)‖∞µ(K) < ∞.

Finally we prove IKµ ∈ S0 and Rα(IKµ) = Uα(IKµ). It suffices to show
that for any v ∈ F ∩ C0(X)

Eα(Rα(IKµ), v) = lim
β→∞

E(β)
α (Rα(IKµ), v)

= lim
β→∞

β(Rβ+α(IKµ), v)m

= lim
β→∞

β〈IKµ, R̂β+αv〉 = 〈IKµ, v〉,

where we use the right continuity of the sample paths of M̂. �

Proof of Theorem 2.1. By duality, it suffices only to prove that f ∈
Lp(X ; m) implies |f |dm ∈ S1

K . Take p > D with D ∈ [1,∞[ or p ≥ 1

with D ∈]0, 1[. Since ‖Pt‖p→∞ ≤ CD,p,t0 t
−D/p for t ∈]0, t0[, we have

sup
x∈X

∫

X

(∫ t

0

ps(x, y)ds
)
|f(y)|m(dy)

= sup
x∈X

∫ t

0

(∫

X

|f(y)|ps(x, y)m(dy)
)
ds

≤ CD,p,t0‖f‖p

∫ t

0

s−D/pds

= CD,p,t0‖f‖p
p

p − D
t1−D/p t→0−−−→ 0.
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Then |f |dm ∈ S0
K . Since |f |dm with f ∈ Lp(X ; m) is a Radon measure,

we conclude |f |dm ∈ S1 by Proposition 3.1. Therefore |f |dm ∈ S1
K . �

§4. Examples

Example 4.1 (Symmetric α-stable process). Take α ∈]0, 2[. Let
Mα = (Ω, Xt, Px)x∈Rd be the symmetric α-stable process on R

d, that

is, Lévy process satisfying E0[e
√
−1〈ξ,Xt〉] = e−t|ξ|α . It is well-known

that Mα admits a semigroup kernel pt(x, y) satisfying the following
(cf. [2],[7]): ∃Ci = Ci(α, d) > 0, i = 1, 2 such that for all (t, x, y) ∈
]0,∞[×R

d × R
d

C1

td/α

1
(
1 + |x−y|

t1/α

)d+α
≤ pt(x, y) ≤ C2

td/α

1
(
1 + |x−y|

t1/α

)d+α
.

Similar estimate holds for jump type process over d-sets (see [4]). In
particular, there exists C2 = C2(α, d) > 0 with pt(x, y) ≤ C2t

−d/α

for (t, x, y) ∈]0,∞[×R
d × R

d. Then we have that f ∈ Lp(Rd) implies
|f(x)|dx ∈ S1

K if p > d/α with d ≥ α, or p ≥ 1 with d < α.

Example 4.2 (Relativistic Hamiltonian process). Let MH be the

relativistic Hamiltonian process on R
d with mass m > 0, that is, MH =

(Ω, Xt, Px)x∈Rd is a Lévy process satisfying

E0

[
e
√
−1〈ξ,Xt〉] = e−t(

√
|ξ|2+m2−m).

It is shown in [8], the semigroup kernel pt(x, y) of MH is given by

pt(x, y) = (2π)−d t√
|x − y|2 + t2

∫

Rd

emte−
√

(|x−y|2+t2)(|z|2+m2)dz.

Hence we have that for each t0 > 0, there exist Ci = Ci(d) > 0, i = 1, 2
independent of t0 such that for any t ∈]0, t0[, x, y ∈ R

d

C1

td
e−m|x−y|

(
1 + |x−y|2

t2

)(d+1)/2
≤ pt(x, y) ≤ C2

td
emt0

(
1 + |x−y|2

t2

)(d+1)/2
.

In particular, supx,y∈Rd pt(x, y) ≤ C2e
mt0/td for t ∈]0, t0[. Then we have

that f ∈ Lp(Rd) implies |f(x)|dx ∈ S1
K for p > d.

Example 4.3 (Brownian motion penetrating fracrals, cf. [9]). The
diffusion process on R

d constructed in [9] admits the heat kernel pt(x, y)
which has the following upper estimate: there exists C > 0 such that
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supx,y∈Rd pt(x, y) ≤ Ct−d/2 if t ∈]0, 1]. Hence f ∈ Lp(Rd) implies

|f(x)|dx ∈ S1
K for p > d/2 with d ≥ 2 or p ≥ 1 with d = 1.

Example 4.4 (Diffusions with bounded drift). Let a be the sym-
metric matrix valued measurable function such that λ|ξ|2 ≤ 〈a(x)ξ, ξ〉 ≤
Λ|ξ|2, ∀x, ξ ∈ R

d for 0 < ∃λ ≤ ∃Λ. Let b : R
d → R

d be a bounded
measurable function and assume div b ≥ 0 in the distributional sense.
Consider (Ea,b, C∞

0 (Rd)) defined by

Ea,b(u, v) :=
1

2

∫

Rd

〈a(x)∇u(x),∇v(x)〉dx −
∫

Rd

〈b(x),∇u(x)〉v(x)dx

for u, v ∈ C∞
0 (Rd). Then we see Ea,b(u, u) ≥ 0 for u ∈ C∞

0 (Rd) and
(Ea,b, C∞

0 (Rd)) is closable on L2(Rd) (see Chapter II 2(d) in [11]). We
denote by (Ea,b, H1(Rd)) its closure on L2(Rd). (Ea.b, H1(Rd)) is a non-

symmetric Dirichlet form on L2(Rd). Let {T a,b
t }t>0 be the L2(Rd)-

semigroups associated with (Ea,b, H1(Rd)). Then, by §II. 2 in [12], T a,b
t

admits a heat kernel pa,b
t (x, y) on ]0,∞[×R

d ×R
d such that P a,b

t f(x) :=∫
Rd pa,b

t (x, y)f(x)dy is an m-version of T a,b
t f for f ∈ L2(Rd) and pa,b

t (x, y)
satisfies the Aronson’s estimates: (see (II. 2.4) in [12]) there exists an
M := M(λ, Λ, d) ∈ [1,∞) such that for all x, y ∈ R

d, t ∈]0, 1[

1

Mtd/2
e−M(t+|x−y|2/t) ≤ pa,b

t (x, y) ≤ M

td/2
eMt−|x−y|2/Mt.(4.1)

In particular, supx,y∈Rd pa,b
t (x, y) ≤ MeM/td/2 for all t ∈]0, 1[, hence

f ∈ Lp(Rd) implies |f(x)|dx ∈ S1
K ∩ Ŝ1

K for p > d/2 with d ≥ 2, or p ≥ 1
with d = 1.
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A subharmonic Hardy class and Bloch pullback

operator norms

Ern Gun Kwon

Abstract.

We estimate the operator norm of the composition operators
mapping Bloch space boundedly into Hardy spaces, BMOA space,
Lipschitz spaces and mean Lipschitz spaces respectively.

§1. Introduction

This is to give a brief survey of a resent result on Bloch pullback
operators, whose detailed proof will appear at [5]. Our purpose here
is two-fold. One is to obtain hyperbolic version of Littlewood-Paley
g-function equivalence, the other is to estimate the operator norm of
Bloch-pullback operators. At first glance these two topics seem to be
quite apart, but they are very closely related.

Let D be the unit disc of the complex plane and S = ∂D. Let Hp,
0 < p < ∞, denote the classical Hardy space defined to consist of f
holomorphic in D for which

‖f‖Hp = lim
r→1

(
∫

S

|f(rζ)|p dσ(ζ)

)1/p

< ∞,

where dσ is the rotation invariant Lebesgue probability measure (Haar
measure) on S.

For a holomorphic function f in D, the g-function of Littlewood-
Paley defined as

gf (ζ) =

(
∫ 1

0

(1 − r)|f ′(rζ)|2 dr

)1/2

, ζ ∈ S,

Received November 1, 2004.
2000 Mathematics Subject Classification. 30D05, 30D45, 30D50, 30D55.
Supported by KRF(R05-2004-000-10990-0).
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satisfies the following beautiful and powerful relation

‖gf‖Lp ≈ ‖f − f(0)‖Hp(1.1)

(see [1] or [8], also see [16] for 1 < p < ∞). Here and throughout,
Lp = Lp(S).

In parallel with Hp, there defined is %Hp consisting of holomorphic
self map φ of D for which

‖φ‖%Hp = lim
r→1

(
∫

S

% (φ(rζ), 0)
p
dσ(ζ)

)1/p

< ∞,

where % is the hyperbolic distance on D :

%(z, w) =
1

2
log

1 + |ϕz(w)|

1 − |ϕz(w)|
, ϕz(w) =

z − w

1 − z̄w
.

We set λ(z) = log 1
1−|z| , z ∈ D. Note that if φ is a holomorphic self

map of D, then λ ◦ φ is subharmonic in D and radial limit φ∗(ζ) =
limr→1 φ(rζ) exists almost every ζ ∈ S, so φ ∈ %Hp if and only if
λ ◦ φ∗ ∈ Lp(S). Throughout, dA(z) denotes the Lebesgue area measure
of D normalized to be A(D) = 1.

Along with [6, 10] for previous results on pullback theory, we refer
to [3, 16] for Hardy space theory and [2, 15] for composition operator
theory.

§2. Hyperbolic g-function

Our first subject is the Littlewood-Paley type g-function that char-
acterizes the membership of %Hp. See [4] and [6] for related previous
works. We define, as in [4],

%gφ(ζ) =

∫ 1

0

(1 − r)

(

|φ′(rζ)|

1 − |φ(rζ)|2

)2

dr, ζ ∈ S.

As our first result, we have the following hyperbolic analogue of (1.1).

Theorem 2.1. Let 0 < p <∞. Then

‖%gφ‖Lp ≈ ‖λ ◦ φ∗‖Lp(2.1)

for all holomorphic self map φ of D with φ(0) = 0.

When p = 1, (2.1) follows immediately from the following.



A subharmonic Hardy class and Bloch pullback operator norms 205

Lemma 2.2. Let φ be a holomorphic self map of D and 0 < p <∞.

Then

∫

D

log
1

|z|
∆(λ ◦ φ)p(z) dA(z) ≈ ‖λ ◦ φ∗‖pLp − (λ ◦ φ(0))p .

For the proof of Theorem 2.1, we need several more techniques. We
skip them and refer to [5].

§3. Norm of the Bloch-pullback operators

We next pass to our second subject, the Bloch pullback. It is known
that there is a Bloch function having radial limits at no points of S,
while functions of Hp should have radial limits almost everywhere on S.
This observation give rise to the problem of characterizing holomorphic
self maps φ of D for which f ◦φ ∈ Hp for every Bloch function f . It is so
called “Bloch - Hp pullback problem” and the Bloch-pullback operator
(induced by a holomorphic self map φ of D) means the composition
operator Cφ defined on the Bloch space B by Cφf = f ◦ φ. Hp is a
Banach space with norm ‖f‖Hp when 1 ≤ p < ∞, while it is a Frechet
space with the compatible metric ‖f‖pHp when 0 < p < 1. The following
characterization of the Bloch-Hp pullback operator shows a connection
between Hardy space and hyperbolic Hardy class.

Theorem A [4, 6]. Let 0 < p <∞ and φ be a holomorphic self map of

D. Then Cφ maps B boundedly into Hp if and only if φ ∈ %Hp/2.

As an application of Theorem 2.1, we moreover have the following
theorem. Here, B0 denotes the subspace of B consisting of f ∈ B with
f(0) = 0.

Theorem 3.1. Let 0 < p <∞ and φ be a holomorphic self map of

D with φ(0) = 0. If we set ‖Cφ‖ = sup
{

‖Cφf‖Hp : f ∈ B0, ‖f‖B ≤ 1
}

then it satisfies

‖Cφ‖ ≈ ‖λ ◦ φ∗‖
1/2

Lp/2
.

The assumption that φ(0) = 0 is not essential restriction in the sense
that if Cφ is bounded (or compact) then so is Cψ with ψ = ϕφ(0) ◦ φ.

Note also that Cφ : B → Y is bounded if and only if Cφ : B0 → Y is
bounded.

As a limiting space of Hp, a similar problem might be asked for
BMOA. BMOA, the space of holomorphic functions of bounded mean
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oscillation, consists of holomorphic f in D for which

‖f‖BMOA = sup
a∈D

{

lim
r→1

∫

S

|f ◦ ϕa(rζ) − f(a)|2 dσ(ζ)

}1/2

< ∞.

In parallel with BMOA, there defined is %BMOA consisting of holo-
morphic self map φ of D for which

‖φ‖%BMOA = sup
a∈D

lim
r→1

∫

S

% (φ ◦ ϕa(rζ), φ(a)) dσ(ζ) < ∞.

The classes %BMOA as well as %Hp were defined and studied mainly as
a hyperbolic counterpart of the corresponding Euclidean classes by S.
Yamashita [11, 12, 13], and later studied by several authors in connection
with the composition operators.

Theorem B [7]. Let φ be a holomorphic self map of D. Then Cφ maps

B boundedly into BMOA if and only if φ ∈ %BMOA.

Noting that the Möbius invariance of % implies % (φ ◦ ϕa(z), φ(a))=
%

(

ϕφ(a) ◦ φ ◦ ϕa(z), 0
)

, it follows that φ ∈ %BMOA if and only if

sup
a∈D

‖λ ◦ (ϕφ(a) ◦ φ ◦ ϕa)
∗‖L1 <∞.

Since log |1 − φ̄(a)φ ◦ ϕa| is harmonic in D,

‖λ ◦ (ϕφ(a) ◦ φ ◦ ϕa)
∗‖L1 = ‖λ ◦ (φ ◦ ϕa)

∗ − λ ◦ φ(a)‖L1

[7, (3.7)], so that the next theorem gives Theorem B. Here, as the norm
of BMOA we take |f(0)| + ‖f‖BMOA, which makes BMOA a Banach
space.

Theorem 3.2. Let φ be a holomorphic self map of D with φ(0) = 0.
Then the operator norm of Cφ from B0 boundedly into BMOA satisfies

‖Cφ‖ ≈ sup
a∈D

‖λ ◦ (φ ◦ ϕa)
∗ − λ ◦ φ(a)‖

1/2
L1 .

V MOA, the space of holomorphic functions of vanishing mean os-
cillation, consists of holomorphic f in D for which

lim
|a|→1

lim
r→1

∫

S

|f ◦ ϕa(rζ) − f(a)|2 dσ(ζ) = 0.
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In parallel to VMOA, %VMOA is defined to consist of holomorphic self
map φ of D for which

lim
|a|→1

lim
r→1

∫

S

% (φ ◦ ϕa(rζ), φ(a)) dσ(ζ) = 0.

We have

Corollary C [9]. Let φ be a holomorphic self map of D. Then Cφ maps

B boundedly into VMOA if and only if φ ∈ %V MOA.

See [9] for previous study on %VMOA.

§4. More on Bloch-pullback operator norm

We give some more examples of Banach space Y and resolve Bloch-Y
pullback problem by further evaluating the operator norm of Cφ : B → Y .

Let D denote the space of holomorphic functions f in D satisfying

‖f‖D :=

(
∫

D

|f ′(z)|2 dA(z)

)1/2

<∞.

Then D is a Banach space with the norm |f(0)| + ‖f‖D. Similarly, we
let %D denote the space of holomorphic self map φ of D satisfying

‖φ‖%D :=

(
∫

D

|φ′(z)|2

(1 − |φ(z)|2)2
dA(z)

)1/2

<∞.

Then we have

Theorem 4.1. Let φ be a holomorphic self map of D. Then Cφ
maps B boundedly into D if and only if φ ∈ %D. Moreover, if φ(0) = 0
then the operator norm of Cφ from B0 boundedly into D satisfies

‖Cφ‖ ≈ ‖φ‖%D.

H∞, consisting of bounded holomorphic functions, is a Banach space
with the norm ‖f‖H∞ = supz∈D |f(z)|, while %H∞ is defined to consist
of holomorphic φ of D for which |φ| < c for some c < 1.

Theorem 4.2. If φ be a holomorphic self map of D, then Cφ : B0 →
H∞ is bounded if and only if φ ∈ %H∞. If φ(0) = 0, then the operator

norm of Cφ from B0 boundedly into H∞ satisfies

‖Cφ‖ = sup
z∈D

ρ ◦ φ(z),

where ρ is defined by ρ(w) = ρ(0, w) = 1
2 log 1+|w|

1−|w| , w ∈ D.
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BeyondH∞, there are function spaces having smooth boundary con-
ditions. We are going to mention about holomorphic Lipschitz spaces.
For 0 < α ≤ 1, we say, by definition, that f ∈ Lipα if f is holomorphic
in D, f ∈ C(D̄), and satisfies the Lipschitz condition:

‖f‖Lipα := sup

{

|f(z) − f(w)|

|z − w|α
: z, w ∈ D, z 6= w

}

<∞.

Lipα is a Banach space equipped with the norm |f(0)| + ‖f‖Lipα . Sev-
eral different (but essentially same) notions for Lipα are used in the
literature. We followed that of [2].

Corresponding to this, there is hyperbolic Lipschitz class of Ya-
mashita [14]. We say, by definition, that φ ∈ %Lipα if φ is a holomor-
phic self map of D, φ ∈ C(D̄), and satisfies the hyperbolic Lipschitz
condition:

‖φ‖%Lipα := sup

{

%(φ(z), φ(w))

|z − w|α
: z, w ∈ D, z 6= w

}

<∞.

We have

Theorem 4.3. Let 0 < α ≤ 1 and φ be a holomorphic self map of

D. Then Cφ : B → Lipα is bounded if and only if φ ∈ %Lipα. Further

if φ(0) = 0, then the operator norm of Cφ from B0 boundedly into Lipα
satisfies

‖Cφ‖ = ‖φ‖%Lipα .

For 1 ≤ p <∞ and 0 < α < 1, we say, by definition, that f ∈ Lip pα
if f ∈ Hp and satisfies the mean Lipschitz condition:

‖f‖Lipp
α

:= sup

{

1

tα

(
∫

S

|f(ηζ) − f(ζ)|pdσ(ζ)

)
1

p

: 0 < |1 − η| ≤ t

}

<∞.

Lip pα is a Banach space equipped with the norm ‖ · ‖Hp + ‖ · ‖Lip p
α
.

Corresponding to this, there is hyperbolic mean Lipschitz class of
Yamashita [14]. We say, by definition, that φ ∈ %Lip pα if φ is a holomor-
phic self map of D, %(φ∗) ∈ Lp(S), and φ satisfies the hyperbolic mean
Lipschitz condition:

‖φ‖%Lip p
α

:= sup

{

1

tα

(
∫

S

% (φ(ηζ), φ(ζ))
p
dσ(ζ)

)
1

p

: 0 < |1 − η| ≤ t

}

<∞.

We have
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Theorem 4.4. Let 1 ≤ p < ∞ and 0 < α < 1. Let φ be a holo-

morphic self map of D. Then Cφ : B → Lip pα is bounded if and only if

φ ∈ %Lip pα. Furthermore, if φ(0) = 0, then operator norm of Cφ from

B0 boundedly into Lip pα satisfies

‖Cφ‖ ≈ ‖λ ◦ φ∗‖
1/2

Lp/2
+ ‖φ‖%Lip p

α
.
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Abstract.

Let R and R′ be p-sheeted unlimited covering surfaces of the

once punctured Riemann sphere Ĉ \ {0} of Heins type which are
quasiconformal equivalent to each other. Then the cardinal numbers
of minimal Martin boundaries of R and R′ are same.

Let R be a 2-sheeted unlimited covering surface of the once punc-

tured Riemann sphere Ĉ \ {0} of Heins type and R′ be an open Rie-
mann surface. If R and R′ are quasiconformal equivalent to each
other and the set of branch points of R satisfies a condition, then
the cardinal numbers of minimal Martin boundaries of R and R′ are
same.

§1. Introduction.

Let W be an open Riemann surface. We denote by ∆W
1 the minimal

Martin boundary of W . In [8], it was showed that there exist open Rie-
mann surfaces F and F ′ quasiconformally equivalent to each other such
that F ′ possesses nonconstant positive harmonic functions although F
does not possess nonconstant positive harmonic functions. This means
that ]∆F ′

1 ≥ 2 although ]∆F
1 = 1, where ]A stands for the cardinal
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number of a set A. Needless to say, the above F and F ′ are of posi-

tive boundary, i.e. F and F ′ admit the Green function (cf. e.g. [16]).
However, in case open Riemann surfaces F and F ′ are of null bound-

ary (i.e. not positive boundary), it does not seem to be known whether

]∆F
1 = ]∆F ′

1 or not if F and F ′ are quasiconformally equivalent to each
other.

Consider two positive decreasing sequences {an} and {bn} satisfying

bn+1 < an < bn < 1 and limn→∞ an = 0. Set G = Ĉ \ ({0} ∪ I), where

Ĉ is the extended complex plane, I = ∪∞
n=1In and In = [an, bn]. We

take p copies G1, · · · , Gp of G and join the upper edge of In on Gj with
the lower edge of In on Gj+1 (j mod p) for every n. Then we obtain
a p-sheeted covering surface R of the once punctured Riemann sphere
Ĉ \ {0} and say that R is of Heins type(cf. [4]).

In this paper, we are concerned with p-sheeted unlimited covering
surfaces of the once punctured Riemann sphere Ĉ \ {0} of Heins type.

Consider p-sheeted unlimited covering surfaces R and R′ of Ĉ \ {0} of
Heins type which are quasiconformally equivalent to each other. Then
it seems to be valid that ]∆R

1 = ]∆R′

1 (cf. [12], [10], [18]). The first
purpose of this paper is to give an answer to this conjecture. Namely,

Theorem 1. Let R and R′ be p-sheeted unlimited covering surfaces

of the once punctured Riemann sphere Ĉ \ {0} of Heins type which are

quasiconformally equivalent to each other. Then it holds that ]∆R
1 =

]∆R′

1 .

Let R be a 2-sheeted unlimited covering surface of Ĉ \ {0} of Heins

type with the projection π from R onto Ĉ \ {0}. We have the following.

Theorem 2. Suppose that bn − bn+1 ≈ 2−n, that is, there exists a

constant α(> 1) with α−12−n < bn−bn+1 < α2−n (n ∈ N). Let R′ be an

open Riemann surface and f a quasiconformal mapping with R′ = f(R).

Then it holds that ]∆R
1 = ]∆R′

1 .

The author would like to express his sincere thanks to the referee
for his valuable comments.

§2. Preliminaries.

In this section we consider as R a general p-sheeted unlimited cov-

ering surfaces of the once punctured Riemann sphere Ĉ \ {0}. Let ∆R

and ∆R
1 be as in §1, and π the projection map from R onto Ĉ \ {0}. Set

D = {x ∈ C | |x| < 1}, D0 = D\{0} and R0 = π−1(D0). It is well-known

that ∆R0 and ∆R0
1 are identified with ∆R∪π−1(∂D) and ∆R

1 ∪π−1(∂D),
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respectively, where ∂D = {x ∈ C | |x| = 1}. From now on we consider

D0 (resp. R0) in place of Ĉ \ {0} (resp. R) since Ĉ \ {0} (resp. R) does
not admit the Green function. Let g0 be the Green function on D with
pole at 0.

Definition 2.1 (cf. [2]). We say that a subset E of D0 is thin at 0

if DR̂Eg0 6= g0, where DR̂Eg0 is the balayage of g0 relative to E on D .

If E is a closed subset of D, it is well-known that E is thin at 0 if
and only if 0 is an irregular boundary point of D \E in the sense of the
Dirichlet problem.

The following lemma gives the quasiconformal invariance for thin-
ness.

Lemma 2.1 (cf. [10],[18]). Let M be a subdomain of C and ϕ a qua-

siconformal mapping from C onto C. If ζ is an irregular boundary point

of M in the sense of Dirichlet problem, ϕ(ζ) is an irregular boundary

point of ϕ(M) in the sense of Dirichlet problem.

Definition 2.2. A subset U in D which contains 0 is said to be a
fine neighborhood of 0 if D \ U is thin at 0.

Let kζ be the Martin function on R0 with pole at ζ ∈ ∆R. If we
take a sequence {xn} in R0 such that limn→∞ xn = ζ, we can give a
definition of kζ by the following.

kζ(z) = lim
n→∞

gxn(x)

gxn(x0)
,

where x0 is a fixed point in R0. For details we refer to [3] and [5].

Definition 2.3. Let ζ be a point in ∆R
1 and E a subset of R0. We

say that E is minimally thin at ζ if R0R̂Ekζ
6= kζ .

Definition 2.4. Let ζ be a point in ∆R
1 and U a subset of R0. We

say that U∪{ζ} is a minimal fine neighborhood of ζ if R0\U is minimally
thin at ζ.

The following proposition gives the characterization of ]∆R
1 in terms

of minimal fine topology.

Proposition 2.1 ([11]). Let M be the class of subdomains M of

D0 such that M ∪{0} is a fine neighborhood of x = 0. Then it holds that

]∆R
1 = max

M∈M
nR(M),

where nR(M) is the number of connected components of π−1(M) and π

is the projection map from R onto Ĉ \ {0}.
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§3. Proof of Theorem 1.

In this section we first consider as R a general p-sheeted unlimited

covering surfaces of the once punctured Riemann sphere Ĉ\{0}. Let ∆R

and ∆R
1 be as in §1, and π the projection map from R onto Ĉ \ {0}. Let

D, D0, and R0 be as in §2. The next proposition will play an important
role for the proof of Theorem 1.

Proposition 3.1. Let R′ be an open Riemann surface and f a

quasiconformal mapping with R′ = f(R). If ]∆R
1 = p, then ]∆R

1 = ]∆R′

1 .

Proof. By Proposition 2.1 we find a subdomain M of D0 such that
D0 \M is thin at 0, ∂M \ {0} may consist of infinitely many Jordan
curves and

]∆R
1 = nR(M),

where nR(M) is the number of connected components of π−1(M). By the
assumption of this proposition nR(M) = p. Let Mj (j = 1, 2, . . . , p) be
components of π−1(M). Since each Mj is a 1-sheeted unlimited covering
surface of M , it is easily seen that each Mj is considered as a replica

of M . Let g
f(Mj)
x (j = 1, 2 . . . , p) be the Green function on f(Mj) with

pole at x and ψj the inverse of π|M from M → Mj . Denote by µf◦ψj

the complex dilatation of f ◦ ψj on M. Set

µj =

{
µf◦ψj on M

0 on C \M.

It is well-known that there exists a quasiconformal mapping fj from C

onto C with the complex dilatation µj (cf. e.g. [6]). Set Vj = fj(M).
By Lemma 2.1 we find that fj(0) is an irregular boundary point of
Vj in the sense of the usual Dirichlet problem since 0 is an irregular
boundary point of M in the sense of the usual Dirichlet problem. On

the other hand, the function x′ 7→ g
f(Mj)

f◦ψj◦f
−1
j (x′)

◦ f ◦ ψj ◦ f
−1
j (y′) (y′ ∈

Vj) is a positive harmonic function on Vj \ {y′} since f ◦ ψj ◦ f
−1
j is

conformal. Hence, by [5, Theorem 10.16], there exists a positive fine

limit F − limx′→fj (0) g
f(Mj)

f◦ψj◦f
−1
j (x′)

◦ f ◦ ψj ◦ f
−1
j . Denote by g

Vj

0 this

limit function on Vj and set g
f(Mj)
0 = g

Vj

0 ◦ fj ◦ ψ
−1
j ◦ f−1. We see that

each g
f(Mj)
0 is a positive harmonic function on f(Mj) since each g

Vj

0 is

a positive harmonic function on Vj and fj ◦ψ
−1
j ◦ f−1 is conformal. For

j = 1, 2, . . . , p set

Sj(g
f(Mj)
0 )(x′) = inf

s
s(x′),
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where s runs over the space of positive superharmonic functions s on

f(R0) satisfying s ≥ g
f(Mj)
0 on f(Mj). By Perron-Wiener-Brelot method

we find that each Sj(g
f(Mj)
0 ) is a positive harmonic function on f(R0).

Then the following inequality

(∗) Sj(g
f(Mj)
0 ) − f(R0)R̂

f(R0)\f(Mj)

Sj(g
f(Mj )

0 )
≥ g

f(Mj)
0

holds on f(Mj). In fact, to prove the inequality (∗) note that

f(R0)R̂
f(R0)\f(Mj)

Sj(g
f(Mj )

0 )
= H

f(Mj)

Sj(g
f(Mj )

0 )

on f(Mj), where H
f(Mj)

Sj(g
f(Mj )

0 )
is the Dirichlet solution for Sj(g

f(Mj)
0 ) on

f(Mj) (cf. e.g. [3], [5]). By definition Sj(g
f(Mj)
0 ) ≥ g

f(Mj)
0 on f(Mj).

Hence, by the definition of the Dirichlet solution in the sense of Perron-
Wiener-Brelot,

Sj(g
f(Mj)
0 ) − g

f(Mj)
0 ≥ H

f(Mj)

Sj(g
f(Mj )

0 )

on f(Mj). Thus (∗) is proved.
We shall proceed the proof of this proposition. By [17, Theorem 3]

it is known that 1 ≤ ]∆R′

1 ≤ p. By the Martin representation theorem,
there exist at most p minimal functions hj,1, hj,2, . . . , hj,p on f(R0) with

Sj(g
f(Mj)
0 ) = hj,1 + hj,2 + . . .+ hj,p on f(R0). Hence, by the above

inequality (∗), we have

hj,1 + hj,2 + . . .+ hj,p

= Sj(g
f(Mj)
0 )

≥ f(R0)R̂
f(R0)\f(Mj)
hj,1+hj,2+...+hj,p

+ g
f(Mj)
0

> f(R0)R̂
f(R0)\f(Mj)
hj,1

+ f(R0)R̂
f(R0)\f(Mj)
hj,2

+ . . .+ f(R0)R̂
f(R0)\f(Mj )
hj,p

on f(Mj). Therefore we find that there exists a minimal function hj

on f(R0) such that hj 6= f(R0)R̂
f(R0)\f(Mj)
hj

. Hence, by the definition

of minimal thinness, f(R0) \ f(Mj) is minimally thin at the minimal
boundary point corresponding to hj . Since f(Mi) ∩ f(Mj) = ∅ (i 6= j),

we find that ]∆R′

1 = p. �

Now we give the following result which Proposition 2.1 yields.

Theorem 3.1 (cf. [11]). Let R be a p-sheeted unlimited covering

surfaces of the once punctured Riemann sphere Ĉ \ {0} of Heins type.

Then ]∆R
1 = 1 or p.
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Proof of Theorem 1. By Theorem 3.1 we have only to prove that
]∆R′

1 = p if and only if ]∆R
1 = p. Since f−1 is a quasiconformal mapping

from R′ onto R, it is sufficient to prove that if ]∆R
1 = p, then ]∆R′

1 = p.

Suppose that ]∆R
1 = p. By Proposition 3.1 ]∆R′

1 = p. We have the
desired result. �

§4. Proof of Theorem 2.

By Proposition 3.1 we find that if ]∆R
1 = 2, ]∆R′

1 = 2. By [17,

Theorem 3] it is known that ]∆R′

1 = 1 or 2. Hence, by Theorem 3.1, it

is sufficient to prove that if ]∆R′

1 = 2, ]∆R
1 = 2. Suppose that ]∆R′

1 = 2.

Set ∆R′

1 = {ζ ′1, ζ
′
2}. Let g

f(R0)
ξ′ be the Green function with pole at ξ′ on

f(R0). It is known that there exists limy′→ζ′j
g
f(R0)
y′ (x′)(=: g′ζ′j

(x′)) (j =

1, 2) and g′ζ′j
(j = 1, 2) is the minimal harmonic function with pole at

ζ ′j (j = 1, 2).
For x ∈ R0 set

L = Lf = Lx,f =





∑2
i,k=1 ∂k(Jf (x)(f

′(x)−1f ′(x)−1∗)k,i∂i),

(if there exist f ′(x) and f ′(x)−1),

∑2
i=1 ∂

2
i ,

(elsewise),

where Jf (x) (resp. f ′(x)) is the Jacobian (resp. Jacobi matrix) of the
mapping (u(x), v(x)) (f = u + iv), f ′(x)−1 is the inverse of f ′(x) and
f ′(x)−1∗ is the transpose of f ′(x)−1. L is a elliptic second order partial
differential operator of divergence type on R. Set gLj (x) := g′ζ′j

◦f(x) (x ∈

R0). We see that gLj (j = 1, 2) is a positive harmonic function on R0

with respect to L. We recall the assumption that bn− bn+1 ≈ 2−n, that
is, there exists a constant α(> 1) with

α−12−n < bn − bn+1 < α2−n (n ∈ N).

For r(> 0), set Cr = {|x| = r}, Br = {|x| < r}, Cr = π−1(Cr), and
Br = π−1(Br \ {0}).

Suppose that there exist a constant α′(> 1) and a subsequence {nl}
of N = {n} with bnl

− anl
> (α′)−12−nl . Set Rl = B(anl

+3bnl
)/4 \

Cl(B(3anl
+bnl

)/4), where, for a set E ⊂ R0, Cl(E) stands for the closure

of E with respect to the usual topology on R0. By the assumption that
bnl

− anl
> (α′)−12−nl , Mod(Rl) ≈ 1, where Mod(Rl) stands for the

logarithmic module of Rl (cf. [1]), and hence, by the quasiconformal
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invariance of logarithmic module (cf. [6], [15]), Mod(f(Rl)) ≈ 1. Since
the cardinal number of connected components of Rl is equal to 1, that
of f(Rl) is so. By [17, Theorem 3], we find that ]∆R′

1 = 1. This is a
contradiction. Hence we may suppose that there exists a constant α′′(>
1) , for every integer l, al − bl+1 > (α′′)−12−l. Set A = ∪∞

l=1Al (Al =
B(3al+bl+1)/4 \ Cl(B(al+3bl+1)/4)), where Cl(B(al+3bl+1)/4) is the closure
of B(al+3bl+1)/4 with respect to the usual topology on R.

Lemma 4.1. On A,

gLj (x) + gLj (ι(x)) ≈ log
1

|π(x)|
(j = 1, 2),

where ι is the sheet exchange on R.

Proof. Let Al,k (k = 1, 2) be connected components of Al. Then
we have

(]) f(R0)R̂
f(Al)
1 ≤ f(R0)R̂

f(Al,1)
1 + f(R0)R̂

f(Al,2)
1 ≤ 2f(R0)R̂

f(Al)
1 .

Since f(R0)R̂
f(Al)
1 is a Green potential on f(R0) (cf. [3]), we can find the

Radon measure µl,j (j = 1, 2) with

(]]) f(R0)R̂
f(Al,j)
1 (x′) =

∫

Cl(f(Al,j))

g
f(R0)
x′ dµl,j .

By the fact that f(R0)R̂
f(Al)
1 (x′) = 1 for x′ ∈ f(B(3al+bl+1)/4), letting x′

be to ζ ′j in (]), we have

1 ≤

∫

Cl(f(Al,1))

g′ζ′jdµl,1 +

∫

Cl(f(Al,2))

g′ζ′jdµl,2 ≤ 2 (j = 1, 2),

and hence

1 ≤

∫

Cl(Al,1)

gLj d(f
−1)∗(µl,1) +

∫

Cl(Al,2)

gLj d(f
−1)∗(µl,2) ≤ 2 (j = 1, 2),

where (f−1)∗(µl,2) is the image measure of µl,2 by f−1. On the other
hand, by the definition of capacitary potential, quasiconformal invari-
ance of capacity(cf. [15, Theorem 10.10]), [9, Lemma 2.3], [1, Theorems
13C and 13D in Chap. IV] and [3, Satz 5.2 and Satz 7.2], we have

(f−1)∗µl,j(Cl(Al,j)) = µl,j(f(Cl(Al,j))) = cap(f(Cl(Al,j)), f(R0))

≈ cap(Cl(Al,j), R0) ≈ cap(π(Cl(Al)),D0)

= cap(Cl(B(3al+bl+1)/4),D0)

= 2π/ log[4/(3al + bl+1)] ≈ 1/l,
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where, for a subset E of an open Riemann surface F of positive boundary
cap(E,F ) stands for the greenian capacity of E on F. Therefore, by
Harnack’s inequality with respect to L (cf. [13]), we have the desired
result. �

Set DI = D0 \ I.

Lemma 4.2. There exist components DI,j (j = 1, 2) of π−1(DI)
such that

gLj (x) ≈ log
1

|π(x)|
(x ∈ A ∩ DI,j , j = 1, 2),

gLj (x) = o(log
1

|π(x)|
) (π(x) → 0, x ∈ A ∩DI,j+(−1)j−1 , j = 1, 2).

Proof. Denote by DI,j (j = 1, 2) components of π−1(DI). Set
Al,j = Al ∩ DI,j . By Lemma 4.1 we may suppose that there exist sub-
sequences {n1} and {n2} of N = {n} such that

(i) {n1} ∪ {n2} = N and {n1} ∩ {n2} = ∅;

(ii) gL1 (x) ≈ log
1

|π(x)|
(x ∈ (∪n1An1,1) ∪ (∪n2An2,2) );

(iii) gL1 (x) = o(log
1

|π(x)|
) (π(x) → 0, x ∈ (∪n1An1,2)∪(∪n2An2,1) ).

In fact, suppose the above does not hold. Then there exists a sub-
sequence {n3} of N = {n} with

gL1 (x) ≈ log
1

|π(x)|
(x ∈ ∪n3An3 ).

On the other hand, for any β(> 0), {x′ ∈ f(R0)|g′ζ′2
(x′) > βg′ζ′1

(x′)} ∪

{ζ ′2} is a minimal fine neighborhood of ζ ′2, because, on {g′ζ′2
> βg′ζ′1

},

f(R0)R̂
{g′

ζ′
2
≤βg′

ζ′
1
}

g′
ζ′
2

< g′ζ′2
, by the fact that, on f(R0),

f(R0)R̂
{g′

ζ′
2
≤βg′

ζ′
1
}

g′
ζ′
2

≤ f(R0)R̂
{g′

ζ′
2
≤βg′

ζ′
1
}

βg′
ζ′
1

≤ βg′ζ′1 .

Hence, by Lemma 4.1 and by the fact that gLj = g′ζ′j
◦ f, there exists a

positive β0 with {x′ ∈ f(R0)|g′ζ′2
(x′) > β0g

′
ζ′1

(x′)} ⊂ f(R0) \ f(∪n3An3).

It is well-known that we can take a connected component G1 of {x′ ∈
f(R0)|g′ζ′2

(x′) > β0g
′
ζ′1

(x′)} such that G1 ∪ {ζ ′2} is a minimal fine neigh-

borhood of ζ ′2 (cf. [14, Corollaire 2 in p.206]). This is a contradiction.
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Suppose that both {n1} and {n2} are infinite sets. Let {m1} be a
subsequence of {n1} with m1 + 1 ∈ {n2}. By (ii) we can find a positive
constant κ1 (> 1) with

κ−1
1 log

1

|π(x)|
≤ gL1 (x) ≤ κ1 log

1

|π(x)|
(x ∈ (∪n1An1,1) ∪ (∪n2An2,2)).

By Harnack’s inequality with respect to L, we can find a positive con-
stant κ2 (> 1) with

(κ1κ2)
−1 log

1

|π(x)|
≤ gL1 (x) ≤ (κ1κ2) log

1

|π(x)|
(x ∈ ∪m1Am1+1,1).

On the other hand, by (iii), there exists an integer N0 such that,

gL1 (x) < (κ1κ2)
−1 log

1

|π(x)|
(x ∈ ∪m1>N0−1Am1+1,1).

This is a contradiction. Here, if necessary , by substituting DI,1 (resp.
DI,2) for DI,2 (resp. DI,1), we have

([1) gL1 (x) ≈ log
1

|π(x)|
(x ∈ ∪nAn,1 )

([2) gL1 (x) = o(log
1

|π(x)|
) (π(x) → 0, x ∈ ∪nAn,2 ).

Repeating the same process for gL1 as in obtaining ([1) and ([2), we
have

([′1) gL2 (x) ≈ log
1

|π(x)|
(x ∈ ∪nAn,2 )

([′2) gL2 (x) = o(log
1

|π(x)|
) (π(x) → 0, x ∈ ∪nAn,1 )

or

([”1) gL2 (x) ≈ log
1

|π(x)|
(x ∈ ∪nAn,1 )

([”2) gL2 (x) = o(log
1

|π(x)|
) (π(x) → 0, x ∈ ∪nAn,2 ).

Suppose that the estimates ([”1) and ([”2) hold. By ([1) and ([”1),
we find that f(∪nAn,1) is minimally thin at ζ ′1. In fact, there exists a

positive constant β0 such that β0g
f(R0)
ζ′1

≤ g
f(R0)
ζ′2

on f(∪nAn,1), that is,

f(∪nAn,1) ⊂ {x′ ∈ f(R0)|β0g
f(R0)
ζ′1

≤ g
f(R0)
ζ′2

}. Using the same argument

as that in the former part of the proof of this lemma, we find that {x′ ∈
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f(R0)|β0g
f(R0)
ζ′1

≤ g
f(R0)
ζ′2

} is minimally thin at ζ ′1. Hence f(∪nAn,1) is

minimally thin at ζ ′1.
By ([2) we can prove that there exists a subsequence {nl} of N = {n}
such that f(∪lAnl,2) is minimally thin at ζ ′1. This fact will be proved
afterwards. Hence f(∪lAnl

) is minimally thin at ζ ′1 because f(∪nAn,1)
is minimally thin at ζ ′1. Since [f(R0) \ f(∪lAnl

)]∪{ζ ′1} is a minimal fine
neighborhood of ζ ′1, we can take a connected component G2 of [f(R0) \
f(∪lAnl

)] ∪ {ζ ′1} such that G2 ∪ {ζ ′1} is a minimal fine neighborhood of
ζ ′1 (cf. [14, Corollaire 2 in p.206]). This is a contradiction. Hence we
have the estimates ([′1) and ([′2).

We still remain to prove that there exists a subsequence {nl} of
N = {n} such that f(∪lAnl,2) is minimally thin at ζ ′1. By ([2) we can
take a subsequence {nl} of N = {n} with

g
f(R0)
ζ′1

(x′) ≤
nl
l2

(x′ ∈ f(∪lAnl,2) ).

From this estimate it follows that f(∪lAnl,2) is minimally thin at ζ ′1. In
fact, we take a point x′0 be a point of f(R0) \ Cl(f(∪lAnl,2)). Then, by
(]]) in Lemma 4.1, the definition of capacitary potential, and the same
estimate for capacity as in the latter part of the proof of Lemma 4.1, we
have

0 ≤ f(R0)R̂
f(∪l≥mAnl,2)

g
f(R0)

ζ′
1

(x′0) ≤
∞∑

l=m

f(R0)R̂
f(Anl,2)

g
f(R0)

ζ′
1

(x′0)

≤
∞∑

l=m

nl
l2

f(R0)R̂
f(Anl,2)

1 (x′0)

≤
∞∑

l=m

nl
l2

∫

Cl(f(Anl,2))

g
f(R0)
x′
0

dµnl,2

≤ α0

∞∑

l=m

nl
l2
µnl,2(Cl(f(Anl,2)))

≈
∞∑

l=m

nl
l2
cap(Cl(f(Anl,2)), f(R0))

≈
∞∑

l=m

nl
nll2

≈
∞∑

l=m

1

l2
→ 0 (m → +∞),

where, α0 = sup{g
f(R0)
x′
0

(x′)|x′ ∈ Cl(f(∪lAnl,2))}. Hence we have

limm→+∞
f(R0)R̂

f(∪l≥mAnl,2)

g
f(R0
ζ′
1

(x′0) = 0. If m is sufficiently large,
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f(∪l≥mAnl,2) is minimally thin at ζ ′1. Since f(∪l≤mAnl,2) is relatively
compact, it is minimally thin at ζ ′1. Hence f(∪lAnl,2) is minimally thin
at ζ ′1.

The proof is herewith complete. �

For an integer l, take the bounded simply connected domain Ql
whose boundary in the closed polygonal line without self-intersections
and which has four vertexes ((3al + bl+1)/4, (3al + bl+1)/32), ((3al +
bl+1)/4,−(3al + bl+1)/32), ((al−1 + 3bl)/4,−(al−1 + 3bl)/32), ((al−1 +
3bl)/4, (al−1 + 3bl)/32) in positive cyclic order. Set Q = ∪∞

l=1Ql and
DQ,j = DI,j\π−1(Q) (j = 1, 2). By Lemma 4.2 and Harnack’s inequality
with respect to L, we find that

(1) there exists a positive constant κ0 such that
1

κ0
log

1

|π(x)|
≤ gLj (x) ≤ κ0 log

1

|π(x)|
(x ∈ DQ,j) (j = 1, 2);

(2) gLj (x) = o(log
1

|π(x)|
) (π(x) → 0, x ∈ DQ,j+(−1)j−1 ) (j = 1, 2).

Set E′
1 ={x′ ∈ f(R0)|g

′
ζ′1

(x′) > g′ζ′2
(x′)}, E′

2 ={x′ ∈ f(R0)|g
′
ζ′1

(x′) <

g′ζ′2
(x′)}, and E′

3 = {x′ ∈ f(R0)|g′ζ′1
(x′) = g′ζ′2

(x′)}. Set E3 = f−1(E′
3) =

{x ∈ R0|gL1 (x) = gL2 (x)} and γj = π−1(∂Q) ∩ DI,j . By (1) and (2), we
may suppose that there exists an integer N1 such that, for any integer
n(≥ N1), E3 ∩ B(an+bn+1)/2 ⊂ π−1(Q), gL1 > gL2 on γ1 ∩ B(an+bn+1)/2

and gL1 < gL2 on γ2 ∩ B(an+bn+1)/2. Hence, by the implicit function
theorem, E′

3 ∩ f(B(aN1+bN1+1)/2) consists of infinitely many connected

components E′
3,l(⊂ f(π−1(Ql)), l ≥ N1 + 1) which are piecewise ana-

lytic closed curves because each g′ζ′j
is harmonic on f(R0). Hence each

E′
j∩f(B(aN1+bN1+1)/2) is a planar region, that is, eachEj∩B(aN1+bN1+1)/2

is planar region. Set Kj = Ej ∩B(aN1+bN1+1)/2 and E3,l = f−1(E′
3,l). By

Koebe’s theorem and R. de Possel’s theorem (cf. [20, Theorems IX.32
and IX.22], [19, Theorem 9-1]) there exist plane regions Ej (j = 1, 2) of
C and conformal mappings φj (j = 1, 2) from Kj onto Ej (j = 1, 2) such
that C \ Ej (j = 1, 2) consist of infinitely many parallel segments `j,l to
the real axis with

`j,l =





⋂ {
Cl(φj(M))

∣∣∣∣
M is a subdomain of Ej with
Cl(M) ⊃ E3,l

}
,

for l > N1,

⋂ {
Cl(φj(M))

∣∣∣∣
M is a subdomain of Ej with
Cl(M) ⊃ C(aN1+bN1+1)/2 ∩ DI,j

}
.

for l = N1.
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Set `j = ∩n≥N1+1Cl(∪l≥n`j,l) (j = 1, 2).

Lemma 4.3. Each `j is a singleton.

Proof. Suppose that ]`j ≥ 2 (j = 1, 2). We remark that each `j is
connected. In fact, suppose that `j is disconnected. Let Λj,1 be a com-
ponent of `j . Set Λj,2 = `j \Λj,1. We can take two Jordan curves Cj,1 and
Cj,2 in Ej such that, for k = 1, 2, each bounded region Gj,k,1 determined
by Cj,k in C contains Λj,k, and that Cl(Gj,1,1) ∩ Cl(Gj,2,1) = ∅. By the

definition of Λj,k, each Gj,k,1 contains infinitely many `j,l. Since π ◦φ−1
j

is continuous on Ej and Cj,k is a compact subset of Ej , π ◦ φ−1
j (Cj,k)

is a compact subset of π(Kj), and hence there exists uniquely a com-

ponent Mj,k,1 of π(Kj) \ π ◦ φ−1
j (Cj,k) such that Cl(Mj,k,1) is a neigh-

borhood of the origin. Denote by Mj,k,2 the union of component of

[π(Kj) \ π ◦ φ−1
j (Cj,k)] ∪Mj,k,1. It is easily seen that Cl(Mj,k,1) (resp.

Cl(Mj,k,2)) contains infinitely (resp. at most finitely) many components
π(E3,l) of π(E3 ∩B(aN1+bN1+1)/2) because π(E3,l) ⊂ Ql (l ≥ N1 +1). Let
Gj,k,2 be unbounded regions determined by Cj,k in C. We can prove that
(\) φj(π

−1(Mj,k,1) ∩Kj) ⊂ Gj,k,1 ∩ Ej or (\′) φj(π
−1(Mj,k,1) ∩Kj) ⊂

Gj,k,2 ∩ Ej . Suppose this fact does not hold, that is, φj(π
−1(Mj,k,1) ∩

Kj)∩Gj,k,1∩Ej 6= ∅ and φj(π
−1(Mj,k,1)∩Kj)∩Gj,k,2∩Ej 6= ∅. Then we

can find points ξj,k,i ∈ φj(π
−1(Mj,k,1)∩Kj)∩Gj,k,i ∩Ej (i = 1, 2). Since

π(φ−1
j (ξj,k,i)) ∈ Mj,k,1 and Mj,k,1 is connected, we can find a curve C

in Mj,k,1 which joins π(φ−1
j (ξj,k,1)) to π(φ−1

j (ξj,k,2)). From the defini-
tion of component it is easily seen that the lift of C in Kj by π meets

φ−1
j (Cj,k) since Kj \φ

−1
j (Cj,k) has just two components φ−1

j (Gj,k,1∩Ej)

and φ−1
j (Gj,k,2 ∩ Ej). Hence Mj,k,1 ∩ π ◦ φ−1

j (Cj,k) 6= ∅. This is a contra-
diction.
We may assume that (\) holds. For, if (\′) holds, repeating the same
argument as in case that (\) holds, we arrive at a contradiction. By
(\) φj(π

−1(Mj,k,2) ∩Kj) ⊃ Gj,k,2 ∩ Ej . Hence Gj,k,1 (resp. Gj,k,2) con-
tains infinitely (resp. at most finitely) many `j,l because Cl(Mj,k,1)
(resp. Cl(Mj,k,2)) contains infinitely (resp. at most finitely) many com-
ponents π(E3,l) of π(E3∩B(aN1+bN1+1)/2). Since Gj,k,2 ⊃ Gj,k+(−1)k−1,1,
Gj,k+(−1)k−1,1 contains at most finitely many components of `j,l. This is
a contradiction. Thus we conclude that each `j is connected.

Since each `j is connected, by [5, Theorem 8.26], all points of `j (j =
1, 2) are regular boundary points of Ej (j = 1, 2). E′

j (j = 1, 2) is mini-

mally thin at ζ ′j+(−1)j−1 , and hence E′
3 is minimally thin at ζ ′j (j = 1, 2).

By [14, Théorème 1 and Théorème 5], it is known that there exists a
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Green potential gµj (x
′) =

∫
g
f(R0)
x′ dµj such that

gµj (ζ
′
j) < +∞,

lim
x′→∆R′ ,x′∈E′

3

gµj (x
′) = +∞,

because limx′→ζ′j
g
f(R0)
x (x′) = g

f(R0)
x (ζ ′j) < +∞. Since there exists an in-

tegerN2(≥N1) such that gµj (y
′)>2gµj (ζ

′
j) (y′∈ E′

3∩f(B(aN2+bN2+1)/2)),

for every x′ ∈ f(B(aN2+bN2+1)/2),

f(B(aN2
+bN2+1)/2)

R̂
E′

3∩f(B(aN2
+bN2+1)/2)

1 (x′) ≤
gµj (x

′)

2gµj (ζ
′
j)
.

Hence

lim inf
x′(∈E′

j∩f(B(aN2
+bN2+1)/2))→ζ′j

f(B(aN2
+bN2+1)/2)

R̂
E′

3∩f(B(aN2
+bN2+1)/2)

1 (x′)

≤ lim inf
x′(∈E′

j∩f(B(aN2
+bN2+1)/2))→ζ′j

gµj (x
′)

2gµj (ζ
′
j)

= lim inf
x′→ζ′j

gµj (x
′)

2gµj (ζ
′
j)

=
1

2
< 1,

because each E′
j ∩ f(B(aN2+bN2+1)/2)) is not minimally thin at ζ ′j . Hence

there exists a sequence {x′l,j}(⊂ E′
j ∩ f(B(aN2+bN2+1)/2), j = 1, 2) such

that, for j = 1, 2,
lim
l→∞

x′l,j = ζ ′j ,

lim
l→∞

f(B(aN2
+bN2+1)/2)R̂

E′
j∩f(B(aN2

+bN2+1)/2)

1 (x′l,j) < 1.

Set
B

(j)
N2

= Int[Cl(φj(Ej ∩ B(aN2+bN2+1)/2))] (j = 1, 2),

where Int[Cl(φj(Ej ∩ B(aN2+bN2+1)/2))] stands for the interior of the

closure of φj(Ej ∩ B(aN2+bN2+1)/2) in C. For φj ◦ f−1 we define Lφj◦f−1

as Lf in the first part of this section. The above inequality implies that

there exist points zj ∈ `j (j = 1, 2) and sequences {zl,j} (⊂ Ej∩B
(j)
N2
, j =

1, 2) such that, for j = 1, 2,

lim
l→∞

zl,j = zj (j = 1, 2),

lim
l→∞

B
(j)
N2 R̂

∪l>N2
`l,j ,Lφj◦f−1

1 (zl,j) < 1,
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where B
(j)
N2 R̂

∪l>N2
`l,j ,Lφj◦f−1

1 stands for the balayage of 1 relative to

∪l>N2`l,j on B
(j)
N2

with respect to Lφj◦f−1 . Hence each zj is an irreg-

ular boundary point of φj(Ej ∩B(aN2+bN2+1)/2) with respect to Lφj◦f−1 .

By [7, Theorem 9.1] and [5, Theorem 10.3], each zj is an irregular bound-
ary points of Ej in the usual sense. This is a contradiction. Therefore
we have the desired result. �

Let N1 be an integer as in the definition of `j . Let g
Ej

ξ be the Green

function with pole at ξ (resp. x) on Ej . By Lemma 4.3, for j = 1, 2,
there exists a sequence {ξj,n} in Ej such that limn→∞ ξj,n = zj and

there exists limn→∞ g
Ej

ξj,n
on Ej . For j = 1, 2, set g

Ej
zj = limn→∞ g

Ej

ξj,n

and gj = g
Ej
zj ◦ φj . Each gj is a positive harmonic function on Kj . For

j = 1, 2, set

Sj(gj)(x) = inf
s
s(x),

where s runs over the space of positive superharmonic functions s on R0

satisfying s ≥ gj on Kj . By Perron-Wiener-Brelot method each Sj(gj)
is a positive harmonic function on R0. Using the same argument as that
in the proof of Theorem 1, we find that the following inequality

(∗∗) Sj(gj) −
R0R̂

R0\Kj

Sj(gj)
≥ gj

holds on Kj (j = 1, 2). Since ]∆R
1 = 1 or 2 by means of [17, Theorem 3],

by the Martin representation theorem, we find that there exist at most
two minimal functions hj,k (k = 1, 2) on R0 with Sj(gj) = hj,1 +hj,2 on
R0. Hence, by the above inequality (∗∗), we have

hj,1 + hj,2 = Sj(gj) ≥ R0R̂
R0\Kj

hj,1+hj,2
+ gj

> R0R̂
R0\Kj

hj,1
+ R0R̂

R0\Kj

hj,2

on Kj . Therefore we find that there exists a minimal function hj (j =

1, 2) on R0 such that hj 6= R0R̂
R0\Kj

hj
. Hence, by the definition of mini-

mal thinness, R0 \Kj is minimally thin at the minimal boundary point
corresponding to hj . Since K1 ∩K2 = ∅, we find that ]∆R

1 = 2.
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Hyperbolic Riemann surfaces without unbounded

positive harmonic functions

Hiroaki Masaoka and Shigeo Segawa

Abstract.

Let R be an open Riemann surface with Green’s functions. It
is proved that there exist no unbounded positive harmonic functions
on R if and only if the minimal Martin boundary of R consists of
finitely many points with positive harmonic measure.

§1. Introduction

Denote by OG the class of open Riemann surfaces R such that there
exist no Green’s functions on R. We say that an open Riemann surface
R is parabolic (resp. hyperbolic) if R belongs (resp. does not belong) to
OG.

For an open Riemann surface R, we denote by HP (R) (resp. HB(R))
the class of positive (resp. bounded) harmonic functions on R. It is
well-known that if R is parabolic, then HP (R) and HB(R) consist of
constant functions (cf. [5]).

Hereafter, we consider only hyperbolic Riemann surfaces R. Let
∆ = ∆R and ∆1 = ∆R

1 the Martin boundary of R and the minimal

Martin boundary of R, respectively. The purpose of this paper is to
prove the following.

Theorem. Suppose that R is hyperbolic. Then the followings are

equivalent:
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(i) there exist no unbounded positive harmonic functions on R, i.e.

HP (R) ⊂ HB(R),
(ii) the minimal Martin boundary ∆R

1 of R consists of finitely many

points with positive harmonic measure.

The above theorem combined with the Martin representation theo-
rem yields the following.

Corollary. Suppose that R is hyperbolic and there exist no un-

bounded positive harmonic functions on R. Then the linear space HB(R)
of bounded harmonic functions on R is of finite dimension.

Denote by ωz(·) the harmonic measure on ∆R with respect to z ∈ R.
We also denote by kζ(z) ((ζ, z) ∈ (R∪∆R)×R) the Martin kernel on R
with pole at ζ. The following proposition, which is easily proved, plays
fundamental role in the proof of the above theorem.

Proposition. Let ζ belong to ∆R
1 . Then the Martin kernel kζ(·)

with pole at ζ is bounded on R if and only if the harmonic measure

ω·({ζ}) of the singleton {ζ} is positive.

§2. Proof of Theorem

Let kζ(·) be the Martin kernel on R with pole at ζ such that kζ(a) =
1 for a fixed point a ∈ R. Consider the canonical measure χ of the
harmonic function 1 in the Martin representation theorem, that is

(2.1) 1 =

∫

∆R

1

kξ(z)dχ(ξ).

As a relation between χ and harmonic measure ωz, the following is
known (c.f. [1, Satz 13.4]):

(2.2) dωz(ξ) = kξ(z)dχ(ξ).

We first give the proof of Proposition in the introduction.

Proof of Proposition. We assume that the Martin kernel kζ(z)
with pole at ζ ∈ ∆R

1 is bounded on R. Take a positive constant M such
that kζ(z) ≤ M on R. Then, by the Martin representation theorem, we
deduce that

∫

∆R

1

kξ(z)dδζ(ξ) = kζ(z) ≤ M =

∫

∆R

1

Mkξ(z)dχ(ξ),
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where δζ is the Dirac measure on ∆R
1 supported at ζ. Hence, by virtue of

the fact that the mapping of HP functions to their canonical measures
are lattice isomorphic (cf. [1,Forgesatz 13.1]), we see that δζ ≤ Mχ or
(1/M)δζ ≤ χ on ∆R

1 . From this and (2.2) it follows that

0 <
kζ(z)

M
= kζ(z)

δζ({ζ})

M
≤ kζ(z)χ({ζ}) = ωz({ζ}),

thus we have proved the ‘only if part’.
We next assume that ωz({ζ}) > 0. Then, by (2.2), we have

(2.3) 0 < ωz({ζ}) = kζ(z)χ({ζ}).

Hence c := χ({ζ}) is a positive constant. On the other hand, ωz({ζ}) ≤ 1
on R. Therefore, in view of (2.3), we see that kζ(z) ≤ c−1 on R. Thus
we have proved the ‘if part’.

Applying Proposition proved above, we next give the proof of The-
orem in the introduction.

Proof of Theorem. Since the implication (ii) ⇒ (i) easily follows
from Proposition and the Martin representation theorem, we only have
to show the implication (i) ⇒ (ii).

Suppose that (ii) is not the case although we are assuming that
HP (R) ⊂ HB(R). Then it easily follows from Proposition that ∆R

1

does not contain a point ζ with ω·({ζ}) = 0. Therefore ∆R
1 consists of

countably infinitely many points ζn (n ∈ N) with ω·({ζn}) > 0 and more-
over each Martin kernel kζn

is bounded on R. Put Mn := supz∈R kζn
(z).

Then we deduce that
∫

∆R

1

kξ(z)d

(

1

Mn

)

δζn
(ξ) =

kζn
(z)

Mn

≤ 1 =

∫

∆R

1

kξ(z)dχ(ξ),

where δζn
is the Dirac measure at ζn and χ is the measure in (2.1).

Hence, by means of lattice isomorphic determination of canonical mea-
sures, we see that (1/Mn)δζn

≤ χ for every n ∈ N. Since the supports
supp(δζn

) of {δζn
} are mutually disjoint, this implies that

∑

∞

n=1(1/Mn)δζn

≤ χ. Therefore we conclude that

∞
∑

n=1

kζn
(z)

Mn

=

∫

∆R

1

kξ(z)d

(

∞
∑

n=1

δζn
(ξ)

Mn

)

≤

∫

∆R

1

kξ(z)dχ(ξ) = 1.

Since kζn
(a) = 1, this yields that

∑

∞

n=1

1

Mn

≤ 1 and hence

(2.4) lim
n→∞

Mn = +∞.
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In view of (2.4), we can choose a subsequence {Mni
} of {Mn} such

that

(2.5)

∞
∑

i=1

1
√

Mni

< +∞.

Put

h(z) :=

∞
∑

i=1

1
√

Mni

kζni
(z).

By (2.5) and the Harnack principle, h(z) is convergent and a positive
harmonic function on R since kζ(a) = 1 for every ζ. On the other hand,

by the definition, h(z) ≥
1

√

Mni

kζni
(z) on R and therefore

sup
z∈R

h(z) ≥
1

√

Mni

sup
z∈R

kζni
(z) =

1
√

Mni

Mni
=
√

Mni
.

Hence, by means of (2.4), we see that supz∈R h(z) = +∞ or h 6∈ HB(R).
This contradicts our primary assumption HP (R) ⊂ HB(R).

The proof is herewith complete.

§3. Examples

In this section we will give examples of open Riemann surfaces R
satisfying the condition HP (R) ⊂ HB(R) in Theorem. We can more-
over require for ∆R

1 to consist of p points of positive harmonic measure
for an arbitrarily given integer 1 ≤ p < ∞ in advance.

Let OHP be the class of open Riemann surfaces on which there exists
no nonconstant positive harmonic functions. Recall the class OG of open
Riemann surfaces on which there exist no Green’s functions. Then it
holds that OG ⊂ OHP (cf. e.g. [5]). Moreover the inclusion OG ⊂ OHP

is strict, that is, there exists an open Riemann surface T belonging to
OHP \OG (cf. [6], [5]). Since HP (T ) consists of only constant functions,
the Martin boundary ∆T of T and hence the minimal Martin boundary
∆T

1 of T also consists of a single point ζ0 and the Martin kernel kζ0
on

T with pole at ζ0 is equal to the constant function 1.
Consider a p-sheeted (1 ≤ p < ∞) unlimited (possibly branched)

covering surface T̃ of T with its projection map π. Here we say that T̃
is unlimited if the following condition is satisfied: for any arc C in T
with a as its initial point and any point ã over a, i.e. π(ã) = a, there

exists an arc C̃ in T̃ with ã as its initial point such that π(C̃) = C.

By our preceeding result (cf. [2]), the minimal Martin boundary ∆T̃
1 of
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T̃ consists of at most p points. Moreover, there exists T̃ such that ∆T̃
1

consists of exactly p points. Put ∆T̃
1 = {ζ̃1, · · · , ζ̃q} (1 ≤ q ≤ p) and

denote by k̃ζ̃i
the Martin kernel on T̃ with pole at ζ̃i. As a relation

between k̃ζ̃i
and the Martin kernel kζ0

on T , it holds that

∑

z̃∈π−1(z)

k̃ζ̃i
(z̃) ≤ cikζ0

(z),

where ci is a positive constant (cf. [3]). Hence k̃ζ̃i
is bounded on T̃ for

every i (1 ≤ i ≤ q) since kT
ζ0

= 1. Consequently, by virtue of the Martin

representation theorem, we see that HP (T̃ ) ⊂ HB(T̃ ).
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a cone

Ikuko Miyamoto and Hidenobu Yosida

Abstract.

This paper gives a quantitative property of rarefied sets at ∞

of a cone. The proof is based on the fact in which the estimations
of Green potential and Poisson integral with measures are connected
with a kind of densities of the measures modified from the measures.

§1. Introduction

Let R and R+ be the set of all real numbers and the set of all
positive real numbers, respectively. We denote by Rn (n ≥ 2) the n-
dimensional Euclidean space. A point in Rn is denoted by P = (X, y),
X = (x1, x2, . . . , xn−1). The Euclidean distance of two points P and Q
in Rn is denoted by |P − Q|. Also |P − O| with the origin O of Rn is
simply denoted by |P |. The boundary and the closure of a set S in Rn

are denoted by ∂S and S̄, respectively.
We introduce a system of spherical coordinates (r, Θ), Θ = (θ1,

θ2, . . . , θn−1), in Rn which are related to cartesian coordinates (x1,
x2, . . . , xn−1, y) by y = r cos θ1.

The unit sphere and the upper half unit sphere are denoted by Sn−1

and Sn−1
+ , respectively. For simplicity, a point (1, Θ) on Sn−1 and the

set {Θ; (1, Θ) ∈ Ω} for a set Ω, Ω ⊂ Sn−1, are often identified with
Θ and Ω, respectively. For two sets Λ ⊂ R+ and Ω ⊂ Sn−1, the set
{(r, Θ) ∈ Rn; r ∈ Λ, (1, Θ) ∈ Ω} in Rn is simply denoted by Λ×Ω. In
particular, the half-space R+ × Sn−1

+ = {(X, y) ∈ Rn; y > 0} will be
denoted by Tn.
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Let Ω be a domain on Sn−1 (n ≥ 2) with smooth boundary. Consider
the Dirichlet problem

(Λn + τ)f = 0 on Ω,
f = 0 on ∂Ω,

where Λn is the spherical part of the Laplace operator ∆n

∆n =
n − 1

r

∂

∂r
+

∂2

∂r2
+ r−2Λn.

We denote the least positive eigenvalue of this boundary value problem
by τΩ and the normalized positive eigenfunction corresponding to τΩ by
fΩ(Θ). We denote the solutions of the equation t2 + (n − 2)t − τΩ = 0
by αΩ,−βΩ (αΩ, βΩ > 0). If Ω = Sn−1

+ , then αΩ = 1, βΩ = n − 1 and

fΩ(Θ) = (2ns−1
n )1/2 cos θ1, where sn is the surface area 2πn/2{Γ(n/2)}−1

of Sn−1.
To simplify our consideration in the following, we shall assume that

if n ≥ 3, then Ω is a C2,α-domain (0 < α < 1) on Sn−1 (e.g. see Gilbarg
and Trudinger [7, pp.88-89] for the definition of C2,α-domain).

By Cn(Ω), we denote the set R+ × Ω in Rn with the domain Ω on
Sn−1(n ≥ 2). We call it a cone. Then Tn is a special cone obtained by
putting Ω = Sn−1

+ .
It is known that the Martin boundary of Cn(Ω) is the set ∂Cn(Ω)∪

{∞}, and the Martin functions at ∞ and at O with respect to a ref-
erence point chosen suitably are given by K(P ;∞, Ω) = rαΩfΩ(Θ) and
K(P ; O, Ω) = ιr−βΩfΩ(Θ) (P = (r, Θ) ∈ Cn(Ω)), respectively, where ι
is a positive number.

Let E be a bounded subset of Cn(Ω). Then R̂E
K(·;∞,Ω) is bounded

on Cn(Ω) and hence the greatest harmonic minorant of R̂E
K(·;∞,Ω) is

zero. When by GΩ(P, Q) (P ∈ Cn(Ω), Q ∈ Cn(Ω)) and GΩξ(P ) (P ∈
Cn(Ω)) we denote the Green function of Cn(Ω) and the Green potential
with a positive measure ξ on Cn(Ω), respectively, we see from the Riesz
decomposition theorem that there exists a unique positive measure λE

on Cn(Ω) such that

R̂E
K(·;∞,Ω)(P ) = GΩλE(P ) (P ∈ Cn(Ω)).

Let E be a subset of Cn(Ω) and Ek = E ∩ Ik (k = 0, 1, 2, . . .), where
Ik = {P = (r, Θ) ∈ Rn; 2k ≤ r < 2k+1}. A subset E of Cn(Ω) is said to
be rarefied at ∞ with respect to Cn(Ω), if

∞
∑

k=0

2−kβΩλEk
(Cn(Ω)) < +∞.
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Remark 1. This definition of rarefied sets was given by Essén and
Jackson [4] for sets in the half-space. This exceptional sets were origi-
nally investigated in Ahlfors and Heins [1] and Hayman [8] in connection
with the regularity of value distribution of subharmonic functions in the
half plane.

As in Tn (Essén and Jackson [4, Remark 4.4], Aikawa and Essén [2,
Definition 12.4, p.74]) and in T2 (Hayman [9, p.474]), we proved

Theorem A (Miyamoto and Yoshida [10, Theorem 2]). A subset
E of Cn(Ω) is rarefied at ∞ with respect to Cn(Ω) if and only if there
exists a positive superharmonic function v(P ) in Cn(Ω) such that

inf
P∈Cn(Ω)

v(P )

K(P ;∞, Ω)
= 0

and E ⊂ {P = (r, Θ) ∈ Cn(Ω); v(P ) ≥ rαΩ}.

In this paper, we shall give a quantitative property of rarefied sets at
∞ with respect to Cn(Ω) (Theorem 2), which extends a result obtained
by Essén, Jackson and Rippon [5] with respect to Tn and complements
Azarin’s result (Corollary 1). It follows from two results. One is another
characterization of rarefied sets at ∞ with respect to Cn(Ω) (Theorem
A). The other is the fact that the value distributions of Green potential
and Poisson integral with respect to any positive measure on Cn(Ω) and
∂Cn(Ω) are connected with a kind of densities of the measures modified
from the measures, respectively (Theorem 1). Our proof is completely
different from the way used by Essén, Jackson and Rippon [5] and is
essentially based on Hayman [8], Ušakova [12] and Azarin [3].

In order to avoid complexity of our proofs, we shall assume n ≥ 3.
All our results in this paper are true, even if n = 2.

§2. Statements of results

In the following we denote the sets I×Ω and I×∂Ω with an interval
I on R by Cn(Ω; I) and Sn(Ω; I). By Sn(Ω) we denote Sn(Ω; (0, +∞))
which is ∂Cn(Ω) − {O}. We shall also denote a ball in Rn having a
center P and a radius r by B(P, r).

Let m be any positive measure on Rn. Let q and ε be two positive
numbers. When for each P = (r, Θ) ∈ Rn − {O} we set

M(P ; m, q) = sup
0<ρ≤2−1r

m(B(P, ρ))

ρq
,
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the set {P ∈ Rn − {O}; M(P ; m, q)rq > ε} is denoted by Ψ(ε; m, q).

Remark 2. If m({P}) > 0 (P 6= O), then M(P ; m, q) = +∞ for any
positive number q and hence {P ∈ Rn−{O}; m({P}) > 0} ⊂ Ψ(ε; m, q)
for any positive number ε.

Let µ be any positive measure on Cn(Ω) such that GΩµ(P ) 6≡ +∞

(P ∈ Cn(Ω)). The positive measure m
(1)
µ on Rn is defined by

dm(1)
µ (Q) =

{

t−βΩfΩ(Φ)dµ(t, Φ) (Q = (t, Φ) ∈ Cn(Ω; (1, +∞)))
0 (Q ∈ Rn − Cn(Ω; (1, +∞))).

Let ν be any positive measure on Sn(Ω) such that the Poisson integral

ΠΩν(P ) =

∫

Sn(Ω)

∂GΩ(P, Q)

∂nQ
dν(Q) 6≡ +∞ (P ∈ Cn(Ω)),

where ∂
∂nQ

denotes the differentiation at Q along the inward normal into

Cn(Ω). We define the positive measure m
(2)
ν on Rn by

dm(2)
ν (Q) =

{

t−βΩ−1 ∂fΩ(Φ)
∂nΦ

dν(Q) (Q = (t, Φ) ∈ Sn(Ω; (1, +∞)))

0 (Q ∈ Rn − Sn(Ω; (1, +∞))).

Remark 3. We remark from Miyamoto and Yoshida [10, (i) of Lemma

1] (resp. [10, (i) of Lemma 4]) that the total mass of m
(1)
µ (resp. m

(2)
ν )

is finite.

The following Theorem 1 gives a way to estimate the Green po-
tential and the Poisson integral with measures on Cn(Ω) and Sn(Ω),
respectively.

Theorem 1. Let µ and ν be two positive measures on Cn(Ω) and
Sn(Ω) such that GΩµ(P ) 6≡ +∞ and ΠΩν(P ) 6≡ +∞ (P ∈ Cn(Ω)),
respectively. Then for a sufficiently large L and a sufficiently small ε we
have

(2.1) {P = (r, Θ) ∈ Cn(Ω; (L, +∞)); GΩµ(P ) ≥ rαΩ}

⊂ Ψ(ε; m(1)
µ , n − 1),

(2.2) {P ∈ Cn(Ω; (L, +∞)); ΠΩν(P ) ≥ rαΩ} ⊂ Ψ(ε; m(2)
ν , n − 1).
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As in Tn (Essén, Jackson and Rippon [5, p.397]) we have the fol-
lowing result for rarefied sets in Cn(Ω) by using Theorems A and 1.

Theorem 2. If a subset E of Cn(Ω) is rarefied at ∞ with re-
spect to Cn(Ω), then E is covered by a sequence of balls Bk (k=1,2,3,...)
satisfying

(2.3)
∞
∑

k=1

(rk/Rk)n−1 < +∞,

where rk is the radius of Bk and Rk is the distance between the origin
and the center of Bk.

Remark 4. By giving an example we shall show that the reverse of
Theorem 2 is not true. When the radius rk of a ball Bk and the distance
Rk between the origin and the center of it are given by rk

= 3 · 2k−1k− 1

n−2 , Rk = 3 · 2k−1 (k = 1, 2, 3, ...), they satisfy

∞
∑

k=1

(rk/Rk)n−1 =

∞
∑

k=1

k−(n−1)/(n−2) < +∞.

Let Cn(Ω′) be a subcone of Cn(Ω) i.e. Ω′ ⊂ Ω. Suppose that these balls
are so located: there is an integer k0 such that Bk ⊂ Cn(Ω′), rk/Rk

< 2−1 (k ≥ k0). Then the set E = ∪∞
k=k0

Bk is not rarefied. This proof
will be given at the end in the last section 4.

From this Theorem 2 and Miyamoto and Yoshida [10, Theorem 3],
we immediately have the following corollary.

Corollay 1 (Azarin [3, Theorem 2]). Let v(P ) be a positive su-
perharmonic function on Cn(Ω). Then v(P )rαΩ uniformly converges to
c(v)fΩ(Θ) as r → +∞ outside a set which is covered by a sequence of
balls Bk satisfying (2.3), where

c(v) = inf
P∈Cn(Ω)

v(P )

K(P ;∞, Ω)
.

§3. Proof of Theorem 1

All constants appearing in the expressions in the following all sec-
tions will be always written A, because we do not need to specify them.
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Inclusion (2.1) is an analogous result to [11, Theorem 2]. Hence we
shall prove only (2.2) of Theorem 1. To do it, we need two inequalities
which follow from Azarin [3, Lemma 1] (also see Essén and Lewis [6,
Lemma 2]) and Azarin [3, Lemma 4 and Remark]:

(3.1)
∂

∂nQ
GΩ(P, Q) ≤ ArαΩ−1t−βΩfΩ(Θ)

∂

∂nΦ
fΩ(Φ)

(3.2) (resp.
∂

∂nQ
GΩ(P, Q) ≤ ArαΩ t−βΩ−1fΩ(Θ)

∂

∂nΦ
fΩ(Φ))

for any P = (r, Θ) ∈ Cn(Ω) and any Q = (t, Φ) ∈ Cn(Ω) satisfying
0 < t/r ≤ 4/5 (resp. 0 < r/t ≤ 4/5);

(3.3)
∂

∂nQ
GΩ(P, Q) ≤ A

fΩ(Θ) ∂
∂nΦ

fΩ(Φ)

tn−1
+ A

rfΩ(Θ) ∂
∂nΦ

fΩ(Φ)

|P − Q|n

for any P = (r, Θ) ∈ Cn(Ω) and any Q = (t, Φ) ∈ Sn(Ω; ((4/5)r, (5/4)r]).

Poof of Theorem 1. If we can show that for a sufficiently large L
and a sufficiently small positive number ε,

(3.4) ΠΩν(P ) < rαΩ (P ∈ Cn(Ω; (L, +∞)) − Ψ(ε; m(2)
ν , n − 1)),

then we can conclude (2.2).
For any point P = (r, Θ) ∈ Cn(Ω), write ΠΩν(P ) as the sum

(3.5) ΠΩν(P ) = I1(P ) + I2(P ) + I3(P ),

where

Ii(P ) =

∫

Sn(Ω;Ji)

∂

∂nQ
GΩ(P, Q)dν(Q) (i = 1, 2, 3),

where J1 = (0, (4/5)r], J2 = ((4/5)r, (5/4)r]) and J3 = ((5/4)r,∞).
From (3.1) and the boundedness of fΩ(Θ) (Θ ∈ Ω) we first have

I1(P ) ≤ ArαΩ (
4

5
r)−(αΩ+βΩ)

∫

Sn(Ω; (0, 4

5
r])

tαΩ−1 ∂

∂nΦ
fΩ(Φ)dν(Q),

and hence

(3.6) I1(P ) = o(1)rαΩ (r → ∞)

by Miyamoto and Yoshida [10, (ii) of Lemma 4].
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We similarly have

I3(P ) ≤ ArαΩ

∫

Sn(Ω; ( 4

5
r,+∞))

t−βΩ−1 ∂

∂nΦ
fΩ(Φ)dν(Q),

from (3.2) and hence

(3.7) I3(P ) = o(1)rαΩ (r → ∞)

by Remark 3.
For I2(P ) we have

(3.8) I2(P ) ≤ I2,1(P ) + I2,2(P ),

where

I2,1(P ) ≤ A

∫

Sn(Ω; ( 4

5
r, 5

4
r])

fΩ(Θ)tβΩ+1

tn−1
dm(2)

ν (Q),

I2,2(P ) = A

∫

Sn(Ω; ( 4

5
r, 5

4
r])

tβΩ+1rfΩ(Θ)

|P − Q|n
dm(2)

ν (Q).

Since fΩ(Θ) is bounded on Ω, we first have

(3.9) I2,1(P ) ≤ ArαΩ

∫

Sn(Ω; ( 4

5
r, 5

4
r])

dm(2)
ν (Q) = o(1)rαΩ (r → ∞)

from Remark 3.
We shall estimate I2,2(P ). Take a sufficiently small positive number

κ such that Sn(Ω; ((4/5)r, (5/4)r]) ⊂ B(P, 2−1r) for any P = (r, Θ) ∈
Λ(κ), where

Λ(κ) = {Q = (t, Φ) ∈ Cn(Ω); inf
Z∈∂Ω

|(1, Φ) − (1, Z)| ≤ κ, 0 < t < +∞}

and divide Cn(Ω) into two sets Λ(κ) and Cn(Ω) − Λ(κ).
If P = (r, Θ) ∈ Cn(Ω) − Λ(κ), then there exists a positive constant

κ′ such that |P − Q| > κ′r for any Q ∈ Sn(Ω), and hence

(3.10) I2,2(P ) ≤ ArαΩ

∫

Sn(Ω; ( 4

5
r,+∞))

dm(2)
ν (Q) = o(1)rαΩ (r → +∞)

from Remark 3.
We shall consider the case where P ∈ Λ(κ). Now put

Wi(P ) = {Q ∈ Sn(Ω; ((4/5)r, (5/4)r]); 2i−1δ(P ) ≤ |P − Q| < 2iδ(P )},
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where δ(P ) = infQ∈∂Cn(Ω) |P − Q|. Since Sn(Ω) ∩ {Q ∈ Rn; |P − Q|
< δ(P )} = ∅, we have

I2,2(P ) = Σ
i(P )
i=1 A

∫

Wi(P )

tβΩ+1rfΩ(Θ)

|P − Q|n
dm(2)

ν (Q),

where i(P ) is a positive integer satisfying 2i(P )−1δ(P ) ≤ r/2 < 2i(P )δ(P ).
Since rfΩ(Θ) ≤ Aδ(P ) (P = (r, Θ) ∈ Cn(Ω)), we have

∫

Wi(P )

tβΩ+1rfΩ(Θ)

|P − Q|n
dm(2)

ν (Q) ≤ ArαΩ2n−i m
(2)
ν (Wi(P ))

{2iδ(P )}n−1

for i = 0, 1, 2, ..., i(P ). Suppose that P /∈ Ψ(ε; m
(2)
ν , n− 1) for a positive

number ε. Then we have

m
(2)
ν (Wi(P ))

{2iδ(P )}n−1 ≤
m

(2)
ν (B(P, 2iδ(P ))

{2iδ(P )}n−1
≤ M(P ; m(2)

ν , n − 1) ≤ εr1−n

for i = 0, 1, 2, ..., i(P )−1 and

m
(2)
ν (Wi(P )(P ))

{2i(p)δ(P )}n−1
≤

m
(2)
ν (B(P, r

2 ))

( r
2 )n−1

≤ εr1−n.

In this case we also have

(3.11) I2,2(P ) ≤ AεrαΩ .

From (3.5),(3.6),(3.7),(3.8),(3.9),(3.10) and (3.11), we finally obtain
that if L is sufficiently large and ε is sufficiently small, then ΠΩν(P )

< rαΩ for any P ∈ Cn(Ω; (L, +∞)) − Ψ(ε; m
(2)
ν , n − 1).

§4. Proof of Theorem 2

The following Lemma 1 is a result concerning measure theory, which
was proved in Miyamoto and Yoshida [11].

Lemma 1 . Let m be any positive measure on Rn having the finite
total mass. Let ε and q be two any positive numbers. Then S(ε; m, q) is
covered by a sequence of balls Bj (j = 1, 2, ...) satisfying

∞
∑

j=1

(rj/Rj)
q < +∞,
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where rj is the radius of Bj and Rj is the distance between the origin
and the center of Bj .

Proof of Theorem 2. Since E is rarefied at ∞ with respect to Cn(Ω),
by Theorem A there exists a positive superharmonic function v(P ) in
Cn(Ω) such that

(4.1) inf
P∈Cn(Ω)

v(P )

K(P ;∞, Ω)
= 0

and

(4.2) E ⊂ {P = (r, Θ) ∈ Cn(Ω); v(P ) ≥ rαΩ}.

By Miyamoto and Yoshida [10, Lemma 3] (also see Azarin [3, Theorem
1]) and (4.1), for this v(P ) there exist a unique positive measure µ′ on
Cn(Ω) and a unique positive measure ν ′ on Sn(Ω) such that

v(P ) = c0(v)K(P ; O, Ω) + GΩµ′(P ) + ΠΩν′(P ).

Let us denote the sets {P = (r, Θ) ∈ Cn(Ω); c0(v)K(P ; O, Ω) ≥ 3−1rαΩ}, {P
= (r, Θ) ∈ Cn(Ω); GΩµ′(P ) ≥ 3−1rαΩ} and {P = (r, Θ) ∈ Cn(Ω);
ΠΩν′(P ) ≥ 3−1rαΩ} by E(1), E(2) and E(3), respectively. Then we see
from (4.2) that

(4.3) E ⊂ E(1) ∪ E(2) ∪ E(3).

For each E(i) (i = 1, 2, 3) we shall find a sequence of balls which covers
it.

It is evident from the boundedness of E(1) that E(1) is covered by a
finite ball B1 satisfying

(4.4) r1/R1 < +∞,

where r1 is the radius of B1 and R1 is the distance between the origin
and the center of B1.

When we apply Theorem 1 with the measures µ and ν defined by
µ = 3µ′ and ν = 3ν′ we can find two positive constants L and ε such that

E(2) ∩ Cn(Ω; (L, +∞)) ⊂ Ψ(ε; m
(1)
µ , n − 1) and E(3) ∩ Cn(Ω; (L, +∞))

⊂ Ψ(ε; m
(2)
ν , n − 1), respectively. By Lemma 1 these Ψ(ε; m

(1)
µ , n − 1)

and Ψ(ε; m
(2)
ν , n − 1) are covered by two sequences of balls B

(2)
j and

B
(3)
j (j = 1, 2, ...) satisfying

∞
∑

j=1

(r
(2)
j /R

(2)
j )n−1 < +∞ and

∞
∑

j=1

(r
(3)
j /R

(3)
j )n−1 < +∞,
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respectively, where r
(2)
j (resp. r

(3)
j ) is the radius of B

(2)
j (resp. B

(3)
j ) and

R
(2)
j (resp. R

(3)
j ) is the distance between the origin and the center of

B
(2)
j (resp. B

(3)
j ). Hence E(2) and E(3) are also covered by the sequences

of balls B
(2)
j and B

(3)
j (j = 0, 1, ...) with an additional finite ball B

(2)
0

covering Cn(Ω; (0, L]) satisfying

(4.5)

∞
∑

j=0

(r
(2)
j /R

(2)
j )n−1 < +∞ and

∞
∑

j=1

(r
(3)
j /R

(3)
j )n−1 < +∞,

respectively.

Thus by rearranging B1, B
(2)
j (j = 0, 1, ...), B

(3)
j (j = 1, ...), we have a

sequence of balls Bk (k = 1, 2, ...) which covers E from (4.3) and satisfies
(2.3) from (4.4), (4.5).

Proof of Remark 4. Since fΩ(Θ) ≥ A for any Θ ∈ Ω′ and rkRk
−1

< 2−1 (k ≥ k0) for a positive integer k0, we have that K(P ;∞, Ω)
≥ ARαΩ

k and hence

(4.6) R̂Bk

K(·;∞,Ω)(P ) ≥ ARαΩ

k (k ≥ k0)

for any P ∈ Bk (k ≥ k0).
Take a measure τ on Cn(Ω), supp τ ⊂ Bk, τ(Bk) = 1 such that

(4.7)

∫

Cn(Ω)

|P − Q|2−ndτ(P ) = {Cap(Bk)}−1,

for any Q ∈ Bk, where Cap denotes the Newtonian capacity. Since
GΩ(P, Q) ≤ |P − Q|2−n (P ∈ Cn(Ω), Q ∈ Cn(Ω)), we have

∫

(

∫

GΩ(P, Q)dλBk
(Q))dτ(P ) ≤ {Cap(Bk)}−1λBk

(Cn(Ω))

from (4.7) and
∫

(

∫

GΩ(P, Q)dλBk
(Q))dτ(P )

=

∫

(R̂Bk

K(·;∞,Ω)(P ))dτ(P ) ≥ ARαΩ

k τ(Bk) = ARαΩ

k

from (4.6). Hence we have that λBk
(Cn(Ω)) ≥ ACap(Bk)RαΩ

k

≥ Arn−2
k RαΩ

k , because Cap(Bk) = rn−2
k .
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Thus if we observe λEk
(Cn(Ω)) = λBk

(Cn(Ω)), then we have

∞
∑

k=k0

2−kβΩλEk
(Cn(Ω)) ≥ A

∞
∑

k=k0

(rk/Rk)n−2 = A

∞
∑

k=k0

k−1 = +∞,

which shows that E is not rarefied.
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244 I. Miyamoto and H. Yoshida

Ikuko Miyamoto

Department of Mathematics

Chiba University

1-33 Yayoi-cho, Inage-ku

Chiba 263-8522

Japan

E-mail address: miyamoto@math.s.chiba-u.ac.jp

Hidenobu Yosida

Graduate School of Science and Technology

Chiba University

1-33 Yayoi-cho, Inage-ku

Chiba 263-8522

Japan

E-mail address: yoshida@math.s.chiba-u.ac.jp



Advanced Studies in Pure Mathematics 44, 2006

Potential Theory in Matsue

pp. 245–254

The L
p resolvents for elliptic systems of divergence

form

Yoichi Miyazaki

Abstract.

We consider elliptic systems of divegence form in R
n under the

limited smoothness assumptions on the coefficients. We construct L
p

resolvents with evaluation of their operator norms, and derive the
Gaussian bounds for heat kernels and estimates for resolvent kernels.
These results extend those for single operators.

§1. Introduction

In [5] we considered a single elliptic operator of order 2m in diver-
gence form, which is defined in Rn and has non-smooth coefficients, in
the framework of Lp Sobolev spaces and constructed the resolvents. In
[6, 7] we extended this result to an operator defined in a general domain
with the Dirichlet boundary condition. Furthermore, in [7] we showed
that the heat kernels and the resolvent kernels are differentiable (we ex-
clude the diagonal set for the resolvent kernels) up to order m−1+σ for
any σ ∈ (0, 1) and evaluated their derivatives. These results correspond
to the results by Tanabe [8] for single operators of non-divergence form.

The purpose of this paper is to extend the above results to elliptic
systems defined in Rn.

Let x = (x1, . . . , xn) be a generic point in Rn, α = (α1, . . . , αn) a
multi-index with length |α| = α1 + · · · + αn, and

Dα = Dα1
1 · · ·Dαn

n , Dj = −
√
−1

∂

∂xj
(j = 1, . . . , n).
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Let N ≥ 1 be an integer. We consider the elliptic operator in diver-
gence form

(1.1) Au(x) =
∑

|α|≤m, |β|≤m

Dα(aαβ(x)Dβu(x))

in Rn, where aαβ(x) is an N × N matrix (aij
αβ(x))1≤i≤N, 1≤j≤N and

u(x) = t(u1(x), . . . , uN (x)). We allow the coefficients to be complex
valued, whereas many literature such as [2, 4] deals with systems with
real-valued coefficients. We denote by a(x, ξ) the principal symbol of A:

a(x, ξ) =
∑

|α|=|β|=m

aαβ(x)ξα+β , x ∈ R
n, ξ ∈ R

n.

Throughout this paper we assume the following.
(H1) All the coefficients aij

αβ are measurable and bounded in Rn.

(H2) The coefficients aij
αβ with |α| = |β| = m are uniformly contin-

uous in Rn.
(H3) The operator A satisfies the Legendre-Hadamard condition,

that is, there exists δA > 0 such that

Re tηa(x, ξ)η ≥ δA|ξ|2m|η|2

for any x ∈ Rn, ξ ∈ Rn and η = t(η1, . . . , ηN ) ∈ RN .
Let 1 ≤ p ≤ ∞ and τ ∈ R. We denote by Lp = Lp(Rn) the space of

p-integrable functions and define Hτ,p by

Hτ,p = Hτ,p(Rn) = {f ∈ S ′(Rn) : 〈D〉τf ∈ Lp(Rn)}

with norm ‖u‖Hτ,p = ‖〈D〉τu‖Lp , where 〈ξ〉 = (1 + |ξ|2)1/2.
For a Banach space X we define XN to be the set of all u =

t(u1, . . . , uN) such that uj ∈ X for 1 ≤ j ≤ N with norm ‖u‖XN =
max1≤j≤N ‖uj‖X , and XN×N the set of all N ×N matrices a = (aij)i,j

such that aij ∈ X for 1 ≤ i ≤ N, 1 ≤ j ≤ N with norm ‖a‖XN×N =
max1≤i≤N,1≤j≤N ‖aij‖X . When X = R, we simply write |a| for ‖a‖XN×N .

For an integer k ≥ 1 it is sometimes convenient to write f ∈
(H−k,p)N as

(1.2) f =
∑

|α|≤k

Dαfα, fα ∈ (Lp)N

and note that the norm inf
∑

|α|≤k ‖fα‖(Lp)N is equivalent to the norm

‖f‖(H−k,p)N , where the infimum is taken over all the expressions in (1.2).
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We mean by T : X → Y that T is a bounded linear operator from
a Banach space X to a Banach space Y .

Let 1 < p < ∞. Since Dα : (Hτ,p)N → (Hτ−|α|,p)N for τ ∈ R and
aαβ : (Lp)N → (Lp)N , we can regard A in (1.1) as a bounded operator
from (Hm,p)N to (H−m,p)N . When we want to stress p, we write A as
Ap. So we have

A = Ap =
∑

|α|,|β|≤m

DαaαβDβ : (Hm,p)N → (H−m,p)N .

We often use the following notations:

MA = max
|α|, |β|≤m

‖aαβ‖(L∞)N×N , ζA = (n, m, N, δA, MA),

ωA(ε) = max
1≤i≤N, 1≤j≤N

max
|α|=|β|=m

sup{|aij
αβ(x) − aij

αβ(y)| : x, y ∈ R
n, |x − y| ≤ ε},

Λ(R, θ) = {λ ∈ C : |λ| ≥ R, θ ≤ arg λ ≤ 2π − θ}

for ε > 0, R > 0 and 0 < θ < π.
Let µj(x, ξ), 1 ≤ j ≤ N be all the eigenvalues of a(x, ξ). By (H1)

we have |Im µj(x, ξ)| ≤ M0|ξ|2m with some constant M0 depending only
on n, m, N and MA. On the other hand, (H3) implies Reµj(x, ξ) ≥
δA|ξ|2m. Therefore we conclude that

(1.3) − κA ≤ arg µj(x, ξ) ≤ κA,

where κA = arctan (M0/δA) ∈ (0, π/2). In [5, 6] we assumed a(x, ξ) ≥
δA|ξ|2m for a single operator, which is a stronger ellipticity condition
than (H3). In this case we can take κA = 0.

§2. Main results

We are now ready to state the main theorems. The first theorem is
concerned with the estimates of the type

(2.1) ‖(Ap − λ)−1‖(H−i,p)N→(Hj,p)N ≤ K|λ|−1+(i+j)/2m

for 0 ≤ i ≤ m and 0 ≤ j ≤ m with some K > 0.

Theorem 2.1. Let p ∈ (1,∞) and θ ∈ (κA, π/2). Then there exist

R = R(θ, ζA, ωA), K1 = K1(p, θ, ζA) and K2 = K2(θ, ζA) such that for

λ ∈ Λ(R, θ) the resolvent (Ap−λ)−1 exists and (2.1) holds for 0 ≤ i ≤ m
and 0 ≤ j ≤ m with K = K1, and for 0 ≤ i ≤ m− 1 and 0 ≤ j ≤ m− 1
with K = K2.
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Moreover the resolvents are consistent in the sense that

(Ap − λ)−1f = (Aq − λ)−1f, f ∈ (H−m,p)N ∩ (H−m,q)N

when λ ∈ Λ(R, θ) for any p, q ∈ (1,∞).

For p ∈ (1,∞) we define the operator A(p) in (Lp)N by

D(A(p)) = {u ∈ (Hm,p)N : Apu ∈ (Lp)N},
A(p)u = Apu for u ∈ D(A(p)).

It follows from Lemma 3.1 in Section 3 that D(A(p)) is dense in (Hm,p)N ,

A(p) is a closed operator in (Lp)N , and (A(p))
∗ = (A∗)(p∗), where p∗ =

p/(p − 1) and A∗ is the dual operator of A.

Let h ∈ R
n. We define the difference operators ∆h, ∆

(1)
h and ∆

(2)
h

by ∆hu(x) = u(x + h) − u(x), ∆
(1)
h F (x, y) = F (x + h, y) − F (x, y)

and ∆
(2)
h F (x, y) = F (x, y + h) − F (x, y), respectively, for vector-valued

functions u of x ∈ Rn and F of (x, y) ∈ Rn × Rn. We set

∆ = {(x, x) : x ∈ R
n}.

For t ∈ C \ {0}, x ∈ Rn and C > 0 we set

Φm(t, x; C) = exp{−C(|x|2m|t|−1)1/(2m−1)}.

Theorem 2.2. Let p ∈ (1,∞). Then the operator −A(p) generates

an analytic semigroup e−tA(p) of angle π/2 − κA with kernel U(t, x, y)
which is independent of p and satisfies the following estimates. For any

ε ∈ (0, π/2 − κA) and σ ∈ (0, 1) there exist C1 = C1(ε, ζA), C2 =
C2(ε, ζA), C3 = C3(ε, ζA, ωA), C ′

1 = C ′
1(ε, σ, ζA), C ′

2 = C ′
2(ε, σ, ζA) and

C ′
3 = C ′

3(ε, σ, ζA, ωA) such that for |α| < m, |β| < m and | arg t| ≤
π/2 − κA − ε we have

(2.2) |∂α
x ∂β

y U(t, x, y)| ≤ C1|t|−(n+|α|+|β|)/2mΦm(t, x − y; C2)e
C3|t|

for (x, y) ∈ Rn × Rn, and

|∆(i)
h ∂α

x ∂β
y U(t, x, y)|(2.3)

≤ C ′
1|t|−(n+|α|+|β|+σ)/2mΦm(t, x − y; C ′

2)e
C′

3|t||h|σ

for i ∈ {1, 2}, h ∈ Rn and (x, y) ∈ Rn × Rn with 2|h| ≤ |x − y|.
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Theorem 2.2 extends the result for p = 2 obtained by Auscher and
Qafsaoui [1], who used the method of Morrey-Campanato spaces.

For x ∈ Rn, λ ∈ C, τ > 0 and C > 0 we set

Ψτ
m(x, λ; C) =











|λ|−1+τ/2m exp(−C|λ|1/2m|x|) (τ < 2m)

(1 + log+ |λ|1/2m|x|) exp(−C|λ|1/2m|x|) (τ = 2m)

|x|2m−τ exp(−C|λ|1/2m|x|) (τ > 2m),

where log+ s = max{0, log s} for s > 0.

Theorem 2.3. Let p ∈ (1,∞) and θ ∈ (κA, π/2). Then there exists

R = R(θ, ζA, ωA) such that for λ ∈ Λ(R, θ) the resolvent (A(p) − λ)−1

exists and it has a kernel Gλ(x, y) which is independent of p and satisfies

the following estimates. For any σ ∈ (0, 1) there exist C1 = C1(θ, ζA),
C2 = C2(θ, ζA), C ′

1 = C ′
1(σ, θ, ζA) and C ′

2 = C ′
2(σ, θ, ζA) such that for

|α| < m, |β| < m and λ ∈ Λ(R, θ) we have

(2.4) |∂α
x ∂β

y Gλ(x, y)| ≤ C1Ψ
n+|α|+|β|
m (x − y, λ; C2)

for (x, y) ∈ Rn × Rn \ ∆, and

(2.5) |∆(i)
h ∂α

x ∂β
y Gλ(x, y)| ≤ C ′

1Ψ
n+|α|+|β|+σ
m (x − y, λ; C ′

2)|h|σ

for i ∈ {1, 2}, h ∈ Rn and (x, y) ∈ Rn × Rn \ ∆ with 2|h| ≤ |x − y|.
Moreover ∂α

x ∂β
y Gλ(x, y) is continuous on ∆ if n + |α| + |β| < 2m.

§3. Partial proof of Theorem 2.1

Since T = (Tij)i,j : XN → Y N and Tij : X → Y for 1 ≤ i ≤ N ,
1 ≤ j ≤ N are equivalent, most properties of T can be reduced to those
of Tij . This enables us to obtain the main results along the same line as
in the case of single operators. We first derive Lemma 3.1 below, which
is weaker than Theorem 2.1 for the constants R and K may depend on
p. Then Lemma 3.1 leads to Thorem 2.2, from which Theorems 2.1 and
2.3 follow.

In the following we give only the outline of the proofs except Lemma
3.3 whose proof is a little complicated when N ≥ 2. The details for the
case of single operaters are found in [5, 6, 7].

Lemma 3.1. Let p ∈ (1,∞) and θ ∈ (κA, π/2). Then there exist

Rp = R(p, θ, ζA, ωA) and K = K(p, θ, ζA) such that for λ ∈ Λ(Rp, θ) the

resolvent (Ap−λ)−1 exists and (2.1) holds for 0 ≤ i ≤ m and 0 ≤ j ≤ m.

Moreover the resolvents are consistent in the sense of Theorem 2.1.

The proof of Lemma 3.1 is given after some preparation.
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Lemma 3.2 ([7]). Let θ ∈ (κA, π/2). Then there exists a constant

C = C(θ, κA) > 0 such that

|s − λ| ≥ C(|s| + |λ|)

for | arg s| ≤ κA and θ ≤ argλ ≤ 2π − θ.

Lemma 3.3. Let p ∈ (1,∞), θ ∈ (κA, π/2) and fix x0 ∈ R
n. Then

for λ ∈ Λ(1, θ) the operator a(x0, D) − λ : (Hm,p)N → (H−m,p)N has

an inverse and there exists K = K(p, θ, ζA) such that

(3.1) ‖(a(x0, D) − λ)−1‖(H−i,p)N→(Hj,p)N ≤ K|λ|−1+(i+j)/2m

for 0 ≤ i ≤ m and 0 ≤ j ≤ m.

Proof. Set bλ(ξ) = (bλij(ξ))i,j = (a(x0, ξ) − λ)−1. Then

bλij(ξ) = (det (a(x0, ξ) − λ))−1cλji(ξ),

where cλij(ξ) is (i, j)-cofactor of the matrix a(x0, ξ)−λ. By (H1), (1.3),
Lemma 3.2 and Re µj(x, ξ) ≥ δA|ξ|2m we have

|cλij(ξ)| ≤ C(|ξ|2m + |λ|)N−1,

|det (a(x0, ξ) − λ)| = |λ − µ1(x0, ξ)| · · · |λ − µN (x0, ξ)|
≥ C(|ξ|2m + |λ|)N .

Since ∂α
ξ bλ(ξ) is written in the form

∑

α1+···+αk=α

Cαα1...αkbλ(ξ) · ∂α1

ξ a(x0, ξ) · · · bλ(ξ) · ∂αk

ξ a(x0, ξ) · bλ(ξ)

with 1 ≤ |αj | ≤ 2m (j = 1, . . . , k), we have

|∂α
ξ bλ(ξ)| ≤ C

∑

|ξ|2m−|α1| · · · |ξ|2m−|αk|(|ξ|2m + |λ|)−k−1

≤ C(|ξ|2m + |λ|)−1−|α|/2m.

So we get

|ξ||γ|
∣

∣

∣
∂γ

ξ {ξα+βbλ(ξ)}
∣

∣

∣
≤ C|λ|−1+(|α|+|β)/2m

for |α| ≤ m, |β| ≤ m and |γ| ≤ [n/2] + 1. Finally, by applying Mihlin’s
multiplier theorem to the operator Dαbλ(D)Dβ we get the lemma. �
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Proof of Lemma 3.1. For ε ∈ (0, 1) we take a family of functions
{ηsε(x)}s∈Zn in C∞

0 (Rn) such that
∑

s∈Zn

ηsε(x)2 = 1, supp ηsε ⊂ {x ∈ R
n : |x − εs| < ε},

|Dαηsε(x)| ≤ Cn,mε−|α| for |α| ≤ 2m,

#{s ∈ Z
n : ηsε(x) 6= 0} ≤ 2n for any x ∈ R

n.

We define a parametrix for A − λ by

Pλ =
∑

s∈Zn

ηsεPsληsε, Psλ = (a(εs, D) − λ)−1.

Using the Leibniz formula, we have

(A − λ)Pλ = I + Rλ, Rλ = J1 + J2 + J3 + J4,

where I denotes the identity and

J1 =
∑

|α|+|β|<2m

DαaαβDβPλ,

J2 =
∑

|α|=|γ|=m

∑

β<γ

C1γβDαaαγ

(

∑

s

η(γ−β)
sε DβPsληsε

)

,

J3 =
∑

|α|=|β|=m

Dα
(

∑

s

(aαβ − aαβ(εs))ηsεD
βPsληsε

)

,

J4 =
∑

|γ|=|β|=m

∑

α<γ

C0γαDα
(

∑

s

aγβ(εs)η(γ−α)
sε DβPsληsε

)

with some constants C0γα and C1γβ . Careful calculation yields

‖PλRk
λ‖(H−i,p)N→(Hj,p)N

≤ K0K
k
1 (ωA(

√
nε) + ε−1|λ|−1/2m)k|λ|−1+(i+j)/2m

for 0 ≤ i ≤ m, 0 ≤ j ≤ m and λ ∈ Λ(ε−2m, θ). So if we take ε ∈ (0, 1)
and R > 0 so that

K1ωA(
√

nε) ≤ 4−1, K1ε
−1R−1/2m ≤ 4−1, R ≥ ε−2m,

then for λ ∈ Λ(R, θ) the series
∑∞

k=0(−1)kPλRk
λ converges as an opera-

tor (H−m,p)N → (Hm,p)N and it is a right inverse of A−λ. The duality
aurgument shows that the right inverse is exactly (A − λ)−1.

We also get the consistency of resolvents, since (A − λ)−1 consists
of three kinds of operators such as Dα, Fourier multipliers (a(x0, D) −
λ)−1, and multiplication operators by functions in (L∞)N , which are
consistent in the sense of Theorem 2.1. �
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§4. Proof of Theorem 2.2

Based on Lemma 3.1, we can prove Theorem 2.2. It is seen from
(2.1) that −A(p) generates an analytic semigroup of angle π/2 − κA.

As for the heat kernel estimate, we shall first consider the case of
p = 2. By the Sobolev embedding theorem and Lemma 3.1 we have
range (A(p)−λ)−1 ⊂ (Lp)N ∩ (Lq)N for p, q with 1 < p < q, p−1−q−1 <
m/n and

‖(A(p) − λ)−1‖(Lp)N→(Lq)N ≤ C|λ|−1+(n/2m)(1/p−1/q)

for λ ∈ Λ(Rp, θ) ∩ Λ(Rq , θ) with θ ∈ (κA, π/2).
Given ε ∈ (0, 2−1(π/2 − κA)) and σ ∈ (0, 1), we take a sequence

{pj}k
j=1 satisfying

2 = pk < pk−1 < · · · < p1 = max{ n
1−σ , 2}, p−1

j − p−1
j−1 < m/n,

and assume that λ ∈ Λ(κA + ε, R) and |arg t| < π/2 − κA − 2ε with
R = max{Rp1 , . . . , Rpk

}, where each Rpj
, j = 1, . . . , k is the constant

defined for p = pj and θ = κA + ε in Lemma 3.1. Then we have

(A(2) − λ)−k = (A(p1) − λ)−1 · · · (A(pk) − λ)−1

and therefore

‖(A(2) − λ)−k‖(L2)N→(L∞)N ≤ K ′|λ|−k+n/4m.

This combined with the formula

e−tA(2) = 1
2π

√
−1

∫

Γ

e−tλ(A(2) − λ)−1 dλ

= (k−1)!

2π
√
−1

t1−k

∫

Γ

e−tλ(A(2) − λ)−k dλ,

where Γ is a path in Λ(κA + ε, R), gives

‖e−tA(2)‖(L2)N→(L∞)N ≤ C|t|−n/4me(sin(κA+ε))−1R|t|.

Applying the kernel theorem to e−2tA(2) = e−tA(2)(e−tA∗

(2))∗, we obtain

(4.1) |U(2t, x, y)| ≤ C2|t|−n/2me2(sin(κA+ε))−1R|t|.

The Gaussian estimate can be derived by Davies’ method of exponential
perturbation (cf [3]). To this end we set Aφ = e−φAeφ, where φ(x) =
φ(x; η, R0) is a C∞ function of x with parameters η ∈ Rn and R0 > 0
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satisfying φ(x) = exη for |x| ≤ R0 and ∂αφ ∈ L∞(Rn) for |α| ≤ m.
Then the heat kernel Uφ(t, x, y) for Aφ satisfies the estimate similar to
(4.1). So the relation

U(t, x, y) = e(x−y)ηUφ(t, x, y)

for |x| ≤ R0 and |y| ≤ R0 yields the Gaussian bounds.
We can get the estimates for the derivatives of U(t, x, y) and their

Hölder norms by using the fact (A(p1)−λ)−1 : (Lp1)N → (Bm−1+σ)N in

the above argument, where Bm−1+σ denotes the Hölder space of order
m − 1 + σ.

Finally we shall consider the case of p 6= 2. The Gaussian bounds
yield supy ‖U(t, · , y)‖(L1)N×N < ∞ and supx ‖U(t, x, ·)‖(L1)N×N < ∞.
So the integral operator with kernel U(t, x, y) is a bounded operator in
(Lp)N . Hence the consistency of resolvents shows that e−tA(p) has the
same integral kernel as e−tA(2) .

§5. Proof of Theorem 2.3

By Theorem 2.2 we have ‖e−tA(p)‖(Lp)N→(Lp)N ≤ CeR|t| with some
C and R, and therefore

(A(p) − λ)−1 =

∫ ∞

0

etλe−tA(p) dt, λ < −R.

Let θ ∈ (0, 2−1(π/2 − κA)). Deforming the integral path and using
analytic continuation, we get the formulae such as

(5.1) (A(p) − λ)−1 =

∫

Lθ

etλe−tA(p) dt

for λ with |λ| > (sin θ)−1R and κA+2θ ≤ arg λ ≤ π, where Lθ is the half

line which runs from 0 to ∞e
√
−1(π/2−κA−θ). Then the estimate for the

resolvent kernel Gλ(x, y) follows from (5.1) and the Gaussian bounds.

§6. Proof of Theorem 2.1

Let p ∈ (1,∞) and θ ∈ (κA, π/2). By Theorem 2.2 and (5.1) we
have Λ(R0, θ) ⊂ ρ(A(p)), the resolvent set of A(p), with some R0 =
R0(θ, ζA, ωA). On the other hand, by Lemma 3.1 we have Λ(R1, θ) ⊂
ρ(Ap) with some R1 = R1(p, θ, ζA, ωA). Based on these inclusions and
the resolvent equation, we can take the constant R independent of p in
Theorem 2.1. Furthermore, by using (5.1) and the Gaussian bounds we
can also take the constant K2 independent of p in Theorem 2.1.
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Maximal functions, Riesz potentials and Sobolev’s

inequality in generalized Lebesgue spaces

Yoshihiro Mizuta and Tetsu Shimomura

Abstract.

Our aim in this paper is to deal with the boundedness of maxi-
mal functions in Lebesgue spaces with variable exponent. Our result
extends the recent work of Diening [4], Cruz-Uribe, Fiorenza and
Neugebauer [3] and the authors [8]. As an application of the bound-
edness of maximal functions, we show Sobolev’s inequality for Riesz
potentials with variable exponent.

§1. Introduction

Sobolev functions play a significant role in many fields of analysis. In
recent years, the generalized Lebesgue spaces Lp(·) and the correspond-
ing Sobolev spaces W m,p(·) have attracted more and more attention, in
connection with the study of elasticity, fluid mechanics and differential

equations with p(·)-growth; see R
◦
užička [16]. One of the most important

results for Sobolev functions is so called Sobolev’s embedding theorem,
and the corresponding result has been extended to Sobolev spaces of
variable exponent by many authors; see for example [2, 5, 7, 8, 12, 17].
Our main task in this study is to obtain boundedness properties for
Riesz potentials. For this purpose, the boundedness of maximal func-
tions gives a crucial tool by a trick of Hedberg [11], which is originally
based on the recent work by Diening [4].

Let Ω be an open set in Rn. We use the notation B(x, r) to denote
the open ball centered at x of radius r. For a locally integrable function

Received January 22, 2005.
Revised April 12, 2005.
2000 Mathematics Subject Classification. 42B25, 46E30, 31B15.
Key words and phrases. Lebesgue spaces with variable exponent, maximal

functions, Riesz potentials, Sobolev’s inequality, Hardy’s inequality.
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f on Ω, we consider the maximal function Mf defined by

Mf(x) = sup
B

1

|B|

∫

Ω∩B

|f(y)|dy,

where the supremum is taken over all balls B = B(x, r) and |B| denotes
the volume of B. Let p(·) be a positive continuous function on Ω such
that p(x) > 1 on Ω. Following Orlicz [15] and Kováčik and Rákosńık
[13], we define the Lp(·)(Ω) norm by

‖f‖p(·) = ‖f‖p(·),Ω = inf

{

λ > 0 :

∫

Ω

∣

∣

∣

∣

f(y)

λ

∣

∣

∣

∣

p(y)

dy ≤ 1

}

and denote by Lp(·)(Ω) the space of all measurable functions f on Ω
with ‖f‖p(·) < ∞.

In this paper we are concerned with p(·) satisfying a condition of
the form :

|p(x) − p(y)| ≤
log(ϕ(|x − y|))

log(1/|x − y|)

whenever x ∈ Ω, y ∈ Ω and |x − y| < 1/2, where ϕ is a positive nonin-
creasing function on (0,∞) of logarithmic type. Our typical example of
ϕ is

ϕ(r) = a(log(1/r))b(log log(1/r)))c

for small r > 0, where a > 0, b > 0 and −∞ < c < ∞. In case Ω is not
bounded, we further assume that

|p(x) − p∞| ≤
C

log(e + |x|)
whenever x ∈ Ω,

where 1 < p∞ < ∞.
Our first aim in this paper is to find a function Φ(t, x) on R × Ω

such that
∫

Ω

Φ(Mf(x), x)dx ≤ C whenever ‖f‖p(·) ≤ 1

(in Theorems 2.7 and 4.7 below). If ϕ(r) = a(log(e + 1/r))b, then our
result was proved by Diening [4] (when b = 0 and Ω is bounded), Cruz-
Uribe, Fiorenza and Neugebauer [3, Theorem 1.5] (when b = 0 and Ω is
not bounded), and the authors [8, Theorem 2.4] (when b > 0 and Ω is
bounded).
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We consider the Riesz potential of order α for a locally integrable
function f on Ω, which is defined by

Iαf(x) =

∫

Ω

|x − y|α−nf(y)dy.

Here 0 < α < n. As an application of the boundedness of maximal
functions, we give Sobolev’s inequality for Riesz potentials with variable
exponent. We in fact find a function Ψ(t, x) on R× Ω such that

∫

Ω

Ψ(Iαf(x), x)dx ≤ C whenever ‖f‖p(·) ≤ 1

(see Theorems 3.5 and 5.6 below). In case ϕ(r) = a(log(e + 1/r))b,
our result was proved by Samko [17] (when b = 0 and Ω is bounded),
Diening [5] (when b = 0 and p(·) is constant outside of a large ball),
Capone, Cruz-Uribe and Fiorenza [2, Theorem 1.6] (when b = 0 and Ω
is not bounded), and the authors [8, Theorem 3.4] (when b > 0 and Ω
is bounded).

For related results, see also Adams-Hedberg [1], Diening [5], Edmunds-
Rákosńık [6], Harjulehto-Hästö-Pere[10], Kokilshvili-Samko [12], Kováčik-

Rákosńık [13], Nekvinda [14], R
◦
užička [16] and the authors [9].

§2. Maximal functions

Throughout this paper, let C denote various constants independent
of the variables in question.

Consider a positive nonincreasing function ϕ on the interval (0,∞)
of logarithmic type, which has the following properties:

(ϕ1) ϕ(∞) = limt→∞ ϕ(t) > 0;
(ϕ2) (log(1/t))−ε0ϕ(t) is nondecreasing on (0, r0) for some ε0 > 0

and r0 > 0.

Remark 2.1. (i) By condition (ϕ2), we see that

C−1ϕ(r) ≤ ϕ(r2) ≤ Cϕ(r) whenever r > 0,

which implies the doubling condition on ϕ.
(ii) We see from (ϕ2) that for each δ > 0, tδϕ(t) is nondecreasing

on some interval (0, T ), T = T (δ) > 0.
(iii) Our typical example of ϕ is of the form

ϕ(t) = a(log(1/t))b(log(log(1/t)))c
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for small t > 0, where a > 0, b > 0 and c ∈ R.

In this section, let Ω be an open set in Rn. Let p(·) be a positive
continuous function on Ω satisfying

(p1) 1 < p−(Ω) = infΩ p(x) ≤ supΩ p(x) = p+(Ω) < ∞ ;
(p2) |p(x)−p(y)| ≤ log(ϕ(|x−y|))/ log(1/|x−y|) whenever |x−y| <

1/2, x ∈ Ω and y ∈ Ω.

Lemma 2.2. If 0 < r0 < 1 and log ϕ(r0) > ε0, then log ϕ(r)/ log(1/r)
is nondecreasing on (0, r0).

Proof. Let 0 < r1 < r2 < r0 < 1. By (ϕ2), we have

log ϕ(r1)

log(1/r1)
≤ ε0

log(log(1/r1)) − log(log(1/r2))

log(1/r1)
+

log ϕ(r2)

log(1/r1)

=
log ϕ(r2)

log(1/r2)
+

1

log(1/r1)

{

ε0 log

(

log(1/r1)

log(1/r2)

)

+
log(r1/r2)

log(1/r2)
log ϕ(r2)

}

.

Since log(1 + t) < t for t > 0,

log

(

log(1/r1)

log(1/r2)

)

≤
log(r2/r1)

log(1/r2)
,

so that

log ϕ(r1)

log(1/r1)
−

log ϕ(r2)

log(1/r2)

≤
1

log(1/r1)

(

log(r2/r1)

log(1/r2)

)

(ε0 − log ϕ(r2)) < 0,

as required. �

Let 1/p′(x) = 1 − 1/p(x). Then note that

p′(y) − p′(x) =
p(x) − p(y)

(p(x) − 1)(p(y) − 1)

=
p(x) − p(y)

(p(x) − 1)2
+

(p(x) − p(y))2

(p(x) − 1)2(p(y) − 1)
.

Hence, in view of (ϕ2), we have the following result.
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Lemma 2.3. There exists a positive constant C such that

|p′(x) − p′(y)| ≤ ω(|x − y|) whenever x ∈ Ω and y ∈ Ω,

where

ω(r) = ω(r; x, C) =
1

(p(x) − 1)2
log(Cϕ(r))

log(1/r)

for 0 < r ≤ r0 and ω(r) = ω(r0) for r ≥ r0.

In what follows, we may assume that ω(r) is nondecreasing as a
function of r ∈ (0,∞). Moreover, if f is a function on Ω, then we set
f = 0 outside Ω.

Lemma 2.4. Let f be a nonnegative measurable function on Ω with

‖f‖p(·) ≤ 1. Then

{Mf(x)}p(x) ≤ C
{

Mg(x)(ϕ(Mg(x)−1))n/p(x) + 1
}

for all x ∈ Ω, where g(y) = f(y)p(y).

Proof. For 0 < µ ≤ 1 and r > 0, we have by Lemma 2.3

fB ≡
1

|B(x, r)|

∫

B(x,r)

f(y)dy

≤ µ

(

1

|B(x, r)|

∫

B(x,r)

(1/µ)p′(y)dy +
1

|B(x, r)|

∫

B(x,r)

f(y)p(y)dy

)

≤ µ
(

(1/µ)p′(x)+ω(r) + F
)

,

where F = |B(x, r)|−1
∫

B(x,r)
f(y)p(y)dy. When F is bounded, say F ≤

R0, by considering µ = 1, we have

fB ≤ C.

Hence it suffices to treat the case that F ≥ R0 > r−1
0 ; in this case

we may assume that 0 < r < r0 since ‖f‖p(·) ≤ 1. By considering

µ = F−1/{p′(x)+ω(r)} when F > 1, we find

fB ≤ 2F 1/p(x)F ω(r)/{p′(x)(p′(x)+ω(r))} ≤ 2F 1/p(x)F ω(r)/p′(x)2 .

If r ≤ F−1 < r0, then we see from Lemma 2.2 that

fB ≤ CF 1/p(x)(ϕ(F−1))1/p(x)2 ≤ CF 1/p(x)(ϕ(F−1))n/p(x)2 .
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If F−1 < r < r0, then

F 1/p(x)+ω(r)/p′(x)2

≤ Cr−n/p(x)−nω(r)/p′(x)2

(

∫

B(x,r)

f(y)p(y)dy

)1/p(x)+ω(r)/p′(x)2

.

Since r−nω(r)/p′(x)2 ≤ Cϕ(r)n/p(x)2 and
∫

B(x,r) f(y)p(y)dy ≤ 1 by our

assumption, we obtain

F 1/p(x)+ω(r)/p′(x)2

≤ Cr−n/p(x)ϕ(r)n/p(x)2

(

∫

B(x,r)

f(y)p(y)dy

)1/p(x)+ω(r)/p′(x)2

≤ Cr−n/p(x)ϕ(r)n/p(x)2

(

∫

B(x,r)

f(y)p(y)dy

)1/p(x)

≤ Cr−n/p(x)ϕ(F−1)n/p(x)2

(

∫

B(x,r)

f(y)p(y)dy

)1/p(x)

≤ CF 1/p(x)ϕ(F−1)n/p(x)2 .

Now it follows that

fB ≤ CF 1/p(x)ϕ(F−1)n/p(x)2 ,

which completes the proof. �

Lemma 2.5. For each δ > 0, there exists T0 > e such that

sδϕ(s−1)−1 is nondecreasing on (T0,∞).

Proof. By (ϕ2), it follows that (log s)ε0ϕ(s−1)−1 is nondecreasing
on (T1,∞) for some T1 > e. Since

sδϕ(s−1)−1 = sδ(log s)−ε0 × (log s)ε0ϕ(s−1)−1,

the present lemma is obtained. �

Lemma 2.6. If ‖f‖p(·) ≤ 1, then

{

Mf(x)(ϕ(Mf(x)−1))−n/p(x)2
}p(x)

≤ C (Mg(x) + 1)

for x ∈ Ω.
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Proof. For simplicity, set a = Mf(x) and b = Mg(x). By Lemma
2.4, we have

ap ≤ C
(

bϕ(b−1)cp + 1
)

with p = p(x) and c = n/p2. We may assume that a is large enough,
that is, a > T0 > 1. Using Lemma 2.5, we find

{

aϕ(a−1)−c
}p

≤ Cbϕ(b−1)cp × ϕ(Cb−1/pϕ(b−1)−c)−cp.

Note from (ϕ2) that

ϕ(Cb−1/pϕ(b−1)−c)−1 ≤ Cϕ(b−1)−1.

Hence it follows that
{

aϕ(a−1)−c
}p

≤ Cb

whenever a > T0, which proves

{

aϕ(a−1)−c
}p

≤ C(b + 1),

as required. �

Theorem 2.7. Let Ω be an open set in Rn such that |Ω| < ∞. If

A(x) = a/p(x)2 with a > n, then

∫

Ω

{

Mf(x)(ϕ(Mf(x)−1))−A(x)
}p(x)

dx ≤ C

whenever f is a measurable function on Ω with ‖f‖p(·) ≤ 1.

Proof. Let p0(x) = p(x)/p0 for 1 < p0 < p−(Ω). Then Lemma 2.6
yields

{

Mf(x)(ϕ(Mf(x)−1))−n/p0(x)2
}p0(x)

≤ C {Mg0(x) + 1}

for x ∈ Ω, where g0(y) = f(y)p0(y). Choosing p0 > 1 such that
np2

0/p(x)2 < A(x), we establish

{

Mf(x)(ϕ(Mf(x)−1))−A(x)
}p(x)

≤ C {Mg0(x) + 1}
p0 .

Since g0 ∈ Lp0(Ω), we deduce the required inequality by the boundedness
of maximal functions in Lp0 . �
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Remark 2.8. Set Φ(r, x) =
{

rϕ(r−1)−A(x)
}p(x)

for r ≥ 0 and x ∈ Ω.
Then Theorem 2.7 assures the existence of C > 0 such that

∫

Ω

Φ(Mf(x)/C, x)dx ≤ 1 whenever ‖f‖p(·) ≤ 1.

As in Edmunds and Rákosńık [6], we define

‖f‖Φ = ‖f‖Φ,Ω = inf{λ > 0 :

∫

Ω

Φ(|f(x)|/λ, x)dx ≤ 1};

then it follows that

‖Mf‖Φ ≤ C‖f‖p(·) for f ∈ Lp(·)(Ω).

If ϕ(r) = a(log(e+1/r))b, then Theorem 2.7 was proved by Diening
[4] (when b = 0) and the authors [8, Theorem 2.4] (when b is general).

Remark 2.9. For 0 < r < 1/2, let

G = {x = (x1, x2) : 0 < x1 < 1,−1 < x2 < 1}

and
G(r) = {x = (x1, x2) : 0 < x1 < r, r < x2 < 2r}.

For p(0) = p0 > 1, define

p(x1, x2) =

{

p0 − log(ϕ(x2))/log(1/x2) when 0 < x2 ≤ r0,
p0 when x2 ≤ 0;

set p(x1, x2) = p(x1, r0) when x2 > r0. Here we take r0 > 0 so small
that p(x1, r0) > 1. Consider

fr(y) = χG(r)(y)

with χE denoting the characteristic function of a set E, and set gr =
fr/‖fr‖p(·),G. Then we insist for 0 < r < r0 :

(i) ‖fr‖p(·),G ≤ C1r
2/p0ϕ(r)−2/p2

0 ;

(ii) Mgr(x) ≥ C2r
−2/p0ϕ(r)2/p2

0 for 0 < x1 < r and −r < x2 < 0.

By integration of (ii) we see that

∫

G

{

Mgr(x)(ϕ(Mgr(x)−1))−2/p(x)2
}p(x)

dx ≥ C3,

which means that Theorem 2.7 does not hold for A(x) < 2/p(x)2.
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Remark 2.10. For 0 < r < 1/2, let G and G(r) be as above. Define

p(x1, x2) =

{

p0 + log(ϕ(x2))/ log(1/x2) when 0 < x2 ≤ r0,
p0 when x2 ≤ 0;

and p(x1, x2) = p(x1, r0) when x2 > r0. Setting

G′(r) = {x = (x1, x2) : 0 < x1 < r,−r < x2 < 0},

we consider
f ′

r(y) = χG′(r)(y)

and set g′r = f ′
r/‖f

′
r‖p(·),G. Then we insist for 0 < r < r0/2 :

(i) ‖f ′
r‖p(·),G = r2/p0 ;

(ii) Mg′r(x) ≥ C1r
−2/p0 for 0 < x1 < r and r < x2 < 2r ;

(iii)
∫

G

{

Mg′r(x)ϕ(Mg′r(x)−1)−2/p(x)2
}p(x)

dx ≥ C2,

as above.

§3. Sobolev’s inequality

Let p(·) be a continuous function on Ω satisfying (p1) and (p2).
Further, suppose

p+ = p+(Ω) < n/α

and set
1

p](x)
=

1

p(x)
−

α

n
.

For 0 < α < n, we consider the Riesz potential Iαf of measurable
functions f ∈ Lp(·)(Ω), which is defined by

Iαf(x) =

∫

|x − y|α−nf(y)dy;

recall that we set f = 0 outside Ω. Set

Sf = {x ∈ Rn : f(x) 6= 0}.

In this section, we assume
|Sf | < ∞,

where |E| denotes the n-dimensional measure of a measurable set E.

Lemma 3.1. Let f be a nonnegative measurable function on Ω such

that ‖f‖p(·) ≤ 1 and |Sf | ≤ 1. Then

∫

Ω\B(x,δ)

|x − y|α−nf(y)dy ≤ Cδ−n/p](x)ϕ(δ)n/p(x)2
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for x ∈ Ω and δ ∈ (0, 1).

Proof. For µ > 0, since ‖f‖p(·) ≤ 1, we have
∫

Ω\B(x,δ)

|x − y|α−nf(y)dy

≤ µ

(

∫

Sf\B(x,δ)

(|x − y|α−n/µ)p′(y)dy +

∫

Sf\B(x,δ)

f(y)p(y)dy

)

≤ µ

(

∫

Sf\B(x,δ)

(|x − y|α−n/µ)p′(y)dy + 1

)

.

Consider the set

E = {y ∈ Sf : |x − y|α−n ≥ µ} ∩ Ω.

Then we have
∫

Sf\{E∪B(x,δ)}

(|x − y|α−n/µ)p′(y)dy ≤ |Sf | ≤ 1

by our assumption. Further, since p′(y) ≤ p′(x) + ω(|x − y|) by Lemma
2.3, we have

∫

E\B(x,δ)

(|x − y|α−n/µ)p′(y)dy

≤

∫

E\B(x,δ)

(|x − y|α−n/µ)p′(x)+ω(|x−y|)dy.

If µ > 1, then we see that
∫

E\B(x,δ)

(|x − y|α−n/µ)p′(x)+ω(|x−y|)dy

≤ µ−p′(x)−ω(δ)

∫

Rn\B(x,δ)

|x − y|(α−n)(p′(x)+ω(|x−y|))dy

≤ Cµ−p′(x)−ω(δ)δ(α−n)(p′(x)+ω(δ))+n

≤ Cµ−p′(x)−ω(δ)δp′(x)(α−n/p(x))ϕ(δ)(n−α)/(p(x)−1)2

= Cµ−p′(x)−ω(δ)δ−p′(x)n/p](x)ϕ(δ)(n−α)/(p(x)−1)2 .

Hence it follows that
∫

Ω\B(x,δ)

|x − y|α−nf(y)dy

≤ Cµ
(

µ−p′(x)−ω(δ)δ−p′(x)n/p](x)ϕ(δ)(n−α)/(p(x)−1)2 + 1
)

.
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Considering µ = δ−n/p](x)ϕ(δ)n/p(x)2 when δ is small, we see that
∫

Ω\B(x,δ)

|x − y|α−nf(y)dy ≤ Cδ−n/p](x)ϕ(δ)n/p(x)2 ,

as required. �

Lemma 3.2. Let f be a nonnegative measurable function on Ω such

that ‖f‖p(·) ≤ 1 and |Sf | ≤ 1. Then

Iαf(x) ≤ C
[

{Mf(x)}p(x)/p](x){ϕ(Mf(x)−1)}α/p(x) + 1
]

for x ∈ Ω.

Proof. For 0 < δ < 1 we have by Lemma 3.1

Iαf(x) =

∫

B(x,δ)

|x − y|α−nf(y)dy +

∫

Ω\B(x,δ)

|x − y|α−nf(y)dy

≤ CδαMf(x) + Cδ−n/p](x)ϕ(δ)n/p(x)2 .

Considering δ = {Mf(x)}−p(x)/n{ϕ(Mf(x)−1)}1/p(x) when Mf(x) is
large enough, we see that

Iαf(x) ≤ C
[

{Mf(x)}p(x)/p](x){ϕ(Mf(x)−1)}α/p(x) + 1
]

,

as required. �

Lemma 3.3. Let p > 1 and 1/p] = 1/p − α/n. For β > α,

set c = β/p and d = γ/p2, where β/γ = α/n. If s > 0, t > 0 and

sp]

≤ C1

{

tpϕ(t−1)cp]

+ 1
}

, then

{

sϕ(s−1)−d
}p]

≤ C2

{

tpϕ(t−1)−dp + 1
}

,

where C2 is a positive constant independent of s and t.

Proof. We may assume that t is large enough, that is, t > T0 > 1.
Using Lemma 2.5, we find

{

sϕ(s−1)−d
}p]

≤ Ctpϕ(t−1)cp]

× ϕ(t−p/p]

ϕ(t−1)−c)−dp]

,

with d = γ/p2. Note from (ϕ2) that

ϕ(t−p/p]

ϕ(t−1)−c)−1 ≤ Cϕ(t−1)−1.
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Hence it follows that

{

sϕ(s−1)−d
}p]

≤ Ctpϕ(t−1)(c−d)p]

= Ctpϕ(t−1)−dp

whenever t > T0, which proves

{

sϕ(s−1)−d
}p]

≤ C
{

tpϕ(t−1)−dp + 1
}

,

as required. �

By Lemmas 3.2 and 3.3, we have the following result.

Corollary 3.4. Let f be a nonnegative measurable function on Ω
such that ‖f‖p(·) ≤ 1 and |Sf | ≤ 1. If A(x) = a/p(x)2 with a > n, then

{

Iαf(x)(ϕ(Iαf(x)−1))−A(x)
}p](x)

≤ C

[

{

Mf(x)(ϕ(Mf(x)−1))−A(x)
}p(x)

+ 1

]

for x ∈ Ω.

Thus Theorem 2.7 and Corollary 3.4 yield the following Sobolev
inequality for Riesz potentials.

Theorem 3.5. Let Ω be an open set in Rn such that |Ω| < ∞.

Suppose p+(Ω) < n/α. If A(x) = a/p(x)2 with a > n, then

∫

Ω

{

Iαf(x)(ϕ(Iαf(x)−1))−A(x)
}p](x)

dx ≤ C

whenever f is a nonnegative measurable function on Ω with ‖f‖p(·),Ω ≤
1.

Remark 3.6. If ϕ(r) = a(log(e + 1/r))b, then Theorem 3.5 was
proved by the authors [8, Theorem 3.4]. See also Capone, Cruz-Uribe
and Fiorenza [2, Theorem 1.6], Diening [4] and the authors [9, Theorem
3.3].

Remark 3.7. In Remark 2.9, we see that

Iαgr(x) ≥ C1r
−2/p](x)ϕ(r)2/p2

0
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for 0 < x1 < r and −r < x2 < 0. Hence we have
∫

G

{

Iαgr(x)(ϕ(Iαgr(x)−1))−2/p(x)2
}p](x)

dx ≥ C2.

Remark 3.8. In Remark 2.10, we see that

Iαg′r(x) ≥ C1r
−2/p]

0

for 0 < x1 < r and r < x2 < 2r. Hence we have
∫

G

{

Iαg′r(x)(ϕ(Iαg′r(x)−1))−2/p(x)2
}p](x)

dx ≥ C2.

In the next section, we treat the case when Ω might not be bounded,
as in Cruz-Uribe, Fiorenza and Neugebauer [3].

§4. Maximal functions on general domains

In this section we treat the boundedness of maximal functions on
general domains, which gives a generalization of the result by Cruz-
Uribe, Fiorenza and Neugebauer [3].

Let Ω be an open set in Rn. Consider a positive continuous function
p(·) on Ω such that

(p1) 1 < p−(Ω) = infΩ p(x) ≤ supΩ p(x) = p+(Ω) < ∞;
(p2) |p(x)−p(y)| ≤ log(ϕ(|x−y|))/ log(1/|x−y|) whenever |x−y| <

1/2, x ∈ Ω and y ∈ Ω;
(p3) |p(x) − p(y)| ≤ C/ log(e + |x|) whenever x ∈ Ω, y ∈ Ω and

|y| ≥ |x|.

If (p3) holds, then p has a finite limit p∞ at infinity and

|p(x) − p∞| ≤
C

log(e + |x|)
for all x ∈ Ω. (p3′)

For a nonnegative measurable function f on Ω, set

F (x) =
1

|B(x, r)|

∫

B(x,r)

f(y)p(y)dy,

as before. If ‖f‖p(·) ≤ 1 and F (x) ≥ 1, then we have by the proof of
Lemma 2.4

fB =
1

|B(x, r)|

∫

B(x,r)

f(y)dy ≤ CF (x)1/p(x)ϕ(F (x)−1)n/p(x)2 ,
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so that

(4.1)
{

fB(ϕ(f−1
B ))−n/p(x)2

}p(x)

≤ CF (x).

Lemma 4.1. Let f be a nonnegative measurable function on Ω. If

F (x) ≤ 1 and f(y) ≥ 1 or f(y) = 0 for y ∈ Ω, then

(fB)p(x) ≤ F (x).

Proof. If f(y) ≥ 1 or f(y) = 0 for y ∈ Ω, then

fB =
1

|B(x, r)|

∫

B(x,r)

f(y)dy ≤
1

|B(x, r)|

∫

B(x,r)

f(y)p(y)dy = F (x).

Since F (x) ≤ 1, fB ≤ 1, so that

(fB)
p(x)

≤ fB ≤ F (x),

as required. �

By (4.1) and Lemma 4.1 we have the following result.

Corollary 4.2. Let f be a nonnegative measurable function on Ω
such that ‖f‖p(·) ≤ 1. If f(y) ≥ 1 or f(y) = 0 for y ∈ Ω, then

{

Mf(x)(ϕ(Mf(x)−1))−n/p(x)2
}p(x)

≤ CMg(x),

where g(y) = f(y)p(y).

For a function f on Rn, we define the Hardy operator H by

Hf(x) =
1

|B(0, |x|)|

∫

B(0,|x|)

|f(y)|dy

for x ∈ Rn \ {0} and Hf(0) = 0.

Lemma 4.3. Let f be a nonnegative measurable function on Ω. If

f ≤ 1 on Ω, then

(4.2) (fB)
p(x)

≤ C
[

F (x) + e(x) + {Hf(x)}p(x)
]

,

where e(x) = (e + |x|)−n.
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Proof. Note that F (x) ≤ 1 since f ≤ 1 on Ω. If x ∈ Ω ∩ B(0, 1),
then

fB ≤ 1,

which proves (4.2).
For every subset E of Ω, we set p+(E) = supE p(x) and p−(E) =

infE p(x). Fix x ∈ Ω \ B(0, 1), and take a ball B = B(x, r). We will
consider two cases.

Case 1: r ≥ |x|/2. Since p+ = p+(Ω) < ∞, we have

(fB)
p(x)

≤ 2p+

(

1

|B|

∫

B∩B(0,|x|)

f(y)dy

)p(x)

+2p+

(

1

|B|

∫

B\B(0,|x|)

f(y)dy

)p(x)

.

Then, since r ≥ |x|/2, we see that

1

|B|

∫

B∩B(0,|x|)

f(y)dy ≤ CHf(x).

We set E = (B \ B(0, |x|)) ∩ Ω and

D = {y : f(y) ≥ e(x)}.

By Hölder’s inequality, we have

1

|B|

∫

E

f(y)dy ≤

(

1

|B|

∫

E∩D

f(y)p−(E)dy

)1/p−(E)

+ e(x).

By assumption (p3), if y ∈ E, then

0 ≤ p(y) − p−(E) ≤ p+(E) − p−(E) ≤
C

log(e + |x|)
.

Therefore, if y ∈ E ∩ D, then

f(y)p−(E) = f(y)p(y)f(y)p−(E)−p(y)

≤ f(y)p(y)e(x)−C/ log(e+|x|) ≤ Cf(y)p(y),
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so that

(

1

|B|

∫

E

f(y)dy

)p(x)

≤ C

(

1

|B|

∫

E∩D

f(y)p(y)dy

)p(x)/p−(E)

+ Ce(x)p(x)

≤ CF (x)p(x)/p−(E) + Ce(x)p(x).

Since F (x) ≤ 1 by our assumption and e(x) ≤ 1, we obtain

(

1

|B|

∫

E

f(y)dy

)p(x)

≤ CF (x) + Ce(x),

which proves (4.2).

Case 2: 0 < r ≤ |x|/2. In this case, we see as before that

0 ≤ p(y) − p−(B ∩ Ω) ≤ p+(B ∩ Ω) − p−(B ∩ Ω) ≤
C

log(e + |x|)

for y ∈ B ∩ Ω. Hence it follows as above that

(

1

|B|

∫

B

f(y)dy

)p(x)

≤ C

(

1

|B|

∫

B

f(y)p(y)dy

)p(x)/p−(B∩Ω)

+ Ce(x)p(x)

≤ CF (x) + Ce(x),

as required. �

Lemma 4.4. Let f be a nonnegative measurable function on Ω such

that f ≤ 1 on Ω. Then

{Hf(x)}p(x) ≤ CHg(x) + Ce(x),

where g(y) = f(y)p(y).

Proof. Let f be a nonnegative measurable function on Ω such that
f ≤ 1 on Ω. Then, since 0 ≤ f ≤ 1 on Ω, we see that

H(fχB(0,r0))(x) ≤ Ce(x) on Ω.

Hence we may assume that f = 0 on B(0, r0).
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For µ ≥ 1 and r = |x| > r0, we have

1

|B(0, r)|

∫

B(0,r)

f(y)dy ≤ µ

(

1

|B(0, r)|

∫

B(0,r)

(1/µ)p′(y)dy + G

)

,

where G = Hg(x) with g(y) = f(y)p(y). Then note from (p3) that

−p′(y) ≤ −p′(x) + ω(|y|) for y ∈ B(0, r),

where ω(t) = C/ log(e + t). If log µ ≤ c1 log r and 0 < m < n, then we
can find r1 > e such that

µ−p′(y)tm ≤ Cµ−p′(x)+ω(r)rm

whenever r1 ≤ t = |y| < r = |x|, which yields

Hf(x) ≤ µ
(

Cµ−p′(x)+ω(r) + G
)

.

First assume r−n < G ≤ 1. Then we set µ = G−1/{p′(x)−ω(r)} and,
noting that µ ≤ Crn, we have

Hf(x) ≤ CG1/p(x)G−ω(r)/{p′(x)(p′(x)−ω(r))} ≤ CG1/p(x).

Next, if G ≤ r−n, then we set µ = rn/p′(x) and obtain

Hf(x) ≤ Ce(x)1/p(x) + G1/p(x) ≤ Ce(x)1/p(x).

If |x| ≤ r1, then

Hf(x) ≤ 1 ≤ Ce(x),

which completes the proof. �

Combining Lemma 4.3 with Lemma 4.4, we obtain the following
result.

Corollary 4.5. Let f be a nonnegative measurable function on Ω.

If f ≤ 1 on Ω, then

{Mf(x)}p(x) ≤ C {Mg(x) + e(x) + Hg(x)} ,

where e(x) = (e + |x|)−n and g(y) = f(y)p(y).

By Hardy’s inequality we can prove the following inequality (cf.
Lemma 5.4).
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Lemma 4.6. Let g be a nonnegative measurable function on Rn

such that ‖g‖p0
≤ 1, 1 < p0 < ∞. Then

∫

{Hg(x)}p0dx ≤ C.

Now, as in Cruz-Uribe, Fiorenza and Neugebauer [3], we can prove
the following result.

Theorem 4.7. If A(x) = a/p(x)2 with a > n, then

∫

Ω

{

Mf(x)(ϕ(Mf(x)−1))−A(x)
}p(x)

dx ≤ C

whenever f is a measurable function on Ω with ‖f‖p(·) ≤ 1.

Proof. For p0 > 1, set p0(x) = p(x)/p0 and g0(y) = f(y)p0(y). Then
we have by Corollaries 4.2 and 4.5

{

Mf(x)(ϕ(Mf(x)−1))−n/p0(x)2
}p0(x)

≤ C {Mg0(x) + e(x) + Hg0(x)} .

If a > np2
0, then

{

Mf(x)(ϕ(Mf(x)−1))−A(x)
}p(x)

≤ C {Mg0(x) + e(x) + Hg0(x)}p0

≤ CMg0(x)p0 + Ce(x)p0 + C{Hg0(x)}p0 .

Since p0 > 1, M is bounded on Lp0(Ω) and e(x) ∈ Lp0(Rn), we find

∫

Ω

{

Mf(x)(ϕ(Mf(x)−1))−A(x)
}p(x)

dx ≤ C + C

∫

Rn

{Hg0(x)}p0dx.

Thus Lemma 4.6 yields the required inequality. �

§5. Sobolev’s inequality for general domains

In this section we extend Sobolev’s inequality to general domains Ω.
Consider a positive continuous function p(·) on Ω satisfying

(p1′) 1 < p− = p−(Ω) ≤ p+(Ω) = p+ < n/α;
(p2) |p(x)− p(y)| ≤ log(ϕ(|x − y|))/ log(1/|x− y|) whenever x ∈ Ω,

y ∈ Ω and |x − y| < 1/2;
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(p3) |p(x) − p(y)| ≤ C/ log(e + |x|) whenever x ∈ Ω, y ∈ Ω and
|y| ≥ |x|.

By (p3) or (p3′) we can find R0 > 1 such that

p(x) ≤ p∞ +
C

log(e + |x|)
<

n

α
(3)

for x ∈ Ω \B(0, R0/2).

Lemma 5.1. If A(x) = a/p(x)2 with a > n, then

∫

Ω

{

Iαf(x)(ϕ(Iαf(x)−1))−A(x)
}p](x)

dx ≤ C

whenever f is a nonnegative measurable function on Ω such that f = 0
outside B(0, R0) and ‖f‖p(·) ≤ 1.

Proof. Let f be a nonnegative measurable function on Ω such that
f = 0 on Rn \ B(0, R0) and ‖f‖p(·) ≤ 1. In view of Theorem 3.5, we
have

∫

B(0,2R0)

{

Iαf(x)(ϕ(Iαf(x)−1))−A(x)
}p](x)

dx ≤ C.

If x ∈ Rn \ B(0, 2R0), then

Iαf(x) ≤ (|x|/2)α−n

∫

B(0,R0)

f(y)dy

≤ (|x|/2)α−n

∫

B(0,R0)

{1 + f(y)p(y)}dy ≤ C|x|α−n,

so that
∫

Ω\B(0,2R0)

Iαf(x)q0dx ≤ C

whenever q0(α − n) + n < 0. Now it follows that

∫

Ω

{

Iαf(x)(ϕ(Iαf(x)−1))−A(x)
}p](x)

dx ≤ C,

as required. �

Lemma 5.2. If f is a nonnegative measurable function on Ω such

that ‖f‖p(·) ≤ 1 and f = 0 on B(0, R0), then

∫

Ω\{B(0,|x|/2)∪B(x,δ)}

|x − y|α−nf(y)dy ≤ Cδα−n/p(x)
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for x ∈ Ω \ B(0, R0) and δ ≥ 1.

Proof. For x ∈ Ω \ B(0, R0) and µ > 0, since ‖f‖p(·) ≤ 1, we have

∫

Ω\{B(0,|x|/2)∪B(x,δ)}

|x − y|α−nf(y)dy

≤ µ

(

∫

Ω\{B(0,|x|/2)∪B(x,δ)}

(|x − y|α−n/µ)p′(y)dy

+

∫

Ω\{B(0,|x|/2)∪B(x,δ)}

f(y)p(y)dy

)

≤ µ

(

∫

Ω\{B(0,|x|/2)∪B(x,δ)}

(|x − y|α−n/µ)p′(y)dy + 1

)

.

First consider the case 1 ≤ δ ≤ 2|x|. Let E = {y ∈ Ω \ B(0, |x|/2) :
|x − y|α−n/µ > 1}. If we set

β1 ≡ β1(x) = p′(x) −
C

log(e + |x|)
,

then it follows from (3) that

p′(y) ≥ β1 >
n

n − α
for y ∈ Ω \B(0, |x|/2).

Hence we obtain
∫

Ω\{B(0,|x|/2)∪B(x,δ)∪E}

(|x − y|α−n/µ)p′(y)dy

≤

∫

Ω\{B(0,|x|/2)∪B(x,δ)∪E}

(|x − y|α−n/µ)β1dy

≤ µ−β1

∫

Ω\B(x,δ)

|x − y|(α−n)β1dy

≤ Cµ−β1δ(α−n)β1+n.

Considering µ = δα−n+n/β1 , we see that
∫

Ω\{B(0,|x|/2)∪B(x,δ)∪E}

(|x − y|α−n/µ)p′(y)dy ≤ C,

so that
∫

Ω\{B(0,|x|/2)∪B(x,δ)∪E}

|x − y|α−nf(y)dy ≤ Cδα−n+n/β1 .
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Similarly, if we set

β2 ≡ β2(x) = p′(x) +
C

log(e + |x|)
,

then it follows from (3) that

p′(y) ≤ β2 for y ∈ Ω \ B(0, |x|/2).

Note here that
∫

E\B(x,δ)

(|x − y|α−n/µ)p′(y)dy ≤

∫

E\B(x,δ)

(|x − y|α−n/µ)β2dy

≤ µ−β2

∫

Rn\B(x,δ)

|x − y|(α−n)β2dy

≤ Cµ−β2δ(α−n)β2+n.

Since µ = δα−n+n/β1 and δ ≥ 1, we see that
∫

E\B(x,δ)

(|x − y|α−n/µ)p′(y)dy ≤ Cδn(1−β2/β1) ≤ C,

so that
∫

E\B(x,δ)

|x − y|α−nf(y)dy ≤ Cδα−n+n/β1 .

Therefore
∫

Ω\{B(0,|x|/2)∪B(x,δ)}

|x − y|α−nf(y)dy ≤ Cδα−n+n/β1 .

Since 1 ≤ δ ≤ 2|x|,

δα−n+n/β1 ≤ Cδα−n+n/p′(x) = Cδα−n/p(x),

so that
∫

Ω\{B(0,|x|/2)∪B(x,δ)}

|x − y|α−nf(y)dy ≤ Cδα−n/p(x).

Next consider the case δ > 2|x| ≥ 2R0. Then
∫

Ω\B(x,δ)

|x − y|α−nf(y)dy ≤ C

∫

Ω\B(Xδ ,δ/2)

|Xδ − y|α−nf(y)dy,

where Xδ = (δ/4, 0, ..., 0) ∈ Rn. Hence the above considerations yield
∫

Ω\B(x,δ)

|x − y|α−nf(y)dy ≤ Cδα−n/p(x).
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Thus the proof is completed. �

For a measurable function f on Rn, we define the operator Hα by

Hαf(x) = |x|α−n

∫

B(0,|x|)

|f(y)|dy

for x ∈ Rn \ {0} and Hαf(0) = 0.

Lemma 5.3. Let f be a nonnegative measurable function on Ω with

‖f‖p(·) ≤ 1. If x ∈ Ω and Mf(x) ≤ 1, then

{Iαf(x)}p](x) ≤ C{Mf(x)}p(x) + C{Hαf(x)}p](x).

Proof. Let f be a nonnegative measurable function on Ω with
‖f‖p(·) ≤ 1. For δ ≥ 1 we have by Lemma 5.2

Iαf(x) =

∫

B(x,δ)

|x − y|α−nf(y)dy

+

∫

Ω\{B(0,|x|/2)∪B(x,δ)}

|x − y|α−nf(y)dy

+

∫

B(0,|x|/2)

|x − y|α−nf(y)dy

≤ CδαMf(x) + Cδα−n/p(x) + CHαf(x)

for x ∈ Rn. If we set δ = {Mf(x)}−p(x)/n, then it follows that

Iαf(x) ≤ C{Mf(x)}p(x)/p](x) + CHαf(x),

which yields the required inequality. �

Lemma 5.4. Let 1 < p1 < n/β and 1/q1 = 1/p1 − β/n. Then

‖Hβf‖q1
≤ C‖f‖p1

.

This is a consequence of the usual Sobolev’s inequality; see e.g. the
book by Adams and Hedberg [1].

Lemma 5.5. If f is a nonnegative measurable function on Ω such

that ‖f‖p(·) ≤ 1 and f = 0 on B(0, R0), then

∫

Ω

{Hαf(x)}p](x)dx ≤ C.
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Proof. Let f be a nonnegative measurable function on Ω such that
‖f‖p(·) ≤ 1 and f = 0 on B(0, R0). Write

f = f1 + f2,

where f1 = fχ{y:f(y)≥1} and f2 = fχ{y:f(y)<1}. Then we see that

Hαf1(x) ≤ |x|α−n

∫

B(0,|x|)

f1(y)p(y)dy ≤ |x|α−n

for |x| ≥ R0, so that
∫

Ω

{Hαf1(x)}p](x)dx ≤ C.

Thus we may assume that f = f2 ≤ 1 on Ω.
Let 1/q∞ = 1/p∞−α/n and 1/p](x) = 1/p(x)−α/n . For 1 < p1 <

p−, set p1(y) = p(y)/p1. Then for r = |x| ≥ R0 we have by Lemma 4.4

(

rα−n

∫

B(0,r)

f(y)dy

)p](x)

≤ C

(

rαp∞/p1−n

∫

B(0,r)

f(y)p1(y)dy

)p](x)p1/p(x)

+ Crq∞(α−np1/p∞).

If
∫

B(0,r)
f(y)p1(y)dy ≤ 1, then the right hand side is dominated by

Crq∞(α−np1/p∞).

Next suppose
∫

B(0,r)
f(y)p1(y)dy > 1. If p](x)p1/p(r) ≤ q∞p1/p∞, then

(

rαp∞/p1−n

∫

B(0,r)

f(y)p1(y)dy

)p](x)p1/p(r)

≤ C

(

rαp∞/p1−n

∫

B(0,r)

f(y)p1(y)dy

)q∞p1/p∞

;

if p](x)p1/p(r) > q∞p1/p∞, then, since r−n
∫

B(0,r) f(y)p1(y)dy ≤ C, the

above inequality is also true. Hence it follows that

(

rα−n

∫

B(0,r)

f(y)dy

)p](x)

≤ C

(

rαp∞/p1−n

∫

B(0,r)

f(y)p1(y)dy

)q∞p1/p∞

+ Crq∞(α−np1/p∞).
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Since 1/(q∞p1/p∞) = 1/p1 − (αp∞/p1)/n, it follows from Lemma 5.4
that

∫

Ω

{Hαf(x)}p](x)dx ≤ C,

which yields the required inequality. �

Our final goal is to establish Sobolev’s inequality of Riesz potentials
defined in general domains, which gives an extension of Capone, Cruz-
Uribe and Fiorenza [2, Theorem 1.6].

Theorem 5.6. Suppose p+(Ω) < n/α. If A(x) = a/p(x)2 with

a > n, then

∫

Ω

{

Iαf(x)(ϕ(Iαf(x)−1))−A(x)
}p](x)

dx ≤ C

whenever f is a nonnegative measurable function on Ω with ‖f‖p(·) ≤ 1.

Proof. Let f be a nonnegative measurable function on Ω with
‖f‖p(·) ≤ 1. In view of Lemma 5.1, it suffices to treat the case when
f = 0 on B(0, R0). Set

f = f1 + f2,

where f1 = fχ{y:f(y)≥1} and f2 = fχ{y:f(y)<1}. If Mf1(x) ≥ 1, then
Corollary 3.4 gives

{

Iαf1(x)(ϕ(Iαf1(x)−1))−A(x)
}p](x)

≤ C
{

Mf1(x)(ϕ(Mf1(x)−1))−A(x)
}p(x)

,

and if Mf1(x) < 1, then Lemma 5.3 gives

{Iαf1(x)}p](x) ≤ C{Mf1(x)}p(x) + C{Hαf1(x)}p](x),

so that

{

Iαf1(x)(ϕ(Iαf1(x)−1))−A(x)
}p](x)

≤ C
{

Mf1(x)(ϕ(Mf1(x)−1))−A(x)
}p(x)

+ C{Hαf1(x)}p](x).

Further we have by Lemma 5.3

{Iαf2(x)}p](x) ≤ C{Mf2(x)}p(x) + C{Hαf2(x)}p](x),
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which proves

{

Iαf2(x)(ϕ(Iαf2(x)−1))−A(x)
}p](x)

≤ C
{

Mf2(x)(ϕ(Mf2(x)−1))−A(x)
}p(x)

+ C{Hαf2(x)}p](x).

Now Theorem 4.7 and Lemma 5.5 give the required inequality. �

Remark 5.7. As in Remark 2.10, we consider p of the form:

p(y) =







































p∞ when yn ≤ 0,

p∞ +
1

log(e + |y|)

a log(log(1/yn))

log(1/yn)
when 0 < yn ≤ r0,

p∞ +
1

log(e + |y|)

a log(log(1/r0))

log(1/r0)
when yn > r0,

where y = (y′, yn), 1 < p∞ < n/α, a > 0 and 0 < r0 < 1/e. Let
B(R, r) = B(e(R), r) for 0 < r ≤ r0, R > 1 and e(R) = (R, 0, ..., 0) ∈
Rn. Then Theorem 5.6 (or Theorem 3.5) implies that in case a′ >
a/ log(e + R), we have

∫

B(R,r0)

{

Iαf(x)(log(e + Iαf(x)))−a′n/p2
∞

}p](x)

dx ≤ C (4)

whenever f is a nonnegative measurable function on B(R, r0) with ‖f‖p(·)

≤ 1.
We show that this is sharp. For this purpose, consider

fr = χB−(R,r) (B−(R, r) = B(R, r) \ H),

where H = {x = (x′, xn) ∈ Rn−1 ×R : xn > 0}. Then note that

‖fr‖p(·) = Crn/p∞ .

Setting gr = fr/‖fr‖p(·), we find

Iαgr(x) ≥ Crα−n/p∞

for x ∈ B(R, r), so that

∫

B(R,r)

{

Iαgr(x)(log(e + Iαgr(x)))−an/{p2
∞

log(e+R)}
}p](x)

dx ≥ C.
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This implies that (4) does not hold when a′ < a/ log(e + R).
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Representations of nonnegative solutions for

parabolic equations

Minoru Murata

§1. Introduction

This paper is an announcement of results on integral representations
of nonnegative solutions to parabolic equations, and gives a representa-
tion theorem which is general and applicable to many concrete examples
for establishing explicit integral representations.

We consider nonnegative solutions of a parabolic equation

(1.1) (∂t + L)u = 0 in D × (0, T ),

where T is a positive number, D is a non-compact domain of a Riemann-
ian manifold M , ∂t = ∂/∂t, and L is a second order elliptic operator on
D. We study the problem:

Determine all nonnegative solutions of the parabolic equation (1.1).
This problem is closely related to the Widder type uniqueness theorem
for a parabolic equation, which asserts that any nonnegative solution
is determined uniquely by its initial value. (For Widder type unique-
ness theorems, see [1], [5], [10], [13] and references therein.) We say
that [UP](i.e., uniqueness for the positive Cauchy problem) holds for
(1.1) when any nonnegative solution of (1.1) with zero initial value is
identically zero. When [UP] holds for (1.1) the answer to our problem
is extremely simple: for any nonnegative solution of (1.1)there exists a
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2000 Mathematics Subject Classification. 31C35, 35C15, 31C12, 35J99,

35K15, 35K99, 58J99.
Key words and phrases. parabolic equation, nonnegative solution, inte-

gral representation, Martin boundary, intrinsic ultracontractivity, semismall
perturbation.
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unique Borel measure µ on D such that

u(x, t) =

∫
D

p(x, y, t)dµ(y), x ∈ D, 0 < t < T,

where p is the minimal fundamental solution for (1.1) (cf. [2], [1]). While
[UP] does not hold, however, only few explicit integral representations of
nonnegative solutions to parabolic equations are given (cf. [8], [4], [14]).
On the other hand, for elliptic equations, there has been a significant
progress in determining explicitly Martin boundaries in many important
cases (cf. [12] and references therein). Recall that any nonnegative
solution of an elliptic equation is represented by an integral of Martin
kernels with respect to a Borel measure on the Martin boundary.

The aim of this paper is to give explicit integral representations of
nonnegative solutions to parabolic equations for which [UP] does not
hold. We give a general and sharp condition under which any nonnega-
tive solution of (1.1) with zero initial value is represented by an integral
on the product of the Martin boundary of D for an elliptic operator
associated with L and the time interval [0, T ).

§2. Main results

Let M be a connected separable n-dimensional smooth manifold
with Riemannian metric of class C0. Denote by ν the Riemannian mea-
sure on M . TxM and TM denote the tangent space to M at x ∈ M
and the tangent bundle, respectively. We denote by End(TxM) and
End(TM) the set of endmorphisms in TxM and the corresponding bun-
dle, respectively. The inner product on TM is denoted by 〈X, Y 〉, where
X, Y ∈ TM ; and |X | = 〈X, X〉1/2. The divergence and gradient with
respect to the metric on M are denoted by div and ∇, respectively. Let
D be a non-compact domain of M . Let L be an elliptic differential
operator on D of the form

(2.1) Lu = −m−1div(mA∇u) + V u,

where m is a positive measurable function on D such that m and m−1

are bounded on any compact subset of D, A is a symmetric measurable
section on D of End(TM), and V is a real-valued measurable function
on D such that

V ∈ Lp
loc(D, mdν), for some p > max(

n

2
, 1).

Here Lp
loc(D, mdν) is the set of real-valued functions on D locally p-th

integrable with respect to mdν. We assume that L is locally uniformly
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elliptic on D, i.e., for any compact set K in D there exists a positive
constant λ such that

λ|ξ|2 ≤ 〈Aξ, ξ〉 ≤ λ−1|ξ|2, x ∈ K, (x, ξ) ∈ TM.

We assume that the quadratic form Q on C∞
0 (D) defined by

Q[u] =

∫
D

(〈A∇u,∇u〉 + V |u|2)mdν

is bounded from below, and put

λ0 = inf{Q[u]; u ∈ C∞
0 (D),

∫
D

|u|2mdν = 1}.

Denote by LD the selfadjoint operator in L2(D; mdν) associated with
the closure of Q. We assume that λ0 is an eigenvalue of LD. Let φ0

be the normalized positive eigenfunction for λ0. Let p(x, y, t) be the
minimal fundamental solution for (1.1), which is equal to the integral
kernel of the semigroup e−tLD on L2(D, mdν).

Our main assumptions are [IU] (i.e., intrinsic ultracontractivity) and
[SSP] (i.e., semismall perturbation) as follows.

[IU] For any t > 0, there exists Ct > 0 such that

p(x, y, t) ≤ Ct φ0(x)φ0(y), x, y ∈ D.

This condition implies that LD admits a complete orthonormal base of
eigenfunctions {φj}

∞
j=0 with eigenvalues λ0 < λ1 ≤ λ2 ≤ · · · repeated

according to multiplicity. Furthermore,

(2.2) p(x, y, t) =

∞∑
j=0

e−λjtφj(x)φj (y)

(cf. [3], [12] and references therein). Recall that if [IU] holds, then [UP]
does not hold for (1.1) and the equation admits a positive solution with
zero initial value (cf. [9]); and for a class of parabolic equations, [IU] is
equivalent to the existence of such a solution (cf. [10]).

[SSP] For some a < λ0, 1 is a semismall perturbation of L − a on
D, i.e., for any ε > 0 there exists a compact subset K of D such that
for any y ∈ D \ K

∫
D\K

G(x0, z)G(z, y)m(z)dν(z) ≤ εG(x0, y),

where G is the Green function of L−a on D, and x0 is a reference point
fixed in D.
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This condition implies that for any j = 1, 2, · · · the function φj/φ0 has
a continuous extension [φj/φ0] up to the Martin boundary ∂MD of D
for L − a. (For semismall perturbations, see [11], [16], [12].) The union
D∪∂MD is a compact metric space called the Martin compactification of
D for L−a. We denote by ∂mD the minimal Martin boundary of D for
L−a. This is a Borel subset of ∂MD. Here, we note that ∂MD and ∂mD
are independant of a in the following sense: if [SSP] holds, then for any
b < λ0 there is a homeomorphism Φ from the Martin compactification
of D for L−a onto that for L− b such that Φ|D = identity and Φ maps
the Martin boundary and minimal Martin boundary of D for L−a onto
those for L − b, respectively (cf. Theorem 1.4 of [11]).

Now, we are ready to state our main theorem.

Theorem 2.1. Assume [IU] and [SSP]. Then, for any nonnegative
solution u of (1.1) there exists a unique pair of Borel measures µ on D
and λ on ∂MD× [0, T ) such that λ is supported by the set ∂mD× [0, T ),

u(x, t) =

∫
D

p(x, y, t)dµ(y)(2.3)

+

∫
∂M D×[0,t)

q(x, ξ, t − s)dλ(ξ, s),

for any x ∈ D, 0 < t < T . Here q(x, ξ, τ) is a continuous function on
D × ∂MD × (−∞,∞) defined by

q(x, ξ, τ) =
∞∑

j=0

e−λjτφj(x)[φj/φ0](ξ), τ > 0,(2.4)

q(x, ξ, τ) = 0, τ ≤ 0,

where the series in (2.4) converges uniformly on K × ∂MD × (δ,∞) for
any compact subset K of D and δ > 0. Furthermore,

(2.5) q > 0 on D × ∂MD × (0,∞),

(2.6) (∂t + L)q(·, ξ, ·) = 0 on D × (−∞,∞).

Conversely, for any Borel measures µ on D and λ on ∂MD× [0, T ) such
that λ is supported by ∂mD × [0, T ) and

(2.7)

∫
D

p(x0, y, t)dµ(y) < ∞, 0 < t < T,



Representations of nonnegative solutions for parabolic equations 287

(2.8)

∫
∂M D×[0,t)

q(x0, ξ, t − s)dλ(ξ, s) < ∞, 0 < t < T,

where x0 is a point fixed in D, the right hand side of (2.3) is a nonneg-
ative solution of (1.1).

The proof of this theorem is based upon the abstract parabolic Mar-
tin representation theorem and Choquet’s theorem (cf. [7], [6], [15]), and
its key step is to identify the parabolic Martin boundary.

§3. Examples

In this section we give concrete examples as applications of Theorem
2.1.

Example 3.1. Let α ∈ R and

L = −∆ + (1 + |x|2)α/2 on D = Rn.

Then [UP] holds for (1.1) if and only if α ≤ 2; while [IU] (or [SSP] with
a = −1) is satisfied if and only if α > 2 (cf. [10], [12]).

(i) Suppose that α ≤ 2. Then for any nonnegative solution u of (1.1)
there exists a unique Borel measure µ on D such that

(3.1) u(x, t) =

∫
D

p(x, y, t)dµ(y), x ∈ D, 0 < t < T.

Conversely, for any Borel measure µ on D satisfying (2.7), the right
hand side of (3.1) is a nonnegative solution of (1.1).

(ii) Suppose that α > 2. Then the conclusions of Theorem 2.1 hold
with

(3.2) ∂MD = ∂mD = ∞Sn−1,

where ∞Sn−1 is the sphere at infinity of Rn, and the Martin compactifi-
cation D∗ of D = Rn with respect to L is obtained by attaching a sphere
Sn−1 at infinity: D∗ = Rn t∞Sn−1.

Note that the Martin boundary ∂MD in the case −2 < α ≤ 2 is also
equal to that for α > 2. Nevertheless, when [UP] holds, the elliptic Mar-
tin boundary disappears in the parabolic representation theorem; while it
enters when [UP] does not hold.

Example 3.2. Let L = −∆ on a bounded John domain D ⊂ Rn,
i.e. D is a bounded domain, and there exist a point z0 ∈ D and a positive
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constant cJ such that each z ∈ D can be joined to z0 by a rectifiable curve
γ(t), 0 ≤ t ≤ 1, with γ(0) = z, γ(1) = z0, γ ⊂ D, and

dist(γ(t), ∂D) ≥ cJ`(γ[0, t]), 0 ≤ t ≤ 1,

where `(γ[0, t]) is the length of the curve γ(s), 0 ≤ s ≤ t. Then the
conditions [IU] and [SSP] with a = 0 are satisfied (cf. Example 10.4 of
[12]). Thus the conclusions of Theorem 2.1 hold.

Note that the Martin boundary ∂MD of D with respect to L = −∆
may be different from the topological boundary ∂D in Rn, although they
are equal if ∂D is not bad (for example, when D is a Lipschitz domain).

Note added in proof. It has turned out that the condition [IU] im-
plies the condition [SSP] (see Theorem 1.1 of the paper: M. Murata and
M. Tomisaki, Integral representations of nonnegative solutions for par-
abolic equations and elliptic Martin boundaries, Preprint, April 2006).
Thus the assumption [SSP] of Theorem 2.1 in this paper is redundant.
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Types of pasting arcs in two sheeted spheres

Mitsuru Nakai

Abstract.

Fix two disjoint nondegenerate continua A and B in the complex
plane C with connected complements and choose a simple arc γ in

the complex sphere bC disjoint from A ∪ B, which we call a pasting

arc for A and B. Then form a covering Riemann surface bCγ over bC

by pasting two copies of bC \ γ crosswise along the arc γ. Viewing A

and B as embedded in the different two sheets bC \ γ of bCγ , consider

the variational 2-capacity cap(A, bCγ \ B) of the set A in bCγ with

respect to the open subset bCγ \ B containing A. We are interested

in the comparison of cap(A, bCγ \B) with cap(A, bC \B). We say that
the pasting arc γ for A and B is subcritical, critical, or supercritical

according as cap(A, bCγ \ B) is less than, equal to, or greater than

cap(A, bC \B), respectively. The purpose of this paper is to show the
existence of subcritical arc γ for any arbitrarily given general pair
of admissible A and B and then the existences of critical and also
supercritical arcs γ under the additional condition imposed upon A

and B that each of A and B is symmetric about a common straight

line in bC, which is the case e.g. if A and B are disjoint closed discs.

§1. Introduction

Consider two disjoint compact subsets A and B in the complex plane
C such that both of A and B are closures of analytic Jordan regions Ai

and Bi in C. Such compact subsets in C as A and B above will be
referred to as being admissible in this paper. In actual fact, most of the
results and especially those labeled as theorems are also valid for more
general subsets A and B in C that are disjoint nonpolar (not necessarily
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2000 Mathematics Subject Classification. Primary 31A15, 31C15; Sec-
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Key words and phrases. capacity, covering surface, Dirichlet integral,
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connected) compact subsets with connected complements in C. These
results in the general setting as above can easily be deduced from the
corresponding results in the present special setting proved in the sequel
in this paper by the usual standard exhaustion method. However, just
only for the sake of simplicity we assume that A and B are disjoint
admissible compact subsets in the present paper. Take a simple arc γ

in Ĉ \ (A ∪ B). We denote by Wγ the Riemann surface obtained from

Ĉ \ (A ∪ γ) and Ĉ \ (B ∪ γ) by pasting them crosswise along the arc γ,
which is also denoted by the following impressive notation (cf. [4]):

(1) Wγ = (Ĉ \ (A ∪ γ))
⋃
×

γ
(Ĉ \ (B ∪ γ)).

The arc γ in the above surface Wγ is referred to as the pasting arc for
the set A ∪ B. The surface Wγ may be viewed as a subsurface of the
covering Riemann surface, the two sheeted sphere,

Ĉγ := (Ĉ \ γ)
⋃
×

γ
(Ĉ \ γ)

so that

(2) Wγ = Ĉγ \ (A ∪ B),

where we understand that A (B, resp.) is situated e.g. in the upper

(lower, resp.) sheet of Ĉγ although A and B are originally contained in

the same C. Here Ĉγ in general can be considered for any pasting arc

γ for the empty set ∅, i.e. for any simple arc in Ĉ (i.e. Ĉ \ ∅). Observe

that Wγ and Ĉγ as Riemann surfaces are unchanged if the pasting arc

γ is replaced by any pasting arc homotopic to γ in Ĉ \ (A∪B) or in Ĉ :

Wγ = Wγ′ and Ĉγ = Ĉγ′ if γ and γ′ are homotopic in Ĉ\ (A∪B) and Ĉ,

respectively. Here in particular Ĉγ depends only upon the initial and the
terminal points of γ and does not depends on the arc connecting these

two points. In this sense we sometimes write Wγ = W[γ] and Ĉγ = Ĉ[γ],
where [γ] is the homotopy class of pasting arcs containing γ considered

in Ĉ \ (A ∪ B) or in Ĉ.

Consider next the capacity cap(A, Ĉγ \ B), or more precisely the

variational 2-capacity (cf. e.g. [2]), of the compact subset A in Ĉγ with

respect to the open subset Ĉγ \ B of Ĉγ containing A given by

(3) cap(A, Ĉγ \ B) = inf
ϕ

DWγ
(ϕ),

where ϕ in taking the infimum in (3) runs over the family of ϕ ∈ C(Ĉγ)∩
C∞(Wγ) with ϕ|A = 1 and ϕ|B = 0 and DWγ

(ϕ) indicates the Dirichlet
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integral of ϕ over Wγ defined by

DWγ
(ϕ) =

∫

Wγ

dϕ ∧ ∗dϕ =

∫

Wγ

|∇ϕ(z)|2dxdy.

Here the second term in the above is the coordinate free expression of
DWγ

(ϕ) and the third term is the expression of DWγ
(ϕ) in terms of

local parameters z = x + iy for Wγ and ∇ϕ(z) is the gradient vector
(∂ϕ(z)/∂x, ∂ϕ(z)/∂y).

The variation (3) has the unique extremal function uγ :

(4) cap(A, Ĉγ \ B) = DWγ
(uγ),

characterized by the conditions uγ ∈ C(Ĉγ) ∩ H(Wγ) with uγ |A = 1
and uγ |B = 0 (cf. e.g. [2]), where H(X) denotes the class of harmonic
functions defined on a Riemann surface X , so that the function uγ |Wγ

is usually referred to as the harmonic measure of ∂A on Wγ . In addition
to two characterizations (3) and (4) of the capacity we add one more
interpretation. The surface Wγ is a doubly connected planar surface
and hence Wγ is an annulus or conformally a ring region {z ∈ C : 1 ≤
|z| ≤ eM} (M > 0) and the conformal invariant M is called the modulus
of Wγ and denoted by mod Wγ (cf. e.g. [6]). It is straightforward to
deduce

(5) cap(A, Ĉγ \ B) = 2π/mod Wγ .

The above remark concerning the dependence of the structure of Wγ and

Ĉγ on the pasting arc γ also applies mutatis mutandis to the quantity

cap(A, Ĉγ \ B) so that cap(A, Ĉ[γ] \ B) is also meaningful.

We also consider the capacity cap(A, Ĉ \ B) of the set A in Ĉ con-

tained in the open subset Ĉ \ B. It is an important task to compare

cap(A, Ĉγ \ B) with cap(A, Ĉ \ B) and especially to clarify when the

situation cap(A, Ĉγ \ B) ≤ cap(A, Ĉ \ B) occurs from the viewpoints
of various applications of capacities such as those to the classical and
modern type problems (cf. e.g. [5], [8], [6], [4], [3], etc.). Actually
there seems to have been an expectation among people who have been
concerned with this question that this is almost always the case. The
general purpose of this paper is to investigate the above problem and
to claim that the reality is not that simple and tame as to support the
above expectation. Since the occurence of the situation

(6) cap(A, Ĉγ \ B) = cap(A, Ĉ \ B)
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is very delicate in the sense that the relation is easily destroyed even if
we change γ slightly but not preserving homotopy, we say that γ ([γ],
resp.) is a critical arc (homotopy class of arcs, resp.). The most desirable
situation from the view point of our applications is the case in which the
inequality

(7) cap(A, Ĉγ \ B) < cap(A, Ĉ \ B)

holds and the pasting arc γ (the class [γ], resp.) which makes (7) valid
will be referred to as a subcritical arc (homotopy class, resp.). In the
rest of (6) and (7) we have

(8) cap(A, Ĉγ \ B) > cap(A, Ĉ \ B)

and in this case γ (the class [γ]) is called as a supercritical arc (homotopy
class, resp.).

The purpose of this paper is to show that either one of the above
three cases really occurs by suitably choosing a pasting arc γ of the sur-

face (Ĉ\(A∪γ))
⋃
×

γ
(Ĉ\(B∪γ)) for an arbitrarily given pair of admissible

compact sets A and B under an additional (technical) requirment that
each of A and B is symmetric about a common straight line l. The
simplest example of this case is the one when A and B are arbitrarily
given disjoint closed discs. We believe that the above additional con-
dition is only technical and not essential but at present it is merely a
conjecture. More presice content of this paper is as follows. First, in
entirely general case without any restriction we give two sufficient con-
ditions for a given pasting arc to be subcritical. As a consequence of
these results we see that there always exist a plenty of subcritical arcs
for any general couple (A, B). Then we give an example of supercritical
arc for any couple (A, B) satisfying the above symmetry requirment. In
general, the existence of supercritical arcs always implies the existence

of critical arcs as a consequence of the continuity of cap(A, Ĉγ \ B) as
the function of two end points of γ, and therefore we will be able to
conclude the existence of a critical arc for any couple (A, B) satisfying
the symmetry postulation.

§2. Subcritical arcs

Take an arbitrarily chosen pair (A, B) of two disjoint admissible
compact subsets A and B in C as described in the introduction. In

contrast with the notation Wγ = Ĉγ \ (A ∪ B) we set

W := Ĉ \ (A ∪ B).
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Recall that a pasting arc γ for Wγ is a simple arc in W and uγ is the
harmonic measure of ∂A with respect to the region Wγ . Similarly we
denote by u the harmonic measure of ∂A with respect to W . In this
section we will give two sufficient conditions for a given pasting arc γ to
be subcritical.

Theorem 1. For any point a in W and any real number ρ > 0 less
than the distance between a and ∂W there exists an open disc ∆(a, r)
of radius 0 < r < ρ centered at a such that every pasting arc γ lying in
∆(a, r) is subcritical.

Proof. Since uγ = 1 on ∂A and uγ = 0 on ∂B and moreover ∂A and
∂B are analytic, we can find annular neighborhoods α and β of ∂A and
∂B such that every uγ has a harmonic extention on W ′

γ := Wγ ∪ α ∪ β,
as far as the pasting arc γ stays in an arbitrarily chosen but then fixed
open disc ∆(a, r0) (0 < r0 < ρ). Suppose erroneously that there is a
pasting arc γ(r) in ∆(a, r) for each 0 < r < r0 such that

(9) cap(A, Ĉ \ B) ≤ cap(A, Ĉγ(r) \ B) = DWγ(r)
(uγ(r)).

In view of −1 ≤ uγ ≤ 2 on W ′
γ , the family {uγ : γ ⊂ ∆(a, r), r0 > r ↓ 0}

forms a normal family (cf. e.g. [7], [1]) on each compact subset of
((

(Ĉ \ A) ∪ α
)
\ {a}

)⋃ ((
(Ĉ \ B) ∪ β

)
\ {a}

)
.

Hence we can find a decreasing sequence (rn)n≥1 converging to zero with

r1 < r0 such that
(
uγ(rn)

)
n≥1

converges to a v ∈ H(((Ĉ \A) ∪ α) \ {a})

locally uniformly on ((Ĉ \ A) ∪ α) \ {a} on which −1 ≤ v ≤ 2 along
with each uγ(rn). Hence, by the Riemann removability theorem v has

a harmonic extension on (Ĉ \ A) ∪ α and v|∂A = 1 implies that v = 1

identically on (Ĉ \A)∪α and in particular on α. By the Green formula
we see that

DWγ(rn)
(uγ(rn)) =

∫

∂A

∗duγ(rn) →

∫

∂A

∗dv = 0.

By (9) we must conclude that cap(A, Ĉ \ B) = 0, which is absurd. �

We turn to the other condition for an arc γ to be subcritical. We
say that a pasting arc γ ⊂ W ranges homotopically between λ and µ for
an arbitrary given pair of real numbers λ and µ with 0 < λ ≤ µ < 1
if there is a pasting arc γ ′ in the homotopy class [γ] containing γ in W
such that

(10) γ′ ⊂ {z ∈ W : λ ≤ u(z) ≤ µ}.



296 M. Nakai

It may be covenient to write the above fact by [γ] ⊂ {z ∈ W : λ ≤
u(z) ≤ µ}. We say that a pasting arc γ stays homotopically at λ ∈ (0, 1)
if γ ranges homotopically between λ and itself so that there is a pasting
arc γ′ ∈ [γ] such that γ′ is contained in the level line {z ∈ W : u(z) = λ}
of u.

Theorem 2. If a pasting arc γ ranges homotopically between λ and
µ (0 < λ ≤ µ < 1), then

(11) (1 − (µ − λ))2cap(A, Ĉγ \ B) < cap(A, Ĉ \ B).

In particular, if γ stays homotopically at some λ in (0, 1), then γ is
subcritical.

Proof. We may assume that γ ⊂ {z ∈ W : λ ≤ u(z) ≤ µ}. We
denote by X the connected part of Wγ lying over {z ∈ W : λ ≤ u(z) ≤

µ}. There are two connected parts Y ′
1 and Y ′

2 in Ĉγ lying over {z ∈
W : u(z) ≥ µ} ∪ A such that A ⊂ Y ′

1 and A ∩ Y ′
2 = ∅. Then we set

Y1 := Y ′
1 \ A and Y2 := Y ′

2 . Similarly there are two connected parts Z ′
1

and Z ′
2 in Ĉγ lying over {z ∈ W : u(z) ≤ λ} ∪ B such that B ⊂ Z ′

1 and
B ∩Z ′

2 = ∅. Then we set Z1 := Z ′
1 \B and Z2 := Z ′

2. Then we have the
decomposition

Wλ = X
⋃

(Y1 ∪ Y2)
⋃

(Z1 ∪ Z2)

of Wλ into 5 connected compact sets whose interiors are mutually dis-
joint. Consider the function v given by

v :=





u − (µ − λ) on Y1;
λ on X ∪ Y2 ∪ Z2;
u on Z1.

Observe that v is a continuous and piecewise smooth function on Wγ

such that v is not harmonic on Wγ and v|∂A = 1−(µ−λ) and v|∂B = 0.
Since the function (1 − (µ − λ))uγ is the harmonization of v on Wγ

preserving the boundary values on ∂Wγ , the Dirichlet principle assures
that

(12) DWγ
((1 − (µ − λ))uγ) < DWγ

(v).

We compute DWγ
(v) as follows:

DWγ
(v) = DY1(v)+DX∪Y2∪Z2(v)+DZ1(v) = DY1(u)+DX∪Y2∪Z2(λ)+DZ1(u)

= DW∩{u>µ}(u) + DW∩{u<λ}(u) ≤ DW (u).

This with (12) yields (1− (µ−λ))2DWγ
(uγ) < DW (u), which is nothing

but (11).
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If λ = µ, then (11) is reduced to the inequality defining for the arc
γ to be subcritical. �

§3. Continuity of capacity

Although the capacity cap(A, Ĉγ \B) = DWγ
(uγ) depends not only

upon the end points z and w of γ but also upon the homotopy class con-
taining γ even if the end points z and w of γ are fixed in advance. There-
fore the capacity is only a multivalued function of the branch points z̃

and w̃ of Ĉγ lying over z and w, which are the end points of γ, but it
becomes a single valued function as far as we are concerned with their
local behaviors. Thus fix two different points z1 and w1 in W and two
discs U and V given by U := ∆(z1, r1) (V := ∆(w1, r1), resp.) centered
at z1 (w1, resp.) with radius r1 > 0 such that U∪V ⊂ W and U∩V = ∅.
For any z ∈ U and w ∈ V , let γ1(z, w) be a pasting arc joining z and
w. Then we can always find a pasting arc γ(z, w) ∈ [γ1(z, w)] such that
γ(z, w) ∩ U (γ(z, w) ∩ V , resp.) is a line segment joining z1 + r1 ∈ ∂U
(w1 + r1 ∈ ∂V , resp.) and z ∈ U (w ∈ V , resp.) and γ(z, w) \ U
(γ(z, w) \ V , resp.) is the subarc of γ(z, w) starting from w (w1 + r1,
resp.) and ending at z1+r1 (z, resp.). We assume that [γ(z, w)\(U∪V )]
is a fixed homotopy class. Then

(13) c(z, w) := cap(A, Ĉγ(z,w) \ B) = DWγ(z,w)
(uγ(z,w))

is a single valued function on the polydisc U × V . We maintain:

Lemma 3. The function c(z, w) in (13) is continuous on the poly-
disc U × V so that capacities are continuous functions of branch points.

Proof. The proof is similar to that of Theorem 1 but we repeat it
here since the settings or the arrangements of the stage is superficially
quite different from that for Theorem 1.

Choose and then fix an arbitrary point σ0 := (z2, w2) ∈ U × V .
We only have to show that c(σn) → c(σ0) for any sequence (σn)n≥1

in U × V convergent to σ0. For the purpose we choose two annular
neighborhoods α and β of ∂A and ∂B, respectively, such that (α ∪
β) ∩ (U ∪ V ) = ∅ and every uγ(σ) ∈ H(Wγ(σ)) can be continued to
W ′

γ(σ) := Wγ(σ) ∪ α ∪ β so as to being uγ(σ) ∈ H(W ′
γ(σ)) and −1 ≤

uγ(σ) ≤ 2 on W ′
γ(σ) for every σ = (z, w) ∈ U × V . The possibility of

such a choice of (α, β) comes from the fact that the reflection principle
is applicable as a result of uγ(σ)|∂A = 1 and uγ(σ)|∂B = 0 and the
analyticity of relative boundaries of A and B. Take an arbitrarily chosen
and then fixed decreasing sequence (rm)m≥2 converging to zero with



298 M. Nakai

0 < rm < r1−|z2−z1| (m ≥ 2). Let Km := π−1(∆(z2, rm)∪∆(w2, rm)),

where the covering surface (Ĉγ(σ0), Ĉ, π) over Ĉ with its projection π is
considered here. Then W ′

γ(σ) \ Km = W ′
γ(σ′) \ Km for every (σ, σ′) in

Lm := π−1(∆(z2, rm))×π−1(∆(w2, rm)) for any arbitrarily fixed m ≥ 2.
We denote by W ′

m (Wm, resp.) the surface W ′
γ(σ) \ Km (Wγ(σ) \ Km,

resp.), which does not depend on the choice of σ ∈ Lm. Then {uγ(σn) :
σn ∈ Lm, σn → σ0} forms a normal family on W ′

m. Hence we can
find a subsequence (σn′) of any given subsequence of (σn) such that
uγ(σn′ ) converges to a v ∈ H(W ′

γ(σ0) \ {z̃2, w̃2}) locally uniformly on

W ′
γ(σ0) \ {z̃2, w̃2}, where z̃2 and w̃2 are the branch points of W ′

γ(σ2)

over z2 and w2. Clearly −1 ≤ v ≤ 2, v|∂A = 1, and, v|∂B = 0 on
W ′

γ(σ0)\{z̃2, w̃2} along with each uγ(σn′) on Wn′ . Thus v ∈ H(W ′
γ(σ0)) so

that v = uγ(σ0) on Wγ(σ0). Hence the original sequence uγ(σn) converges
to uγ(σ0) locally uniformly on W ′

γ(σ0) \ {z̃2, w̃2} and, in particular, not

only uγ(σn) = 1 converges to uγ(σ0) = 1 but also ∗duγ(σn) converges to
∗duγ(σ0) uniformly on ∂A. Therefore, by the Green formula, we see that

c(σn) = DW ′

γ(σn)
(uγ(σn)) =

∫

∂A

∗duγ(σn)

→

∫

∂A

∗duγ(σ0) = Dγ(σ0)(uγ(σ0)) = c(σ0) (n → ∞),

which is to have been shown. �

Take an arbitrary pasting arc γ in W starting from a point z0 and
ending at a point z1. We denote by γz the subarc of γ starting from z0

and ending at some point z ∈ γ.

Lemma 4. The range set {cap(A, Ĉγz
\ B) : z ∈ γ} contains the

closed interval [0, cap(A, Ĉγ \ B)] and

(14) lim
z∈γ,z→z0

cap(A, Ĉγz
\ B) = 0.

Proof. By Lemma 3, the function z 7→ cap(A, Ĉγz
\ B) is single

valued and continuous on the set γ and a fortiori the intermediate value
theorem assures the validity of the first half of the aove assertion.

To prove (14) we again use the normal family argument. We can
view that {uγz

: z ∈ γ, z → z0} forms a normal family on each compact

subset of Ĉ \ Ai ∪ {z0}, where Ai = A \ ∂A. Then we see that uγz

converges to a v ∈ H(Ĉ \ A ∪ {z0}) ∩ C(Ĉ \ Ai ∪ {z0}) with v|∂A = 1.

Since 0 ≤ v ≤ 1 on Ĉ \ Ai ∪ {z0}, the Riemann removability theorem

implies that v ∈ H(Ĉ \ A) so that v|∂A = 1 yields that v ≡ 1 on Ĉ \ Ai
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and in particular ∗dv = 0 on ∂A. Hence ∗duγz
converges to ∗dv = 0

uniformly on ∂A. Thus

cap(A, Ĉγz
\ B) =

∫

∂A

∗duγz
→

∫

∂A

∗dv = 0 (z → z0),

which proves (14). �

As a supplement to Theorems 1 and 2 which assure for an arc to be
subcritical, we can state the following direct consequence of Lemma 4:

Theorem 5. Any pasting arc γ in W contains a subarc γz (z ∈ γ)
which is subcritical; more precisely, there exists a point z1 ∈ γ such that
γz is subcritical for every z ∈ γz1 .

Proof. In view of (14) and also the first half of Lemma 4, we can
find a z1 ∈ γ enough close to the initial point z0 of γ such that

cap(A, Ĉγz
\ B) < cap(A, Ĉ \ B)

for every z ∈ γz1 . �

Theorem 6. If a pasting arc γ starting from z0 and ending at z1

is supercritical, then there is a subarc γz (z ∈ γ) which is critical.

Proof. Since 0 < cap(A, Ĉ\B) < cap(A, Ĉγ \B), Lemma 4 assures

that the quantity cap(A, Ĉ\B) is contained in the range set {cap(A, Ĉγz
\

B) : z ∈ γ} so that there is a point z ∈ γ with cap(A, Ĉγz
\ B) =

cap(A, Ĉ \B), which shows that γz is critical. �

We define a distance d(γ, γ ′) between two pasting arcs γ and γ ′ in

W := Ĉ \ (A ∪ B). Let σ be an arc in W = Ĉ \ (A ∪ B) connecting one
of end points of γ as its initial point with that of γ ′ as its terminal point
and τ be another arc in W connecting the other end point of γ as its
initial point with that of γ′ as its terminal point such that −σ+γ+τ−γ ′

is a closed curve and −σ + γ + τ is a pasting arc homotopic to γ ′. We
denote by F the totality of pairs (σ, τ) of arcs σ and τ in W with the
property described above and by |γ ′′| the spherical length of an arc γ ′′

in W . Then the distance d(γ, γ ′) of γ and γ′ is given by

(15) d(γ, γ′) := inf
(σ,τ)∈F

(|σ| + |τ |).

As the last consequence of Lemma 3 in this paper we state the following
invariance of sub and supercriticality of pasting arcs γ under the small
perturbation of γ in the sense of (15):
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Theorem 7. For any pasting arc γ in Ĉ \ (A ∪ B), there exists

a positive number ε such that any pasting arc γ ′ in Ĉ \ (A ∪ B) with
d(γ, γ′) < ε is subcritical (supercritical, resp.) if γ is subcritical (super-
critical, resp.).

Proof. Since there exist arcs σ and τ described above in the defi-
nition of the distance d(γ, γ ′) such that −σ + γ + τ is homotopic to γ ′

and end points of −σ + γ + τ converge to the corresponding end points
of γ as |σ| and |τ | converge to zero as a consequence of the assumption
d(γ, γ′) → 0, Lemma 3 assures that

cap(A, Ĉγ′ \ B) = cap(A, Ĉ−σ+γ+τ \ B) → cap(A, Ĉγ \ B)

as |σ| + |τ | → 0 so that

cap(A, Ĉγ′ \ B) → cap(A, Ĉγ \ B) (as d(γ, γ′) → 0).

Hence cap(A, Ĉγ′ \B) is strictly greater (less, resp.) than cap(A, Ĉ \B)

for every γ′ with sufficiently small d(γ, γ ′) if and only if cap(A, Ĉγ \

B) is strictly greater (less, resp.) than cap(A, Ĉ \ B). Therefore γ ′

is supercritical (subcritical, resp.) for every γ ′ with sufficiently small
d(γ, γ′) if and only if γ is supercritical (subcritical, resp.). �

§4. Supercritical arcs

Take a pair (A, B) of two disjoint admissible compact subsets A and

B as described in Section 1 and a pasting arc γ in W := Ĉ\(A∪B). Then,

as we saw in Section 2 and also in Section 3, the capacity cap(A, Ĉγ \B)
covers some small interval (0, ε) (ε > 0) by choosing γ enough short. On

the other hand we ask how large the capacity cap(A, Ĉγ \B) can be by a

variety of choices of γ. In reality the capacity cap(A, Ĉγ \B) cannot be
too large no matter how we choose γ. In general we have the following
relation:

(16) 0 < cap(A, Ĉγ \ B) < 2cap(A, Ĉ \ B)

for every pasting arc γ in W . The proof goes as follows. Let (Ĉγ , Ĉ, π)

be the natural two sheeted sphere (i.e. the covering surface of Ĉ) with
altogether two branch points over respective end points of γ and with its
projection π. Recall that uγ (u, resp.) is the harmonic measure of ∂A
on Wγ (W , resp.) and observe that u ◦ π is a nonharmonic competing
function in (3) so that the Dirichlet principle shows that

DWγ
(uγ) < DWγ(u ◦ π) = 2DW (u),
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which proves the above inequality (16).
The purpose of this section is to show the following central and

main result of this paper: the existence of a supercritical arc γ in W

characterized by the inequality cap(A, Ĉγ \ B) > cap(A, Ĉ \ B). We
believe that this result is always true for every admissible pair (A, B)
but at present we need to have the following additional condition on
(A, B) to prove the above result. We say that A and B are symmetric
about a common straight line l if there is a straight line l in C such that
the reflection T about l (i.e. the indirect conformal mapping T of C

onto itself with the property that z and T (z) are symmetric about l for
every z ∈ C) maps A onto itself and at the same time B onto itself so
that, of course, T maps C \ (A∪B) onto itself. A typical example is the
case where A and B are disjoint closed discs; the line l in this situation
is the one passing through centers of A and B.

Theorem 8. Suppose that A and B are symmetric about a common

straight line l. Then there exists a supercritical arc γ in Ĉ \ (A∪B) and

also a critical arc in Ĉ \ (A ∪ B) which is a subarc of γ.

Proof. The last assertion on the existence of critical arc follows
at once from the above theorem 6. Thus we only have to concentrate
ourselves to the proof of the existence of a supercritical arc γ.

By translating and rotating Ĉ if necessary we can assume that l is the
real line {z ∈ C : = z = 0}. Pick an arbitrary point a ∈ l\(A∪B) and an
analytic Jordan curve σ starting and ending at a and surrounding only B
and hence separating B from A such that the subarc 〈aa′〉 (〈a′a〉, resp.)
of σ starting from a (a′, resp.) and ending at a′ (a, resp.) is situated
in the upper (lower, resp.) half plane, where l ∩ σ = {a, a′}. We also
take a line segment −τ contained in l starting from a and terminating
at a point b so that τ starts from b and ending at a which lies outside
σ with τ ⊂ l \ (A ∪ B′), where B′ is the region bounded by σ so that
B ⊂ B′. For t > 0 let c(t) be a point on 〈a′a〉 ⊂ σ and σ′

t be the subarc
of 〈a′a〉 ⊂ σ starting from c(t) and ending at a (i.e. σ′

t = 〈c(t)a〉) with
|σ′

t| = t, where |σ′
t| is the length of the arc σ′

t. Finally let

γt := τ + σt (t > 0),

where σt := σ \ σ′
t (i.e. σt = (σ\σ′

t)∪{c(t), a}) is the subarc of σ starting
from a and ending at c(t). Next consider the surface Wt := Wγt

(t > 0)
given by

Wt := (Ĉ \ (A ∪ γt))
⋃
×

γt

(
Ĉ \ (B ∪ γt)

)
.

We denote by δt the segment lying over σ′
t, i.e. the union of two copies

of σ′
t with two copies of a in each of the above copies being identified.
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We also set
W ′

t := Wt \ δt (t > 0),

which is a subsurface of any Ws (0 < s ≤ t). Consider one more surface

W0 :=
(
Ĉ \ (A ∪ B ∪ τ)

) ⋃
×

τ

(
Ĉ \ τ

)
.

Then we see that
W0 \ δt = Wt \ δt (=: W ′

t )

for every t > 0.
Simply we write ut := uγt

, the harmonic measure of ∂A on Wt.

Consider the function wt on Wt \ δt harmonic on Wt \ δt and continuous

on Wt \ δt with boundary values wt|∂A = wt|∂B = 0 and wt|δt = 1.
By the standard normal family argument we see that wt ↓ 0 locally
uniformly on W0. Clearly

|ut − us| < wt

on W ′
t for every 0 < s < t. This shows that (ut)t>0 converges to a

continuous function v on W 0 harmonic on W0 with v|∂A = 1 and v|∂B =
0 locally uniformly on W0 \ δt for every t > 0, where W 0 is understood
here as the Carathéodory compactification of W0: W 0 = W0 ∪∂A∪∂B.
Hence we conclude that v is the harmonic measure of ∂A on W0. Since
∗dut converges uniformly on ∂A to ∗dv and cap(A, Ĉγt

\B) =
∫

∂A
∗dut,

we see that

(17) lim
t↓0

cap(A, Ĉγt
\ B) =

∫

∂A

∗dv.

Let v̌ be the symmetric transformation of v on Ĉ \ (A ∪ B ∪ τ) and

also on Ĉ \ τ about τ , where values on the upper edge τ+ of τ are sent
to those on the lower edge τ− of τ and vice versa on each sheet so that
v̌ = v ◦ T . It is not difficult to see that v̌ is also harmonic on W0 along
with v on W0. Hence now we come to the crucial conclusion in our proof:
the uniqueness of the harmonic measure of ∂A on W0 assures that v = v̌
on W0. The additional symmetry assumption is only made use of here
to let this conclusion be valid. As a consequence of the above identity
v = v̌ on W0 , we deduce, in particular, that v|τ− = v|τ+, which shows

that v|(W \ τ) can be continued to v ∈ C(W ) and v|(Ĉ\ τ) to v ∈ C(Ĉ),

where W := Ĉ \ (A ∪ B). Hence the Dirichlet principle can be applied
on W to deduce

DW (v) ≥ DW (u) = cap(A, Ĉ \ B),



Types of pasting arcs in two sheeted spheres 303

where we recall that u is the harmonic measure of ∂A on W . Then
∫

∂A

∗dv = DW0(v) = DbC\(A∪B∪τ)(v) + DbC\τ
(v) = DW (v) + DbC

(v).

Thus we can conclude that
∫

∂A

∗dv ≥ cap(A, Ĉ \ B) + DbC
(v).

This with (17) implies that

lim
t↓0

cap(A, Ĉγt
\ B) > cap(A, Ĉ \ B)

since DbC
(v) > 0. This shows that, if t > 0 is sufficiently small, then

cap(A, Ĉγt
\ B) > cap(A, Ĉ \ B),

i.e. γt is supercritical. �
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L
p-boundedness of Bergman projections for

α-parabolic operators

Masaharu Nishio, Katsunori Shimomura, and Noriaki Suzuki

Abstract.

We consider the α-parabolic Bergman spaces on strip domains.
The Bergman kernel is given by a series of derivatives of the fun-
damental solution. We prove the Lp-boundedness of the projection
defined by the Bergman kernel and obtain the duality theorem for
1 < p < ∞. At the same time, we give a new proof of the Huygens
property, which enable us to verify all the results in [3] also for n = 1.

§1. Introduction

For 1 ≤ p ≤ ∞, we denote by b
p
α the set of all L(α)-harmonic

functions which are p-th integrable with respect to (n + 1)-dimensional
Lebesgue measure on the upper half space H of the Euclidean space
Rn+1 and call it the α-parabolic Bergman space. In [3], we showed
that b

p
α is a Banach space and discussed its dual space and the explicit

formula of the Bergman kernel, where the Huygens property plays an
important role.

In this note, we consider an α-parabolic Bergman space b
p
α(HT ) on

the strip domain HT = Rn × (0, T ) (0 < T ≤ ∞) where H∞ = H .
The main purpose of this note is to give an explicit form of the α-
parabolic Bergman kernel and to show its boundedness on Lp(HT ) by
using an interpolation theory. The α-parabolic Bergman kernel has a
reproducing property for b

p
α(HT ). As an application, we obtain the

duality b
p
α(HT )′ ' b

q
α(HT ) for 1 < p < ∞. Here and in the following,
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q always denotes the conjugate exponent of p. At the same time we
show the Huygens property of α-parabolic Bergman functions for n ≥ 1.
This enables us to remove from [3] the restriction n ≥ 2 on the space
dimension.

§2. Preliminary

We denote the (n+1)-dimensional Euclidean space by Rn+1 (n ≥ 1),
and its point by (x, t) (x ∈ Rn, t ∈ R). For 0 < α ≤ 1, we consider a

parabolic operator L(α) and its adjoint L̃(α)

L(α) =
∂

∂t
+ (−∆)α, L̃(α) = − ∂

∂t
+ (−∆)α

on Rn+1. We remark that if 0 < α < 1, (−∆)α is the convolution
operator in the x-space Rn defined by −cn,αp.f.|x|−n−2α, where cn,α =

−4απ−n/2Γ((n + 2α)/2)/Γ(−α) > 0. Then for ϕ ∈ C∞
c (Rn+1),

(L̃(α)ϕ)(x, t) = − ∂

∂t
ϕ(x, t) + ((−∆)αϕ)(x, t)

= − ∂

∂t
ϕ(x, t) − cn,α lim

δ↓0

∫

|y−x|>δ

(ϕ(y, t) − ϕ(x, t))|x − y|−n−2α dy,

where we denote by C∞
c (Rn+1) the totality of infinitely differentiable

functions with compact support.

Lemma 2.1. Let ϕ ∈ C∞
c (Rn+1) with supp(ϕ) ⊂ {(x, t)|t1 < t <

t2, |x| < r}. Then supp(L̃(α)ϕ) ⊂ Rn × (t1, t2) and when 0 < α < 1,

|(L̃(α)ϕ)(x, t)| ≤ 2n+2αcn,α

(

sup
t1<s<t2

∫

Rn

|ϕ(y, s)| dy
)

·|x|−n−2α

for (x, t) with |x| ≥ 2r.

Now we define L(α)-harmonic functions.

Definition 2.1. Let D be an open set in Rn+1. We put

s(D) := {(x, t)|(y, t) ∈ D for some y ∈ Rn}.

A Borel measurable function u on s(D) is said to be L(α)-harmonic on
D if it satisfies the following conditions:

(a) u is continuous on D,

(b)
∫∫

s(D) |u · L̃(α)ϕ| dxdt < ∞ and
∫∫

s(D) u · L̃(α)ϕ dxdt = 0 holds for

every ϕ ∈ C∞
c (D).
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Note that each component of s(D) is a strip domain.
The fundamental solution W (α) of L(α) has the form :

W (α)(x, t) =

{

(2π)−n
∫

Rn exp(−t|ξ|2α +
√
−1x · ξ)dξ t > 0

0 t ≤ 0,

where x · ξ is the inner product of x and ξ, and |ξ| = (ξ · ξ)1/2. Then

W̃ (α)(x, t) := W (α)(x,−t) is the fundamental solution of L̃(α). Note
that W (1)(x, t) is equal to the Gauss kernel, and W (1/2)(x, t) is equal to
the Poisson kernel.

The following estimates will be needed later.

Lemma 2.2. Let (β, k) be a multi-index, 1 ≤ q ≤ ∞ and 0 < t1 <
t2 < ∞. Then there exists a constant C such that

∂β
x∂k

t W (α)(x, t) = t−
n+|β|

2α −k∂β
x∂k

t W (α)(t−1/2αx, 1),(2.1)

|∂β
x ∂k

t W (α)(x, t)| ≤ Ct1−k
(

t + |x|2α
)−n+|β|

2α −1
(2.2)

and

(2.3) ‖∂β
x∂k

t W (α)‖Lq(Rn×(t1,t2)) ≤ C(t2 − t1)
1
q t

−
n(1−1/q)+|β|

2α −k
1 .

Proof. The assertions (2.1) and (2.2) are remarked in section 3 in
[3]. Then we have

∫ t2

t1

∫

Rn

|∂β
x∂k

t W (α)(x, t)|qdxdt

=

∫ t2

t1

∫

Rn

(

t−
n+|β|

2α −k
)q

|∂β
x∂k

t W (α)(t−
1
2α x, 1)|qdxdt

=

∫ t2

t1

(

t−
n+|β|

2α −k
)q

∫

Rn

|∂β
x∂k

t W (α)(y, 1)|qt n
2α dydt

≤ (t2 − t1)
(

t
−n(1−1/q)+|β|

2α −k
1

)q

‖∂β
x∂k

t W (α)(·, 1)‖q
Lq(Rn),

which shows (2.3) when 1 ≤ q < ∞. In the case of q = ∞, (2.3) follows
from (2.1) immediately, because ∂β

x∂k
t W (α)(y, 1) is bounded on Rn. �

§3. Huygens property

In our previous paper [3], we proved the Huygens property under
the condition n ≥ 2. The condition n ≥ 2 was not able to drop because
the proof of the key lemma [3, Lemma 4.3] relied on α-harmonic function
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theory ([1]). In this section, we shall give another proof of the Huygens
property, which is valid for all n ≥ 1. Here we shall use the α-parabolic
dilation to estimate L(α)-harmonic measures. In [2] and [4], the notion
of the L(α)-harmonic measure is introduced and discussed by using the
fundamental solutions W (α) and W̃ (α) of L(α) and L̃(α), respectively.
We handle infinite cylinders and use the following notation.

Cr : = {(x, t)|t ∈ R, |x| < r} : infinite cylinder.

ε : the Dirac measure at the origin (0, 0).

να
r : the L(α)-harmonic measure at the origin of Cr.

ωα
r : the projection of να

r to the x-space Rn.

ω̃α
r : =

∫ 2

1

ωα
λrdλ, a modified measure of ωα

r .

W̃ (α)
r : = W̃ (α) ∗ (ε − να

r ).

We list the properties of να
r in the following proposition.

Proposition 3.1. (1) 0 ≤ W̃
(α)
r ≤ W̃ (α) and the support of W̃

(α)
r

is in the closure of the cylinder Cr.

(2) να
r is rotationally invariant with respect to the space variable.

(3)
∫

dνα
r ≤ 1.

(4) If 0 < α < 1, να
r is supported by {(x, t)| t ≤ 0, |x| ≥ r} and abso-

lutely continuous with respect to the (n + 1)-dimensional Lebesgue

measure on the exterior of Cr. The density of να
r is given by

cn,α

∫

|y|≤r

W̃ (α)
r (y, t)|x − y|−n−2αdy.

(5) If α = 1, supp(ν1
r ) ⊂ {(x, t)|t ≤ 0, |x| = r}.

Next lemma was the key in the proof of the Huygens property ([3,
Lemma 4.3]). Now we give a new proof which is valid for all n ≥ 1.

Lemma 3.1. The modified measure ω̃α
r is absolutely continuous with

respect to the n-dimensional Lebesgue measure, whose density w̃α
r satis-

fies

w̃α
r (x) ≤ Cr2α|x|−n−2α and ‖w̃α

r ‖Lq(Rn) ≤ Cr−n(1−1/q),

where the constant C is independent of r > 0 and 1 ≤ q ≤ ∞.

Proof. By Proposition 3.1, we can express ωα
r as

(3.1) ωα
r = wα

r (x)dx + C(r)σr ,
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where σr is the surface measure of the sphere {|x| = r}, C(r) is a non-
negative function of r > 0 and

wα
r (x) =







∫ 0

−∞

[

cn,α

∫

|y|≤r W̃
(α)
r (y, t)|x − y|−n−2αdy

]

dt, 0 < α < 1,

0, α = 1.

Then ω̃α
r is absolutely continuous and its density is given by

w̃α
r (x) =

∫ 2

1

wα
λr(x)dλ +

C(|x|)
r

1{r≤|x|≤2r}(x),

where 1{r≤|x|≤2r} denotes the characteristic function. Considering α-

parabolic dilations τα
r : (x, t) 7→ (rx, r2αt), we have

W (α)(x, t) = rnW (α)(τα
r (x, t)),

which shows that να
r is the image measure of να

1 by τα
r . Thus we obtain

wα
r (x) = r−nwα

1 (x/r), C(r)
∫

dσr = C(1)
∫

dσ1 and

w̃α
r (x) = r−nw̃α

1 (x/r).

In this way, we have only to estimate w̃α
1 . First, we shall show the

boundedness. For every s ≥ 1,
∫

w̃α
1 (x)dσs(x) ≤

∫ ∫ 2

1

wα
λ (x)dλdσs(x) + C(s)

∫

dσs

=

∫ ∫ 2

1

λ−nwα
1 (x/λ)dλdσs(x) + C(1)

∫

dσ1

≤ 2

s

∫ s

s/2

∫

wα
1 (x)dσλ(x)dλ + C(1)

∫

dσ1

≤ 2

∫

dωα
1 ≤ 2.

Since w̃α
1 is rotationally invariant, we have the boundedness of w̃α

1 . Next,
we remark that w̃α

1 (x) ≤ C|x|−n−2α. In fact, from (3) and (4) of Propo-
sition 3.1, follows

1 ≥
∫

dνα
1 ≥

∫

|x|>1

∫ 0

−∞

cn,α

∫

|y|≤1

W̃
(α)
1 (y, t)|x − y|−n−2αdydtdx

≥ cn,α

∫ 0

−∞

∫

|y|≤1

W̃
(α)
1 (y, t)

∫

|x−y|>2

|x − y|−n−2αdxdydt

≥ cn,α

(

∫

|x|>2

|x|−n−2αdx
)

∫∫

W̃
(α)
1 (y, t)dydt,
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which shows that W̃
(α)
1 is integrable. Then taking x with |x| ≥ 2, we

have |x| ≤ |x − y| + |y| ≤ 2|x − y| and

wα
1 (x) = cn,α

∫ 0

−∞

∫

|y|≤1

W̃
(α)
1 (y, t)|x − y|−n−2αdydt

≤ 2n+2αcn,α‖W̃ (α)
1 ‖L1(Rn+1)|x|−n−2α.

Thus taking x with |x| ≥ 4, we have

w̃α
1 (x) =

∫ 2

1

wα
λ (x)dλ =

∫ 2

1

λ−nwα
1 (x/λ)dλ

≤ 2n+2αcn,α‖W̃ (α)
1 ‖L1(Rn+1)

(

∫ 2

1

λ2αdλ
)

|x|−n−2α.

Since w̃α
1 (x) is bounded, we obtain

w̃α
1 (x) ≤ C|x|−n−2α

for all x ∈ Rn. Therefore

w̃α
r (x) = r−nw̃α

1 (x/r) ≤ Cr2α|x|−n−2α,

which also shows the norm inequality

‖w̃α
r ‖Lq(Rn) ≤ Cr−n(1−1/q),

because
∫

|x|≥r

(

|x|−n−2α
)q

dx =
r−(q−1)n−2αq

(q − 1)n + 2αq

∫

dσ1.

�

Using the above lemma, in the quite same manner as in the proof of
Theorem 4.1 in [3], we obtain the following Huygens property. For the
completeness, we give an outline of the proof.

Theorem 3.1. If an L(α)-harmonic function u on HT belongs to

Lp(HT ), then u satisfies the Huygens property:

(3.2) u(x, t) =

∫

Rn

u(y, s)W (α)(x − y, t − s)dy for 0 < s < t < T.

Proof. Let u ∈ Lp(HT ) be an arbitrary L(α)-harmonic function
with 1 ≤ p ≤ ∞. Take δ > 0 such that u(·, δ) ∈ Lp(Rn), and put

v(x, t) = u(x, t + δ) −
∫

Rn

W (α)(x − y, t)u(y, δ)dy
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and V (x, t) =
∫ t

0
v(x, τ)dτ. Here we remark that ‖v‖Lp(HT−δ) ≤ ‖u‖Lp(HT )

and that V is L(α)-harmonic(see [3, Lemma 2.3]). For any fixed (x, t) ∈
HT−δ , taking a cylinder {(ξ, τ)|0 < τ < t, |ξ − x| < r} with r > 0 and
using the mean value property (cf. [4]), we have

|V (x, t)| =
∣

∣

∣

∫

|ξ|≥r,−t≤τ≤0

V (ξ + x, τ + t)dνα
r (ξ, τ)

∣

∣

∣

≤
∫

|ξ|≥r,−t≤τ≤0

∫ τ+t

0

|v(ξ + x, s)|dsdνα
r (ξ, τ)

=

∫ t

0

∫

|ξ|≥r,s−t≤τ≤0

|v(ξ + x, s)|dνα
r (ξ, τ)ds

≤
∫ T−δ

0

∫

|v(ξ + x, s)|dωα
r (ξ)ds.

Thus we obtain

|V (x, t)| ≤
∫ T−δ

0

∫

|v(ξ + x, s)|w̃α
r (ξ)dξds

≤ T 1/q‖v‖Lp(HT−δ)‖w̃α
r ‖Lq(Rn)

≤ CT 1/qr−n/p‖u‖Lp(HT ),

which shows V (x, t) = 0 for 1 ≤ p < ∞, because r > 0 is arbitrary. In
this way, for δ < s < t < T and x ∈ Rn, we have

u(x, t) =

∫

Rn

W (α)(x − y, t − δ)u(y, δ)dy

=

∫

Rn

∫

Rn

W (α)(x − z, t − s)W (α)(z − y, s − δ)dz u(y, δ)dy

=

∫

Rn

W (α)(x − z, t − s)u(z, s)dz.

Since δ > 0 is arbitrary, we have (3.2) in the case of 1 ≤ p < ∞. When
p = ∞, (3.2) follows from [4, Proposition 11] immediately. �

§4. Some basic properties of α-parabolic Bergman functions

In this section, for 0 < T < ∞, we define an α-parabolic Bergman
space on HT .

Definition 4.1. Let 1 ≤ p ≤ ∞. We put

b
p
α(HT ) := {u ∈ Lp(HT )|L(α)-harmonic on HT },
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which is a closed subspace of Lp(HT ) (by (4.1) below) and called the
α-parabolic Bergman space on the strip domain.

Remark 4.1. For any u ∈ b
p
α(HT ), the estimate

(4.1) |u(x, t)| ≤ C‖u‖Lp(HT )t
−( n

2α +1) 1
p

holds for (x, t) ∈ HT in the similar way to [3, Proposition 5.2]. Therefore
u can be extended to an L(α)-harmonic function on the upper half space
H by using the Huygens property. In this paper, every u ∈ b

p
α(HT ) is

considered to be extended to the upper half space as

(4.2) u(x, t + jT ) :=

∫

Rn

u(y, t)W (α)(x − y, jT )dy

for (x, t) ∈ HT and j ∈ N. We remark that the extension u also satisfies
the Huygens property on the whole upper half space H .

Remark 4.2. For each fixed p, b
p
α(HT ) are the same and the Lp(HT )-

norm is equivalent to one another for all 0 < T < ∞. In fact, by the
Minkowski inequality, for 0 < s < t < ∞,

‖u(·, t)‖Lp(Rn) ≤ ‖u(·, s)‖Lp(Rn),

which shows the equivalence of the norms.

The Huygens property also yields the following estimate.

Proposition 4.1. Let 1 ≤ p ≤ ∞ and (β, k) be a multi-index. Then

there exists a constant C > 0 such that

|∂β
x ∂k

t u(x, t)| ≤







C‖u‖Lp(HT )t
−
(

|β|
2α +k

)

−
(

n
2α +1

)

1
p , t < T,

CT−1/p‖u‖Lp(HT )t
−
(

|β|
2α +k

)

− n
2α

1
p , t ≥ T,

for any u ∈ b
p
α(HT ) and (x, t) ∈ H. In particular, if 1 ≤ p < ∞,

t
|β|
2α +k∂β

x∂k
t u(·, t) converges uniformly to 0 as t → ∞.

Proof. If 0 < t < 2T , we can show

|∂β
x ∂k

t u(x, t)| ≤ C‖u‖Lp(HT )t
−
(

|β|
2α +k

)

−
(

n
2α +1

)

1
p

in the quite same manner as in [3, Proposition 5.4]. Next we assume
t ≥ 2T . By the Huygens property, we have

u(x, t) =
1

T

∫∫

HT

u(y, s)W (α)(x − y, t − s)dyds



Bergman projections for α-parabolic operators 313

and hence

∂β
x ∂k

t u(x, t) =
1

T

∫∫

HT

u(y, s)∂β
x∂k

t W (α)(x − y, t − s)dyds.

Then by (2.3) in Lemma 2.2 and the Hölder inequality, we have

|∂β
x ∂k

t u(x, t)| =
1

T
‖u‖Lp(HT )‖∂β

x∂k
t W (α)‖Lq(Rn×(t−T,t))

≤ CT−1/p‖u‖Lp(HT )t
−
(

|β|
2α +k

)

− n
2α

1
p .

�

In the same manner as in [3, Proposition 5.5], we have the following
norm inequality.

Proposition 4.2. Let 1 ≤ p ≤ ∞ and (β, k) be a multi-index. Then

there exists a constant C > 0 such that for every u ∈ b
p
α(HT ),

‖t
|β|
2α +k∂β

x∂k
t u‖Lp(HT ) ≤ C‖u‖Lp(HT ).

§5. Reproducing property of the Bergman kernel

In [3, Theorem 6.3], we have shown that the α-parabolic Bergman
kernel

Rα(x, t; y, s) := −2∂tW
(α)(x − y, t + s)

has a reproducing property for b
p
α with 1 ≤ p < ∞.

In the case of the strip domain HT (0 < T < ∞), we consider the
following kernel: for (x, t), (y, s) ∈ HT ,

Rα,T (x, t; y, s) : =

∞
∑

j=0

Rα(x, t + jT ; y, s + jT )

= −2

∞
∑

j=0

∂tW
(α)(x − y, s + t + 2jT ),

which turns out to be the α-parabolic Bergman kernel on HT .

Lemma 5.1. Let (x, t) ∈ HT be fixed. Then Rα,T (x, t; ·, ·) ∈ Lq(HT )
for 1 < q ≤ ∞.

Proof. Let j ≥ 1. Then by (2.3) in Lemma 2.2, we have

‖Rα(x, t + jT ; ·, ·)‖Lq(Rn×(jT,jT+T )) = 2‖∂tW
(α)‖Lq(Rn×(t+2jT,t+2jT+T ))

≤ CT 1/q(jT )−
n(1−1/q)

2α −1.
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Thus, by [3, Lemma 6.1],

‖Rα,T (x, t;·, ·)‖Lq(HT )

≤ ‖Rα(x, t; ·, ·)‖Lq(H) + CT 1/q
∞
∑

j=1

(jT )−
n(1−1/q)

2α −1 < ∞.

�

Thus we can define the integral operator

Rα,T u(x, t) :=

∫∫

HT

Rα,T (x, t; y, s)u(y, s)dyds

for every u ∈ Lp(HT ) with 1 ≤ p < ∞. Next proposition shows that the
kernel Rα,T has a reproducing property for b

p
α(HT ).

Proposition 5.1. Let 1 ≤ p < ∞. Then we have

(5.1) Rα,T u(x, t) = u(x, t)

for every u ∈ b
p
α(HT ) and (x, t) ∈ HT .

Proof. Let u ∈ b
p
α(HT ) be considered to be extended to H as in

(4.2). For δ > 0, we put uδ(x, t) := u(x, t + δ). Then using the Huygens
property, we have

∫∫

HT

uδ(y, s)(−2)∂tW
(α)(x − y, t + s + 2jT )dyds

=

∫

Rn

{

[

uδ(y, s)(−2)W (α)(x − y, t + s + 2jT )
]T

s=0

−
∫ T

0

∂tuδ(y, s)(−2)W (α)(x − y, t + s + 2jT )ds
}

dy

=2uδ(x, t + 2jT )− 2uδ(x, t + 2(j + 1)T )

+

∫ T

0

∂

∂s

{

uδ(x, t + 2s + 2jT )
}

ds

=uδ(x, t + 2jT ) − uδ(x, t + 2(j + 1)T ).

Hence, by Proposition 4.1, we obtain
∫∫

HT

Rα,T (x, t; y, s)uδ(y, s)dyds

=

∞
∑

j=0

[

uδ(x, t + 2jT )− uδ(x, t + 2(j + 1)T )
]

= uδ(x, t).

Letting δ → 0, we have (5.1). �
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Since the kernel Rα,T is symmetric and real-valued, the integral op-

erator Rα,T is the orthogonal projection on L2(HT ) to b
2
α(HT ). There-

fore in particular, the operator Rα,T is bounded on L2(HT ). We call
Rα,T the Bergman projection. In the next section, we discuss the bound-
edness for other exponents 1 < p < ∞.

§6. Lp-boundedness of the Bergman projection

In this last section, we shall prove the boundedness of the integral
operator Rα,T on Lp(HT ).

Theorem 6.1. Let 1 < p < ∞. Then Rα,T is a bounded operator

from Lp(HT ) onto b
p
α(HT ).

To prove the theorem, we introduce the following theorem from the
interpolation theory. We quote the theorem from [5].

Theorem 6.2. [5, p.29, Theorem 1]. Let K ∈ L2(Rn) such that

(a) ‖K̂‖L∞(Rn) ≤ B,

(b) K ∈ C1(Rn \ {0}) and |∇K(x)| ≤ B|x|−n−1

for some B > 0, where K̂ denotes the Fourier transform of K. Then

for 1 < p < ∞, there exists a constant Ap, depending only on p, B and

n, such that

(6.1) ‖K ∗ f‖Lp(Rn) ≤ Ap‖f‖Lp(Rn)

for every f ∈ Lp(Rn) ∩ L1(Rn).

Remark 6.1. In the above theorem, if in addition K ∈ Lq(Rn), the
inequality (6.1) holds for every f ∈ Lp(Rn).

Now we return to the proof. For t > 0, we put

KT,t(x) := −2

∞
∑

j=1

∂tW
(α)(x, t + 2jT ).

Lemma 6.1. The kernel KT,t satisfies the condition in Theorem

6.2 with a constant B independent of t > 0.

Proof. By the definition of W (α), the Fourier transform of W (α)

satisfies

Ŵ (α)(ξ, t) = (2π)−n/2e−t|ξ|2α

, ∂tŴ
(α)(ξ, t) = −(2π)−n/2|ξ|2αe−t|ξ|2α

.
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Hence

K̂T,t(ξ) = 2(2π)−n/2|ξ|2αe−t|ξ|2α
∞
∑

j=1

e−2jT |ξ|2α

= 2(2π)−n/2e−t|ξ|2α |ξ|2αe−2T |ξ|2α

1 − e−2T |ξ|2α .

This implies that K̂T,t ∈ L2(Rn), i.e., KT,t ∈ L2(Rn), and

|K̂T,t(ξ)| ≤
(2π)−n/2

T
sup
s>0

se−s

1 − e−s
=: B < ∞.

Clearly, KT,t is of class C1 and by (2.2) in Lemma 2.2,

|∇KT,t(x)| ≤ C

∞
∑

j=1

(

(t + 2jT ) + |x|2α
)−n+1

2α −1

≤ C

2T

∫ ∞

0

(

(t + s) + |x|2α
)−n+1

2α −1
ds

≤ Cα

T (n + 1)

(

t + |x|2α
)−n+1

2α ≤ Cα

T (n + 1)
|x|−n−1.

�

Proof of Theorem 6.1. We decompose Rα,T as

Rα,T (x, t; y, s) = Rα(x, t; y, s) + KT,t+s(x − y).

For f ∈ Lp(HT ) ∩ L1(HT ), we put fs(y) := f(y, s) and

f̃(y, s) :=

{

f(y, s), 0 < s < T,

0, s ≥ T.

In our previous paper [3], we have shown that the integral operator Rα

is bounded on Lp(H). Then

‖Rαf̃‖Lp(HT ) ≤ ‖Rα‖ · ‖f‖Lp(HT ).

Since

Rα,T f(x, t) = Rαf̃(x, t) +

∫ T

0

KT,t+s ∗ fs(x)ds,

the Minkowski inequality implies

‖Rα,T f(·, t)‖Lp(Rn) ≤ ‖Rαf̃(·, t)‖Lp(Rn) +

∫ T

0

‖KT,t+s ∗ fs‖Lp(Rn)ds.
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Here by Theorem 6.2, we have

∫ T

0

‖KT,t+s ∗ fs‖Lp(Rn)ds ≤ Ap

∫ T

0

‖fs‖Lp(Rn)ds

≤ Ap

(

∫ T

0

‖fs‖p
Lp(Rn)ds

)1/p(
∫ T

0

ds
)1/q

≤ Ap‖f‖Lp(HT )T
1/q.

Taking the Lp(0, T )-norm, again by the Minkowski inequality, we obtain

‖Rα,T f‖Lp(HT ) ≤ ‖Rαf̃‖Lp(HT ) + TAp‖f‖Lp(HT )

≤ (‖Rα‖ + TAp)‖f‖Lp(HT ).

This completes the proof. �

As an application, we have the following duality (cf. [3, Theorem
8.1]).

Corollary 6.1. For 1 < p < ∞, the following duality holds;

b
p
α(HT )

′ ' b
q
α(HT ),

where the pairing is given by

〈f, g〉 =

∫∫

HT

f(x, t)g(x, t)dxdt

for f ∈ b
p
α(HT ) and g ∈ b

q
α(HT ).
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Vanishing theorem on the pointwise defect of a

rational iteration sequence for moving targets

Yûsuke Okuyama

§1. Introduction

Let f be a rational map, i.e., a holomorphic endomorphism of the
Riemann sphere Ĉ = C ∪ {∞}, of degree d > 1. The k times iteration
of f is denoted by fk for k ∈ N.

The Nevanlinna theory for sequences was first studied in [19], [2],
[8] and [10], and recently, motivated by complex dynamics, studied in
[18], [16] and [15], where the sequence of rational maps correspond to a
transcendental meromorphic function. Hence the following definition is
natural:

Definition 1.1 (Picard exceptional value). The point a ∈ Ĉ is
called a Picard exceptional value of {f k} if

#
⋃

k∈N

f−k(a) <∞.

The point a ∈ Ĉ is a Picard exceptional value if and only if it
is periodic of period at most two and a and f(a) are critical of order
d− 1. In particular, there exist at most two such values (cf. [9]), which
is an analogue of the Picard theorem for transcendental meromorphic
functions.
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Notation 1.1. The spherical area measure on Ĉ, which is nor-

malized as σ(Ĉ) = 1, is denoted by σ, and the chordal distance be-

tween z, w ∈ Ĉ, which is normalized as [0,∞] = 1, by [z, w]. Put

D(x, r) := {z ∈ Ĉ; [z, x] < r} for x ∈ Ĉ and r > 0.

One of the main aims of the Nevanlinna theory is to generalize the
Picard theorem quantitatively by the defects, which are defined not only
for each constant values but also for moving targets. See [14], Chapter
4 and also the recent significant result by Yamanoi [20].

Clearly, the degree d =
∫

Ĉ
f∗(dσ) of f is an analogue of the order

(or characteristic) function of a transcendental meromorphic function.

Definition 1.2 (proximities and defects). For a rational map g, the
pointwise proximity function of f is defined as

w(g, f) := log
1

[g(·), f(·)]
: Ĉ → [0,+∞],

the mean proximity of f as

m(g, f) :=

∫

Ĉ

w(g, f)dσ,

and the Valiron defect of {fk} as

δV (g; {fk}) := lim sup
k→∞

m(g, fk)

dk
.

Convention 1.1. Each point a ∈ Ĉ is identified with the constant
map g ≡ a.

A point a ∈ Ĉ is called a Valiron exceptional value of {f k} if
δV (a; {fk}) > 0. It is easy to see that every Picard exceptional value of
{fk} is a Valiron one. It seems surprising that the converse is true:

Theorem 1.1 (Valiron agrees with Picard, [12] and [13]). Let f be

a rational map of degree > 1. For a point a ∈ Ĉ,

δV (a; {fk}) = 0

if and only if a is not a Picard exceptional value of {f k}.

In [11], the following generalization of Theorem 1.1 below was shown
and crucially used to obtain a new Diophantine condition for the non-
linearizability of f at its irrationally indifferent cycle.

Definition 1.3. The Fatou set F (f) is the set of all the points in

Ĉ where {fk} is normal, and the Julia set J(f) is Ĉ − F (f).
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Theorem 1.2 (vanishing theorem on the Valiron defects for moving
targets). Let f be a rational map of degree > 1 such that F (f) 6= ∅. Then

for every non-constant rational map g,

(1) δV (g; {fk}) = 0.

In [11] we asked whether it is possible to remove the assumption
F (f) 6= ∅. In the rest of this notes, we will answer affirmatively the
following pointwise version of this problem:

Theorem 1 (vanishing theorem on the pointwise defect). Let f be

a rational map of degree d > 1. Then for every rational map g,

(2) lim
k→∞

w(g, fk)

dk
= 0

µf -almost everywhere on Ĉ. Here the measure µf appears in Theorem

2.1 in §2.

§2. The maximal entropy measures of rational maps

In this section, we gather some useful ergodic properties of rational
maps which will be used in §3.

Let f be a rational map of degree d > 1.

Theorem 2.1 ([6] and [5]). There exists the unique maximal en-

tropy measure µf for f , and hµf
(f) = log d, which is the topological

entropy of f .

Moreover, the probability measure µf is exponentially mixing. More
quantitatively, the following holds:

Theorem 2.2 (exponential decay of correlation [3]. See also [4]).
For every ε0 > 0, there exists C = C(ε0) > 0 such that for every

ψ ∈ L∞(µf ), every Lipschitz function φ on Ĉ, for which ‖φ‖Lip :=
supz,w∈Ĉ,z 6=w |φ(z) − φ(w)|/[z, w], and every k ∈ N,

(3)
∣

∣

∣

∣

∫

(ψ ◦ fk) · φdµf −

∫

ψdµf

∫

φdµf

∣

∣

∣

∣

≤ C‖ψ‖∞‖φ‖Lip

(

1 + ε0
d

)
k
2

.

Let us also recall several properties of µf proved by Mañé:

Theorem 2.3 (Mañé [7], Theorem A). Let µ be an f -ergodic prob-

ability measure on Ĉ with the entropy hµ(f) > 0, then
∫

log |f ′|dµ > 0,(4)
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and for µ-a.e. x ∈ Ĉ,

lim
r→0

logµ(D(x, r))

log r
=

hµ(f)
∫

log |f ′|dµ
=: D(µ).(5)

Since hµf
(f) = log d > 0, Theorem 2.3 can be applied to µf .

Remark 2.1. The quantity in (4) is called the Lyapunov exponent

of f , which is independent of an f -ergodic probability measure µ on Ĉ.
The left hand side of (5) is called the pointwise Hausdorff dimension of
µ at x. By the observation of Young [21], it holds that

D(µ) = inf{HD(X);X ⊂ Ĉ, µ(X) = 1},

where HD(X) is the Hausdorff dimension of X .

Theorem 2.4 (cf. Mañé [7], Lemma II.1). There exist ρ ∈ (0, 1]

and γ > 0 such that for every r ∈ (0, ρ) and every x ∈ Ĉ,

(6) µf (D(x, r)) ≤ rγ .

§3. The long fly property of a rational map

Let f be a rational map of degree d > 1. The following is a re-

finement of Saussol’s long fly property ([17]) of (Ĉ, f, µf ) and proves
Theorem 1:

Theorem 2. For every rational map g, the following holds: for µf -

almost every z ∈ Ĉ,

(7) log
1

[fk(z), g(z)]
= O(log k)

as k → ∞.

Proof. We extend the argument in the proof of [17], Lemma 9.
Let ε0 ∈ (0, d− 1), C = C(ε0), D(µf ), ρ, γ be the constants in The-

orems 2.2, 2.3 and 2.4. Fix δ ∈ (0, γ/2), ε1 > 0 and ε2 ∈ (0, γ − 2δ). For

each r0 ∈ (0, ρ), let G(r0) be the set of all such x ∈ Ĉ that for every
r ∈ (0, r0),

logµf (D(x, r))

log r
≤ D(µf ) + ε1, and(8)

µf (D(x, 4r)) ≤ µf (D(x, r))r−ε2 .(9)
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By Theorem 2.3 and the weak diametrical regularity of µf (cf. Barreira
and Saussol [1], p452), G(r0) is increasing as r0 → 0 and

µf (
⋃

r0∈(0,ρ)

G(r0)) = 1,

by which, it is enough to show that for every sufficiently small r0, (7)
holds µf -almost everywhere on G(r0)

For each m ∈ N, put

Aδ(m; g) := {y ∈ Ĉ; inf
k∈[emδ ,e(m+1)δ ]

[fk(y), g(y)] < e−m}.

Then for every x ∈ Ĉ and every m ∈ N,

Aδ(m; g)∩D(x, e−m) ⊂
⋃

k∈[emδ ,e(m+1)δ ]

D(x, e−m)∩f−k(D(g(x), (K+1)e−m)),

where K > 0 is a constant such that g is K-Lipschitz on Ĉ.
Put φx,r(y) := ηr([x, y]), where ηr : [0,∞) → R is an 1/r-Lipschitz

function such that 1[0,r] ≤ ηr ≤ 1[0,2r]. Then φx,r is 1/r-Lipschitz on Ĉ

and 1D(x,r) ≤ φx,r ≤ 1D(x,2r).
For every r0 ∈ (0, ρ) and every r ∈ (0, r0), from (3),

µf

(

D(x, r) ∩ f−k(D(g(x), (K + 1)r))
)

≤

∫

(1D(g(x),(K+1)r)) ◦ f
k) · φx,rdµf

≤C · 1 ·
1

r

(

1 + ε0
d

)k/2

+ µf (D(g(x), (K + 1)r)) · µf (D(x, 2r)),

and by (6) and (9),

µf (D(g(x), (K + 1)r)) · µf (D(x, 2r))

≤ ((k + 1)r)
γ · µf (D(x, r/2))(r/2)−ε2 ≤ µf (D(x, r/2)) · 2ε2(K + 1)γ · rγ−ε2 .

There exists so small ρ′ ∈ (0, ρ) that for every r0 ∈ (0, ρ′), every
x ∈ G(r0) and every m > log(1/r0),

µf

(

Aδ(m; g) ∩ D(x, e−m)
)

≤C · em

(

1+ε0
d

)emδ/2

1 −
(

1+ε0
d

)1/2
+ e(m+1)δ · µf (D(x, e−m/2)) · 2ε2(K + 1)γe−m(γ−ε2)

≤(e−m/2)D(µf )+ε1 · e−m(γ−ε2−2δ) + µf (D(x, e−m/2)) · e−m(γ−ε2−2δ)

≤µf (D(x, e−m/2)) · 2e−m(γ−ε2−2δ) (by (8)),
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and hence for every m > log(1/r0),

µf (Aδ(m; g) ∩G(r0)) ≤
∑

x∈Sm

µf

(

Aδ(m; g) ∩ D(x, e−m)
)

≤2e−m(γ−ε2−2δ)µf (
⋃

x∈Sm

D(x, e−m/2)) ≤ 2e−m(γ−ε2−2δ),

where Sm is a finite and maximal e−m-separated set for G(r0), i.e.,
G(r0) ⊂ ∪x∈Sm

D(x, e−m) and D(x, e−m) ∩ Sm = {x} for each x ∈ Sm,
and finally

∑

m∈N
µf (Aδ(m; g) ∩G(r0)) <∞.

Hence by the first Borel-Cantelli lemma, µf (lim supm→∞Aδ(m; g)∩
G(r0)) = 0, that is, for µf -almost every z ∈ G(r0), there exists m(z) ∈ N

such that for every m > m(z),

inf
k∈[emδ ,e(m+1)δ ]

[fk(z), g(z)] ≥ e−m,

which proves (7). �
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Hölder continuity of solutions to quasilinear elliptic

equations with measure data

Takayori Ono

Abstract.

We consider quasi-linear second order elliptic differential equa-
tions with measures date on the right hand side. In this talk, we
investigate Hölder continuity of solutions of such equations.

§1. Introduction.

Let G be a bounded open set in RN (N ≥ 2) and 1 < p < N .
Suppose that ν is a signed Radon measure on G. We consider quasi-
linear second order elliptic differential equations with measure date of
the form

(Eν) − divA(x, ∇u(x)) + B(x, u(x)) = ν,

where A(x, ξ) : RN × RN → RN satisfies structure conditions of p-th
order and B(x, t) : RN × R → R is nondecreasing in t (see section 2
below for more details).

Hölder continuity of a solution to the equation (Eν) was investigated
in [17], [8] and [6]. In these papers, they showed that the solution of
(Eν) is locally Hölder continuous with some exponent if the signed Radon
measure ν satisfies the condition that there exist constants M > 0 and
0 < β < λ with

|ν|(B(x0, r)) ≤ M rN−p+β(p−1)

Received April 4, 2005.
Revised August 17, 2005.
2000 Mathematics Subject Classification. Primary 31C45; Secondary

31B25.
Key words and phrases. quasi-linear equation with measure data, Hölder
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whenever B(x, 3r) ⊂ G, where λ is a number depending on N , p and
structure conditions for A and B. Further, in [7], in the case B = 0 in
the equation (Eν), namely for the equation

(1) − divA(x, ∇u(x)) = ν

and ν is a nonnegative Radon measure, Kilpeläinen and Zhong showed
that a solution to the equation (1) is Hölder continuous with the same
exponent β. In this talk, we extend this result to the case of the equation
(Eν).

Throughout this paper, we use some standard notation without ex-
planation.

§2. Preliminaries.

We assume that A : RN ×RN → RN and B : RN ×R → R satisfy
the following conditions for 1 < p < N :

(A.1) x 7→ A(x, ξ) is measurable on RN for every ξ ∈ RN and
ξ 7→ A(x, ξ) is continuous for a.e. x ∈ RN ;

(A.2) A(x, ξ) · ξ ≥ α1|ξ|
p for all ξ ∈ RN and a.e. x ∈ RN with a

constant α1 > 0;
(A.3) |A(x, ξ)| ≤ α2|ξ|

p−1 for all ξ ∈ RN and a.e. x ∈ RN with a
constant α2 > 0;

(A.4)
(

A(x, ξ1) − A(x, ξ2)
)

·
(

ξ1 − ξ2

)

> 0 whenever ξ1, ξ2 ∈ RN ,

ξ1 6= ξ2, for a.e. x ∈ RN ;
(B.1) x 7→ B(x, t) is measurable on RN for every t ∈ R and t 7→

B(x, t) is continuous for a.e. x ∈ RN ;
(B.2) For any open set G b RN , there is a constant α3(G) ≥ 0 such

that |B(x, t)| ≤ α3(G)(|t|p−1 +1) for all t ∈ R and a.e. x ∈ G;
(B.3) t 7→ B(x, t) is nondecreasing on R for a.e. x ∈ RN .

We consider elliptic quasi-linear equations of the form

(E) − divA(x, ∇u(x)) + B(x, u(x)) = 0.

For an open subset G of RN , we consider the Sobolev spaces W 1,p(G),

W 1,p
0 (G) and W 1,p

loc (G).

Let G be an open subset of RN . A function u ∈ W 1,p
loc (G) is said to

be a (weak) solution of (E) in G if

∫

G

A(x,∇u) · ∇ϕ dx +

∫

G

B(x, u)ϕ dx = 0

for all ϕ ∈ C∞
0 (G).
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A continuous solution of (E) in an open subset G of RN is called
(A,B)-harmonic in G.

We can see the following proposition by the proof of [14; Theorem
4.7]. By carefully analyzing the proof of [14; Theorem 4.2 and Theorem
4.7], we can choose constants c and 0 < λ ≤ 1 independent of the radius
R if R ≤ 1.

Proposition 2.1. Let G be a bounded open set. Then there are

constants c and 0 < λ ≤ 1 such that for B(x0, R) b G and for every

(A, B)-harmonic function h in G with |h| ≤ L in B(x0, R),

osc(h, B(x0, r)) ≤ c
( r

R

)λ
(

osc(h, B(x0, R)) + R
)

,

whenever 0 < r < R ≤ 1. Here c depends only on N, p, α1, α2, α3(G)
and L and λ depends only on N, p, α1, α2 and α3(G).

In the case of A(x, ξ) = |ξ|p−2ξ and B = 0, namely for the p-Laplace
equation, we can choose λ = 1 ([4; Lemma 2.1]).

We recall the following propositions ([13; Theorem 2.2 and putting
k = 0 in Definition 2.1, and Lemma 3.1]).

Proposition 2.2. Let G be a bounded open set and M0 ≥ 0. Then

there is a constant c such that, for every (A,B)-harmonic function h in

G, nonnegative η ∈ C∞
0 (G) and constant M with |M | ≤ M0,

∫

{h>M}

|∇h|p ηp dx ≤ c

∫

G

max(h − M, 0)p (ηp + |∇η|p) dx

+ c (M0 + 1)p

∫

{h>M}

ηp dx,

where c depends only on p, α1, α2 and α3(G).

Proposition 2.3. Let G be a bounded open set, M0 ≥ 0, γ ∈ (0, p].
Then there is a constant c such that, for every r ∈ (0, 1] with B(x0, r) b

G, an (A,B)-harmonic function h in G and a constant M with |M | ≤
M0,

sup
B(x0,r/2)

|h − M | ≤ c

(

1

|B(x0, r)|

∫

B(x0,r)

|h − M |γdx

)1/γ

+ c r,

where c depends only on p, α1, α2, α3(G), γ and M0.

Lemma 2.1. Let G be a bounded open set. Then there is a constant

c depending only on p, N, α1, α2 and α3(G) such that for B(x0, R) ⊂ G
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with R ≤ 1, u ∈ W 1,p(B(x0, R)) and the (A,B)-harmonic function h

with h − u ∈ W 1,p
0 (B(x0, R))

(

∫

B(x0,R)

|∇h|p dx

)1/p

≤ c







(

∫

B(x0,R)

|u|p dx

)1/p

+

(

∫

B(x0,R)

|∇u|p dx

)1/p

+ RN/p







.

Proof. Fix B = B(x0, R) ⊂ G with R ≤ 1 and let ‖ · ‖p,G denote
the usual Lp(G)-norm. It follows from (A.2), (A.3), (B.2) and (B.3) that

‖∇h‖p
p,B ≤ α−1

1

∫

B

A(x,∇h) · ∇h dx

= α−1
1

{
∫

B

A(x,∇h) · ∇u dx −

∫

B

B(x, h)(h − u) dx

}

≤ α−1
1 α2 ‖∇h‖p−1

p,B ‖∇u‖p,B − α−1
1

∫

B

B(x, u)(h − u) dx

≤ α−1
1 α2 ‖∇h‖p−1

p,B ‖∇u‖p,B

+ α−1
1 α3(G) ‖|u| + 1‖p−1

p,B ‖u− h‖p,B .

Because h − u ∈ W 1,p
0 (B), by the Poincaré inequality we have

‖h − u‖p,B ≤ c ‖∇h −∇u‖p,B ≤ c (‖∇h‖p,B + ‖∇u‖p,B),

where we can take c depending only on N because R ≤ 1. Also,

‖|u| + 1‖p−1
p,B ≤ c′ (‖u‖p−1

p,B + RN(p−1)/p),

with c′ = c′(p) > 0. Thus, by the above inequalities and Young’s in-
equality we have

‖∇h‖p
p,B ≤ c1 ‖∇h‖p−1

p,B ‖∇u‖p,B

+ c2 (‖u‖p−1
p,B + RN(p−1)/p) (‖∇h‖p,B + ‖∇u‖p,B)

≤
1

2
‖∇h‖p

p,B + c3 (‖∇u‖p
p,B + ‖u‖p

p,B + RN ).

Hence ‖∇h‖p
p,B ≤ 2c3 (‖∇u‖p

p,B + ‖u‖p
p,B + RN ), which implies the de-

sired inequality. �

Lemma 2.2. Suppose that G is a bounded open set and B(x0, R) b

G. There exists a number λ = λ(N, p, α1, α2, α3(G)) > 0 such that for
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every 0 < r < R ≤ 1 and (A,B)-harmonic function h in G with |h| ≤ L
in B(x0, R) it holds that

∫

B(x0,r)

|∇h|p dx ≤ c
( r

R

)N−p+pλ
∫

B(x0,R)

|∇h|p dx + c RN ,

where c = c(N, p, α1, α2, α3(G), L) > 0.

Proof. We may assume that 0 < r < R
4 . From Proposition 2.2 and

Proposition 2.1 we obtain

∫

B(x0,r)

|∇h|p dx ≤
c

rp

∫

B(x0,2r)

{(h − inf
B(x0,2r)

h)p + (L + 1)p rp} dx

≤
c

rp

{(

sup
B(x0,2r)

h − inf
B(x0,2r)

h

)p

+ (L + 1)prp

}

rN

≤ c rN−p

×

[{

( r

R

)λ
(

sup
B(x0,R/2)

h − inf
B(x0,R/2)

h + R

)}p

+ (L + 1)prp

]

≤ c rN−p

{

( r

R

)pλ
(

sup
B(x0,R/2)

h − inf
B(x0,R/2)

h

)p

+ Rp

}

.

On the other hand, setting

hR =
1

|B(x0, R)|

∫

B(x0,R)

h dx,

by Proposition 2.3 and the Poincaré inequality, we have

(

sup
B(x0,R/2)

h − inf
B(x0,R/2)

h

)p

≤ 2 sup
B(x0,R/2)

|h − hR|
p

≤
c

|B(x0, R)|

∫

B(x0,R)

|h − hR|
p dx + c Rp

≤
c Rp

|B(x0, R)|

∫

B(x0,R)

|∇h|p dx + c Rp.
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Hence,

∫

B(x0,r)

|∇h|p dx ≤ c rN−p

{

( r

R

)pλ
(

1

R

)N−p ∫

B(x0,R)

|∇h|p dx + Rp

}

≤ c
( r

R

)N−p+pλ
∫

B(x0,R)

|∇h|p dx + c RN .

�

§3. Hölder continuity of solutions to (Eν).

In this section, we establish Hölder continuity of solutions to the
equation (Eν). First, we recall the following Adams’ inequality ([17;
Theorem 3.3]).

Proposition 3.1. Suppose that ν is a nonnegative Radon measure

supported in an open set Ω such that there is a constant M with the

property that for all x ∈ RN and 0 < r < ∞,

ν(B(x, r)) ≤ M ra

where a = q(N/p− 1), 1 < p < q < ∞ and p < N . If u ∈ W 1,p
0 (Ω), then

(
∫

Ω

|u|q dν

)1/q

≤ c M1/q

(
∫

Ω

|∇u|p dx

)1/p

,

where c = c(p, q, N).

Let G be an open subset in RN . A function u : G → R ∪ {∞}
is said to be (A,B)-superharmonic in G if it is lower semicontinuous,
finite on a dense set in G and, for each bounded open set U and for
h ∈ C(U ) which is (A,B)-harmonic in U , u ≥ h on ∂U implies u ≥ h in
U . (A,B)-subharmonic functions are similarly defined.

To show Hölder continuity of solutions to the equation (Eν), we
prepare the following lemma.

Lemma 3.1. Suppose that G is a bounded open set, B(x0, R) b G,

0 < β < 1, ν is a signed Radon measure on G such that

|ν|(B(x0, r)) ≤ c0 rN−p+β(p−1)

for every 0 < r ≤ R and u ∈ W 1,p
loc (G) is a solution of (Eν) in G

with |u| ≤ L in B(x0, R). Then for every 0 < r ≤ R ≤ 1 and ε >
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0, there exist constants c1 = c1(N, p, α1, α2, α3(G), L) > 0 and c2 =
c2(N, p, α1, α2, α3(G), β, c0, ε, L) > 0 such that

∫

B(x0,r)

|∇u|p dx ≤ c1

(

( r

R

)N−p+pλ

+ ε

)
∫

B(x0,R)

|∇u|p dx

+ c2 RN−p+pβ.

where λ is the constant in Lemma 2.2.

Proof. We may assume that 0 < r < R
2 . Let h be an (A,B)-

harmonic function with u − h ∈ W 1,p
0 (B(x, R)). First, we will show

that

|h| ≤ L′(3.1)

on B(x, R) with L′ = L′(A,B, G, L). Let B0 be a ball containing
G. There exists an (A,B)-harmonic function h0 in B0 belonging to

W 1,p
0 (B0) (see [10; Theorem 1.4]). Then h0 is continuous on B0 and

hence bounded in G. Let −m1 ≤ h0 ≤ m2 in G with m1 ≥ 0 and
m2 ≥ 0. Then, v1 = h0 + m1 + L is (A,B)-superharmonic and v1 ≥ L
in G; and v2 = h0 − m2 − L is (A,B)-subharmonic and v2 ≤ −L in G.
Since

0 ≥ min(0, v1 − h) ≥ min(0, L − h) ≥ min(0, u − h) ∈ W 1,p
0 (B(x, R)),

min(0, v1 −h) ∈ W 1,p
0 (B(x, R)). Hence by the comparison principle (see

[16; Proposition 5.1.1 and Lemma 2.2.1]), v1 ≥ h, so that h ≤ L + m1 +
m2. Similarly, we see that v2 ≤ h, which shows h ≥ −(L + m1 + m2).
Thus, we have (3.1) with L′ = L + m1 + m2.

Next, we note that |ν| ∈ (W 1,p
0 (V ))∗ for any V b G, that is, |ν| is

in the dual space of W 1,p
0 (V ). Indeed, there exists an A-superharmonic

function U in G satisfying

− divA(x, DU(x)) = |ν|

with min(U, k) ∈ W 1,p
0 (G) for all k > 0, where DU is the generalized

gradient of U (see [5; Theorem 2.4]). Then by [6; Theorem 4.16], U

is locally bounded in G. Thus, U ∈ W 1,p
loc (G) (see [3; Corollary 7.20]).

Hence we see that |ν| ∈ (W 1,p
0 (V ))∗ (cf. [6; p.142]). Thus, by (A.2),
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(A.3) and (B.3) we have

α1

∫

B(x0,r)

|∇u|p dx ≤

∫

B(x0,r)

A(x,∇u) · ∇u dx

=

∫

B(x0,r)

(A(x,∇u) −A(x,∇h)) · (∇u −∇h) dx

+

∫

B(x0,r)

A(x,∇h) · (∇u −∇h) dx(3.2)

+

∫

B(x0,r)

A(x,∇u) · ∇h dx

≤

∫

B(x0,R)

(A(x,∇u) −A(x,∇h)) · (∇u −∇h) dx

+α2

∫

B(x0,R)

(

|∇h|p−1|∇u| + |∇u|p−1|∇h|
)

dx

+

∫

B(x0,R)

(B(x, u) − B(x, h)) (u − h) dx

=

∫

B(x0,R)

(u − h) dν

+α2

∫

B(x0,r)

(

|∇h|p−1|∇u| + |∇u|p−1|∇h|
)

dx,

in the last inequality we have used that u is a solution of (Eν), |ν| ∈

(W 1,p
0 (V ))∗, h is (A,B)-harmonic and u − h ∈ W 1,p

0 (B(x, R)). Set

I1 =

∫

B(x0,R)

(u − h) dν

and

I2 = α2

∫

B(x0,r)

(

|∇h|p−1|∇u| + |∇u|p−1|∇h|
)

dx.

Let q = (N − p + β(p − 1))/(N
p − 1) and 1/q + 1/q′ = 1. Since u − h ∈

W 1,p
0 (B(x, R)), by Hölder’s inequality, Adams’ inequality and Young’s
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inequality we have

∫

B(x0,R)

|u − h| d|ν|

≤

(

∫

B(x0,R)

|u − h|q d|ν|

)1/q (
∫

B(x0,R)

d|ν|

)1/q′

≤ c
(

RN−p+β(p−1)
)1/q′

(

∫

B(x0,R)

|u − h|q d|ν|

)1/q

≤ c R
p−1

p
(N−p+βp)

(

∫

B(x0,R)

|∇(u − h)|p dx

)1/p

≤ c R
p−1

p
(N−p+βp)

×







(

∫

B(x0,R)

|∇u|p dx

)1/p

+

(

∫

B(x0,R)

|∇h|p dx

)1/p






≤ c R
p−1

p
(N−p+βp)

×







(

∫

B(x0,R)

|∇u|p dx

)1/p

+

(

∫

B(x0,R)

|u|p dx

)1/p

+ RN/p







≤ c RN−p+βp +
α1

2
ε

∫

B(x0,R)

|∇u|p dx + c

∫

B(x0,R)

|u|p dx + c RN ,

where we have used Lemma 2.1. Hence we have

I1 ≤

∫

B(x0,R)

|u − h| d|ν|(3.3)

≤ c RN−p+βp +
α1

2
ε

∫

B(x0,R)

|∇u|p dx,

where we have used that R ≤ 1 and N − p + βp ≤ N imply RN ≤
RN−p+βp. Here c depends on N , p, α1, α2, α3(G), β, c0, ε and L. Also,
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Young’s inequality, Lemma 2.2 and (3.1) yield

I2 ≤
α1

2

∫

B(x0,r)

|∇u|p dx + c

∫

B(x0,r)

|∇h|p dx

≤
α1

2

∫

B(x0,r)

|∇u|p dx + c
( r

R

)N−p+pλ
∫

B(x0,R)

|∇h|p dx + c RN

≤
α1

2

∫

B(x0,r)

|∇u|p dx

+c
( r

R

)N−p+pλ
(

∫

B(x0,R)

|∇u|p dx +

∫

B(x0,R)

|u|p dx

)

+ c RN(3.4)

≤
α1

2

∫

B(x0,r)

|∇u|p dx

+c
( r

R

)N−p+pλ
∫

B(x0,R)

|∇u|p dx + c RN−p+βp,

where again we have used Lemma 2.1, (3.1) and RN ≤ RN−p+βp. It
follows from (3.2), (3.3) and (3.4) that

∫

B(x0,r)

|∇u|p dx

≤ c1

(

( r

R

)N−p+pλ

+ ε

)
∫

B(x0,R)

|∇u|p dx + c2 RN−p+pβ .

�

To achieve the aim in this section, we need the following two propo-
sitions in [2; III Lemma 2.1 and III Theorem 1.1].

Proposition 3.2. Let A, γ1 and γ2 be positive constants such that

γ2 < γ1. Then there exists a constant ε0 = ε0(A, γ1, γ2) > 0 with

the following property: if f(t) is a nonnegative nondecreasing function

satisfying

f(r) ≤ A
{( r

R

)γ1

+ ε
}

f(R) + B Rγ2

for all 0 < r ≤ R ≤ R0 with 0 < ε ≤ ε0, R0 > 0 and B ≥ 0, then

f(r) ≤ c
{( r

R

)γ2

f(R) + B rγ2

}

for all 0 < r ≤ R ≤ R0 with a constant c = c(A, γ1, γ2) > 0.
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Proposition 3.3. Let u ∈ W 1,p(B(x0, R)), 1 ≤ p ≤ N . Suppose

that for all x ∈ B(x0, R), all r, 0 < r ≤ δ(x) = R − |x − x0|

∫

B(x,r)

|∇u|p dx ≤ Lp

(

r

δ(x)

)N−p+pβ

holds with 0 < β ≤ 1. Then, u is Hölder continuous in B(x0, ρ) with the

exponent β for all 0 < ρ < R.

Theorem 3.1. Let G be a bounded open set and u ∈ W 1,p
loc (G) ∩

L∞
loc(G) is a solution of (Eν) in G. Suppose that ν is a signed Radon

measure on G such that there exist constants M > 0 and 0 < β < λ,

where λ = λ(N, p, α1, α2, α3(G)) > 0 is the number in Lemma 2.2 above,

with

|ν|(B(x, r)) ≤ M rN−p+β(p−1)

whenever B(x, 3r) ⊂ G. Then u is locally Hölder continuous in G with

the exponent β.

Proof. If B(x0, 4R) ⊂ G with R ≤ 1, then Proposition 3.2 and
Lemma 3.1 yield that

∫

B(x,r)

|∇u|p dx ≤ c

{

∫

B(x0,2R)

|∇u|p dx + 1

}

( r

R

)N−p+pβ

,

whenever x ∈ B(x0, R) and 0 < r ≤ R, where c > 0 depends on N , p,
α1, α2, α3(G), M , β and supB(x0,2R) |u|. Hence, by Proposition 3.3, u

is Hölder continuous in B(x0, ρ) with exponent β for 0 < ρ < R. �
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On Davies’ conjecture and strong ratio limit

properties for the heat kernel

Yehuda Pinchover

Abstract.

We study strong ratio limit properties and the exact long time
asymptotics of the heat kernel of a general second-order parabolic
operator which is defined on a noncompact Riemannian manifold.

§1. Introduction

Let P be a linear, second-order, elliptic operator defined on a non-
compact, connected, C3-smooth Riemannian manifold M of dimen-
sion d with a Riemannian measure dx. Here P is an elliptic operator
with real, Hölder continuous coefficients which in any coordinate system
(U ; x1, . . . , xd) has the form

P (x, ∂x) = −
d

∑

i,j=1

aij(x)∂i∂j +
d

∑

i=1

bi(x)∂i + c(x).

We assume that for each x ∈ M the real quadratic form
∑d

i,j=1aij(x)ξiξj

is positive definite. The formal adjoint of P is denoted by P ∗. Denote
the cone of all positive (classical) solutions of the equation Pu=0 in M
by CP (M). The generalized principal eigenvalue is defined by

λ0 = λ0(P,M) := sup{λ ∈ R : CP−λ(M) 6= ∅}.

Throughout this paper we always assume that λ0 ≥ 0 (actually, as it
will become clear below, it is enough to assume that λ0 > −∞).
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We consider the parabolic operator L

(1.1) Lu = ut + Pu on M× (0,∞).

We denote by HP (M×(a, b)) the cone of all nonnegative solutions of the
equation Lu = 0 in M×(a, b). Let kM

P (x, y, t) be the minimal (positive)
heat kernel of the parabolic operator L in M. If for some x 6= y

∫ ∞

0

kM
P (x, y, τ) dτ < ∞

(

respect.,

∫ ∞

0

kM
P (x, y, τ) dτ = ∞

)

,

then P is said to be a subcritical (respect., critical) operator in M [18].
Recall that if λ<λ0, then P−λ is subcritical in M, and for λ ≤ λ0, we

have kM
P−λ(x, y, t) = eλtkM

P (x, y, t). Furthermore, P is critical (respect.,
subcritical) in M, if and only if P ∗ is critical (respect., subcritical) in
M. If P is critical in M, then there exists a unique positive solution
ϕ ∈ CP (M) satisfying ϕ(x0) = 1, where x0 ∈ M is a fixed reference
point. This solution is called the ground state of the operator P in M
[15, 18]. The ground state of P ∗ is denoted by ϕ∗. A critical operator
P is said to be positive-critical in M if ϕ∗ϕ ∈ L1(M), and null-critical
in M if ϕ∗ϕ 6∈ L1(M). In [15, 17] we proved:

Theorem 1.1. Let x, y ∈ M. Then

lim
t→∞

eλ0tkM
P (x, y, t)=











ϕ(x)ϕ∗(y)
∫

M
ϕ(z)ϕ∗(z) dz

if P−λ0 is positive-critical,

0 otherwise.

Furthermore, for λ < λ0, let GM
P−λ(x, y) :=

∫ ∞

0
kM

P−λ(x, y, τ)dτ be the
minimal (positive) Green function of the operator P−λ on M. Then

(1.2) lim
t→∞

eλ0tkM
P (x, y, t) = lim

λ↗λ0

(λ0 − λ)GM
P−λ(x, y).

Having proved that limt→∞ eλ0tkM
P (x, y, t) always exists, we next

ask how fast this limit is approached. It is natural to conjecture that
the limit is approached equally fast for different points x, y ∈ M. Note
that in the context of Markov chains, such an (individual) strong ratio
limit property is in general not true [5]. The following conjecture was
raised by E. B. Davies [7] in the selfadjoint case.

Conjecture 1.1. Let Lu = ut + P (x, ∂x)u be a parabolic operator
which is defined on a Riemannian manifold M. Fix a reference point
x0 ∈ M. Then

(1.3) lim
t→∞

kM
P (x, y, t)

kM
P (x0, x0, t)

= a(x, y)
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exists and is positive for all x, y ∈ M.

The aim of the present paper is to discuss Conjecture 1.1 and closely
related problems, and to obtain some results under minimal assump-
tions.

Remark 1.1. Theorem 1.1 implies that Conjecture 1.1 holds true in
the positive-critical case. So, we may assume in the sequel that P is not

positive critical. Also, Conjecture 1.1 does not depend on the value
of λ0, hence from now on, we shall assume that λ0 = 0.

Remark 1.2. In the selfadjoint case, Conjecture 1.1 holds true if
dim CP (M) = 1 [2, Corollary 2.7]. In particular, it holds true for a
critical selfadjoint operator. Therefore, it would be interesting to prove
Conjecture 1.1 at least under the assumption

(1.4) dim CP (M) = dim CP∗(M) = 1,

which holds true in the critical case and in many important subcriti-
cal cases. Recently, Agmon [1] has obtained the exact asymptotics (in
(x, y, t)) of the heat kernel for a periodic (non-selfadjoint) operator on
Rd. It follows from Agmon’s results that Conjecture 1.1 holds true in
this case. For a probabilistic interpretation of Conjecture 1.1, see [2].

Remark 1.3. Let tn → ∞. By a standard parabolic argument, we
may extract a subsequence {tnk

} such that for every x, y ∈ M and s < 0

(1.5) a(x, y, s) := lim
k→∞

kM
P (x, y, s + tnk

)

kM
P (x0, y0, tnk

)

exists. Moreover, a(·, y, ·) ∈ HP (M× R−). Note that in the selfadjoint
case, the above is valid for all s ∈ R, since (2.7) holds in selfadjoint case
[7, Theorem 10].

Remark 1.4. The example constructed in [16, Section 4] shows a
case where Conjecture 1.1 holds true on M, while the limit function
a(x, y) = 1 is not a λ0-invariant positive solution. Compare this with
[7, Theorem 25] and the discussion therein above Lemma 26. Note also
that in general, the limit function a(x, y) in (1.3) need not be a product
of solutions of the equations Pu = 0 and P ∗u = 0, as is demonstrated
in [6], in the hyperbolic space, and in Example 4.2.

The outline of the rest of paper is as follows. In the next section we
study the existence of the strong ratio limit for the heat kernel. It turns
out that if this limit exists, then it equals 1. This implies that any limit
solution u(·, y, s) of (1.5) is time independent and is a positive solution
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of the equation Pu = 0 in M. In Section 3 we discuss the relationship
between Conjecture 1.1 and the parabolic Martin compactification of
HP (M × R−), while in Section 4 we study the relation between this
conjecture and the parabolic and elliptic minimal Martin boundaries.
Finally, in Section 5 we study Conjecture 1.1 under the assumption that
the uniform restricted parabolic Harnack inequality holds true.

The author wishes to express his gratitude for the referee’s careful
reading and valuable comments.

§2. Strong ratio properties

In the symmetric case the function t 7→ kM
P (x, x, t) is log-convex, and

therefore, a polarization argument implies that limt→∞
kM

P
(x,y,t+s)

kM
P

(x,y,t)
= 1

for all x, y ∈ M and s ∈ R [7]. In the nonsymmetric case we have:

Lemma 2.1. For every x, y ∈ M and s ∈ R, we have that

(2.1) lim inf
t→∞

kM
P (x, y, t + s)

kM
P (x, y, t)

≤ 1 ≤ lim sup
t→∞

kM
P (x, y, t + s)

kM
P (x, y, t)

.

Similarly, for any s > 0

(2.2) lim inf
n→∞

kM
P (x, y, (n±1)s)

kM
P (x, y, ns)

≤ 1 ≤ lim sup
n→∞

kM
P (x, y, (n±1)s)

kM
P (x, y, ns)

.

In particular, if limt→∞[kM
P (x, y, t+s)/kM

P (x, y, t)] exists, it equals to 1.

Proof. We may assume that P is not positive-critical. Let s < 0.
By Theorem 1.1 and the parabolic Harnack inequality we have

(2.3) 1 ≤ lim sup
t→∞

kM
P (x, y, t + s)

kM
P (x, y, t)

≤ C(s, y).

Suppose that lim inf t→∞
kM

P
(x,y,t+s)

kM

P
(x,y,t)

= ` > 1. It follows that there exists

0 < q < 1 and Ts > 0 such that

kM
P (x, y, t) < qkM

P (x, y, t + s) ∀ t > Ts.

By induction and the Harnack inequality, we obtain that there exist µ <
0 and C > 0 such that kM

P (x, y, t) < Ceµt for all t > 1, a contradiction
to the assumption λ0 =0. Therefore, (2.1) is proved for s < 0, which in
turn implies (2.1) also for s > 0. (2.2) can be proven similarly. �

Remark 2.1. The condition lim inf t→∞
kM

P
(x,y,t+s)

kM

P
(x,y,t)

≥ 1 for s > 0 is

sometimes called Lin’s condition [11].



Davies’ conjecture 343

Corollary 2.1. Let x, y ∈ M. Suppose that

(2.4) lim
n→∞

kM
P (x, y, (n + 1)s)

kM
P (x, y, ns)

exists for every s > 0 (i.e., the ratio limit exists for every “skeleton”
sequence of the form tn = ns, where n = 1, 2, . . . and s > 0). Then

(2.5) lim
t→∞

kM
P (x, y, t + r)

kM
P (x, y, t)

= 1 ∀r ∈ R.

Proof. By Lemma 2.1, the limit in (2.4) equals 1. By induction,

limn→∞
kM

P
(x,y,ns+r)

kM

P
(x,y,ns)

= 1, where r = qs, and q ∈Q, which (by the conti-

nuity of a limiting solution) implies that it holds for ∀r∈R. Hence, [9,
Theorem 2] implies (2.5). �

Remark 2.2. If there exist x0, y0 ∈ M and 0 < s0 < 1 such that

(2.6) M(x0, y0, s0) := lim sup
t→∞

kM
P (x0, y0, t + s0)

kM
P (x0, y0, t)

< ∞,

then by the parabolic Harnack inequality, for all x, y, z, w ∈ K ⊂⊂ M,
t > 1, we have the following Harnack inequality of elliptic type:

kM
P (z, w, t)≤C1k

M
P (x0, y0, t+

s0

2
)≤C2k

M
P (x0, y0, t−

s0

2
)≤C3k

M
P (x, y, t).

Similarly, (2.6) implies that for all x, y ∈ M and r ∈ R:

0 < m(x, y, r) := lim inf
t→∞

kM
P (x, y, t + r)

kM
P (x0, y0, t)

≤

lim sup
t→∞

kM
P (x, y, t + r)

kM
P (x0, y0, t)

= M(x, y, r) < ∞.(2.7)

Lemma 2.2. (a) The following assertions are equivalent:
(i) For each x, y ∈ M there exists a sequence sj → 0 of negative

numbers such that for all j ≥ 1, and s = sj , we have

(2.8) lim
t→∞

kM
P (x, y, t + s)

kM
P (x, y, t)

= 1.

(ii) The ratio limit in (2.8) exists for any x, y ∈ M and s ∈ R.

(iii) Any limit function u(x, y, s) of the quotients
kM

P
(x,y,tn+s)

kM
P

(x0,x0,tn)
with

tn →∞ does not depend on s and has the form u(x, y), where u(·, y)∈
CP (M) for every y∈M and u(x, ·)∈CP∗(M) for every x∈M.

(b) If one assumes further (1.4), then Conjecture 1.1 holds true.
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Proof. (a) By Lemma 2.1, if the limit in (2.8) exists, then it is 1.
(i) ⇒ (ii). Fix x0, y0 ∈ M, and take s0 < 0 for which the limit (2.8)

exists. It follows that any limit solution u(x, y, s) ∈ HP (M× R−) of a

sequence
kM

P
(x,y,tn+s)

kM
P

(x0,y0,tn)
with tn → ∞ satisfies u(x0, y0, s+s0)=u(x0, y0, s)

for all s<0. So, u(x0, y0, ·) is s0-periodic. It follow from our assumption
and the continuity of u that u(x0, y0, ·) is the constant function. Since
this holds for all x, y ∈ M and u, it follows that (2.8) holds for any
x, y∈M and s∈R.

(ii) ⇒ (iii). Fix y ∈ M. By Remark 1.3, any limit function u of the

sequence
kM

P
(x,y,tn+s)

kM
P

(x0,x0,tn)
with tn → ∞ belongs to HP (M× R−). Since

(2.9)
kM

P (x, y, t + s)

kM
P (x0, x0, t)

=
kM

P (x, y, t)

kM
P (x0, x0, t)

kM
P (x, y, t + s)

kM
P (x, y, t)

,

(2.8) implies that such a u does not depend on s. Therefore, u = u(x, y),
where u(·, y) ∈ CP (M) and u(x, ·) ∈ CP∗(M).

(iii) ⇒ (i). Write

(2.10)
kM

P (x, y, t + s)

kM
P (x, y, t)

=
kM

P (x, y, t + s)

kM
P (x0, x0, t)

kM
P (x0, x0, t)

kM
P (x, y, t)

.

Let tn → ∞ be a sequence such that the sequence
kM

P
(x,y,tn+s)

kM

P
(x0,x0,tn)

converges

to a solution in HP (M× R−). By our assumption, we have

lim
n→∞

kM
P (x, y, tn + s)

kM
P (x0, x0, tn)

= lim
n→∞

kM
P (x, y, tn)

kM
P (x0, x0, tn)

= u(x, y) > 0,

which together with (2.10) implies (2.8) for all s ∈ R.

(b) The uniqueness and (iii) imply that
kM

P
(x,y,t+s)

kM

P
(x0,x0,t)

→ u(x)u∗(y)
u(x0)u∗(x0)

, where

u∈CP (M) and u∗∈CP∗(M), and Conjecture 1.1 holds. �

Remark 2.3. Let M $ Rd be a smooth domain and P and P ∗ be
(up to the boundary) smooth operators. Denote by C0

P (M) the cone of
all functions in CP (M) which vanish on ∂M. Suppose that one of the
conditions (i)–(iii) of Lemma 2.2 is satisfied. Clearly, for any fixed y
any limit function u(·, y) of Lemma 2.2 belongs to the Martin boundary
‘at infinity’ which in this case is C0

P (M). Therefore, Conjecture 1.1
holds true if the Martin boundaries ‘at infinity’ of P and P ∗ are one-
dimensional. As a simple example, take P = −∆ and M = Rd

+.
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Lemma 2.3. Suppose that P is null-critical, and for each x, y ∈ M
there exists a sequence {sj} of negative numbers such that sj → 0, and

(2.11) lim inf
t→∞

kM
P (x, y, t + s)

kM
P (x, y, t)

≥ 1

for s = sj , j = 1, 2, . . . . Then Conjecture 1.1 holds true.

Proof. Let u(x, y, s) be a limit function of a sequence
kM

P
(x,y,tn+s)

kM
P

(x0,x0,tn)

with tn → ∞ and s < 0. By our assumption, u(x, y, s + sj) ≥ u(x, y, s),
and therefore, us(x, y, s) ≤ 0 for all s < 0. Thus, u(·, y, s) (respect.,
u(x, ·, s)) is a positive supersolution of the equation Pu = 0 (respect.,
P ∗u = 0) in M. Since P is critical, it follows that u(·, y, s) ∈ CP (M)
(respect., u(x, ·, s) ∈ CP∗(M)), and hence us(x, y, s) = 0. By the unique-

ness, u equals to ϕ(x)ϕ∗(y)
ϕ(x0)ϕ∗(x0)

, and Conjecture 1.1 holds true. �

Remark 2.4. Suppose that P is null-critical, and fix x0 6= y0. Then
using Theorem 1.1 and [14, Theorem 2.1] we have for x 6= y:

(i) lim
t→∞

kM
P (x, y, t) = lim

t→∞
kM

P (x0, y0, t) = 0,

(ii)

∫ ∞

0

kM
P (x, y, τ) dτ =

∫ ∞

0

kM
P (x0, y0, τ) dτ = ∞,

(iii) lim
λ↗0

∫ ∞

0
eλτkM

P (x, y, τ)dτ
∫ ∞

0
eλτkM

P (x0, y0, τ)dτ
= lim

λ↗0

GM
P−λ(x, y)

GM
P−λ(x0, y0)

=
ϕ(x)ϕ∗(y)

ϕ(x0)ϕ∗(y0)
.

Therefore, Conjecture 1.1 would follow from a strong ratio Tauberian
theorem if additional Tauberian conditions are satisfied (see, [3, 19]).

§3. The parabolic Martin boundary

The large time behavior of quotients of the heat kernel is obviously
closely related to the parabolic Martin boundary (for the parabolic Mar-
tin boundary theory see [8]). Theorem 3.1 relates Conjecture 1.1 and
the parabolic Martin compactification of HP (M× R−).

Lemma 3.1. Fix y ∈ M. The following assertions are equivalent:
(i) For each x ∈ M there exists a sequence sj → 0 of negative

numbers such that

(3.1) lim
t→∞

kM
P (x, y, t + s)

kM
P (x, y, t)

exists for s = sj , j = 1, 2, . . . .
(ii) Any parabolic Martin function in HP (M × R−) corresponding

to a Martin sequence {(y,−tn)}∞n=1, where tn→∞, is time independent.
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Proof. Let KM
P (x, y, s) = limn→∞

kM

P
(x,y,tn+s)

kM

P
(x0,y,tn)

be such a Martin

function. The lemma follows from the identity

kM
P (x, y, tn + s)

kM
P (x0, y, tn)

=
kM

P (x, y, tn + s)

kM
P (x, y, tn)

kM
P (x, y, tn)

kM
P (x0, y, tn)

,

and Lemma 2.2. �

Theorem 3.1. Assume that (2.6) holds true for some x0, y0 ∈ M,
and s0 > 0. Then the following assertions are equivalent:

(i) Conjecture 1.1 holds true for a fixed x0 ∈ M.
(ii)

(3.2) lim
t→∞

kM
P (x, y, t)

kM
P (x1, y1, t)

exists, and the limit is positive for every x, y, x1, y1 ∈ M.
(iii)

(3.3) lim
t→∞

kM
P (x, y, t)

kM
P (y, y, t)

, and lim
t→∞

kM
P (x, y, t)

kM
P (x, x, t)

exist, and these ratio limits are positive for every x, y ∈ M.
(iv) For any y ∈ M there is a unique nonzero parabolic Martin

boundary point ȳ for the equation Lu = 0 in M× R which corresponds
to any sequence of the form {(y,−tn)}∞n=1 such that tn → ∞, and for
any x ∈ M there is a unique nonzero parabolic Martin boundary point
x̄ for the equation ut + P ∗u = 0 in M × R which corresponds to any
sequence of the form {(x,−tn)}∞n=1 such that tn → ∞.

Moreover, if Conjecture 1.1 holds true, then for any fixed y ∈ M
(respect., x ∈ M), the limit function a(·, y) (respect., a(x, ·)) is a positive
solution of the equation Pu = 0 (respect., P ∗u = 0). Furthermore, the
Martin functions of part (iv) are time independent, and (2.8) holds for
all x, y ∈ M and s ∈ R.

Proof. (i) ⇒ (ii) follows from the identity

kM
P (x, y, t)

kM
P (x1, y1, t)

=
kM

P (x, y, t)

kM
P (x0, x0, t)

·

(

kM
P (x1, y1, t)

kM
P (x0, x0, t)

)−1

.

(ii) ⇒ (iii). Take x1 = y1 = y and x1 = y1 = x, respectively.
(iii) ⇒ (iv). It is well known that the Martin compactification does

not depend on the fixed reference point x0. So, fix y ∈ M and take it
also as a reference point. Let {−tn} be a sequence such that tn → ∞
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and such that the Martin sequence
kM

P
(x,y,t+tn)

kM

P
(y,y,tn)

converges to a Martin

function KM
P (x, ȳ, t). By our assumption, for any t we have

lim
n→∞

kM
P (x, y, t + tn)

kM
P (y, y, t + tn)

= lim
τ→∞

kM
P (x, y, τ)

kM
P (y, y, τ)

= b(x) > 0,

where b does not depend on the sequence {−tn}. On the other hand,

lim
n→∞

kM
P (y, y, t + tn)

kM
P (y, y, tn)

= KM
P (y, ȳ, t) = f(t).

Since

kM
P (x, y, t + tn)

kM
P (y, y, tn)

=
kM

P (x, y, t + tn)

kM
P (y, y, t + tn)

·
kM

P (y, y, t + tn)

kM
P (y, y, tn)

,

we have

KM
P (x, ȳ, t) = b(x)f(t).

By separation of variables, there exists a constant λ such that

Pb − λb = 0 on M, f ′ + λf = 0 on R, f(0) = 1.

Since b does not depend on the sequence {−tn}, it follows in particular,

that λ does not depend on this sequence. Thus, limτ→∞
kM

P
(y,y,t+τ)

kM

P
(y,y,τ)

=

f(t) = e−λt. Lemma 2.1 implies that λ = 0. It follows that b is a positive
solution of the equation Pu = 0, and

(3.4) KM
P (x, ȳ, t) = lim

τ→−∞

kM
P (x, y, t − τ)

kM
P (y, y,−τ)

= b(x).

The dual assertion can be proved similarly.
(iv) ⇒ (i). Let KM

P (x, ȳ, t) be a Martin function, and s0 > 0 such
that KM

P (x0, ȳ, s0/2) > 0. Consequently, KM
P (x, ȳ, s) > 0 for s ≥ s0.

Using the substitution τ = s + s0 we obtain

lim
τ→∞

kM
P (x, y, τ)

kM
P (x0, x0, τ)

= lim
s→∞

{

kM
P (x, y, s + s0)

kM
P (y, y, s)

×

kM
P (y, y, s)

kM
P (x0, y, s+2s0)

kM
P (x0, y, s+2s0)

kM
P (x0, x0, s+s0)

}

=
KM

P (x, ȳ, s0)K
M
P∗(x0, y, s0)

KM
P (x0, ȳ, 2s0)

.

The last assertion of the theorem follows from (3.4) and Lemma 2.2. �
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§4. Minimal positive solutions

In this section we discuss the relation between Conjecture 1.1 and
the parabolic and elliptic minimal Martin boundaries.

Remark 4.1. By the parabolic Harnack inequality for P ∗, we have
for each 0 < ε < 1

(4.1) kM
P (x, y0, t − ε) ≤ C(y0, ε)k

M
P (x, y0, t) ∀x ∈ M, t > 1.

Therefore, if {(y0, tn)} is a nontrivial minimal Martin sequence with
tn → −∞, then one infers as in [10] that the corresponding minimal
parabolic function in HP (M×R−) is of the form u(x, t) = e−λtuλ(x, y0)
with λ ≤ 0 and uλ ∈ exrCP−λ(M), where exrC is the set of extreme
rays of a cone C. If further, for some x0 ∈ M and s < 0 one has

(4.2) lim inf
t→∞

kM
P (x0, y0, t + s)

kM
P (x0, y0, t)

≥ 1,

then λ = 0, and consequently, u is also a minimal solution in CP (M).
Recall that in the selfadjoint case, the ratio limit in (4.2) equals 1.

Lemma 4.1. Suppose that the ratio limit in (2.8) exists for all x, y ∈

M and s ∈ R. Let a(x, y) := limn→∞
kM

P
(x,y,tn+s)

kM

P
(x0,x0,tn)

, where tn →∞. If

for some y0 ∈ M the function u(x) := a(x, y0) is minimal in CP (M),
then a(x, y) = u(x)v(y), where v ∈ CP∗(M).

Proof. Fix y ∈ M and ε > 0. By the parabolic Harnack inequality
for P ∗ and Lemma 2.2, we have

(4.3)
kM

P (x, y, t − ε)

kM
P (x0, x0, t)

≤ C(y, ε)
kM

P (x, y0, t)

kM
P (x0, x0, t)

∀x ∈ M.

Therefore, a(x, y) ≤ C(y)u(x) which implies the claim. �

The following examples demonstrate that if Conjecture 1.1 holds true
while (1.4) does not hold, then the limit function a(·, y) is typically a
non-minimal solution in CP (M).

Example 4.1. Consider a (regular) Benedicks domain M⊆Rd such
that the cone of positive harmonic functions which vanish on ∂M is of
dimension two. By [6], Conjecture 1.1 holds true in this case, the limit
function is not a product of two (separated) harmonic functions, and
therefore, a(·, y) is not minimal in C−∆(M) for any y ∈ M.
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Example 4.2. Consider a radially symmetric Schrödinger operator
H :=−∆+V (|x|) on Rd with a bounded potential. Suppose that λ0 = 0,
and that the Martin boundary of H on Rd is homeomorphic to Sd−1

(see [12]). Clearly, any Martin function corresponding to {(y0, tn)} with
x0 =y0 =0 is radially symmetric. It follows that Davies’ conjecture holds
true for x0 =y=0, and the limit function is the normalized positive radial
solution in CH(Rd). This solution is not minimal in CH(Rd). Thus, any
limit function u(·, y) is not minimal in CH(Rd).

We conclude this section with some related problems. The following
conjecture was posed by the author in [15, Conjecture 3.6].

Conjecture 4.1. Suppose that P is a critical operator in M, then
the ground state ϕ is a minimal positive solution in the cone HP (M×R).

Note that if (2.11) holds true, then by Theorem 3.1, the ground
state is a Martin function in HP (M× R).

Example 4.3. Consider again the example in [16, Section 4]. In that
example −∆ is subcritical in M, λ0 = 0, and (1.4) and Conjecture 1.1
hold true. Hence, 1 is a Martin function in H−∆(M×R). On the other
hand, 1 ∈ exrC−∆(M) but 1 6∈ exrH−∆(M × R). So, Conjecture 4.1
cannot be extended to the subcritical “Liouvillian” case (see also [4]).

Thus, it would be interesting to study the following problem which
was raised by Burdzy and Salisbury [4] for P = −∆ and M ⊂ Rd.

Question 4.1. Assume that λ0 = 0. Determine which minimal
positive solutions in CP (M) are minimal in HP (M× R−).

§5. Uniform Harnack inequality and Davies’ conjecture

In this section we discuss the relationship between the parabolic
Martin boundary of HP (M × R−), the elliptic Martin boundaries of
CP−λ(M), λ ≤ λ0 = 0, and Conjecture 1.1 under a certain assumption.

Definition 5.1. We say that the uniform restricted parabolic Har-
nack inequality (in short, (URHI)) holds in HP (M×R−) if for any ε > 0
there exists a positive constant C = C(ε) > 0 such that

(5.1) u(x, t − ε)≤Cu(x, t) ∀(x, t)∈M×R− and ∀u∈HP (M×R−).

It is well known that (URHI) holds true if and only if the separation
principle (SP) holds true, that is, u 6= 0 is in exrHP (M × R−) if and
only if u is of the form e−λtvλ(x), where vλ ∈ exrCP−λ(M) [10, 13]. In
particular, the answer to Question 4.1 is simple if (URHI) holds.
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Lemma 5.1. (i) Suppose that (URHI) holds true, then for any s < 0

`+ := lim sup
t→∞

kM
P (x, y, t + s)

kM
P (x, y, t)

≤ 1 (Lin’s condition).

(ii) Assume further that for some x0, y0 ∈ M and s0 < 0

`− := lim inf
t→∞

kM
P (x0, y0, t + s0)

kM
P (x0, y0, t)

≥ 1,

then any limit function u(x, y, s) of
kM

P
(x,y,tn+s)

kM
P

(x0,y0,tn)
with tn → ∞ does not

depend on s, and has the form u(x, y), where u(·, y) ∈ CP (M) for every
y ∈ M and u(x, ·) ∈ CP∗(M) for every x ∈ M.

(iii) If one assumes further (1.4), then Conjecture 1.1 holds true.

Proof. (i) By (URHI), if u ∈ exrHP (M × R−), then u(x, t) =
e−λtuλ(x), where λ ≤ 0. Consequently, for every u ∈ HP (M× R−)

(5.2) u(x, t + s) ≤ u(x, t) ∀(x, t) ∈ M×R−, and ∀s < 0,

and equality holds for some s < 0 and (x, t) ∈ M×R− if and only if
u∈CP (M). Clearly, (5.2) implies that

`+ := lim sup
t→∞

kM
P (x, y, t + s)

kM
P (x, y, t)

≤ 1 ∀x, y ∈ M and s < 0,

which together with Lemma 2.1 implies `+ = 1.
(ii) At the point (x0, y0, s0) we have `− = `+ = 1, therefore,

(5.3) lim
t→∞

kM
P (x0, y0, t + s0)

kM
P (x0, y0, t)

= 1.

Consequently, for any sequence tk → ∞ satisfying

lim
k→∞

kM
P (x, y0, tk + τ)

kM
P (x0, y0, tk)

= u(x, τ) ∀(x, τ) ∈ M× R−,

we have u(x0, s0) = u(x0, 2s0) = 1, and therefore, u ∈ CP (M). The
other assertions of the lemma follow from Lemma 2.2. �

Remark 5.1. From the proof of Lemma 5.1 it follows that if (URHI)
holds true, then a sequence tn → ∞ satisfies

lim
n→∞

kM
P (x0, y0, tn + s0)

kM
P (x0, y0, tn)

= 1,
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for some x0, y0 ∈ M and s0 6= 0 if and only if

lim
n→∞

kM
P (x, y, tn + s)

kM
P (x, y, tn)

= 1 ∀x, y ∈ M and s ∈ R.

Corollary 5.1. Suppose that (URHI) holds true, then there exists

a sequence tn → ∞ such that limn→∞
kM

P
(x,y,tn)

kM

P
(x0,x0,tn)

= a(x, y) exists and

is positive for all x, y ∈ M. Moreover, a(·, y) ∈ CP (M), and a(·, y) is a
parabolic Martin function for all y ∈ M. For each x ∈ M the function
a(x, ·) satisfies similar properties with respect to P ∗.

Proof. Take s0 6= 0 and {tn} such that limn→∞
kM

P
(x0,y0,tn+s0)

kM

P
(x0,y0,tn)

= 1,

and use Remark 5.1 and a standard diagonalization argument. �
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Some potential theoretic results on an infinite

network

Premalatha and A. K. Kalyani

Abstract.

The greatest harmonic minorant of a superharmonic function is
determined as the limit of a sequence of solutions for discrete Dirichlet
problems on finite subnetworks. Without using the Green kernel
explicitly, a positive superharmonic function is decomposed uniquely
as a sum of a potential and a harmonic function. The infimum of a
left directed family of harmonic functions is shown to be either −∞

or harmonic. As applications, we study the reduced functions and
their properties. We show the existence of the Green kernel with the
aid of our reduced function.

§1. Introduction

Let N = {X, Y, K, r} be an infinite network which is connected and
locally finite and has no self-loop. Here X is a countable set of nodes, Y
a countable set of arcs, K a node-arc incidence function and r a strictly
positive real function on Y .

We say that a network N ′ = {X ′, Y ′, K ′, r′} is a subnetwork of N
if X ′ and Y ′ are subsets of X and Y respectively, K ′ is the restriction
of K onto X ′ × Y ′ and r′ is the restriction of r onto Y ′. For simplicity,
we write N ′ =< X ′, Y ′ > in case N ′ = {X ′, Y ′, K ′, r′} is a subnetwork
of N . We say that N ′ =< X ′, Y ′ > is a finite subnetwork of N if X ′ or
Y ′ is a finite set. For later use, we recall a notion of an exhaustion. We
say that a sequence of finite subnetworks {Nn}(Nn =< Xn, Yn >) of N
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2000 Mathematics Subject Classification. 31C20.
Key words and phrases. Hyperbolic network, greatest harmonic minorant,

potential, Poisson integral, reduced function.
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is an exhaustion of N if

Y (x) := {y ∈ Y ; K(x, y) 6= 0} ⊂ Yn+1 for all x ∈ Xn,

X =
∞⋃

n=1

Xn and Y =
∞⋃

n=1

Yn

Notice that Xn ⊂ Xn+1 and Yn ⊂ Yn+1. For notations and termi-
nologies we mainly follow [2] and [3]. Let L(X) be the set of all real
functions on X and L+(X) be the set of all non-negative functions on
X . For x ∈ X , denote by Wx the neighboring nodes of x, i.e.,

Wx = {z ∈ X ; K(x, y)K(z, y) = −1 for some y ∈ Y (x)}.

For every u ∈ L(X), the Laplacian ∆u ∈ L(X) is defined by

∆u(x) = −t(x)u(x) +
∑

z∈Wx

t(x, z)u(z),

where

t(x) =
∑

y∈Y
r(y)−1|K(x, y)|

t(x, z) =
∑

y∈Y
r(y)−1|K(x, y)K(z, y)| for z 6= x.

Notice that t(x, z) = t(z, x) and t(x, z) = 0 for z ∈ X \ (Wx ∪ {x})

t(x) =
∑

z∈Wx

t(x, z).

We say that a function u ∈ L(X) is superharmonic on a set A ⊆ X
if ∆u(x) ≤ 0 for all x ∈ A. We say that u is subharmonic on A if −u is
superharmonic on A. If u is both superharmonic and subharmonic on
A, we say that u is harmonic on A. The following minimum principle
and maximum principle are well-known:

Lemma 1.1 (Minimum principle). Let X ′ be a finite subset of X.

If u is superharmonic on X ′ and u(x) ≥ 0 on X \X ′, then u(x) ≥ 0 on

X ′.

Lemma 1.2 (Maximum principle). Let X ′ be a finite subset of X.

If u is subharmonic on X ′ and u(x) ≤ 0 on X \ X ′, then u(x) ≤ 0 on

X ′.

Lemma 1.3 (Harnack’s principle). Let {Xn} be a sequence of sub-

sets of X such that Xn ⊂ Xn+1 and X = ∪∞
n=1Xn and let {un} be a

sequence of functions on X such that un(x) ≤ un+1(x) on X. If un is

superharmonic on Xn for every n, then the pointwise limit of {un} is

equal to either ∞ or a real valued superharmonic function.
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For a finite subnetwork N ′ =< X ′, Y ′ > of N , the harmonic green
function of N ′ with pole at a ∈ X ′ is the unique function u determined
by

∆u(x) = −εa(x) on X ′ and u(x) = 0 on X \ X ′,

where εa denotes the characteristic function of {a}. Denote by gN ′

a the

harmonic Green function of N ′ with pole at a. Notice that gN ′

a (b) =

gN ′

b (a) > 0 for all a, b ∈ X ′(cf. [1]). For f ∈ L(X), the Green potential
GN ′f is defined by

GN ′f(x) =
∑

z∈X′
gN ′

z (x)f(z).

§2. The greatest harmonic minorant

We begin with a discrete Dirichlet problem:

Lemma 2.1. [1] Let f ∈ L(X) and N ′ =< X ′, Y ′ > be a finite

subnetwork of N . There exists a unique function u′ such that

∆u′(x) = 0 on X ′ and u′(x) = f(x) on X \ X ′.

Proof. The uniqueness follows from the maximum and minimum
principles. We see easily that u′ = f + GN ′(∆f) satisfies our require-
ments. �

Denote by hN ′

f the unique function u′ determined in Lemma 2.1.

Corollary 2.1. Let N ′ =< X ′, Y ′ > be a finite subnetwork of N .

Then hN ′

αf+βg = αhN ′

f + βhN ′

g for f, g ∈ L(X) and real numbers α, β.

By Lemmas 1.1 and 1.2, we obtain

Lemma 2.2. Let N ′ =< X ′, Y ′ > be a finite subnetwork of N .

(1) If u is superharmonic on X ′, then hN ′

u (x) ≤ u(x) on X.

(2) If u is subharmonic on X ′, then hN ′

u (x) ≥ u(x) on X.

Corollary 2.2. If u is harmonic on X ′, then hN ′

u = u.

Lemma 2.3. Let N ′ =< X ′, Y ′ > be a finite subnetwork of N and

u1, u2 ∈ L(X). If u1(x) ≤ u2(x) on X, then hN ′

u1
(x) ≤ hN ′

u2
(x) on X.

Proof. Let v(x) = hN ′

u2
(x)−hN ′

u1
(x). Then v is harmonic on X ′ and

v(x) = u2(x)−u1(x) ≥ 0 on X \X ′. By the minimum principle,v(x) ≥ 0
on X ′. Hence v(x) ≥ 0 on X . �

Lemma 2.4. Let N ′ =< X ′, Y ′ > be a finite subnetwork of N . If

u is a superharmonic function on X, then hN ′

u is superharmonic on X.
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Proof. By Lemma 2.2, hN ′

u (x) ≤ u(x) on X . It suffices to show

that hN ′

u (x) is superharmonic on X \ X ′. For x ∈ X \ X ′, we have

hN ′

u (x) = u(x) and

∆hN ′

u (x) = −t(x)hN ′

u (x) +
∑

z∈Wx

t(x, z)hN ′

u (z)

≤ −t(x)u(x) +
∑

z∈Wx

t(x, z)u(z) = ∆u(x) ≤ 0.

Therefore u is superharmonic on X . �

Lemma 2.5. Let N1 =< X1, Y1 > and N2 =< X2, Y2 > be finite

subnetworks of N such that Y (x) ⊂ Y2 for all x ∈ X1. If u is superhar-

monic on X, then hN1

u (x) ≥ hN2

u (x) on X.

Proof. Let v(x) = hN1

u (x)−hN2

u (x). Then v(x) = u(x)−hN2

u (x) ≥ 0
on X \ X1 and ∆v(x) = 0 on X1. Therefore v(x) ≥ 0 on X by the
minimum principle. �

Theorem 2.1. Let u be superharmonic on X and {Nn} be an ex-

haustion of N and put

πu(x) = lim
n→∞

hNn

u (x) for each x ∈ X.

Then either πu = −∞ or πu ∈ L(X) is harmonic on X.

Proof. Put un = hNn

u . Then un+1(x) ≤ un(x) ≤ u(x) on X and un

is harmonic on Xn. By Harnack’s principle, we see that the limit v of
the sequence {−un} is equal to either ∞ or a real valued superharmonic
function on X . In case v = ∞, we have πu = −∞. Assume that v 6= ∞.
Then we see πu = −v ∈ L(X) and ∆πu(x) ≥ 0 on X . Let x ∈ X .
Since N is locally finite, there exists n0 such that Wx ∪ {x} ⊂ Xn for
all n ≥ n0. Since un is harmonic on Xn and un(z) → πu(z) for all
z ∈ Wx ∪ {x} as n → ∞, we have

∆πu(x) = −t(x)πu(x) +
∑

z∈Wx

t(x, z)πu(z)

= lim
n→∞

{−t(x)un(x) +
∑

z∈Wx

t(x, z)un(z)}

= lim
n→∞

∆un(x) = 0.

In case πu ∈ L(X), we call πu the harmonic part of u. Notice that πu

does not depend on the choice of an exhaustion of N and that πu(x) ≤
u(x) on X . �
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Proposition 2.1. Let u1, u2 be superharmonic functions on X. If

there exists a subharmonic minorant v of min(u1, u2), then

πmin(u1,u2)(x) ≤ min(πu1
(x), πu2

(x)) on X.

Proof. Let u = min(u1, u2) and {Nn}(Nn =< Xn, Yn >) be an
exhaustion of N . Then u is superharmonic and

v(x) ≤ hNn

u (x) ≤ hNn

uk
(x) on X for k = 1, 2.

Therefore πu(x) ≤ πuk
(x) on X for k = 1, 2. �

Proposition 2.2. Let u1 and u2 be superharmonic functions on X.

If they have subharmonic minorants, then πu1+u2
= πu1

+ πu2
.

Proof. Let Nn be the same as above. We have by Corollary 2.1

hNn

u1+u2
= hNn

u1
+ hNn

u2
.

�

Corollary 2.3. Let u be a superharmonic function on X with a

subharmonic minorant and let φ be a harmonic function on X. Then

πu+φ = πu + φ.

Theorem 2.2. Let u be superharmonic on X. If u has a subhar-

monic minorant v, i.e., v is subharmonic on X and v(x) ≤ u(x) on

X, then v(x) ≤ πu(x) on X. Moreover, πu is the greatest harmonic

minorant of u.

Proof. Let {Nn}(Nn =< Xn, Yn >) be an exhaustion of N . Since
v is subharmonic on X and v(x) ≤ u(x) on X , we have

v(x) ≤ hNn

v (x) ≤ hNn

u (x) on X

by Lemmas 2.2 and 2.3. Thus we have v(x) ≤ πu(x) on X . If s is a
harmonic minorant of u, then we have s(x) = hNn

s (x) ≤ hNn

u (x) on X
by Corollary 2.2 and Lemma 2.3, so that s(x) ≤ πu(x) on X . �

There are many characterizations for an infinite network N to be of
hyperbolic type. We say here that N is of hyperbolic type (or shortly,
hyperbolic) if there exists a nonconstant positive superharmonic func-
tion on X . It is well-known that N is hyperbolic if and only if N has
a Green function, i.e., the limit ga of {gNn

a } exists and satisfies the
condition:∆ga(x) = −εa(x) on X .

Without using this Green kernel explicitly, we introduce
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Definition 2.1. We say that a positive superharmonic function u
is a potential if the greatest harmonic minorant of u is zero, i.e., πu = 0.

Needless to say, we have πu ∈ L(X) if u ∈ L+(X) is superharmonic
on X .

Theorem 2.3. Let N be hyperbolic.

(1) If u is a potential, then λu (λ > 0) is also a potential.

(2) If u1 and u2 are potentials, then u1 + u2 is also a potential.

(3) If u1 is a potential and u2 is a positive superharmonic function,

then min(u1, u2) is a potential.

Proof. (2) and (3) follow from Propositions 2.1 and 2.2. For (1), it
suffices to note that πλu = λπu. �

Theorem 2.4. Let N be hyperbolic.

(1) Assume that v is superharmonic on X and u is a potential. If

u + v ∈ L+(X), then v ∈ L+(X).
(2) If u is a potential and if v is a subharmonic minorant of u,

then v ≤ 0.
(3) Assume that u is a superharmonic function with a subharmonic

minorant v. Then u can be expressed uniquely as the sum of a

potential and a harmonic function.

Proof. Since u ≥ −v and −v is subharmonic, we have 0 = πu(x) ≥
π−v(x) ≥ −v(x) on X . Thus (1) follows. The second assertion follows
from the relation: v(x) ≤ πv(x) ≤ πu(x) = 0 on X . Let us prove (3).
Since u has a subharmonic minorant, we have πu ∈ L(X) is harmonic.
We take p = u − πu. Then p ∈ L+(X) and πp = 0 by Corollary 2.3.
Therefore p is a potential. Assume that there exist potentials p1, p2 and
harmonic functions h1, h2 satisfying the relation: u = p1 +h1 = p2 +h2.
We have

p1(x) ≥ p1(x) − p2(x) = h2(x) − h1(x)

for all x ∈ X . We see by the above observation (2) that h2(x)−h1(x) ≤ 0
on X . We obtain similarly h1(x) − h2(x) ≤ 0 on X , and hence h1(x) =
h2(x). This shows the uniqueness of our decomposition. �

§3. Sets of Superharmonic Functions

We say that a set Φ of functions on X is left directed if for every
u1, u2 ∈ Φ, there exists u ∈ Φ such that u ≤ min(u1, u2). We define
inf Φ by

inf Φ(x) = inf{u(x); u ∈ Φ}.

For simplicity, we set X(a) = Wa ∪ {a} for a ∈ X .
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Theorem 3.1. If Φ is a left directed family of harmonic functions

on X, then inf Φ is either equal to −∞ identically or harmonic on X.

Proof. For simplicity, put h = inf Φ. It suffices to show that h is
harmonic on X unless h = −∞. Let a be any node such that h(a) > −∞.
Since X(a) is a finite set, we can find a sequence {un} in Φ such that
un+1(x) ≤ un(x) on X and un(x) → h(x) as n → ∞ for every x ∈ X(a).

Since un(a) =
P

x∈Wa
t(x,a)un(x)

t(a) , we have h(a) =
P

x∈Wa
t(x,a)h(x)

t(a) . Since

h(a) > −∞, we see that h(x) > −∞ for all x ∈ W (a) and h is harmonic
at a. Taking b ∈ W (a) and proceeding as before we get h(x) > −∞ for
all x ∈ W (b) and h is harmonic at b. Since any point z ∈ X is connected
to a by a finite number of edges we get h(z) > −∞ and h is harmonic
at z. Hence we have h is harmonic on X . �

Similarly we can prove

Theorem 3.2. If Φ is a left directed family of superharmonic func-

tions on X and inf Φ ∈ L(X), then inf Φ is superharmonic on X.

Let us use a discrete analogue of Poisson’s integral. For u ∈ L(X)
and a ∈ X , we define the function Pau ∈ L(X) by

Pau(x) = u(x) if x 6= a

Pau(a) =
∑

x∈X
[t(a, x)/t(a)]u(x).

Lemma 3.1. Assume that u is superharmonic on X. Then Pau(x) ≤
u(x) on X and Pau is superharmonic on X and harmonic at a.

Proof. Since u is superharmonic at a, Pau(a) ≤ u(a), so that
Pau(x) ≤ u(x) on X . For x /∈ X(a), it is clear that Pau is super-
harmonic at x. For x ∈ Wa, we have

∆Pau(x) = −t(x)Pau(x) +
∑

z∈Wx

t(z, x)Pau(z)

≤ −t(x)u(x) +
∑

z∈Wx

t(z, x)u(z) = ∆u(x) ≤ 0.

For x = a, we have

∆Pau(a) = −t(a)Pau(a) +
∑

z∈Wa

t(z, a)u(z) = 0.

�

Theorem 3.3. Let A be a subset of X and Φ be a left directed

family of superharmonic functions on X. If inf Φ ∈ L(X) and Pau ∈ Φ
for all a ∈ A and u ∈ Φ, then inf Φ is harmonic on A.
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Proof. Let us put h = inf Φ. Then h is superharmonic on X by
Theorem 3.2. Let a ∈ A. Then Pah(x) ≤ h(x) by Lemma 3.1. By
our assumption, we have h(a) ≤ Pau(a) for all u ∈ Φ. There exists a
sequence {un} in Φ such that un(x) → h(x) as n → ∞ for all x ∈ X(a).
We see easily that Paun(a) → Pah(a) as n → ∞, so that h(a) ≤ Pah(a).
Namely, h(a) = Pah(a), i.e., ∆h(a) = 0. �

§4. Reduced Functions and their properties

In this section, we always assume that N is hyperbolic. Denote by
SH+(N) the set of all non-negative superharmonic functions on X . For
f ∈ L+(X), let us put Sf = {u ∈ SH+(N); u(x) ≥ f(x) on X} and

Rf (x) = inf{u(x); u ∈ Sf}.

Theorem 4.1. The function Rf is superharmonic on X and har-

monic on the set {x ∈ X ; f(x) = 0}.

Proof. We show that Sf is left directed. Let u1, u2 ∈ Sf and
u3(x) = min{u1(x), u2(x)} for x ∈ X . Then u3 ∈ SH+(N) and u3(x) ≥
f(x) on X . Thus u3 ∈ Sf . Since Rf (x) ≥ f(x) ≥ 0 on X , we see by
Theorem 3.2 that Rf is superharmonic on X . Let A = {x ∈ X ; f(x) =
0}. For any u ∈ Sf , we see by Lemma 3.1 that Pau is superharmonic
and Pau(x) = u(x) ≥ f(x) for x 6= a. If a ∈ A, then Pau(a) ≥ 0 = f(a).
Therefore Pau ∈ Sf for all u ∈ Sf and a ∈ A. Our assertion follows
from Theorem 3.3. �

Let u ∈ L+(X) and A be a subset of X . The function

RA
u (x) = inf{v(x); v ∈ SH+(N), v(x) ≥ u(x) on A}

is called the reduced function ( or balayage) of u on A.

Theorem 4.2. RA
u is superharmonic in X and harmonic in X \A.

Proof. Consider the function f ∈ L+(X) defined by f(x) = u(x)
for x ∈ A and f(x) = 0 for x ∈ X \A. Then RA

u = Rf and our assertion
follows from Theorem 4.1. �

Lemma 4.1. If N is hyperbolic, there exists a potential p such that

p(x) > 0 on X.

Proof. By our definition, there exists a non-constant positive su-
perharmonic function v. Our assertion is clear if v is not harmonic by
Theorem 2.4. Assume that v is harmonic on X . For a ∈ X , we consider
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the function sa ∈ L(X) defined by sa(x) = min(v(x), v(a)) for x ∈ X .
Then sa ∈ SH+(N), sa(x) ≤ sa(a) = v(a) on X . If ∆sa(a) = 0, then

∑
x∈Wa

t(x, a)[sa(a) − sa(x)] = 0

implies that sa(x) = sa(a) on X(a), i.e., v(x) ≥ v(a) on X(a). Since v is
harmonic, we must have v(x) = v(a) on X(a). Taking a1 ∈ X(a), a 6= a1,
we consider sa1

= min(v, v(a1)). If ∆sa1
(a1) = 0, we obtain v(x) = v(a)

on X(a) ∪ X(a1). After repeating this procedure a finite number of
times, we obtain b ∈ X such that sb = min(v, v(b)) and ∆sb(b) < 0,
since v is non-constant. �

Theorem 4.3. For any a ∈ X, there exists a unique bounded po-

tential Ga(x) such that ∆Ga(x) = −εa(x).

Proof. We see by Theorems 4.1 and 4.2 that ua(x) = Rεa
= R

{a}
1 is

superharmonic on X and harmonic on X \ {a}. Since 1 ∈ Sεa
, we have

0 ≤ ua(x) ≤ 1 on X . Since N is hyperbolic, there exists a potential
p > 0 by Lemma 4.1. Notice that v(x) = p(x)/p(a) ∈ Sεa

and v is
also a potential. Thus ua(x) ≤ v(x) on X and ua is a potential by
Theorem 2.3. We show that ∆ua(a) < 0. Supposing the contrary, ua

is harmonic on X . Since ua is a potential, we must have ua = 0. On
the other hand, we have ua(a) = 1. This is a contradiction. Let us
put Ga(x) = −ua(x)/∆ua(a). Then Ga is a bounded potential and
∆Ga(x) = −εa(x) on X .

We prove the uniqueness of Ga. Assume that there exists a potential
φ such that ∆φ(x) = −εa(x) on X . Let h = φ − Ga. Then ∆h(x) =
∆φ(x)−∆Ga(x) = 0 on X . Hence h is harmonic on X and φ = Ga +h.
By the uniqueness of the Riesz decomposition (Theorem 2.4(3)), we
conclude that h = 0. Therefore φ = Ga. �
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Abstract.

For the unit disc D in C, the harmonic Hardy spaces Hp, 1 ≤
p < ∞, are defined as the set of harmonic functions h on D satisfying

‖h‖pp = sup
0<r<1

1

2π

Z

2π

0

|h(reiθ)|pdθ < ∞.

The classical Littlewood-Paley inequalities for harmonic functions [3]
in D are as follows: Let h be harmonic on D. Then there exist positive
constants C1, C2, independent of h, such that

(a) for 1 < p ≤ 2,

‖h‖pp ≤ C1

»

|h(0)|p +

ZZ

D

(1 − |z|)p−1|∇h(z)|pdxdy

–

.

(b) For p ≥ 2, if h ∈ Hp, then

ZZ

D

(1 − |z|)p−1|∇h(z)|pdxdy ≤ C2‖h‖
p
p.

In the paper we consider generalizations of these inequalities
to Hardy-Orlicz spaces Hψ of harmonic functions on domains Ω (

Rn, n ≥ 2, with Green function G satisfying the following: There
exist constants α and β, 0 < β ≤ 1 ≤ α < ∞, such that for fixed
to ∈ Ω, there exist constants C1 and C2, depending only on to, such
that C1δ(x)α ≤ G(to, x) for all x ∈ Ω, and G(t0, x) ≤ C2δ(x)β for all
x ∈ Ω \ B(to,

1

2
δ(to)).
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§1. Introduction

For the unit disc D in C, the harmonic Hardy spaces Hp, 1 ≤ p <∞,
are defined as the set of harmonic functions h on D satisfying

‖h‖pp = sup
0<r<1

1

2π

∫ 2π

0

|h(reiθ)|pdθ <∞.

The classical Littlewood-Paley inequalities for harmonic functions [3] in
D are as follows: Let h be harmonic on D. Then there exist positive
constants C1, C2, independent of h, such that

(a) for 1 < p ≤ 2,

(1.1) ‖h‖pp ≤ C1

[

|h(0)|p +

∫∫

D

(1 − |z|)p−1|∇h(z)|pdx dy
]

.

(b) For p ≥ 2, if h ∈ Hp, then

(1.2)

∫∫

D

(1 − |z|)p−1|∇h(z)|pdx dy ≤ C2‖h‖pp.

In 1956 T. M. Flett [2] proved that for analytic functions inequality
(1.1) is valid for all p, 0 < p ≤ 2. Hence if u = Reh, h analytic, then
since |∇u| = |h′| it immediately follows that inequality (1.1) also holds
for harmonic functions in D for all p, 0 < p ≤ 2. A short proof of the
Littlewood-Paley inequalities for harmonic functions in D valid for all
p, 0 < p < ∞ has also been given recently by Pavlović in [5]. The
Littlewood-Paley inequalities are also known to be valid for harmonic
functions in the unit ball in Rn. In fact Stević [7] has recently proved that
for n ≥ 3, inequality (1.1) is valid for all p ∈ [n−2

n−1 , 1]. In [10] analogue’s
of the Littlewood-Paley inequalities have been proved by the author for
domains Ω in Rn for which the Green function satisfies G(to, x) ≈ δ(x)
for all x ∈ Ω \ B(to

1
2δ(to)), where δ(x) denotes the distance from x to

the boundary of Ω. In the same paper it was proved that for bounded
domains with C1,1 boundary the analogue of (1.1) is also valid for all
p, 0 < p ≤ 1.

In the present paper we extend the Littlewood-Paley inequalities
to harmonic functions in the Hardy–Orlicz spaces Hψ on domains Ω (

Rn, n ≥ 2, with Green function G satisfying the following conditions:
There exist constants α and β, 0 < β ≤ 1 ≤ α < ∞, such that for fixed
to ∈ Ω, there exist constants C1 and C2, depending only on to, such that

C1δ(x)
α ≤ G(to, x) for all x ∈ Ω, and(1.3)

G(t0, x) ≤ C2δ(x)
β for all x ∈ Ω \B(to,

1
2δ(to))

1.(1.4)
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Let Ω be an arbitrary domain in Rn, n ≥ 2, and let ψ be a non-
negative increasing convex function on [0,∞) satisfying ψ(0) = 0 and

(1.5) ψ(2x) ≤ c ψ(x)

for some positive constant c. We denote by Hψ(Ω) the set of real or
complex valued harmonic functions h on Ω for which ψ(|h|) has a har-
monic majorant on Ω. Since ψ is convex and increasing, the function
ψ(|h|) is subharmonic on Ω. The existence of a harmonic majorant con-
sequently guarantees the existence of a least harmonic majorant. For
h ∈ Hψ we denote the least harmonic majorant of ψ(|h|) by Hh

ψ, and for
fixed to ∈ Ω we set

(1.6) Nψ(h) = Hh
ψ(to).

It is known that Nψ(h) is given by

(1.7) Nψ(h) = lim
n→∞

∫

∂Ωn

ψ(|h(t)|)dωton (t),

where {Ωn} is a regular exhaustion of Ω and ωton is the harmonic measure
on ∂Ωn with respect to the point to. Here we assume that to ∈ Ωn for
all n. With ψ(t) = tp, 1 ≤ p < ∞, one obtains the usual Hardy Hp

space of harmonic functions on Ω, with

(1.8) ‖h‖p = lim
n→∞

(
∫

∂Ωn

|h(t)|pdωton (t)

)1/p

,

which is the usual norm on Hp(Ω), p ≥ 1.
In the paper we prove the following generalizations of the Littlewood-

Paley inequalities.

Theorem 1. Let Ω ( Rn be a domain with Green function G sat-
isfying inequalities (1.3) and (1.4). Let ψ ≥ 0 be an increasing convex
C2 function on [0,∞) with ψ(0) = 0 satisfying (1.5). Set ϕ(t) = ψ(

√
t).

Then there exist positive constants C1 and C2 such that the following
hold for all h ∈ Hψ(Ω).

1As in [1] [4], if Ω is a bounded k-Lipschitz domain, then such constants
α and β exist. If the boundary of Ω is C2 or C1,1, then α = β = 1, and
the inequalities can be established by comparing the Green function G to
the Green function of balls that are internally and externally tangent to the
boundary of Ω. By the results of Widman [11], the inequalities are also valid
with α = β = 1 for domains with C1,α or Liapunov-Dini boundaries.
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(a) If ϕ is concave on [0,∞), then

Nψ(h) ≤ C1

[

ψ(|h(to)|) +

∫

Ω

δ(x)β−2ψ(δ(x)|∇h(x)|) dx
]

.

(b) If ϕ is convex on [0,∞), then

ψ(|h(to)|) +

∫

Ω

δ(x)α−2ψ(δ(x)|∇h(x)|) dx ≤ C2Nψ(h).

An immediate consequence of the previous theorem with ψ(t) =
tp, 1 ≤ p <∞, is the following:

Theorem 2. Let Ω ( Rn be a domain with Green function G sat-
isfying inequalities (1.3) and (1.4), and let 1 ≤ p < ∞. Then there
exist positive constants C1 and C2 such that the following hold for all
h ∈ Hp(Ω).

(a) For 1 ≤ p ≤ 2,

‖h‖pp ≤ C1

[

|h(to)|p +

∫

Ω

δ(x)β+p−2|∇h(x)|p dx
]

.

(b) For 2 ≤ p <∞,

|h(to)|p +

∫

Ω

δ(x)α+p−2|∇h(x)|p dx ≤ C2‖h‖pp.

§2. Preliminaries

Our setting throughout the paper is Rn, n ≥ 2, the points of which
are denoted by x = (x1, ..., xn) with euclidean norm |x| =

√

x2
1 + · · · + x2

n.
For r > 0 and x ∈ Rn, set Br(x) = B(x, r) = {y ∈ Rn : |x − y| < r}
and Sr(x) = S(x, r) = {y ∈ Rn : |x − y| = r}. For convenience we
denote the ball B(0, ρ) by Bρ, and the unit sphere S1(0) by S. Lebesgue
measure in Rn will be denoted by dλ or simply dx, and the normalized
surface measure on S by dσ. The volume of the unit ball B1 in Rn will
be denoted by ωn. For an integrable function f on Rn we have

∫

Rn

f(x)dx = nωn

∫

∞

0

rn−1

∫

S

f(rζ) dσ(ζ) dr.

Finally, for a real (or complex) valued C1 function f , the gradient of f
is denoted by ∇f , and if f is C2, the Laplacian ∆f of f is given by

∆f =

n
∑

j=1

∂2f

∂x2
j

.
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Let Ω be an open subset of Rn, n ≥ 2, with Ω ( Rn. For x ∈ Ω, let
δ(x) denote the distance from x to the boundary of Ω, and set

(2.1) B(x) = B(x, 1
2δ(x)) =

{

y ∈ Ω : |y − x| < 1
2δ(x)

}

.

Then for all y ∈ B(x) we have

(2.2) 1
2δ(x) ≤ δ(y) ≤ 3

2δ(x).

For the proof of Theorem 1 we require several preliminary lemmas.

Lemma 1. For f ∈ L1(Ω) and γ ∈ R,

∫

Ω

δ(x)γ |f(x)| dx ≈
∫

Ω

δ(w)γ−n

[

∫

B(w)

|f(x)| dx
]

dw.

Note. The notation A ≈ B means that there exist constants c1 and
c2 such that c1A ≤ B ≤ c2A.

Proof. The proof is a straightforward application of Tonelli’s the-
orem, and consequently is omitted. Details may be found in [10].

�

Lemma 2. For u ∈ C2(Bρ), ρ > 0,

∫

S

u(ρζ) dσ(ζ) = u(0) +

∫

Bρ

∆u(x)Gρ(x) dx,

where
(2.3)

Gρ(x) =











1

n(n− 2)ωn

[

1

|x|n−2
− 1

ρn−2

]

, 0 < |x| ≤ ρ, n ≥ 3,

1

2π
log

ρ

|x| , 0 < |x| ≤ ρ, n = 2,

is the Green function of Bρ with singularity at 0.

Proof. The proof is an immediate consequence of Green’s formula
and hence is omitted. �

Lemma 3. Let ϕ be an increasing absolutely continuous function
on [0,∞) with ϕ(0) = 0.

(a) If ϕ is convex, then ϕ(x)+ϕ(y) ≤ ϕ(x+y) for all x, y ∈ [0,∞).
(b) If ϕ is concave, then ϕ(x)+ϕ(y) ≥ ϕ(x+y) for all x, y ∈ [0,∞).
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Proof. (a) Suppose ϕ is convex. Since ϕ is absolutely continuous
and increasing, ϕ(x) =

∫ x

0
ϕ′ where ϕ′ ≥ 0. Hence

ϕ(x + y) =

∫ x+y

0

ϕ′ = ϕ(x) +

∫ x+y

x

ϕ′.

But
∫ x+y

x

ϕ′(t)dt =

∫ y

0

ϕ′(x+ t)dt.

Since ϕ is convex, ϕ′ is increasing. Thus
∫ y

0

ϕ′(x+ t)dt ≥
∫ y

0

ϕ′(t)dt = ϕ(y),

from which the result follows. The proof of (b) is similar. �

Lemma 4. Suppose ϕ is an increasing C2 function on (0,∞) with
ϕ(0) = 0 and

(2.4) 2tϕ′′(t) + ϕ′(t) ≥ 0, t > 0.

Let h be a harmonic function on Bρ, ρ > 0.
(a) If ϕ is concave, then

∫

Bρ/4

ρ2∆ϕ(|h|2)dx ≤ C

∫

Bρ

ϕ(ρ2|∇h|2)dx.

(b) If ϕ is convex and satisfies inequality (1.5), then
∫

Bρ

ρ2∆ϕ(|h|2)dx ≥ C

∫

Bρ/2

ϕ(ρ2|∇h|2)dx.

Remark. If u is a positive real-valued C2 function, then

∆ϕ(u2) = 2|∇u|2
[

2ϕ′′(u2)u2 + ϕ′(u2)
]

+ 2ϕ′(u2)u∆u.

Thus the hypothesis 2tϕ′′(t) + ϕ′(t) ≥ 0 guarantees that ϕ(u2) is sub-
harmonic whenever u is subharmonic. For ψp(t) = tp, the function

ϕp(t) = ψp(
√
t) = tp/2 satisfies inequality (2.4) if and only if p ≥ 1.

Proof. We only prove the Lemma for n ≥ 3, the special case n = 2
is similar. (a) Suppose ϕ is concave. Set ε = ρ/4, δ = ρ/2, and let Gδ
be the Green function of Bδ with singularity at 0. For |x| ≤ ε,

Gδ(x) =
1

n(n− 2)ωn

[

1

|x|n−2
− 1

δn−2

]

≥ 1

n(n− 2)ωn

[

4n−2

ρn−2
− 2n−2

ρn−2

]

= cnρ
2−n.
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Hence

I1 =

∫

Bε

∆ϕ(|h|2)dx ≤ Cρn−2

∫

Bδ

∆ϕ(|h(x)|2)Gδ(x)dx,

which by Lemma 2

= Cρn−2

[
∫

S

ϕ(|h(δζ)|2)dσ(ζ) − ϕ(|h(0)|2)
]

.

Since ϕ is concave,
∫

S ϕ(|h|2)dσ ≤ ϕ
(∫

S |h|2dσ
)

. Thus

I1 ≤ Cρn−2

[

ϕ

(
∫

S

|h(δζ)|2dσ(ζ)

)

− ϕ(|h(0)|2)
]

.

Since ϕ is concave and increasing with ϕ(0) = 0, by Lemma 3

ϕ(b) − ϕ(a) ≤ ϕ(b− a), 0 < a ≤ b.

Therefore

I1 ≤ Cρn−2ϕ

(
∫

S

|h(δζ)|2dσ(ζ) − |h(0)|2
)

,

which by Green’s identity (Lemma 2)

= Cρn−2ϕ

(

2

∫

Bδ

|∇h(x)|2Gδ(x)dx
)

.

Hence

I1 ≤ Cρn−2ϕ

(

2 sup
x∈Bδ

|∇h(x)|2
∫

Bδ

Gδ(x)dx

)

.

But
∫

Bδ

Gδ(x)dx =
1

2n
δ2.

Therefore since δ = 1
2ρ,

I1 ≤ Cρn−2ϕ

(

ρ2

4n
sup
x∈Bδ

|∇h(x)|2
)

,

which since ϕ is increasing

≤ Cρn−2 sup
x∈Bδ

ϕ(ρ2|∇h(x)|2).
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But since x → ϕ(ρ2|∇h(x)|2) is subharmonic,

ϕ(ρ2|∇h(x)|2) ≤ C

ρn

∫

Bρ

ϕ(ρ2|∇h(y)|2)dy.

for all x ∈ Bδ . Therefore, combining the above we have
∫

Bρ/4

ρ2∆ϕ(|h|2) dλ ≤ C

∫

Bρ

ϕ(ρ2|∇h|2) dλ.

(b) Suppose ϕ is convex and satisfies inequality (1.5). By Lemma 2

∫

Bδ

∆ϕ(|h(x)|2)Gδ(x) dx =

∫

S

ϕ(|h(δζ)|2) dσ(ζ) − ϕ(|h(0)|2),

which since ϕ is convex

≥ ϕ

(
∫

S

|h(δζ)|2dσ(ζ)

)

− ϕ(|h(0)|2) = I2.

But by Lemma 3,

I2 ≥ ϕ

(
∫

S

|h(δζ)|2dσ(ζ) − |h(0)|2
)

.

Thus by Lemma 2,

∫

Bδ

∆ϕ(|h(x)|2)Gδ(x) dx ≥ ϕ

(

2

∫

Bδ

|∇h(x)|2Gδ(x) dx
)

.

For |x| ≤ ε and n ≥ 3, Gδ(x) ≥ cnρ
2−n, where cn = 22n−5

/

n(n− 2)ωn.
Therefore

2

∫

Bδ

|∇h(x)|2Gδ(x) dx ≥ 22n−4ρ2−n

n(n− 2)ωn

∫

Bε

|∇h(x)|2dx,

which since |∇h(x)|2 is subharmonic and ε = ρ/4

≥ 1

24n(n− 2)
ρ2|∇h(0)|2 ≥ 1

2n+3
ρ2|∇h(0)|2.

By inequality (1.5)

ϕ

(

1

2n+3
ρ2|∇h(0)|2

)

≥ 1

cn+3
ϕ(ρ2|∇h(0)|2),
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where c is the constant in inequality (1.5). Combining the above gives

ϕ(ρ2|∇h(0)|2) ≤ cn+3

∫

Bδ

∆ϕ(|h(x)|2)Gδ(x) dx.

Since Gδ(x) ≤ Cn|x|2−n we have

ϕ(ρ2|∇h(0)|2) ≤ Cn

∫

Bδ

∆ϕ(|h(x)|2)|x|2−n dx,

where Cn is a constant depending only on n.
For w ∈ Bδ, set hw(x) = h(w + x). Thus

ϕ(ρ2|∇h(w)|2) ≤ Cn

∫

Bδ

∆xϕ(|hw(x)|2)|x|2−n dx,

which by the change of variable y = w + x

= Cn

∫

Bδ(w)

∆ϕ(|h(y)|2)|y − w|2−ndy.

Therefore,

∫

Bδ

ϕ(ρ2|∇h(w)|2) dw ≤ Cn

∫

Bδ

∫

Bδ(w)

∆ϕ(|h(y)|2)|y − w|2−n dy dw,

which by Fubini’s theorem

≤ Cn

∫

B2δ

∆ϕ(|h(y)|2)
(

∫

Bδ(y)

|y − w|2−ndw
)

dy.

But
∫

Bδ(y)

|y − w|2−ndw =

∫

Bδ

|x|2−ndx = nωn
ρ2

4
.

Therefore,

∫

Bδ

ϕ(ρ2|∇h|2) dλ ≤ Cnρ
2

∫

B2δ

∆ϕ(|h|2) dλ,

which completes the proof. �

Lemma 5. Let ψ and ϕ be as in Theorem 1, and let h be harmonic
on Ω. Assume that ψ(|h|) ∈ C2(Ω). Then for γ ∈ R, the following hold:
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(a) If ϕ is concave, then
∫

Ω

δ(x)γ∆ψ(|h(x)|)dx ≤ C

∫

Ω

δ(x)γ−2ψ(δ(x)|∇h(x)|)dx.

(b) If ϕ is convex and satisfies inequality (1.5), then
∫

Ω

δ(x)γ∆ψ(|h(x)|)dx ≥ C

∫

Ω

δ(x)γ−2ψ(δ(x)|∇h(x)|)dx.

Proof. (a) By Lemma 1
∫

Ω

δ(x)γ∆ψ(|h(x)|)dx

≤ C

∫

Ω

δ(w)γ−n

[

∫

B(w, 1
8
δ(w))

∆ψ(|h(y)|)dy
]

dw.

Set ρ = 1
2δ(w) and u(x) = h(w + x). Then
∫

B(w, 1
8
δ(w))

∆ψ(|h(y)|)dy =

∫

Bρ/4

∆ψ(|u(x)|)dx,

which by Lemma 4

≤ Cρ−2

∫

Bρ

ψ(ρ|∇u(x)|)dx

= Cδ(w)−2

∫

Bρ(w)

ψ( 1
2δ(w)|∇h(y)|)dy.

But 1
2δ(w) ≤ δ(y) for all y ∈ Bρ(w). Hence since ψ is increasing,

ψ( 1
2δ(w)|∇h(y)|) ≤ ψ(δ(y)|∇h(y)|), and thus

∫

B(w, 1
8
δ(w))

∆ψ(|h(y)|)dy ≤ Cδ(w)−2

∫

B(w)

ψ(δ(y)|∇h(y)|)dy.

Finally, by Lemma 1,

∫

Ω

δ(w)γ−n−2

[

∫

B(w)

ψ(δ(y)|∇h(y)|)dy
]

dw

≤ C

∫

Ω

δ(x)γ−2ψ(δ(x)|∇h(x)|)dx,

which proves (a). The proof of part (b) proceeds in the same manner,
except that this case also requires inequality (1.5). �
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§3. Proof of Theorem 1

Before proving Theorem 1 we require two preliminary results about
subharmonic functions. Let S+(Ω) denote the set of non-negative sub-
harmonic functions on Ω that have a harmonic majorant on Ω. As in
the Introduction, for f ∈ S+(Ω) we let Hf denote the least harmonic
majorant of f on Ω. For convenience we will assume that f ∈ C2(Ω).
As in [8],[9] we have the following.

Lemma 6. Let Ω be a domain in Rn, n ≥ 2, with Green function
G, and let f ∈ C2(Ω). Then f ∈ S+(Ω) if and only if there exists to ∈ Ω
such that

(3.1)

∫

Ω

G(to, x)∆f(x) dx <∞.

If this is the case, then by the Riesz decomposition theorem

(3.2) Hf (x) = f(x) +

∫

Ω

G(x, y)∆f(y) dy

If the subharmonic function f is not C2, then the quantity ∆f(x) dx
may be replaced by dµf , where µf is the Riesz measure of the subhar-
monic function f .

Lemma 7. Let Ω be a domain in Rn, n ≥ 2, with Green function G
satisfying (1.3) and (1.4). Let to ∈ Ω be fixed, and let α and β be as in
inequalities (1.3) and (1.4) respectively. Then there exists constants C1

and C2, depending only on to and Ω, such that for all f ∈ S+(Ω)∩C2(Ω),

C1



f(to) +

∫

Ω

δ(x)α∆f(x)dx



 ≤ Hf (to)

≤ C2







∫

B(to)

f(x)dx +

∫

Ω

δ(x)β∆f(x)dx






.

Proof. The left side of the previous inequality is an immediate con-
sequence of identity (3.2) and inequality (1.3). For the right side, inte-
grating equation (3.2) over B(to) gives

Hf (to) =
1

ωnρno

∫

B(to)

f(x) dx +
1

ωnρno

∫

B(to)

∫

Ω

G(x, y)∆f(y) dy dx,
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where ρo = 1
2δ(to). By Fubini’s theorem,

1

ωnρno

∫

B(to)

∫

Ω

G(x, y)∆f(y) dy dx =
1

ωnρno

∫

Ω

∆f(y)

∫

B(to)

G(x, y) dx dy.

Set

I(y) =
1

ωnρno

∫

B(to)

G(x, y) dx.

To complete the proof it remains to be shown that I(y) ≤ C δ(y)β .
If y 6∈ B(to), then since x → G(x, y) is harmonic on B(to) and G

satisfies inequality (1.4),

I(y) = G(to, y) ≤ C2δ(y)
β .

Suppose y ∈ B(to) and n ≥ 3. Then since G(x, y) ≤ cn|x− y|2−n,

I(y) ≤ cn
ωnρno

∫

B(to)

|x−y|2−ndx ≤ cn
ωnρno

∫

B(y,2ρo)

|x−y|2−ndx = 2ncnρ
2−n
o .

But for y ∈ B(to), ρo ≤ 2δ(y). Thus

I(y) ≤ 2ncn2
βδ(y)βρ2−n−β

o = Cδ(y)β ,

where C is a constant depending only on to and Ω. �

Proof of Theorem 1. (a) Let ψ be as in the statement of the
theorem, and let h be a real-valued harmonic function on Ω. Set hε(x) =
h(x) + iε. Then hε is harmonic on Ω and ψ(|hε|) ∈ C2(Ω). Hence by
Lemma 7,

Nψ(hε) ≤ C2

[

∫

B(to)

ψ(|hε(x)|) dx +

∫

Ω

δ(x)β∆ψ(|hε(x)|) dx
]

,

which by Lemma 5(a)

≤ C2

[

∫

B(to)

ψ(|hε(x)|) dx +

∫

Ω

δ(x)β−2ψ(δ(x)|∇h(x)|) dx
]

.

Letting ε→ 0+ gives

Nψ(h) ≤ C2

[

max
x∈B(to)

ψ(|h(x)|) +

∫

Ω

δ(x)β−2ψ(δ(x)|∇h(x)|) dx
]

.



Littlewood-Paley Inequalities 375

It remains to be shown that
(3.3)

max
x∈B(to)

ψ(|h(x)|) ≤ C

[

ψ(|h(to)|) +

∫

Ω

δ(x)β−2ψ(δ(x)|∇h(x)|) dx
]

.

Without loss of generality we take to = 0. As a consequence of the
Fundamental Theorem of Calculus, for all x ∈ B(to),

|h(x)| ≤ |h(0)| + ρo max
y∈B(to)

|∇h(y)|.

Since ψ is increasing, convex, and continuous, and satisfies property
(1.5)

ψ(|h(x)|) ≤ c

2

[

ψ(|h(0)|) + max
y∈B(to)

ψ(ρo|∇h(y)|)
]

.

Also, since y → ψ(ρo|∇h(y)|) is subharmonic,

ψ(ρo|∇h(y)|) ≤
2n

ωnρno

∫

B(y, 1
2
ρo)

ψ(ρo|∇h(x)|) dx

But ρo ≤ δ(y) ≤ 3ρo for all y ∈ B(to), and 1
2δ(y) ≤ δ(x) ≤ 3

2δ(y) for all

x ∈ B(y, 1
2ρo). Thus

ψ(ρo|∇h(y)|) ≤ C(ρo)

∫

Ω

δ(x)β−2ψ(δ(x)|∇h(x)|) dx,

from which inequality (3.3) now follows. This completes the proof of (a).
The proof of (b) is an immediate consequence of Lemma 7 and Lemma
5(b).

§4. Remarks

The techniques employed in this paper may also be used to prove
analogue’s of Theorems 1 and 2 for Hardy-Orlicz spaces of holomorphic
functions on a domain Ω ( Cn, n ≥ 1.

In this setting the spaces Hψ are traditionally defined as in [6, page
83]. For a non-negative, non-decreasing convex function ψ on (−∞,∞)
with limt→−∞ ψ(t) = 0, the Hardy-Orlicz space Hψ(Ω) is defined as the
set of holomorphic functions f on Ω for which ψ(log |f |) has a harmonic

majorant on Ω. As in (1.5) we set Nψ(f) = Hf
ψ(to), where Hf

ψ denotes

the least harmonic majorant of ψ(log |f |). With ψ(t) = ept, 0 < p <∞,
one obtains the usual Hardy Hp space of holomorphic functions on Ω.
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To obtain the analogue of Theorem 1 one considers the function ϕ(t) =
ψ( 1

2 log t). In this setting, hypothesis (2.4) can be replaced by

(4.1) xϕ′′(x) + ϕ′(x) ≥ 0

for all x ∈ (0,∞). If the above holds, then it is easily shown that
for f holomorphic on Ω, ϕ(|f |2) is plurisubharmonic on Ω, hence also
subharmonic. Clearly ϕ(x) = ψ( 1

2 logx) satisfies (4.1) whenever ψ is
convex. The details of the statements and proofs of the appropriate
theorems are left to the reader.
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Estimates of maximal functions by Hausdorff

contents in a metric space

Hisako Watanabe

Abstract.

Let M be the Hardy-Littlewood maximal operator in a quasi-
metric space X. We give the estimates of Mf with weak type and
strong type with respect to the α-Hausdorff content. To do these, we
use the dyadic balls introduced by E. Sawyer and R.L. Wheeden.

§1. Introduction

In analysis many operators are dominated by constant multiples of
the Hardy-Littlewood maximal operators. In Rn the maximal function
Mf of f is defined by

Mf(x) = sup
1

|B|

∫

B

|f |dx,

where the supremum is taken over all balls B containing x and |B| stands
for the n-dimensional volume of B.

In 1988 D. R. Adams considered the estimates of the maximal func-
tions with respect to the α-Hausdorff content Hα

∞ and proved the fol-
lowing strong type inequality (cf. [1]).

Theorem A. Let 0 < α < n. Then there is a constant c such that

∫

MfdHα
∞ ≤ c

∫

|f |dHα
∞.
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2000 Mathematics Subject Classification. 31B15, 42B25.
Key words and phrases. maximal function, Hausdorff content, homoge-

neous space, Choquet integral.
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In this theorem, the integral of a nonnegative function g with respect
to Hα

∞ is in the sense of Choquet and is defined by
∫

gdHα
∞ :=

∫ ∞

0

Hα
∞({x ∈ Rn : g(x) > t})dt.

In 1998 J. Orobitg and J. Verdera generalized Theorem A as follows (cf.
[5]).

Theorem B. Let 0 < α < n. Then, for some constant c depending
only on α and n,

(i)

∫

(Mf)pdHα
∞ ≤ c

∫

|f |pdHα
∞, α/n < p,

(ii) Hα
∞({x; Mf(x) > t}) ≤ ct−α/n

∫

|f |α/ndHα
∞.

To prove Theorem A and Theorem B, the authors considered the
maximal function and the α-Hausdorff content restricted to dyadic cubes.
More precisely, let us define M̃f and H̃α

∞ in Rn.
For each x

M̃f(x) := sup
1

|Q|

∫

Q

|f |dy,

where the supremum is taken over all dyadic cubes containing x and for
a subset E of Rn

H̃α
∞(E) := inf

∞
∑

j=1

l(Qj)
α,

where the infimum is taken over all coverings of E by countable families
of dyadic cubes and l(Qj) stands for the side length of Qj .

We see that Mf and Hα
∞(E) are comparable to M̃f and H̃α

∞(E),

respectively. So they used M̃ and H̃α
∞ instead of M and Hα

∞.
In [2] D. R. Adams defined a Choquet-Lorentz space Lq,p(Hδ

∞) of
the Lorentz type with respect to the Hausdorff capacity Hδ

∞ in Rn and
gave the estimates of the fractional maximal functions of order α in term
of Lq,p(Hδ

∞) (cf. Theorem 7 in [2]).
In this paper we estimate the Hardy-Littlewood maximal functions

by Hausdorff contents in a quasi-metric space.
Recall that (X, ρ) is called a quasi-metric space if the mapping ρ

from X × X to [0,∞) has the following three properties;

(i) ρ(x, y) = 0 if and only if x = y,
(ii) ρ(x, y) = ρ(y, x) for all x, y ∈ X ,
(iii) There is a constant K ≥ 1 such that

(1.1) ρ(x, y) ≤ K(ρ(x, z) + ρ(z, y)) for all x, y, z ∈ X.
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In addition, we assume that the diameter of X is finite and set

diam X = R.

Let M be the Hardy-Littlewood maximal operator and let Hα
∞ be

the α-Hausdorff content. Furthermore we suppose that there are a non-
negative Borel measure µ on X and a positive number d such that

(1.2) b1r
d ≤ µ(B(x, r)) ≤ b2r

d

for all positive r ≤ R, where

B(x, r) := {y ∈ X : ρ(x, y) < r}.

In a quasi-metric space there is no dyadic cube. Instead of dyadic
cubes E. Sawyer and R. L. Wheeden [6] constructed a family of balls as
follows:

Theorem C. Put λ = K + 2K2. Then, for each integer k, there
exists a sequence {Bk

j }j (Bk
j = B(xjk , λk)) of balls of radius λk having

the following properties:

(i) Every ball of radius λk−1 is contained in at least one of the
balls Bk

j ,
(ii)

∑

j χBk
j
≤ M for all k in Z,

(iii) B̂k
i ∩ B̂k

j = ∅ for i 6= j, k ∈ Z, where B̂k
j = B(xjk , λk−1).

They call these balls Bk
j dyadic balls. Denote by Bd the family of all

dyadic balls. Using dyadic balls, we give the estimates of the maximal
operator M in a quasi-metric space X by the integral with respect to
Hα

∞, corresponding to the results of Orobitg–Verdera.

Theorem 1. Let (X, ρ) be a quasi-metric space with diam X < ∞.
Suppose that there are a positive number d and a Borel measure µ on X
satisfying (1.2) for every ball B(x, r) ⊂ X. Furthermore, let 0 < α < d.
Then

Hα
∞({x : Mf(x) > t}) ≤ ct−α/d

∫

|f |α/ddHα
∞

for every f and t > 0.

Theorem 2. Assume that X and µ satisfy the same conditions as
Theorem 1. Let α/d < p. Then

∫

(Mf)pdHα
∞ ≤ c

∫

|f |pdHα
∞ for every f.
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We note that, for a nonnegative function g and a subset G of X ,

∫

G

gdHα
∞ :=

∫ ∞

0

Hα
∞({x ∈ G : g(x) > t})dt

and
∫

G

gdµ :=

∫ ∞

0

µ({x ∈ G : g(x) > t})dt.

If g ∈ L1(µ) and G is µ-measurable, then the integral with respect to
the measure µ coincides with the usual one.

§2. Dyadic balls in a quasi-metric space

Throughout this paper let (X, ρ) be a quasi-metric space. The func-
tion ρ is called a quasi-metric. We assume that the diameter of X is
finite and diam X = R. Furthermore we assume that there exists a
positive Radon measure µ on X with µ(X) < ∞ and satisfying (1.2) for
some d. We note that, if (1.2) holds for all positive r ≤ R, then (1.2)
holds for all positive r ≤ 2(K + 2K2)2R by changing the constants. So
we may assume that (1.2) holds for all positive r ≤ 2(K + 2K2)2R.
Consequently µ satisfies the doubling condition, i.e., there is a constant
c > 0 such that

µ(B(x, 2r)) ≤ cµ(B(x, r))

for x ∈ X and r ≤ 2(K +2K2)2R. So X is a space of homogeneous type
(See [3] on more precise properties on a space of homogeneous type).

For any quasi-metric ρ there exists an equivalent quasi-metric ρ′

such that all balls with respect to ρ′ are open (cf. [4]). Consequently we
may assume that all balls B(x, r) in X are open.

Let B = B(x, r) be a ball and b be a positive real number. The
notation bB stands for the ball of radius br centered at x and r(B)
stands for the radius of B. We often use the following value λ defined
by

λ = 2K2 + K,

where K is the constant in (1.1).
We begin with the following lemma.

Lemma 2.1. Let B be a ball and {Bj} be a sequence of disjoint
balls. Put

E = {j : B ∩ λ−1Bj 6= ∅, r(B) ≤ r(Bj)}.

Then #E ≤ N , where N is a constant independent of B and {Bj}.



Estimates of maximal functions by Hausdorff contents 381

Proof. Case 1. We first consider the case where there exists Bi ∈
{Bj}j satisfying B ∩ λ−1Bi 6= ∅ and r(B) ≤ λ−1r(Bi).

Let w ∈ B and xi be the center of Bi. Then, for z ∈ B ∩ λ−1Bi,

ρ(w, xi) ≤ K(ρ(w, z) + ρ(z, xi))

< 2K2r(B) + Kλ−1r(Bi) ≤ r(Bi).

Hence B ⊂ Bi. Noting that {Bj} are disjoint, we conclude that #E = 1.
Case 2. We next consider the case where r(B) > λ−1r(Bj) for all

j ∈ E. Let x be the center of B. Since Bj ⊂ B(x, 2λKr(B)), we have

∪j∈EBj ⊂ B(x, 2λKr(B)).

Note that {Bj} are disjoint and r(B) ≤ r(Bj) for all j ∈ E.
Let #E = n. From (1.2), we deduce

nµ(B(x, 2Kλr(B)) ≤ nb2(2Kλr(B))d ≤
b2

b1
(2Kλ)d

∑

j∈E

µ(Bj)

=
b2

b1
(2Kλ)dµ(∪j∈EBj) ≤

b2

b1
(2Kλ)dµ(B(x, 2Kλr(B))).

Thus n ≤ b2
b1

(2Kλ)d. This leads to the conclusion. �

We have the following lemma for dyadic balls.

Lemma 2.2. Let {Bk
j } ⊂ Bd and Bk

j = B(xjk , λk). Then there is
a constant N1, independent of j and k, such that

∑

j

χλBk
j
≤ N1.

Proof. Assume that x ∈ ∩n
j=1λBk

j . Then B̂k
j ⊂ B(x, 2Kλk+1).

Similarly B(x, λk) ⊂ B(xjk , Kλk(1 + λ)). Hence, by (1.2),

µ(B(x, 2Kλk+1)) ≤ c1µ(B(x, λk)) ≤ c1µ(B(xjk , Kλk(1 + λ)))

≤ c2µ(B(xjk , λk−1)) = c2µ(B̂k
j )

for j. Noting that {B̂k
j } are disjoint, we have

n

c2
µ(B(x, 2Kλk+1)) ≤

n
∑

j=1

µ(B̂k
j ) = µ(∪n

j=1B̂
k
j ) ≤ µ(B(x, 2Kλk+1)),

whence n ≤ c2. Thus we have the conclusion. �
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A sequence {Bj} of balls is called maximal by inclusion if each Bj

includes no Bi for i 6= j.

Lemma 2.3. Let {Bj} ⊂ Bd. If {λ2Bj} is a maximal sequence by
inclusion, then there is a constant N1 such that

∑

j

χλBj ≤ N1.

Proof. Let {Bk
jl
}l be the subfamily of {Bj} having radius λk. Lemma

2.2 yields that
∑

l

χλBk
jl

≤ N1.

We next consider two balls Bj = Bk
j and Bi = Bl

i , l < k, in {Bj}. If

λBk
j ∩ λBl

i 6= ∅, then we pick z ∈ λBk
j ∩ λBl

i . Let w ∈ λ2Bl
i. Writing

Bk
j = B(xjk , λk) and Bl

i = B(xil, λ
l), we have

ρ(xjk , w) ≤ K(ρ(xjk , z) + K(ρ(z, xil) + ρ(xil, w)))

< Kλk+1 + 2K2λl+2 ≤ λk+2,

whence λ2Bl
i ⊂ λ2Bk

j . This contradicts that {λ2Bj} is maximal. There-

fore we conclude that λBk
j ∩ λBl

i = ∅. �

Using this lemma, we have

Lemma 2.4. Let {Bj} ⊂ Bd such that {λ2Bj} is a maximal se-
quence by inclusion. Furthermore let B ∈ Bd. Put

F = {j : B ∩ Bj 6= ∅, r(B) ≤ r(Bj)}.

Then #F ≤ N1.

Proof. If j ∈ F , then B ⊂ λBj . Lemma 2.3 yields

∑

j

χλBj ≤ N1.

Hence #F ≤ N1.
�

Let {Bj} be a (finite or infinite) sequence of subsets of X . Using it,
we can construct a maximal sequence by inclusion. Indeed, we consider
{B1, B2} and, if B1 ⊂ B2 or B2 ⊂ B1, then we remove the less one from
{B1, B2} and denote by B′

1 the big one. Otherwise, put

B′
1 = B1 and B′

2 = B2.
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We next assume that {B′
1, · · · , B′

m} has been constructed by using {B1,
· · · , Bn}. Then we consider {B′

1, · · · , B′
m, Bn+1}, remove all sets which

are included by the other sets and make a new family {B ′
1, · · · , B′

l} of
all balls which remain. Thus we inductively construct a subsequence
{B1, B2, · · · } of {Bj}, which is a maximal sequence by inclusion, and
call it the maximal sequence of {Bj}.

We are ready to prove our main lemma.

Lemma 2.5. Let {Bj} ⊂ Bd and α > 0. Then there exists a (finite
or infinite) subsequence {Bjk

} of {Bj} having the following properties:

(i)

∑

jk∈SB

r(Bjk
)α ≤ 2r(B)α for each B ∈ Bd,

where SB = {jk : Bjk
∩ B 6= ∅, r(Bjk

) ≤ r(B)}.
(ii) For a positive number b there is a constant c such that

Hα
∞(∪jbBj) ≤ c

∑

k

r(Bjk
)α,

where c is independent of {Bj}.

Proof. We construct a subsequence {Bjk
} of {Bj} by induction.

First, put j1 = 1. The set {Bj1} has the property (i). Next, assume
that {j1, · · · , jm} (j1 < · · · < jm) have been chosen so that (i) holds
for {Bj1 , · · · , Bjm}. We set jm+1 the first number j such that jm < j
and {Bj1 , · · · , Bjm , Bj} satisfies (i). We note that, if SB = ∅, then the
left-hand side of the inequality in (i) is regarded as 0. Thus we construct
j1, · · · , jn, · · · .

We next show that {Bjk
} also satisfies (ii). Let j ′ be a number

satisfying jm < j′ < jm+1. Then there is a ball Cj′ ∈ Bd such that
Bj′ ∩ Cj′ 6= ∅, r(Bj′ ) ≤ r(Cj′ ) and

∑

jk∈SC
j′

r(Bjk
)α + r(Bj′ )

α > 2r(Cj′ )
α.

From this it follows that

(2.1)
∑

jk∈SC
j′

r(Bjk
)α > r(Cj′ )

α.

To prove (ii), we may suppose that
∑

k r(Bjk
)α < ∞. We denote

by {Di} the maximal sequence of {λ2Cj′}. Since Bj′ ∩ Cj′ 6= ∅ and
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r(Bj′ ) ≤ r(Cj′ ), we have Bj′ ⊂ λCj′ . Hence Bj′ ⊂ Di for some i.
Noting that

∪jbBj ⊂ ∪kbBjk
∪ (∪j′bBj′) ⊂ ∪kbBjk

∪ (∪ibDi),

we have

Hα
∞(∪jbBj) ≤ bα

∑

k

r(Bjk
)α + bαλ2α

∑

i

r(λ−2Di)
α.

The inequality (2.1) implies
∑

i

r(λ−2Di)
α ≤

∑

i

∑

jk∈Sλ−2Di

r(Bjk
)α

=
∑

k

∑

Bjk
∩λ−2Di 6=∅,r(Bjk

)≤λ−2r(Di)

r(Bjk
)α.

Fix a natural number k. We see by Lemma 2.4 that the number of
λ−2Di satisfying Bjk

∩ λ−2Di 6= ∅ and r(Bjk
) ≤ λ−2r(Di) is at most

N1. Hence

Hα
∞(∪jbBj) ≤ bα

∑

k

r(Bjk
)α + bαλ2αN1

∑

k

r(Bjk
)α

= bα(1 + N1λ
2α)
∑

k

r(Bjk
)α.

We may put c = bα(1 + N1λ
2α). Thus we have the assertion (ii). �

§3. Maximal functions and Hausdorff contents with respect

to dyadic balls

In this section we introduce maximal functions and Hausdorff con-
tents with respect to dyadic balls. We begin with maximal functions.
For a function f we define

M̃f(x) = sup
1

µ(B)

∫

B

|f |dµ,

where the supremum is taken over all dyadic balls containing x. Here
we note that, for a nonnegative function g,

∫

gdµ :=

∫ ∞

0

µ({x : g(x) > t})dt.

Using the properties in Theorem C, we can show the following
lemma.
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Lemma 3.1. Let f be a function on X. Then there is a constant c
independent of f such that

M̃f(x) ≤ Mf(x) ≤ cM̃f(x)

for all x ∈ X.

Fix α satisfying 0 < α < d. Similarly we define, for E ⊂ X ,

H̃α
∞(E) = inf

∑

j

r(Bj)
α,

where the infimum is taken over all coverings {Bj} of E by dyadic balls
Bj . Similarly we can show the following lemma.

Lemma 3.2. Let 0 < α < d. Then there is a positive constant c
such that

cH̃α
∞(E) ≤ Hα

∞(E) ≤ H̃α
∞(E).

§4. Proofs of Theorem 1 and Theorem 2

In this section we will prove Theorem 1 and Theorem 2. To do these,
we estimate the integral of a nonnegative function f with respect to the
measure µ by the integral of f with respect to Hα

∞.

Lemma 4.1. Let 0 < α ≤ d and f be a nonnegative function on X.
Then

∫

fdµ ≤ c

(∫

fα/ddHα
∞

)d/α

,

where c is a positive constant independent of f .

Proof. Noting that µ satisfies (1.2), we can prove this lemma by
the same method as in the proof of Lemma 3 in [5]. �

We note that Hα
∞({x : f(x) > t}) is abbreviated to Hα

∞({f > t}) in
the proofs of Theorem 1 and Theorem 2.

Proof of Theorem 1. We may assume that f ≥ 0. Put

Et = {x : M̃f(x) > t}

for t > 0. For each x ∈ Et there is a ball Bx ∈ Bd such that

(4.1)
1

µ(Bx)

∫

Bx

fdµ > t.

Then Et ⊂ ∪x∈EtBx ⊂ ∪x∈EtλBx.
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By Théorèm (1.2) on p.69 in [3] we can choose a countable family
{λBj} ⊂ {λBx}x∈Et such that {λBj} (Bj = B(xj , rj)) are disjoint and
Et ⊂ ∪jB(xj , hλrj) for some h ≥ 1. Then, by Lemma 4.1 and (4.1),

(4.2) r(Bj)
α ≤

(

1

b1t

∫

Bj

fdµ

)α/d

≤ c1t
−α/d

∫

Bj

fα/ddHα
∞.

Applying Lemma 2.5 to the sequence {Bj}, we choose a subsequence
{Bjk

} satisfying (i) and (ii) in Lemma 2.5 for b = λh. Writing Bjk
=

B(xk , rk), we have, by (4.2),

Hα
∞(Et) ≤ Hα

∞(∪jB(xj , λhrj)) ≤ c2

∑

k

rα
k ≤ c3

∑

k

t−α/d

∫

Bjk

fα/ddHα
∞.

We claim that

(4.3)
∑

k

∫

Bjk

fα/ddHα
∞ ≤ c4

∫

fα/ddHα
∞.

Indeed, if
∫

fα/ddHα
∞ = +∞, then it is clear that (4.3) holds. Assume

that
∫

fα/ddHα
∞ < +∞. Since

∫ ∞

0

Hα
∞({fα/d > τ})dτ < ∞,

we have

Hα
∞({fα/d > τ}) < ∞ for a.e. τ

and hence, by Lemma 3.2,

H̃α
∞({fα/d > τ}) < ∞ for a.e. τ.

Fix τ satisfying H̃α
∞({fα/d > τ}) < ∞. For ε > 0 we take balls Qi ∈ Bd

such that

{x : f(x)α/d > τ} ⊂ ∪iQi

and

(4.4)
∑

i

r(Qi)
α < H̃α

∞({fα/d > τ}) + ε.

Since {λBjk
} are disjoint, we see, by Lemma 2.1, that for each Qi the

number of Bjk
satisfying Qi ∩ Bjk

6= ∅ and r(Qi) ≤ λr(Bjk
) is at most
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N . Hence

3
∑

i

r(Qi)
α = 2

∑

i

r(Qi)
α +

∑

i

r(Qi)
α

≥
∑

i











∑

Qi∩Bjk
6=∅

r(Qi)>r(Bjk
)

r(Bjk
)α +

1

N
Nr(Qi)

α











≥
∑

k











∑

Qi∩Bjk
6=∅

r(Qi)>r(Bjk
)

r(Bjk
)α +

1

N

∑

Qi∩Bjk
6=∅

r(Qi)≤r(Bjk
)

r(Qi)
α











≥
1

N

∑

k

H̃α
∞(Bjk

∩ (∪iQi))

≥
1

N

∑

k

H̃α
∞(Bjk

∩ {fα/d > τ}).

Hence, by (4.4),

H̃α
∞({fα/d > τ}) + ε ≥

1

3N

∑

k

H̃α
∞(Bjk

∩ {fα/d > τ}).

Thus, by Lemma 3.2, we have the claim (4.3). Therefore

Hα
∞(Et) ≤ c3

∑

k

t−α/d

∫

Bjk

fα/ddHα
∞ ≤ c5t

−α/d

∫

fα/ddHα
∞.

This is the desired inequality. �

We next prove Theorem 2.

Proof of Theorem 2. Define

f1(x) =

{

f(x) |f(x)| > t
2 ,

0 otherwise.

Then

|f(x)| ≤ |f1(x)| + t/2 and Mf(x) ≤ Mf1(x) + t/2.
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Hence, by Theorem 1,

Hα
∞({x : Mf(x) > t}) ≤ Hα

∞({x : Mf1(x) > t/2})

≤ c1t
−α/d

∫

|f |>t/2

|f |α/ddHα
∞.

Therefore we write
∫

(Mf)pdHα
∞ =

∫ ∞

0

Hα
∞({(Mf)p > t})dt

= p

∫ ∞

0

Hα
∞({Mf > t})tp−1dt

≤ c1p

∫ ∞

0

tp−1t−α/ddt

∫

|f |>t/2

|f |α/ddHα
∞

≤ I1 + I2,

where

I1 = c1p

∫ ∞

0

tp−1t−α/ddt

∫ ∞

0

Hα
∞({|f | > sd/α})χ{sd/α≥t/2}ds,

I2 = c1p

∫ ∞

0

tp−1t−α/ddt

∫ ∞

0

Hα
∞({|f | > t/2})χ{sd/α<t/2}ds.

Using Fubini’s theorem, we have

I1 ≤ c1p

∫ ∞

0

Hα
∞({|f | > sd/α})ds

∫ 2sd/α

0

tp−1−α/ddt

= c2

∫ ∞

0

(sd/α)p−α/dHα
∞({|f | > sd/α})ds.

Putting t′ = sdp/α, we have

I1 ≤ c3

∫ ∞

0

Hα
∞({|f |p > t′})dt′ = c3

∫

|f |pdHα
∞.

We next estimate I2. Note

I2 ≤ c1p

∫ ∞

0

tp−1−α/dHα
∞({|f | > t/2})dt

∫ (t/2)α/d

0

ds

= c1p

∫ ∞

0

tp−1−α/d(t/2)α/dHα
∞({|f | > t/2})dt.

Put t′ = t/2. Then

I2 ≤ c4

∫ ∞

0

(t′)p−1Hα
∞({|f | > t′})dt′ = c5

∫

|f |pdHα
∞.



Estimates of maximal functions by Hausdorff contents 389

Thus we have the conclusion. �
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Harmonic conjugates of parabolic Bergman functions

Masahiro Yamada

Abstract.

The parabolic Bergman space is the Banach space of solutions
of some parabolic equations on the upper half space which have fi-
nite L

p norms. We introduce and study L
(α)-harmonic conjugates

of parabolic Bergman functions, and give a sufficient condition for a
parabolic Bergman space to have unique L

(α)-harmonic conjugates.

1. Introduction

Recently, Nishio, Shimomura, and Suzuki [4] have introduced par-
abolic Bergman spaces on the upper half-space and proved many in-
teresting properties of these spaces. Parabolic Bergman spaces contain
harmonic Bergman spaces studied by Ramey and Yi [6]. In this paper,
we introduce and study L(α)-harmonic conjugates of parabolic Bergman
functions, which are a generalized notion of usual harmonic conjugates
of harmonic Bergman functions.

We describe the definition of parabolic Bergman spaces. Let H be
the upper half-space of the (n + 1)-dimensional Euclidean space R

n+1,
that is, H = {(x, t) ∈ R

n+1 ; x ∈ R
n, t > 0}. For 1 ≤ p < ∞, the

Lebesgue space Lp(H, dV ) is defined to be the Banach space of Lebesgue
measurable functions on H with

‖ u ‖p=

(
∫

H

|u(x, t)|pdV (x, t)

)1/p

< ∞,

where dV is the Lebesgue volume measure on H . For 0 < α ≤ 1, We
define L(α)-harmonic functions on H . For 0 < α < 1, (−∆)α is the
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2000 Mathematics Subject Classification. Primary 32A36; Secondary

26D10, 35K05.
Key words and phrases. Bergman space, harmonic conjugate, heat equa-

tion, parabolic equation.
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convolution operator defined by

((−∆)αϕ)(x, t) = −Cn,α lim
δ↓0

∫

|y−x|>δ

(ϕ(y, t) − ϕ(x, t))|y − x|−n−2αdy

for all ϕ ∈ C∞
0 (H), where Cn,α = −4απ−n/2Γ((n + 2α)/2)/Γ(−α) > 0,

and ∆ is the Laplace operator with respect to x. For 0 < α ≤ 1, a
parabolic operator L(α) is defined by L(α) = ∂

∂t +(−∆)α. (We note that

when α = 1, L(1) is the heat operator.) A continuous function u on H is
said to be L(α)-harmonic if L(α)u = 0 in the sense of distributions, that
is, u·L̃(α)ϕ ∈ L1(H, dV ) and

∫

u·L̃(α)ϕdV = 0 for all ϕ ∈ C∞
0 (H), where

L̃(α) = − ∂
∂t + (−∆)α is the adjoint operator of L(α). For 1 ≤ p < ∞

and 0 < α ≤ 1, the parabolic Bergman space bp
α is the set of all L(α)-

harmonic functions on H which belong to Lp(H, dV ), and it is a Banach
space with the Lp norm. It is known that bp

α ⊂ C∞(H) (see Theorem
5.4 of [4]), and when α = 1/2, bp

1/2 coincides with harmonic Bergman

spaces of Ramey and Yi (see Corollary 4.4 of [4]).
We introduce the definition of L(α)-harmonic conjugates of parabolic

Bergman functions. For a function u on H such that ∂u/∂xj and ∂u/∂t
exist at every (x, t) = (x1, . . . , xn, t) ∈ H , we write ∂xj

u = ∂u/∂xj and
∂tu = ∂u/∂t, respectively.

Definition 1.1. For a function u ∈ bp
α, the functions v1, . . . , vn are

called L(α)-harmonic conjugates of u if v1, . . . , vn satisfy the following

conditions:

(1) v1, . . . , vn are L(α)-harmonic on H,

(2) ∂xj
vk = ∂xk

vj and ∂xj
u = ∂tvj (1 ≤ j, k ≤ n).

Usually, given a harmonic function u on H , the functions v1, . . . , vn

on H are called harmonic conjugates of u if (v1, . . . , vn, u) = ∇f for
some harmonic function f on H . As mentioned above, bp

1/2 coincide with

harmonic Bergman spaces, and it is easy to see that when α = 1/2 the
conditions (1) and (2) of Definition 1.1 are equivalent to the definition
of usual harmonic conjugates of harmonic Bergman functions. Hence,
L(α)-harmonic conjugates are generalization of harmonic conjugates.

Many authors have studied and proved interesting and important
results concerning properties of harmonic conjugates, (for instance, see
Chapter III of [2]). One of the fundamental problems of harmonic conju-
gates is the boundedness of the conjugation operator. It is known that
when α = 1/2 there are unique harmonic conjugates v1, . . . , vn of a func-
tion u ∈ bp

1/2 such that vj ∈ bp
1/2 ( see Theorem 6.1 of [6] ), and thus the

conjugation operator is bounded on the harmonic Bergman spaces for
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all 1 ≤ p < ∞. In this paper, we prove the following result (see Theorem
4.1): Let 0 < α ≤ 1 and 1 ≤ p < ∞. If λ = p( 1

2α − 1) > −1 and u ∈ bp
α,

then there exist unique L(α)-harmonic conjugates v1, . . . , vn of u such
that vj ∈ bp

α(λ), where bp
α(λ) is the weighted parabolic Bergman spaces

(see section 3 for the definition). Hence, we obtain the conjugation op-
erator from bp

α into bp
α(λ) is bounded whenever λ = p( 1

2α − 1) > −1.
Throughout this paper, C will denote a positive constant whose

value is not necessarily the same at each occurrence; it may vary even
within a line.

2. Existence of L(α)-harmonic conjugates

When α = 1/2, there are unique harmonic conjugates v1, . . . , vn of
a function u ∈ bp

1/2 such that vj ∈ bp
1/2 ( see Theorem 6.1 of [6] ). In this

section, we show that there exist L(α)-harmonic conjugates v1, . . . , vn of

a function u ∈ bp
α such that t

1
2α

−1vj ∈ Lp(H, dV ) whenever p( 1
2α − 1) >

−1.
A fundamental solution of the parabolic operator L(α) plays an im-

portant role for studying parabolic Bergman spaces. We define the fun-
damental solution of L(α). For x ∈ R

n, let

(2.1) W (α)(x, t) =







1

(2π)n

∫

Rn

exp(−t|ξ|2α + i x · ξ) dξ t > 0

0 t ≤ 0,

where x · ξ denotes the inner product on R
n and |ξ| = (ξ · ξ)1/2. The

function W (α) is the fundamental solution of L(α) and L(α)-harmonic on
H . We describe some properties of W (α). We note that W (α)(x, t) ≥ 0
and

(2.2)

∫

Rn

W (α)(x − y, s)dy = 1

for all x ∈ R
n and s > 0. If u ∈ bp

α, then u satisfies the Huygens
property, that is,

(2.3) u(x, t) =

∫

Rn

u(x − y, t − s)W (α)(y, s)dy

holds for all x ∈ R
n and 0 < s < t < ∞ ( see Theorem 4.1 of [4] ).

By (2.1), the fundamental solution W (α) is in C∞(H). Let k ∈ N0 and
β = (β1, · · · , βn) ∈ N

n
0 be a multi-index, where N0 = N ∪ {0}. Then,

we define ∂β
x∂k

t = ∂β1
x1

· · ·∂βn
xn

∂k
t = ∂|β|+k/∂xβ1

1 · · ·∂xβn
n ∂tk. Clearly, we

have

(2.4) ∂β
x ∂k

t W (α)(x − y, t + s) = (−1)|β|∂β
y ∂k

s W (α)(x − y, t + s)



394 M. Yamada

for all (x, t), (y, s) ∈ H . The following estimate is (1) of Proposition 1
of [5] : there exists a constant C > 0 such that

(2.5) |∂β
x∂k

t W (α)(x, t)| ≤
Ct−k+1

(t + |x|2α)
n+|β|

2α
+1

.

The following lemma is an immediate consequence of Theorem 1 of [5].

Lemma 2.1. Let 0 < α ≤ 1, 1 ≤ q < ∞, θ ∈ R, β ∈ N
n
0 be a

multi-index, and k ∈ N. If
(n+|β|

2α +k
)

q−
(

n
2α +1

)

> θ > −1, then there

exists a constant C > 0 such that

∫

H

tθ|∂β
x∂k

t W (α)(x − y, t + s)|qdV (x, t)

≤ Cs
n
2α

+1−(
n+|β|

2α
+k)q+θ

for all(y, s) ∈ H.

Let ck = (−2)k

k! . The following lemma is Theorem 6.7 of [4].

Lemma 2.2. Let 0 < α ≤ 1 and 1 ≤ p < ∞. If u ∈ bp
α and

(y, s) ∈ H, then

u(y, s) = −2cm+j

∫

H

∂m
t u(x, t) tm+j∂j+1

t W (α)(x − y, t + s)dV (x, t)

for all m, j ∈ N0.

Proposition 2.3. Let 0 < α ≤ 1 and 1 ≤ p < ∞. If λ = p( 1
2α −

1) > −1 − n
2α and u ∈ bp

α, then there exist L(α)-harmonic conjugates

v1, . . . , vn of u.

Proof. For each 1 ≤ j ≤ n, let vj be a function on H defined by

(2.6) vj(y, s) = 2c1

∫

H

u(x, t) t ∂xj
∂tW

(α)(x − y, t + s)dV (x, t).

Since p( 1
2α − 1) > −1 − n

2α , Lemma 2.1 implies that

t∂xj
∂tW

(α)( · − y, · + s) ∈ Lq(H, dV ),

where q is the exponent conjugate to p. Hence, the function vj is well
defined for all (y, s) ∈ H when p( 1

2α − 1) > −1 − n
2α . We show that
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v1, . . . , vn are the L(α)-harmonic conjugates of u. Since W (α) is L(α)-
harmonic, so is vj . Moreover, since (2.4) and Lemma 2.1 imply that

t∂yk
∂xj

∂tW
(α)( · − y, · + s) ∈ Lq(H, dV )

for all 1 < q ≤ ∞, we can differentiate through the integral (2.6) with
respect to yk. Therefore we obtain ∂yk

vj = ∂yj
vk. Similarly, Lemmas

2.1 and 2.2 imply that ∂svj = ∂yj
u. �

Remark 2.4. We note that when 0 < α ≤ 1
2 , the assumption λ =

p( 1
2α − 1) > −1− n

2α of Proposition 2.3 always holds for all 1 ≤ p < ∞.

We consider an integrability condition of the function vj which is
defined in (2.6).

Theorem 2.5. Let 0 < α ≤ 1 and 1 ≤ p < ∞. If λ = p( 1
2α − 1) >

−1, then there exists a constant C > 0 such that

‖ t
1
2α

−1vj ‖p≤ C ‖ u ‖p

for all u ∈ bp
α and 1 ≤ j ≤ n, where vj is defined in (2.6).

Proof. Let c = 1
2α −1. We suppose that p = 1 (we note that when

p = 1, λ > −1 for all 0 < α ≤ 1). Then, (2.6) and the Fubini theorem
imply that there exists a constant C > 0 such that

∫

H

|scvj(y, s)|dV (y, s)

≤ C

∫

H

|u(x, t)| t

∫

H

sc|∂xj
∂tW

(α)(x − y, t + s)|dV (y, s)dV (x, t).

Therefore, Lemma 2.1 implies that ‖ t
1
2α

−1vj ‖1≤ C ‖ u ‖1.
Suppose that p > 1, and let q be the exponent conjugate to p. Then,

the Hölder inequality shows that there exists a constant C > 0 such that

|vj(y, s)|

≤ C

∫

H

|u(x, t)| t
1

pq
+ 1

p t−
1

pq
+ 1

q

×|∂xj
∂tW

(α)(x − y, t + s)|
1
p
+ 1

q dV (x, t)

≤ C

(
∫

H

|u(x, t)|pt
1
q
+1|∂xj

∂tW
(α)(x − y, t + s)|dV (x, t)

)
1
p

×

(
∫

H

t−
1
p
+1|∂xj

∂tW
(α)(x − y, t + s)|dV (x, t)

)
1
q

.
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Since λ = p( 1
2α − 1) > −1, Lemma 2.1 implies that

∫

H

t−
1
p
+1|∂xj

∂tW
(α)(x − y, t + s)|dV (x, t) ≤ Cs−( 1

2α
+ 1

p
−1).

Thus, by the Fubini theorem we have

∫

H

|scvj(y, s)|pdV (y, s)

≤ C

∫

H

|u(x, t)|pt
1
q
+1

×

∫

H

scp−( 1
2α

+ 1
p
−1) p

q |∂xj
∂tW

(α)(x − y, t + s)|dV (y, s)dV (x, t).

Lemma 2.1 also implies that

∫

H

scp−( 1
2α

+ 1
p
−1) p

q |∂xj
∂tW

(α)(x − y, t + s)|dV (y, s) ≤ Ct−( 1
q
+1).

Therefore, we obtain ‖ t
1
2α

−1vj ‖p≤ C ‖ u ‖p. �

3. Weighted parabolic Bergman spaces

In Proposition 2.3 and Theorem 2.5, we prove that the function
vj which is defined in (2.6) is L(α)-harmonic and in Lp(H, tλdV ), where

λ = p( 1
2α−1). In order to study the L(α)-harmonic conjugates, we define

weighted parabolic Bergman spaces. For any λ > −1, the weighted
parabolic Bergman space bp

α(λ) is the set of all L(α)-harmonic functions
on H which belong to Lp(H, tλdV ). We note that any function u ∈

Lp(H, tλdV ) satisfies u · L̃(α)ϕ ∈ L1(H, dV ) for all ϕ ∈ C∞
0 (H). In fact,

it is known that u · L̃(α)ϕ ∈ L1(H, dV ) for all ϕ ∈ C∞
0 (H) if and only if

∫ t2

t1

∫

Rn

|u(x, t)|(1 + |x|)−n−2αdV (x, t) < ∞

for all t2 > t1 > 0 ( see Remark 2.2 of [4] ). If u ∈ Lp(H, tλdV ) for
some 1 ≤ p < ∞ and λ > −1, then elementary calculations show that
∫ t2

t1

∫

Rn |u(x, t)|(1 + |x|)−n−2αdV (x, t) < ∞ for all t2 > t1 > 0. Hence,

u ∈ Lp(H, tλdV ) satisfies the integrability condition in the definition of
L(α)-harmonic functions.
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We give some properties of the weighted parabolic Bergman spaces.
When λ = 0, the following lemma is Theorem 4.1 of [4]. We claim that
u ∈ bp

α(λ) also satisfies the Huygens property.

Lemma 3.1. Let 0 < α ≤ 1, 1 ≤ p < ∞ and λ > −1. If u ∈ bp
α(λ),

then

u(x, t) =

∫

Rn

u(x − y, t − s)W (α)(y, s)dy

for all x ∈ R
n and 0 < s < t < ∞.

Proof. In the proof of Theorem 4.1 of [4], the Huygens property
for u ∈ bp

α derives from an L(α)-harmonicity of u and a local integrability
of a function U(t) =

∫

Rn |u(x, t)|pdx on (0,∞). If u ∈ bp
α(λ), then it is

easy to check that the function U(t) is also locally integrable on (0,∞).
Therefore, u satisfies the Huygens property. �

Remark 3.2. It was known that for u ∈ bp
α the function U(t) =

∫

Rn |u(x, t)|pdx is decreasing on (0,∞) ( see Lemma 5.6 of [4] ). By
Lemma 3.1 and the Minkowski inequality, for any λ > −1 the same
result holds for u ∈ bp

α(λ).
When λ = 0, the following lemma is Proposition 5.2 of [4].

Lemma 3.3. Let 0 < α ≤ 1, 1 ≤ p < ∞ and λ > −1. Then there

exists a constant C > 0 such that

|u(x, t)| ≤ Ct−( n
2α

+λ+1) 1
p

(
∫

H

|u(y, s)|psλdV (y, s)

)
1
p

for all (x, t) ∈ H and u ∈ bp
α(λ).

Proof. Since the proof of Lemma 3.3 is analogous to that of
Proposition 5.2 of [4], we describe the outline of the proof. For fixed
0 < a1 < a2 < 1, Lemma 3.1 implies that

u(x, t) =
1

(a2 − a1)t

∫ a2t

a1t

∫

Rn

u(y, t − s)W (α)(x − y, s)dyds.



398 M. Yamada

Then, using the Jensen inequality and (2.5), we have

|u(x, t)|

≤ Ct−( n
2α

+1) 1
p

(
∫ a2t

a1t

∫

Rn

|u(y, t − s)|pdyds

)

1
p

= Ct−( n
2α

+1) 1
p

(
∫ a2t

a1t

(t − s)−λ(t − s)λ

∫

Rn

|u(y, t − s)|pdyds

)

1
p

≤ Ct−( n
2α

+λ+1) 1
p

(
∫ a2t

a1t

(t − s)λ

∫

Rn

|u(y, t − s)|pdyds

)

1
p

,

because (1 − a2)t < t − s < (1 − a1)t whenever a1t < s < a2t. Hence,
we obtain

|u(x, t)| ≤ Ct−( n
2α

+λ+1) 1
p

(
∫ ∞

0

sλ

∫

Rn

|u(y, s)|pdyds

)
1
p

.

�

By Lemma 3.1, u ∈ bp
α(λ) is in C∞(H). Thus, as in the proof of

Lemma 3.3, we have the following lemma, which is Theorem 5.4 of [4]
when λ = 0.

Lemma 3.4. Let 0 < α ≤ 1, 1 ≤ p < ∞ and λ > −1. If β ∈ N
n
0 is

a multi-index and k ∈ N0, then there exists a constant C > 0 such that

|∂β
x∂k

t u(x, t)| ≤ Ct−( |β|
2α

+k)−( n
2α

+λ+1) 1
p

(
∫

H

|u(y, s)|psλdV (y, s)

)
1
p

for all (x, t) ∈ H and u ∈ bp
α(λ).

For δ > 0 and a function u on H , we write uδ(x, t) = u(x, t+δ). We
note that if u ∈ bp

α(λ) then uδ ∈ bp
α(λ) for all δ > 0. In fact, if u ∈ bp

α(λ),
then

∫ ∞

1

tλ
∫

Rn

|u(x, t + δ)|pdxdt

≤ C

∫ ∞

1

(t + δ)λ

∫

Rn

|u(x, t + δ)|pdxdt

≤ C

∫

H

|u(x, t)|ptλdV.
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Moreover, Remark 3.2 implies that

∫ 1

0

tλ
∫

Rn

|u(x, t + δ)|pdxdt ≤ U(δ)

∫ 1

0

tλdt < ∞.

Hence, we have uδ ∈ bp
α(λ).

When λ = 0, the following lemma is Lemma 6.6 of [4].

Lemma 3.5. Let 0 < α ≤ 1, 1 ≤ p < ∞ and λ > −1. If u ∈ bp
α(λ)

and (y, s) ∈ H, then

(3.1)

uδ(y, s) = −2cm+j

∫

H

∂m
t uδ(x, t) tm+j∂j+1

t W (α)(x − y, t + s)dV (x, t)

for all m, j ∈ N0 and δ > 0.
Proof. The proof of Lemma 3.5 is analogous to that of Lemma 6.6

of [4]. We only show that the integral (3.1) is well defined. By Lemma
3.4, there exist constants C > 0 and 0 < ε < 1 such that

|∂m
t uδ(x, t)| ≤ C(t + δ)−m−( n

2α
+λ+1) 1

p ≤ Ct−m−ε δε−( n
2α

+λ+1) 1
p .

Therefore, we have

|∂m
t uδ(x, t)tm+j∂j+1

t W (α)(x− y, t+ s)| ≤ Ctj−ε|∂j+1
t W (α)(x− y, t+ s)|.

Hence, Lemma 2.1 implies that ∂m
t uδ(x, t)tm+j∂j+1

t W (α)(x− y, t + s) ∈
L1(H, dV ). �

Theorem 3.6. Let 0 < α ≤ 1, 1 ≤ p < ∞, and λ > −1. If γ > −1
and non-negative integers `, m satisfy

(3.2) γ + (` − m)p > −1,

then there exists a constant C > 0 such that

(3.3)

∫

H

tγ+(`−m)p|∂`
t uδ|

pdV ≤ C

∫

H

tγ |∂m
t uδ|

pdV

for all u ∈ bp
α(λ) and δ > 0.

Proof. Suppose that p > 1, and let q be the exponent conjugate
to p. By (3.2), we can choose a constant η > 0 such that

(3.4) γ + (` − m)p −
p

q
η > −1

Moreover, let j be a non-negative integer such that

(3.5) − η + ` + j > −1
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and

(3.6) ` + j > γ + (` − m)p −
p

q
η.

Since, as in the proof of Lemma 3.5, there exist constants C > 0 and
0 < ε < 1 such that

|∂m
t uδ(x, t)tm+j∂`+j+1

t W (α)(x − y, t + s)|

≤ Ctj−ε|∂`+j+1
t W (α)(x − y, t + s)|,

Lemma 2.1 implies that

∂m
t uδ(x, t)tm+j∂`+j+1

t W (α)(x − y, t + s) ∈ L1(H, dV ).

Therefore, by Lemma 3.5 we have
(3.7)

∂`
suδ(y, s) = −2cm+j

∫

H

∂m
t uδ(x, t) tm+j∂`+j+1

t W (α)(x−y, t+s)dV (x, t).

As in the proof of Theorem 2.5, the Hölder inequality implies that there
exists a constant C > 0 such that

|∂`
suδ(y, s)|p

≤ C

(
∫

H

t−η+`+j |∂`+j+1
t W (α)(x − y, t + s)|dV (x, t)

)

p
q

×

∫

H

|∂m
t uδ(x, t)|pt

p(η+m−`)
q

+m+j |∂`+j+1
t W (α)(x − y, t + s)|dV (x, t).

By (3.5), Lemma 2.1 and the Fubini theorem imply that
∫

H

sγ+(`−m)p|∂`
suδ(y, s)|pdV (y, s)

≤ C

∫

H

sγ+(`−m)p−p
q

η

∫

H

|∂m
t uδ(x, t)|pt

p(η+m−`)
q

+m+j

×|∂`+j+1
t W (α)(x − y, t + s)|dV (x, t)dV (y, s)

= C

∫

H

|∂m
t uδ(x, t)|pt

p(η+m−`)
q

+m+j

×

∫

H

sγ+(`−m)p−p
q

η|∂`+j+1
t W (α)(x − y, t + s)|dV (y, s)dV (x, t).

By (3.4) and (3.6), Lemma 2.1 also implies that
∫

H

sγ+(`−m)p−p
q

η |∂`+j+1
t W (α)(x − y, t + s)|dV (y, s)

≤ Ctγ+(`−m)p−p
q

η−(`+j).
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Hence, we obtain

∫

H

sγ+(`−m)p|∂`
suδ(y, s)|pdV (y, s) ≤ C

∫

H

tγ |∂m
t uδ(x, t)|pdV (x, t).

We suppose that p = 1. Then, using (3.7) and the Fubini theorem,
we have

∫

H

sγ+`−m|∂`
suδ(y, s)|dV (y, s)

≤ C

∫

H

|∂m
t uδ(x, t)|tm+j

×

∫

H

sγ+`−m|∂`+j+1
t W (α)(x − y, t + s)|dV (y, s)dV (x, t).

Since we can choose a non-negative integer j such that γ − m − j < 0,
Lemma 2.1 implies that

∫

H

sγ+`−m|∂`+j+1
t W (α)(x − y, t + s)|dV (y, s) ≤ Ctγ−m−j .

Hence, we have the theorem. �

For a function u ∈ Lp(H, tλdV ), define ‖ u ‖p,λ= (
∫

H
|u|ptλdV )1/p.

We have the following inequalities.

Corollary 3.7. Let 0 < α ≤ 1, 1 ≤ p < ∞, and λ > −1. Then,

there exists a constant C > 0 such that

(3.8) C−1 ‖ uδ ‖p,λ≤‖ t`∂`
tuδ ‖p,λ≤ C ‖ uδ ‖p,λ

for all u ∈ bp
α(λ), δ > 0, and ` ∈ N0.

4. Uniqueness of L(α)-harmonic conjugates

In this section, we show that L(α)-harmonic conjugates of u ∈ bp
α

are unique whenever λ = p( 1
2α − 1) > −1.

Theorem 4.1. Let 0 < α ≤ 1 and 1 ≤ p < ∞. If λ = p( 1
2α −

1) > −1 and u ∈ bp
α, then there exist unique L(α)-harmonic conjugates

v1, . . . , vn of u on H such that vj ∈ bp
α(λ).

Proof. By Proposition 2.3 and Theorem 2.5, it suffices to prove
the uniqueness of L(α)-harmonic conjugates of u ∈ bp

α that belong to
bp
α(λ).
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Suppose that u1, . . . , un are also L(α)-harmonic conjugates of u such
that uj ∈ bp

α(λ). Take arbitrary δ > 0. Then by Corollary 3.7, there
exists a constant C > 0 such that

(4.1) ‖ t
1
2α

−1(vj − uj)δ ‖p≤ C ‖ t
1
2α ∂t(vj − uj)δ ‖p .

By the hypothesis and the definition of L(α)-harmonic conjugates, we
have

∂t(vj − uj)δ = ∂xj
uδ − ∂xj

uδ ≡ 0.

Therefore, (4.1) and the continuity of vj − uj imply that vj(x, t + δ) =
uj(x, t+ δ) for all (x, t) ∈ H . Since δ > 0 is arbitrary, we obtain vj = uj

as desired. �
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On the behavior at infinity for non-negative

superharmonic functions in a cone

Minoru Yanagishita

Abstract.

This paper shows that a positive superharmonic function on a
cone behaves regularly outside an a-minimally thin set in a cone.
This fact is known for a half space which is a special cone.

§1. Introduction

Let R and R+ be the set of all real numbers and the set of all
positive real numbers, respectively. We denote by Rn (n ≥ 2) the n-
dimensional Euclidean space. A point in Rn is denoted by P = (X, y),
X = (x1, x2, . . . , xn−1). The Euclidean distance of two points P and Q
in Rn is denoted by |P − Q|. Also |P − O| with the origin O of Rn is
simply denoted by |P |. The boundary and the closure of a set S in Rn

are denoted by ∂S and S̄, respectively.
We introduce spherical coordinates (r, Θ), Θ = (θ1, θ2, . . . , θn−1), in

Rn which are related to cartesian coordinates (x1, x2, . . . , xn−1, y) by

x1 = r(Πn−1
j=1 sin θj) (n ≥ 2), y = r cos θ1,

and if n ≥ 3, then

xn+1−k = r(Πk−1
j=1 sin θj) cos θk (2 ≤ k ≤ n − 1),

where 0 ≤ r < +∞, − 1
2π ≤ θn−1 < 3

2π, and if n ≥ 3, then 0 ≤ θj ≤
π (1 ≤ j ≤ n − 2).

The unit sphere and the upper half unit sphere are denoted by Sn−1

and Sn−1
+ , respectively. For simplicity, a point (1, Θ) on Sn−1 and the
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2000 Mathematics Subject Classification. Primary 31B05; Secondary

31B20.
Key words and phrases. cone, superharmonic functions, a-minimally thin

sets.
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set {Θ; (1, Θ) ∈ Ω} for a set Ω, Ω ⊂ Sn−1, are often identified with
Θ and Ω, respectively. For two sets Λ ⊂ R+ and Ω ⊂ Sn−1, the set
{(r, Θ) ∈ Rn; r ∈ Λ, (1, Θ) ∈ Ω} in Rn is simply denoted by Λ×Ω. In
particular, the half-space R+ × Sn−1

+ = {(X, y) ∈ Rn; y > 0} will be
denoted by Tn. By Cn(Ω), we denote the set R+ × Ω in Rn with the
domain Ω on Sn−1(n ≥ 2) having smooth boundary. We call it a cone.
Then Tn is a special cone obtained by putting Ω = Sn−1

+ .

Let Ω be a domain on Sn−1(n ≥ 2) with smooth boundary. Consider
the Dirichlet problem

(Λn + τ)f = 0 on Ω
f = 0 on ∂Ω,

where Λn is the spherical part of the Laplace operator ∆n

∆n =
n − 1

r

∂

∂r
+

∂2

∂r2
+ r−2Λn.

We denote the least positive eigenvalue of this boundary value problem
by τΩ and the normalized positive eigenfunction corresponding to τΩ by
fΩ(Θ);

∫

Ω f2
Ω(Θ)dσΘ = 1, where dσΘ is the surface element on Sn−1.

We denote the solutions of the equation t2 + (n − 2)t − τΩ = 0 by
αΩ,−βΩ (αΩ, βΩ > 0). If Ω = Sn−1

+ , then αΩ = 1, βΩ = n − 1 and

fΩ(Θ) = (2ns−1
n )1/2 cos θ1, where sn is the surface area 2πn/2{Γ(n/2)}−1

of Sn−1.
In the following, we shall assume that if n ≥ 3, then Ω is a C2,α-

domain (0 < α < 1) on Sn−1 (e.g. see Gilbarg and Trudinger [4] for the
definition of C2,α-domain).

It is known that the Martin boundary of Cn(Ω) is the set ∂Cn(Ω)∪
{∞}, each of which is a minimal Martin boundary point. When we

denote the Martin kernel by K̃(P, Q) (P ∈ Cn(Ω), Q ∈ ∂Cn(Ω) ∪ {∞})
with respect to a reference point chosen suitably, we know

K̃(P,∞) = rαΩfΩ(Θ), K̃(P, O) = κr−βΩfΩ(Θ) (P ∈ Cn(Ω)),

where κ is a positive constant (Yoshida [8, p.292]).
Let u(P ) be a non-negative superharmonic function on Tn, and let

c(u) = infP=(X,y)∈Tn
u(P )/y. Aikawa [1] introduced the notion of a-

minimal thinness (0 ≤ a ≤ 1), which is identical to minimal thinness
when a = 1 and which is identical to rarefiedness when a = 0, and
showed that

(1.1) lim
|P |→∞, P∈Tn\E

u(P ) − c(u)y

ya|P |1−a
= 0,
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with a set E in Tn which is a-minimally thin at ∞. Aikawa also showed
that if E ⊂ Tn is unbounded and a-minimally thin at ∞ in Tn, then
there exists a non-negative superharmonic function u on Tn such that

(1.2) lim
|P |→∞, P∈E

u(P ) − c(u)y

ya|P |1−a
= +∞,

and showed that (1.1) is the best possible as to the size of the exceptional
set. The cases of a = 1 in (1.1) and (1.2) give the result of Lelong-
Ferrand [6, pp. 134-143], and the cases of a = 0 in (1.1) and (1.2) give
the result of Essén and Jackson [3, Theorem 4.6].

For a non-negative superharmonic function in a cone, the results
corresponding to a = 1 of (1.1) and (1.2) are showed by the Fatou
boundary limit theorem for Martin space (Miyamoto and Yoshida [7,
Remark 2]). In detail, for a non-negative superharmonic function u on
Cn(Ω), there exists a set E ⊂ Cn(Ω) which is minimally thin at ∞ such
that

(1.3) lim
|P |→+∞, P∈Cn(Ω)\E

u(P ) − c∞(u)K̃(P,∞)

K̃(P,∞)
= 0,

where we put c∞(u) = infP∈Cn(Ω)
u(P )

K̃(P,∞)
. On the other hand, Miyamoto

and Yoshida [7, Theorem 3] introduced the notion of rarefiedness at ∞
with respect to Cn(Ω), and showed that for a non-negative superhar-
monic function u on Cn(Ω), there exists a set E ⊂ Cn(Ω) which is
rarefied at ∞ such that

(1.4) lim
|P |→+∞, P∈Cn(Ω)\E

u(P ) − c∞(u)K̃(P,∞)

|P |αΩ
= 0.

(1.4) gives the extension of the case a = 0 in (1.1).
From these results, in this paper we shall introduce the notion of

a-mimal thinness (0 ≤ a ≤ 1) at ∞ with respect to a cone and extend
the above results for a cone ((1.3) and (1.4)). We shall also extend the
results (1.1) and (1.2) bacause our main result contains (1.1) and (1.2)
as the case Ω = Sn−1

+ . The results of this paper are proved by modifying
the methods of Aikawa [1] and Essén and Jackson [3].

I would like to thank Professor Ikuko Miyamoto and Professor Hi-
denobu Yoshida for their help in preparing this paper.
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§2. Preliminaries

We denote by G(P, Q) (P ∈ Cn(Ω), Q ∈ Cn(Ω)) the Green function
of Cn(Ω), and let Gµ(P ) =

∫

Cn(Ω) G(P, Q)dµ(Q) be the Green potential

at P ∈ Cn(Ω) of a positive Radon measure µ.
Let Sn(Ω) be the set ∂Cn(Ω)\{O}. Now we shall define the Martin

type kernel K(P, Q) (P = (r, Θ) ∈ Cn(Ω), Q = (t, Φ) ∈ Cn(Ω) ∪ {∞})
as follows:

K(P, Q) =































G(P, Q)

tαΩfΩ(Φ)
on Cn(Ω) × Cn(Ω)

∂G(P, Q)

∂nQ

{

tαΩ−1 ∂

∂nΦ
fΩ(Φ)

}−1

on Cn(Ω) × Sn(Ω)

rαΩfΩ(Θ) on Cn(Ω) × {∞}
κr−βΩfΩ(Θ) on Cn(Ω) × {O},

where ∂/∂nQ denotes the differentiation at Q along the inward nor-
mal into Cn(Ω). We note that KP (Q) = K(P, Q) is continuous in the
extended sence on Cn(Ω) ∪ Sn(Ω). Following Brelot [2, p.31], we let

K∗(P, Q) = K(Q, P ) be the associated kernel of K on (Cn(Ω)∪{∞})×
Cn(Ω).

If µ is a measure on Cn(Ω) ∪ {∞}, we abbreviate
∫

Cn(Ω)∪{∞}

K(P, Q)dµ(Q)

to Kµ(P ) and also
∫

Cn(Ω) K∗(P, Q)dν(Q) to K∗ν(P ) for a measure ν

on Cn(Ω).
Let u be a non-negative superharmonic function on Cn(Ω) and

put cO(u) = infP∈Cn(Ω)
u(P )

K(P,O) . Then from Miyamoto and Yoshida [7,

Lemma 3], we see that there exists a unique measure µu on Cn(Ω)∪{∞}
such that u = Kµu. When we denote by µ′

u the restriction of the mea-
sure µu on Cn(Ω), we have u(P ) = c∞(u)K(P,∞) + cO(u)K(P, O) +
Kµ′

u(P ).
For a number a, 0 ≤ a ≤ 1, we define the positive superharmonic

function ga by ga(P ) = (K(P,∞))a (P ∈ Cn(Ω)).

For a non-negative function v on Cn(Ω) and E ⊂ Cn(Ω), let R̂E
v be

the regularized reduced function of v relative to E (Helms [5, p.116]).
Let E be a bounded subset of Cn(Ω). We define the a-mass of E by

λa
E(Cn(Ω)) for 0 ≤ a ≤ 1, where λa

E is the measure on Cn(Ω) such that

Kλa
E = R̂E

ga
.

Let E ⊂ Cn(Ω) be bounded. Then there exists a unique measure

λE on Cn(Ω) such that R̂E
K̃(·,∞)

= GλE on Cn(Ω). If 0 < a ≤ 1,

then following Yoshida [8, Corollary 5.3] we see the greatest harmonic
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minorant of R̂E
ga

is zero, so that λa
E(∂Cn(Ω)) = 0. Then according to

the proof of Aikawa [1, Lemma 2.1] we can similarly have

(2.1) λa
E(Cn(Ω)) =

∫

Cn(Ω)

gadλE .

In particular λ1
E(Cn(Ω)) =

∫

GλEdλE and λ0
E(Cn(Ω)) = λE(Cn(Ω)).

Let E be a subset of Cn(Ω) and Ek = E ∩ Ik, where

Ik = {P ∈ Cn(Ω); 2k ≤ |P | < 2k+1} (k = 0, 1, 2, . . .).

We say that E ⊂ Cn(Ω) is a-minimally thin at ∞ in Cn(Ω) if

∞
∑

k=0

λa
Ek

(Cn(Ω))2−k(aαΩ+βΩ) < +∞.

Remark 2.1. From Theorems 1 and 2 of Miyamoto and Yoshida [7]
and (2.1), we see that the notion of a-minimal thinness contains the
notions of minimal thinness and rarefiedness.

In the following we set

Cn(Ω; a, b) = {P = (r, Θ) ∈ Cn(Ω); a < r < b} (0 < a < b ≤ +∞),

Sn(Ω; a, b) = {P = (r, Θ) ∈ Sn(Ω); a < r < b} (0 < a < b ≤ +∞).

As far as we are concerned with a-minimal thinness in the following,
we shall restrict a subset E of Cn(Ω) to the set located in Cn(Ω; 1, +∞),
because the part of E separated from ∞ is unessential to a-minimal
thinness.

§3. Statements of results

Let η be a real number satisfying (2 − n) 1
αΩ

− 1 < η ≤ 1. We

define the positive superharmonic function hη on Cn(Ω) by hη(P ) =

K(P,∞)|P |
{(2−n) 1

αΩ
−1−η}αΩ . Since K(P,∞) is a minimal harmonic

function on Cn(Ω), we see that there exists a measure νη on Cn(Ω)
such that Gνη(P ) = min(K(P,∞), hη(P )).

Let Fη be the class of all non-negative superharmonic functions u
on Cn(Ω) such that c∞(u) = 0 and

(3.1)

∫

Cn(Ω;1,+∞)∪Sn(Ω;1,+∞)

|Q|
{(2−n) 1

αΩ
−1−η}αΩdµu(Q) < +∞.
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Remark 3.1. If P ∈ Cn(Ω), then K∗νη(P ) = Gνη(P )/K(P,∞). If
P ∈ Sn(Ω), then K∗νη(P ) = lim infQ→P,Q∈Cn(Ω) K∗νη(Q) (cf. Essén
and Jackson [3, p.240]). Hence for a point P ∈ Cn(Ω) ∪ Sn(Ω), we have

(3.2) K∗νη(P ) =

{

1 for 0 < |P | < 1,

|P |
{(2−n) 1

αΩ
−1−η}αΩ for |P | ≥ 1.

Let u ∈ Fη. From (3.2) we see that (3.1) is equivalent to the following
condition;

∫

Cn(Ω)

{u(P ) − cO(u)K(P, O)}dνη(P ) < +∞.

If u1, u2 ∈ Fη and c is a positive constant, then u1 + u2, cu1 ∈ Fη.
Let v ∈ Fη such that cO(v) = 0, and let u be a non-negative su-

perharmonic function such that cO(u) = 0. Then 0 ≤ u ≤ v on Cn(Ω)
implies u ∈ Fη (cf. Aikawa [1, Lemma 3.1]).

We define the function hη,a(P ) = K(P,∞)a|P |(η−a)αΩ (P ∈ Cn(Ω)).

Theorem 3.1. If u(P ) ∈ Fη, then there exists a set E ⊂ Cn(Ω)
which is a-minimally thin at ∞ with respect to Cn(Ω) such that

lim
|P |→+∞, P∈Cn(Ω)\E

u(P )

hη,a(P )
= 0.

Conversely, if E is unbounded and a-minimally thin at ∞ with respect

to Cn(Ω), then there exists u(P ) ∈ Fη such that

lim
|P |→+∞, P∈E

u(P )

hη,a(P )
= +∞.

When Ω = Sn−1
+ , we obtain the result of Aikawa [1, Theorem 3.2].

Let u(P ) be a non-negative superharmonic function on Cn(Ω). Since
u1(P ) = u(P ) − c∞(u)K(P,∞) belongs to F1, we obtain the following
Corollary 3.1 by applying Theorem 3.1 of the case η = 1 to u1.

Corollary 3.1. Let u(P ) be a non-negative superharmonic function

on Cn(Ω). Then there exists a set E ⊂ Cn(Ω) which is a-minimally thin

at ∞ with respect to Cn(Ω) such that

lim
|P |→+∞, P∈Cn(Ω)\E

u(P ) − c∞(u)K(P,∞)

K(P,∞)a|P |(1−a)αΩ
= 0.

Conversely, if E is unbounded and a-minimally thin at ∞ with respect

to Cn(Ω), then there exists a non-negative superharmonic function u(P )
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such that

lim
|P |→+∞, P∈E

u(P ) − c∞(u)K(P,∞)

K(P,∞)a|P |(1−a)αΩ
= +∞.

The case a = 0 in Corollary 3.1 gives the result of Miyamoto and
Yoshida [7, Theorem 3].

§4. Proof of Theorem 3.1

We remark that

G(P, Q) ≤ M1r
αΩ t−βΩfΩ(Θ)fΩ(Φ)(4.1)

(resp. G(P, Q) ≤ M2t
αΩr−βΩfΩ(Θ)fΩ(Φ))(4.2)

for any P = (r, Θ) ∈ Cn(Ω) and any Q = (t, Φ) ∈ Cn(Ω) satisfying
0 < r

t ≤ 1
2 (resp. 0 < t

r ≤ 1
2 ), where M1 (resp. M2) is a positive

constant. From (4.1) and (4.2) we have the following inequalities:

∂G(P, Q)

∂nQ
≤ M3r

αΩ t−βΩ−1fΩ(Θ)
∂

∂nΦ
fΩ(Φ)(4.3)

(resp.
∂G(P, Q)

∂nQ
≤ M4t

αΩ−1r−βΩfΩ(Θ)
∂

∂nΦ
fΩ(Φ))(4.4)

for any P = (r, Θ) ∈ Cn(Ω) and any Q = (t, Φ) ∈ Sn(Ω) satisfying
0 < r

t ≤ 1
2 (resp. 0 < t

r ≤ 1
2 ), where M3 (resp. M4) is a positive

constant and ∂/∂nΦ denotes the differntiation at Φ ∈ ∂Ω along the
inward normal into Ω (Miyamoto and Yoshida [7]).

For two positive functions u and v, we shall write u ≈ v if and only
if there exist constants A, B, 0 < A ≤ B, such that Av ≤ u ≤ Bv
everywhere on Cn(Ω).

Lemma 4.1. E ⊂ Cn(Ω; 1, +∞) is a-minimally thin at ∞ if and

only if
∑∞

k=0 R̂Ek

hη,a
∈ Fη.

Proof. We note that for every k = 0, 1, 2, . . .,

R̂Ek
ga

≈ 2−k(η−a)αΩR̂Ek

hη,a
,

λa
Ek

(Cn(Ω)) ≈ 2
−k{(2−n) 1

αΩ
−1−η}αΩ

∫

Cn(Ω)∪Sn(Ω)

|Q|
{(2−n) 1

αΩ
−1−η}αΩdλa

Ek
(Q),
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where the constants of comparison are independent of k. Since
∫

Cn(Ω)

R̂Ek
ga

(P )dνη(P ) =

∫

Cn(Ω)

Kλa
Ek

(P )dνη(P )

=

∫

Cn(Ω)∪Sn(Ω)

K∗νη(Q)dλa
Ek

(Q) =

∫

Cn(Ω)∪Sn(Ω)

|Q|
{(2−n) 1

αΩ
−1−η}αΩdλa

Ek
(Q),

we have 2k(−aαΩ−βΩ)λa
Ek

(Cn(Ω)) ≈
∫

Cn(Ω)
R̂Ek

hη,a
(P )dνη(P ) where the

constants of comparison are independent of k, which gives the conclu-
sion. �

Lemma 4.2. Let E be a set in Cn(Ω; 1, +∞). If R̂E
hη,a

∈ Fη, then

E is a-minimally thin at ∞.

Proof. Since hη,a(P ) satisfies

lim inf
|P |→∞

hη,a(P )

K(P,∞)|P |(η−1)αΩ
> 0,

we find a positive constant C ′ and a natural number N1 such that
hη,a(P ) ≥ C ′K(P,∞)|P |(η−1)αΩ for |P | > 2N1 . Let C1 = M1/C ′, C2 =
M2/C ′, C3 = M3/C ′ and C4 = M4/C ′. And put C = max1≤i≤4{Ci}.

Let R̂E
hη,a

= Kµ, where µ satisfies (3.1). Noting (3.1), we put

A =
∫

Cn(Ω;1,+∞)∪Sn(Ω;1,+∞)
|Q|

{(2−n) 1
αΩ

−1−η}αΩdµ(Q) < +∞. We take

a natural number N2 such that 4AC < 2
−N2{(2−n) 1

αΩ
−1−η}αΩ . Then

there exists a natural number k0 such that

C

∫

{Q∈Cn(Ω)∪Sn(Ω); |Q|≥2k+N2+1}

|Q|
{(2−n) 1

αΩ
−1−η}αΩdµ(Q) <

1

4

for k ≥ k0. Let N = max{N1, N2, k0}. Hence it is sufficient to prove
∑

k>N R̂Ek

hη,a
∈ Fη beacause

∑N
k=0 R̂Ek

hη,a
≤ (N + 1)R̂E

hη,a
∈ Fη . We set

Jk = Ik−N2 ∪ · · · ∪ Ik ∪ · · · ∪ Ik+N2 . Let k > N and let P = (r, Θ) ∈ Ek.
If Q ∈ Cn(Ω) and |Q| ≤ 2k−N2 , then from (4.2) we have

K(P, Q) =
G(P, Q)

tαΩfΩ(Φ)
≤ M2r

−βΩfΩ(Θ).

Hence
∫

{Q∈Cn(Ω); |Q|≤2k−N2}

K(P, Q)dµ(Q) ≤ C2hη,a(P )r−(ηαΩ+βΩ)

∫

1≤|Q|≤2k−N2

dµ(Q)

≤ C2hη,a(P )

∫

1≤|Q|≤2k−N2

|P |
{(2−n) 1

αΩ
−1−η}αΩdµ(Q).
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On the other hand, if Q ∈ Cn(Ω) and |Q| ≥ 2k+N2+1, then from (4.1)
we have

∫

{Q∈Cn(Ω); |Q|≥2k+N2+1}

K(P, Q)dµ(Q) ≤ C1hη,a(P )r−(η−1)αΩ

∫

|Q|≥2k+N2+1

|Q|−(αΩ+βΩ)dµ(Q)

≤ C1hη,a(P )

∫

|Q|≥2k+N2+1

|Q|
{(2−n) 1

αΩ
−1−η}αΩdµ(Q).

If Q ∈ Sn(Ω) and |Q| ≤ 2k−N2 or Q ∈ Sn(Ω) and |Q| ≥ 2k+N2+1, then
from (4.4) or (4.3) we have similar inequalities. From these inequalities,
we have

C−1

∫

Cn(Ω)\J̄k

K(P, Q)dµ(Q) ≤ hη,a(P )

∫

|Q|≤2k−N2

|P |
{(2−n) 1

αΩ
−1−η}αΩdµ(Q)

+hη,a(P )

∫

|Q|≥2k+N2+1

|Q|
{(2−n) 1

αΩ
−1−η}αΩdµ(Q).

Since 4AC < 2
−N2{(2−n) 1

αΩ
−1−η}αΩ , we see that

C

∫

|Q|≤2k−N2

|P |
{(2−n) 1

αΩ
−1−η}αΩdµ(Q) ≤

1

4A

∫

|Q|≤2k−N2

(

|P |

2N2

){(2−n) 1
αΩ

−1−η}αΩ

dµ(Q)

≤
1

4A

∫

|Q|≤2k−N2

|Q|
{(2−n) 1

αΩ
−1−η}αΩdµ(Q) ≤

1

4
.

So we have
∫

Cn(Ω)\J̄k
K(P, Q)dµ(Q) ≤ 1

2hη,a(P ) on Ek, which implies

that

hη,a(P ) ≤ R̂E
hη,a

(P ) ≤

∫

J̄k

K(P, Q)dµ(Q) +
1

2
hη,a(P )

q.e. on Ek. Hence hη,a(P ) ≤ 2
∫

J̄k
K(P, Q)dµ(Q) q.e. on Ek. Therefore

R̂Ek

hη,a
(P ) ≤ 2

∫

Jk
K(P, Q)dµ(Q) on Cn(Ω), by the definition of R̂Ek

hη,a
. If

we sum up R̂Ek

hη,a
over k > N , we obtain

∑∞
k>N R̂Ek

hη,a
≤ 2(2N2+1)R̂E

hη,a
.

By Remark 3.1 we see
∑

k>N R̂Ek

hη,a
∈ Fη. Thus the lemma follows from

Lemma 4.1. �

Proof of Theorem 3.1. Let u1(P ) = u(P ) − cO(u)K(P, O) (P ∈
Cn(Ω)), then we see u1 ∈ Fη. For each non-negative integer j, we set

Aj = {P ∈ Cn(Ω; 1, +∞); u1(P )/hη,a(P ) ≥ (j + 1)−1}. Since R̂
Aj

hη,a
≤
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(j + 1)u1 ∈ Fη, we see from Remark 3.1 that R̂
Aj

hη,a
∈ Fη, and then Aj

is a-minimally thin by Lemma 4.2. Following Aikawa [1, Lemma 3.4],
we can similarly find an increasing sequence {m(j)} of natural numbers

such that
∑

j R̂
∪k≥m(j)(Aj∩Ik)

hη,a
∈ Fη. Set ∪∞

j=0 ∪k≥m(j) (Aj ∩ Ik) = E.

Since R̂E
hη,a

≤
∑

j R̂
∪k≥m(j)(Aj∩Ik)

hη,a
, E is a-minimally thin by Lemma 4.2.

If P /∈ E, then P /∈ ∪k≥m(j)(Aj ∩ Ik) for every j. It follows that if

|P | ≥ 2m(j), then P /∈ Aj . This implies that u1(P )/hη,a(P ) < (j +1)−1.
Hence we have u1(P )/hη,a(P ) → 0 as |P | → ∞, P ∈ Cn(Ω) \E. On the

other hand, we see K(P, O)/hη,a(P ) = κr
{(2−n) 1

αΩ
−1−η}αΩfΩ(Θ)1−a →

0 as |P | → ∞. Thus we have

u(P )

hη,a(P )
=

u1(P ) + cO(u)K(P, O)

hη,a(P )
→ 0 (|P | → ∞, P ∈ Cn(Ω) \ E).

For the converse we take an unbounded and a-minimally thin set
E. As in the proof of Aikawa [1, Lemma 2.4 (iv)], we see that if U

is bounded, then λa
U (Cn(Ω)) = inf{λa

O(Cn(Ω)); U ⊂ O, O is open}.
By applying the above property to Ek (k = 0, 1, 2, . . . , ), we obtain
an open set O ⊃ E such that O is a-minimally thin. By Lemma
4.1 we have

∑∞
k=0 R̂Ok

hη,a
(P ) ∈ Fη, where Ok = O ∩ Ik , which implies

∑

k

∫

R̂Ok

hη,a
(P )dνη(P ) < +∞. We find an increasing sequence {ck} of

positive numbers such that ck ↗ ∞ and
∑

k ck

∫

R̂Ok

hη,a
(P )dνη(P ) <

+∞. Set u(P ) =
∑∞

k=0 ckR̂Ok

hη,a
(P ). By Lebesgue’s monotone conver-

gence theorem, we see that u ∈ Fη . Since Ok is included in the interior
of Ok−1 ∪ Ok,

R̂
Ok−1

hη,a
(P ) + R̂Ok

hη,a
(P ) ≥ R̂

Ok−1∪Ok

hη,a
(P ) ≥ hη,a(P )

for P ∈ Ok. Hence, if P ∈ Ek ⊂ Ok, then

u(P ) ≥ ck−1R̂
Ok−1

hη,a
(P ) + ckR̂Ok

hη,a
(P ) ≥ ck−1hη,a(P ).

Therefore

lim
|P |→+∞, P∈E

u(P )

hη,a(P )
= +∞.
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