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§0. Introduction

Let X be a smooth projective variety over C. Let o := {a;;i €
HO(U;NU; NU, 0%)} be a 2-cocycle representing a torsion class [a] €
H?(X,0%). An a-twisted sheaf E := {(E;, ¢ij)} is a collection of
sheaves E; on U; and isomorphisms ¢;; : Ejju,nu; — Ejju,nu; such that
Yii — idEi, Pii = QO;jl and Pki © Pjk © Pij = Qjk 1dEZ We assume that
there is a locally free a-twisted sheaf, that is, a gives an element of the
Brauer group Br(X). A twisted sheaf naturally appears if we consider a
non-fine moduli space M of the usual stable sheaves on X. Indeed the
transition functions of the local universal families satisfy the patching
condition up to the multiplication by constants and gives a twisted sheaf.
If the patching condition is satisfied, i.e., the moduli space M is fine,
than the universal family defines an integral functor on the bounded de-
rived categories of coherent sheaves D(M) — D(X). Assume that X is
a K3 surface and dim M = dim X. Then Mukai, Orlov and Bridgeland
showed that the integral functor is the Fourier-Mukai functor, i.e., it is
an equivalence of the categories. In his thesis [C2], Caldararu studied
the category of twisted sheaves and its bounded derived category. In
particular, he generalized Mukai, Orlov and Bridgeland’s results on the
Fourier-Mukai transforms to non-fine moduli spaces on a K3 surface.
For the usual derived category, Orlov [Or| showed that the equivalence
class is described in terms of the Hodge structure of the Mukai lattice.
Caldararu conjectured that a similar result also holds for the derived
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category of twisted sheaves. Recently this conjecture was modified and
proved by Huybrechts and Stellari, if p(X) > 12 in [H-St]. As is well-
known, twisted sheaves also appear if we consider a projective bundle
over X.

In this paper, we define a notion of the stability for a twisted sheaf
and construct the moduli space of stable twisted sheaves on X. We also
construct a projective compactification of the moduli space by adding
the S-equivalence classes of semi-stable twisted sheaves. In particular if
HY(X,0x) =0 (e.g. X is a K3 surface), then the moduli space of lo-
cally free twisted sheaves is the moduli space of projective bundles over
X. Thus we compactify the moduli space of projective bundles by using
twisted sheaves. The idea of the construction is as follows. We consider
a twisted sheaf as a usual sheaf on the Brauer-Severi variety. Instead
of using the Hilbert polynomial associated to an ample line bundle on
the Brauer-Severi variety, we use the Hilbert polynomial associated to
a line bundle coming from X in order to define the stability. Then the
construction is a modification of Simpson’s construction of the moduli
space of usual sheaves (cf. [Y3]). M. Lieblich informed us that our
stability condition coincides with Simpson’s stability for modules over
the associated Azumaya algebra via Morita equivalence. Hence the con-
struction also follows from Simpson’s moduli space [S, Thm. 4.7] and
the valuative criterion for properness.

In section 3, we consider the moduli space of twisted sheaves on a K3
surface. We generalize known results on the moduli space of usual stable
sheaves to the moduli spaces of twisted stable sheaves (cf. [Mu2], [Y1]).
In particular, we consider the non-emptyness, the deformation type and
the weight 2 Hodge structure. Then we can consider twisted version
of the Fourier-Mukai transform by using 2 dimensional moduli spaces,
which is done in section 4. As an application of our results, Huybrechts
and Stellari prove Caldararu’s conjecture generally (see Appendix).

Since our main example of twisted sheaves are those on K3 surfaces
or abelian surfaces, we consider twisted sheaves over C. But some of the
results (e.g., subsection 2.2) also hold over any field.

E. Markman and D. Huybrechts communicated to the author that
M. Lieblich independently constructed the moduli of twisted sheaves.
In his paper [Li], Lieblich developed a general theory of twisted sheaves
in terms of algebraic stack and constructed the moduli space intrinsic
way. He also studied the moduli spaces of twisted sheaves on surfaces.
There are also some overlap with a paper by N. Hoffmann and U. Stuh-
ler [Ho-St]. They also constructed the moduli space of rank 1 twisted
sheaves and studied the symplectic structure of the moduli space.
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1. Twisted sheaves

Notation: For a locally free sheaf E on a variety X, P(F) — X

denotes the projective bundle in the sense of Grothendieck, that is,
P(E) = Proj(D,—, S™(E)).

Let X be a smooth projective variety over C. Let o := {a;;; €
H(U;NU; NU, O%)} be a 2-cocycle representing a torsion class [a] €
H?(X,0%). An a-twisted sheaf E := {(E;,¢;;)} is a collection of
sheaves F; on U; and isomorphisms ¢;; : Eju,nv; — Eju.nu; such
that Yii — idEi; Pii = (pi_jl and Pki © Pjk © Pij = Q45 ldEz If all Ei are
coherent, then we say that F is coherent. Let Coh(X, a) be the category
of coherent a-twisted sheaves on X.

If E; are locally free for all i, then we can glue P(EY) together
and get a projective bundle p : Y — X with §([Y]) = [a], where
Y] € HY (X, PGL(r)) is the corresponding cohomology class of Y and
§ : HY(X,PGL(r)) — H?*(X,0%) is the connecting homomorphism
induced by the exact sequence

1— O% — GL(r) —» PGL(r) — 1.

Thus [a] belongs to the Brauer group Br(X). If X is a smooth projective
surface, then Br(X) coincides with the torsion part of H*(X,O%). Let
Op(py)(Ai) be the tautological line bundle on P(Ey). Then, ;; induces
an iSOHlOI“phiSHl 61'3' : O]P’(E;/)()‘i)ko—l(UiﬁUj) — O]P’(Ejv)()\j)|p—1(UiﬁUj)-
L(p*(a™)) := {(Opey)(Ni), $ij)} is an p*(a~")-twisted line bundle on
Y.

1.1. Sheaves on a projective bundle

In this subsection, we shall interpret twisted sheaves as usual sheaves
on a Brauer-Severi variety. Let p: Y — X be a projective bundle. Let
X = U;U; be an analytic open covering of X such that p~}(U;) =
U; x Pr=L. We set Y; := p~1(U;). We fix a collection of tautological line
bundles Oy, (A\;) on Y; and isomorphisms ¢;; : Oy;ny; (Aj) — Oviny; (Ai).
We set G; := p«(Oy,(\;))Y. Then G; are vector bundles on U; and
p*(Gi)(\;) defines a vector bundle G of rank  on Y. We have the Euler
sequence

0—-0y -G —Ty/x — 0.
Thus G is a non-trivial extension of Ty, x by Oy .
Lemma 1.1. Eth(Ty/X,OY) = C. Thus G is characterized as a

non-triwvial extension of Ty,x by Oy. In particular, G does not depend
on the choice of the local trivialization of p.
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Proof. Since Rp.(GY) = 0, the Euler sequence inplies that
Eth(Ty/X, OY) = HO(Y, Oy) =~ C.
Q.E.D.

Definition 1.1. For a projective bundle p: Y — X, let €(Y)(:= G)
be a vector bundle on Y which is a non-trivial extension

0— Oy —e(Y)—Ty,x — 0.

By the exact sequence 0 — p, — SL(r) — PGL(r) — 1, we have
a connecting homomorphism & : HY(X, PGL(r)) — H*(X,p,). Let
o: H*(X,u,) — H?*(X,0%) be the homomorphism induced by the
inclusion p, < O%. Then we have d =004’

Definition 1.2. For a P"~!-bundle p : Y — X corresponding to
Y] € HY(X, PGL(r)), we set w(Y) := &'([Y]) € H*(X, pi-).

Lemma 1.2 ([C1],[H-Sc]). Ifp:Y — X is a P""'-bundle associated
to a vector bundle E on X, i.e., Y =P(EY), then

w(Y) = [c1(E) mod r].

Lemma 1.3. [c1(G) mod r] = p*(w(Y)) € HA(Y, u,).

Proof. There is a line bundle L on Y X x Y such that Liyixy, v, =
pi(Oy,(=\;)) @ p3(Oy, (\;)), where p; : Y xx Y — Y, i =1,2 are i-th
projections. By the definition of G, p1«(L) 2 GY. Hence p; : Y Xxx Y —
Y is the projective bundle P(GY) — Y. Then we get

—[c1(GY) mod r] = w(Y xxY) = p*(w(Y)).
Q.E.D.

Lemma 1.4. Letp:Y — X be a P"~'-bundle. Then the following
conditions are equivalent.

(1) Y =P(EY) for a vector bundle on X.
(2) w(Y) e NS(X) ® .
(3)  There is a line bundle L on'Y such that Ljp—1(z) = Op-1(4)(1).

Proof. (2) = (3): If w(Y) = [D mod ], D € NS(X), then
c1(e(Y)) —p*(D) = 0 mod r. We take a line bundle L on Y with
c1(e(Y)) — p*(D) = rer(L). (3) = (1): We set EY := p,(L). Then
Y = P(EY). Q.E.D.
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Definition 1.3. Coh(X,Y") is a subcategory of Coh(Y') such that
E € Coh(X,Y) if and only if

By, 2 p*(E;) @ Oy, (\i)
for F; € Coh(U;). For simplicity, we call E € Coh(X,Y) a Y-sheaf.

By this definition, {(U;, E;)} gives a twisted sheaf on X. Thus we
have an equivalence

ALE™(@™D) . Coh(X,Y) Coh(X, )

1.1 =
(1.1) E — p(E®LY),

where L(p*(a™1)) := {(Oy, (M), ¢i;)} is a twisted line bundle on Y and
a1, 1oy, (n) = Ori © Bk © dij.
We have the following relations:
p(GY @ E)jy, =p«(p"(G{') ® Oy, (=) ® p"(Ei) ® Oy, (Ai))
=p.p* (G} ® Ei) = G} ® E,

P« (E)ju; =p«(p"(Ei) ® Oy, (A))
=E; ® p:(Oy; (M) = G ® E;.
Lemma 1.5. A coherent sheaf E on'Y belongs to Coh(X,Y") if and

only if ¢ : p*p«.(GY ® E) — GV ® E is an isomorphism. In particular
E € Coh(X,Y) is an open condition.

Proof. ¢y, is the homomorphism
P*GY @ p'p(E(=N)) = p"G{ @ E(=Ny).

Hence ¢y, is an isomorphism if and only if p*p.(E(—X;)) — E(—X;) is
an isomorphism, which is equivalent to £ € Coh(X,Y). Q.E.D.

Lemma 1.6. Assume that H3(X,Z)or = 0. Then H*(Y,Z) =
H*(X,Z)[x]/(f(x)), where f(x) € H*(X,Z)[z] is a monic polynomial of
degree r. In particular, H*(X,7) ® . — H?*(Y,7Z) @ u,+ is injective for
all r'.

Proof. R®p.7Z is a local system of rank 1. Since ¢;(Ky,x) is a
section of this local system, R?p,Z = Z. Let h be the generator. Then
R?'p,7 = Zh'. Since H3(X,Z)tor = 0, by the Leray spectral sequence,
we get a surjective homomorphism H?(Y,Z) — HY(X, R*p.Z). Let
r € H3(Y,Z) be alifting of h. Then z? is a lifting of h* € H(X, R*p,Z).
Therefore the Leray-Hirsch theorem implies that

H*(Y,Z) = H*(X, Z)[x]/(f(x)).
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Q.E.D.

Lemma 1.7. Assume that o(w(Y)) = o(w(Y")).
(i)  Then there is a line bundle L on' Y’ xx Y such that

L1 (@) xp=1() = Opr=1(2) (1) W Op-1(5) (1)

forallxz € X. If L' € Pic(Y' xxY') also satisfies the property,
then L' = L ® ¢*(P), P € Pic(X), where ¢ : Y' xx Y — X is
the projection.

(i) We have an equivalence

=L ¢ Coh(X,Y) — Coh*(X,Y’)
E = py('y(E)®© L),

where py: : Y/ xxY — Y and py 1 Y xxY — Y are
projections.

Remark 1.1. We also see that E is a Y-sheaf if and only if p'y (E) ®
L = p3,(E’) for a sheaf E' on Y”.

Definition 1.4. Assume that H3(X,Z)s, = 0. For a Y-sheaf E of
rank ', [e1(E) mod r'] € H?(Y, j1,+) belongs to p*(H?(X, ji,+)). We set

w(B) = (") N([er(E) mod ') € HA(X, i),
By Lemmas 1.3 and 1.7, we see that
Lemma 1.8. (i) By the functor ZL_ ., in Lemma 1.7,
w(ZL . (E)) = w(E), for E € Coh(X,Y).
(i) w(ey)) =w(Y).

§2. Moduli of twisted sheaves

2.1. Definition of the stability

Let (X,0x(1)) be a pair of a projective scheme X and an ample
line bundle Ox (1) on X. Let p: Y — X be a projective bundle over X.

Definition 2.1. A Y-sheaf E is of dimension d, if p,(FE) is of di-
mension d.

For a coherent sheaf F' of dimension d on X, we define a;(F) € Z
by the coefficient of the Hilbert polynomial of F"

nmw=imm@*ﬁ
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Let G be a locally free Y-sheaf. For a Y-sheaf E of dimension d, we set
af (E) = a;(p«(GY ® E)). Thus we have

(3

d m -+ 1
X(G,E@p*Ox(m))Zx(p*(Gv®E)(m))=ZaiG(E)< | )

Definition 2.2. Let E be Y-sheaf of dimension d. Then F is (G-
twisted) semi-stable (with respect to Ox (1)), if

(i) FE is of pure dimension d,
(i)
X(p+ (G @ F)(m)) _ x(p«(G” ® E)(m))

21) G (F) (B

,m >0

for all subsheaf F' # 0 of E.

If the inequality in (2.1) is strict for all proper subsheaf F' # 0 of E,
then E is (G-twisted) stable with respect to Ox (1).

Theorem 2.1. Let p : Y — X be a projective bundle. There is a

. —h iy .
coarse moduli scheme M x ;¢ parametrizing S-equivalence classes of G-
twisted semi-stable Y -sheaves E with the G-twisted Hilbert polynomial

—h . . .
h. Mx ¢ is a projective scheme.

Remark 2.1. The construction also works for a projective bundle
Y — X over any field and also for a family of projective bundles, by the
fundamental work of Langer [L].

Lemma 2.2. Letp' : Y’ — X be a projective bundle with o(w(Y")) =
o(w(Y)) and ZL_ ., the correspondence in Lemma 1.7. Then a Y -sheaf
E is G-twisted semi-stable if and only if 2L _ ., (E) € Coh(X,Y") is
=L/ (G)-twisted semi-stable. In particular, we have an isomorphism
of the corresponding moduli spaces.

Indeed, since E{j%(giy,xs(*)s =ZL . (*® k(s)), if we have a flat

family of Y-sheaves {Es}ses, € € Coh(Y x §), then {&.}scs is also a
flat family of Y’'-sheaves, where £’ := E{?%giy,xs(é’).

Remark 2.2. For a locally free Y-sheaf GG, we have a projective bun-
dle Y/ — X with (Y’) = ZL_ |, (G). Hence it is sufficient to study the
e(Y)-twisted semi-stability.

Remark 2.3. This definition is the same as in [C1]. If Y = P(GY)
for a vector bundle G on X, then Coh(X,Y) is equivalent to Coh(X)
and G-twisted stability is nothing but the twisted semi-stability in [Y3].
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Definition 2.3. Let )\ be a rational number. Let E be a Y-sheaf
of dimension d. Then E is of type A with respect to the G-twisted
semi-stability, if

(i) E is of pure dimension d,
(i)
ag ,(F) < ag_,(E)
ag (F) ~ af(E)
for all subsheaf F' of E.
If A =0, then F is u-semi-stable.

+ A

2.2. Construction of the moduli space

From now on, we assume that G = €(Y) (cf. Remark 2.2). Let
P(x) be a numerical polynomial. We shall construct the moduli space
of G-twisted semi-stable Y-sheaves E with x(p«(GY ® E)(n)) = P(n).

2.2.1. Boundedness Let E be a Y-sheaf. Then

P'p.(GYRE)®G — E

is surjective. Indeed p*p.(GY ® F) — GY ® E is an isomorphism and
G ® GV — Oy is surjective.

We take a surjective homomorphism Ox (—ng)®" — p.(GY @ G),
ne > 0. Then we have a surjective homomorphism p*(Ox (—ng))®Y —
G'®G.

Lemma 2.3. Let E be a Y -sheaf of pure dimension d. If

(lG
(22) oG\ (F) > a§(F) (% - )

G
for all quotient E — F', then ag—1(F") > aq(F") (asdgzgj;) —v— n(;) for

all quotient p«(GY @ E) — F'. In particular

Sy 1= {E € CMX | 0.6 © B) () = P(n)

E satisfies (2.2) and }

18 bounded.

Proof. Since p*p.(GY @ E) 2 GY ® E, we have a surjective homo-
morphism

p*(Ox(—ngH)*M @ E — G @ p*p.(G¥ @ E) — G @ p*(F).
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By our assumption, we get

ag—1(p«(G¥ @ G) @ F')

i 001 (TS -2

Since aq_1(p«(GY ® G) @ F') = tk(G)%aq_1(F') and aq(p«(GY @ G) ®
F') = 1k(G)%aq(F"), we get our claim. The boundedness of S, follows
from the boundedness of {p.(GY ® E)|E € S,} and Lemma 2.4 below.

Q.E.D.

Lemma 2.4. Let S be a bounded subset of Coh(X). Then T :=
{E € Coh(X,Y)|p.(GY ® E) € S} is also bounded.

Proof. For E € T, we set I(E) := ker(p*p«(GY @ E) ® G — E).
We shall show that T := {I(E)|E € T} is bounded. We note that
I(E) € Coh(X,Y) and we have an exact sequence

0= pu(GY RI(E)) = pu(GY @ E) @ pu(GRGY) — pu(GY @ E) — 0.

Since p.(GY @ E) € S, {p.(GY @ I(E))|E € T} is also bounded. Since
P (GY @ I(E)) ® G — I(E) is surjective and I(E) is a subsheaf of
p*p«(GY @ E) @ G, T' is bounded. Q.E.D.

Corollary 2.5. Under the same assumption (2.2), there is a ratio-
nal number v which depends on v such that

aG
ag—1(F") < aq(F") (ﬁg) + w)

for a subsheaf F' C p.(GY ® F).

Combining this with Langer’s important result [L, Cor. 3.4], we
have the following

Lemma 2.6. Under the same assumption (2.2),
(G E) |1 (a§ ((E) ’
—em < g\ e Y ) |
B = @\ gm )

where ¢ depends only on (X,0x(1)), G, d and a5 (E).
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2.2.2. A quot-scheme Since p.(GY @ E)(n), n > 0 is generated by
global sections,

H(GY @ E®@p*Ox(n)) ©® G — E@p*Ox(n)

is surjective. Since Rip,(GY @ E) = 0 for i > 0, we also see that
HY (GY® E®p*Ox(n)) =0,i>0and n> 0.

We fix a sufficiently large integer ng. We set N := x(p«(GY ®
E)(no)) = P(ng). We set V := CV. We consider the quot-scheme Q
parametrizing all quotients

o VG—FE

such that £ € Coh(X,Y) and x(p.(GY ® E)(n)) = P(ng +n). By
Lemma 2.4, 9 is bounded, in particular, it is a quasi-projective scheme.

Lemma 2.7. £ is complete.

Proof. We prove our claim by using the valuative criterion. Let R
be a discrete valuation ring and K the quotient field of R. Let ¢ : Vp ®
G — & be a R-flat family of quotients such that £ ® g K € Coh(X,Y),
where Vg := V ®c R. We set Z := ker¢. We have an exact and
commutative diagram:

0 — p*p*(I®GV) — VreGeG’ — p*p*(((:@Gv) — 0

! I Ly
0 — Z®GY — VaoGGY — E®GY — 0

We shall show that ¢ is an isomorphism. Obviously 1 is surjective.
Since £ is R-flat, £ has no R-torsion, which implies that p*p.(E @ GV) is
a torsion free R-module. Hence ker ) is also torsion free. On the other
hand, our choice of £ implies that 1 ® K is an isomorphism. Therefore

ker) = 0. Q.E.D.

Since ker ¢ € Coh(X,Y’), we have a surjective homomorphism
V @ Hom(G,G ® p*Ox(n)) — Hom(G, E ® p*Ox(n))

for n > 0. Thus we can embed £ as a subscheme of an Grassmann va-
riety Gr(V @ W, P(ng + n)), where W = Hom(G, G ® p*Ox(n)). Since
all semi-stable Y-sheaf are pure, we may replace Q by the closure of
the open subset parametrizing pure quotient Y-sheaves. The same ar-
guments in [Y3] imply that Q/GL(V) is the moduli space of G-twisted
semi-stable sheaves. The details are left to the reader. For the proof,
we also use the following.
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Let (R, m) be a discrete valuation ring R and the maximal ideal m.

Let K be the fractional field and k the residue field. Let £ be a R-flat
family of Y ® R-sheaves such that £ ®p K is pure.

Lemma 2.8. There is a R-flat family of coherent Y ® R-sheaves F
and a homomorphism v : £ — F such that F Qg k is pure, Vi is an
isomorphism and 1y is an isomorphic at generic points of Supp(F Qrk).

By using [S, Lem. 1.17] or [H-L, Prop. 4.4.2], we first construct F as
a usual family of sheaves. Then the very construction of it, 7 becomes
a Y ® R-sheaf.

2.3. A family of Y-sheaves on a projective bundle over

My e

Assume that 9Q°° consists of stable points. Then Q% — M;L( /c 18
a principal PGL(N)-bundle. For a scheme S, fg : Y x S — S de-
notes the projection. Let @ be the universal quotient sheaf on Y x Q5.
V :=Hom¢,.,(GXOqss, Q) is a locally free sheaf on 9Q°. We consider
the projective bundle q : P(V) — Q°°. Since Q is GL(N)-linearized,
V is also GL(N)-linearized. Then we have a quotient ¢ : P(V) —
P(V)/PGL(N) with the commutative diagram:

P(V) —1 . 0

] |

—h ——h
My e :=P(V)/PGL(N) —— My ¢
Since (ly x 4)"(Q) ® f51)(Orv)(—1)) is PGL(N)-linearlized, we have

—~——

a family of G-twisted stable Y-sheaves £ on Y X M};( /¢ with
(1y x9)*(€) = (ly x 4)"(Q) @ fev)(Or(v)(=1))-

—_——

Hence £V € Coh(Y x M;L(/C,Y X M})L(/(c) (if £ is locally free). Let W

be a locally free sheaf on M};(/C such that ¢*(W) = q*(V)(—1). Then

e~ —

we also have WV = E(M];(/(C) € Coh(ﬁi/(c,ﬁ};(/@) and £ ® f*ﬁ;/ (W)
Xx/C

descends to a sheaf on Y x M;L(/C.

Remark 2.4. There is also a family of G-twisted stable Y-sheaves £’
onY x P(VV)/PGL(N) such that

€' € Coh(Y x My ¢, Y x P(VY)/PGL(N)).
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§3. Twisted sheaves on a projective K3 surface

3.1. Basic properties

Let X be a projective K3 surface and p : ¥ — X a projective
bundle.

Lemma 3.1. For a locally free Y -sheaf E of rank r,
co(Rp.(EY @ E)) = —(r — 1)(w(E)?) mod 2r.

Proof. First we note that (r — 1)(D?) mod 2r is well-defined for
D € H*Z,u.), Z = X,Y. We take a representative a € H?*(X,Z)
of w(E). Then ¢i(E) = p*(a) mod r. Hence co(p*(Rp«(EY ® F))) =
2rca(E) — (r — 1)(c1(E)?) = —(r — 1)(p*(a?)) mod 2r. Since H*(X,Z)
is a direct summand of H*(Y,Z),

co(Rp(EY @ E)) = —(r —1)(¢*) mod 2r.
QE.D.

Let K(X,Y) be the Grothendieck group of Y-sheaves.
Lemma 3.2. (1)  There is a locally free Y -sheaf Eq such that

rk Fy = min{rk £ > 0|E € Coh(X,Y)}.

(2) K(X,Y)=ZEy® K(X,Y)<1, where K(X,Y)<1 is the sub-
module of K(X,Y) generated by E € Coh(X,Y) ofdim E < 1.

Proof. (1) Let F be a Y-sheaf such that rk F' = min{rk £ > 0|E €
Coh(X,Y)}. Then Ey := FVV satisfies the required properties. (2)
We shall show that the image of E € Coh(X,Y) in K(X,Y) belongs
to ZEy & K(X,Y)<1 by the induction of rk E. We may assume that
rk £ > 0. Let T" be the torsion submodule of E. Then £ =T + E/T
in K(X,Y). Since Hom(Ey(—nH), E/T) # 0 for n > 0, we have a non-
zero homomorphism ¢ : Eo(—nH) — E/T. By our choice of Ey, ¢ is
injective. Since Eo(—nH) = Fy— Eopny in K(X,Y), E = (E/T)/Eo +
Ey)+ (T —Egjpu)- Since rk(E/T)/Ey <tk E, we get (E/T)/Ey € ZEy®
K(X,Y)<1, and hence E also belongs to ZEy & K(X,Y)<1.  Q.E.D.

Remark 3.1. rk Ey is the order of the Brauer class of Y.
Let ( , ) be the Mukai pairing on H*(X,Z):

(:c,y)z—/xvy, r,y € H*(X,Z).
X
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Definition 3.1. Let G be a locally free Y-sheaf. For a Y-sheaf F,
we define a Mukai vector of E as

_ chRp(E®GY)) ,—
(3.1) va () := v ch(Rp. (G @ GY)) tdx

=(rk(E),(,b) € H*(X,Q),

where p*(¢) = c1(F) — rk(E)%g) and b € Q. More generally, for
G € Coh(X,Y) with rkG > 0, we define vg(E) by (3.1).

Since
Rp.(E1 ® GY) @ Rp.(F2 ® G¥)” = Rp.(E1 © By ) @ Rp. (G ® GY),

_ ch(Rp.(E1 @ GY)) ch(Rp.(E> ® GV))Y
<UG(E1)7 UG(E2)> = /X ch(Rp*(G ® GV))

—_ / ch(Rp.(E1 ® Ey)) tdx
X
= — X(EQ,El)-

We define an integral structure on H*(X,Q) such that vg(E) is
integral. This is due to Huybrechts and Stellari [H-St]. For a positive
integer r and £ € H?(X,Z), we consider an injective homomorphism

tdx

T_f/T: H*(X,Z) — H*(X,Q)
T — e~ &/,

T_¢/, preserves the bilinear form ( , ).

Lemma 3.3. We take a representative ¢ € H?*(X,7Z) of w(G) €
H?(X, ), where 1k(G) = . We set (tk(E), D, a) := e¢/"vg(E). Then
(rk(E), D, a) belongs to H*(X,Z) and [D mod rk(E)] = w(E).

Proof. We set o := (c1(G) — p*(€))/r € H*(Y,Z). Since p*(D) =
p*(¢) +1k(E)p*(€)/1k(G) = c1(E) — tk(E)o € H?(Y,Z), we get D €
H?(X,Z). By Lemma 3.1, we see that
(¢ "vG(E), e/ "vg (E)) =(vg(E), v (E))
=co(Rp.(E ® EY)) — 21k(E)?
=(D?*) mod 2rk(E).

Hence a € Z. The last claim is obvious. Q.E.D.
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Remark 3.2. e8/"vg(E) is the same as the Mukai vector defined by
the rational B-field £/r in [H-St]. More precisely, there is a topological
line bundle L on Y with ¢1(L) = 0 and E® L~ is the pull-back of a topo-
logical sheaf E¢,,. on X. Then we see that e*/"vg(E) = ch(Eg/,)v/tdx
(we use HY(X,Q) = 0 for i > 4, or we deform X so that L becomes
holomorphic).

Definition 3.2. [H-St] We define a weight 2 Hodge structure on
the lattice (H*(X,Z),( , )) as

H*°(H*(X,Z)® C) := g/r(H“(X))
HY(H*(X,Z)®C): @HH’
H*?(H*(X,Z)® C) := g/r(HOQ(X))

We denote this polarized Hodge structure by (H*(X,Z),{ , ),—%).

T

Lemma 3.4. The Hodge structure (H*(X,7Z),{ , ), —%) depends
only on the Brauer class ¢'([¢ mod 7]).

Proof. 1f §'([¢ mod r]) = &'([¢ mod r']) € H*(X,0%), then we

have r'¢ —r¢’ = L+ rr' N, where L € NS(X) and N € H?(X,Z). Then
we have the following commutative diagram:

HY(X,Z) = H*(X,Q)

_N _L_
¢ l ler"‘/

H(X,Z) —— H'(X,Q)

e r/

Thus we have an isometry of Hodge structures

Sy (mrx,2), (-2,

T r!

(H*(X7Z)7< ) >7_

Q.E.D.

Definition 3.3. Let Y — X be a projective bundle and G a locally
free Y-sheaf. Let ¢ € H*(X,Z) be a lifting of w(G) € H?(X, ), where
r =1k(Q).

(i) We define an integral Hodge structure of H*(X,Q) as

Tfi/r((H*(X’ Z)v < 5 >7 __))'
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(ii) v := (r,(,b) is a Mukai vector, if v € T_¢/.(H*(X,Z)) and
¢ € Pic(X)®Q. Moreover if v is primitive in T_¢ /. (H*(X, Z)),
then v is primitive.

Definition 3.4. Let v := (r,(,b) € H*(X,Q) be a Mukai vector.

(i) M;G(T,C,b) (resp. M}_[/’G(r, ¢,b)) denotes the coarse moduli
space of S-equivalence classes of G-twisted semi-stable (resp.
stable) Y-sheaves E with vg(F) = v.

(ii) M};’G(T,C,b)ss (resp. M};G(r, ¢, b)?) denotes the moduli stack
of G-twisted semi-stable (resp. stable ) Y-sheaves E with
(Yel (E) = .

Lemma 3.5. Assume that o(w(Y)) = o(w(Y")). Then EL_ ., in-
duces an isomorphism

MG ()™ = MY (),

where G' = EL_ ., (G). Moreover if dimY = dimY’ and w(Y) =
w(Y"), then ME’E(Y)(U)SS = /\/l};[ <Y )(v)ss.

Proof. We use the notation in Lemma 1.7. For a Y-sheaf E, we
set B := 2L, (E). Then p\,"(E ® GY) = pt,(E' @ G'’). Hence
va(E) = vg(E'). If dimY = dimY’ and w(Y) = w(Y”’), then since
w(e(Y)) = w(e(Y")), replacing L by L ® ¢*(P), P € Pic(X), we may
assume that ¢1 (2L, (e(Y))) = c1(e(Y)). Thus ZL_ o, (e(YV)) = e(Y) +
T in K(X,Y’), where T is a Y-sheaf with dim7" = 0. From this fact,

r =L € " (Y
we get M};I = (Y))(v)ss = ME ¥ )(U)SS. Q.E.D.
Let E be a Y-sheaf. Then the Zariski tangent space of the Kuranishi

space is Ext'(E, E) and the obstruction space is the kernel Ext*(E, E)g
of the trace map

tr : Ext*(E, E) — H*(Y,Oy) = H*(X,Ox).
Hence as in the usual sheaves on a K3 surfaces [Mul], we get the fol-
lowing.

Proposition 3.6. Let E be a simple Y -sheaf. Then the Kuranishi
space is smooth of dimension (v (E)?)+2 with a holomorphic symplectic
form. In particular, (vg(E)?) > —2.

Corollary 3.7. Let E be a p-semi-stable Y -sheaf such that E =
lEy+FeK(X,Y), Fe K(X,Y)<1. Then (vg(E)?) > —2I?.
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3.1.1. Wall and Chamber In this subsection, we generalize the no-
tion of the wall and the chamber for the usual stable sheaves to the
twisted case.

Lemma 3.8. Assume that there is an exact sequence of twisted
sheaves

(32) O—>E1—>E—>E2—>O,

such that E;, 1 = 1,2 are p-semi-stable Y -sheaves. We set FE; = [;Fy +
F, e K(X,Y) with F; € K(X,Y)<1. Then we have

(v (E)%) (l2vg (F1) — lhvg (F3))*
l .

20 > —
ez llyls

This lemma easily follows from Corollary 3.7 and the following lemma.

Lemma 3.9. Let Ey be a locally free Y -sheaf such that rk Ey =
min{rk £ > 0|F € Coh(X,Y)}. For an exact sequence of twisted sheaves

(3.3) 0—F —E— FEy—0,

we have

(e (B1)®) | {va(E2)®) _ {(va(E)") _ (lve(Fi) = hva(F2))”

I la l B lylo ’

where E; = l;Eg + F; and E = lEy + F in K(X,Y) with F;,F €
K(X,Y)<.

Proof.

(o (B1)*) | {va(E2)®) _ (va(E))

Iy lo l

N (l1<vG<Eo>2> +2(vG (Eo), va(F1)) +

<UG(F1)aUG(F1)>>
Iy

(UG(F2)aUG(F2)>>
lo

- (Z<UG(E0)2> + 2(va(Eo), va(F)) + <UG<F)’ZUG(F)>>
e(F),ve(F1)) | (well2),ve(f2)) _ (ve(F),ve(F))
lh lo l
(lavg (F1) — lhivg (F2))?
Il )

+ (l2<vg(E0)2> + 2(va(Eo), va(F2)) +

Q.E.D.
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Definition 3.5. We set v = vg(IEy + F'), where F' is of dimension
1 or 0.

(i) Fora ¢ e NS(X) with 0 < —(£2) < £ (212 + (12)), we define a
wall We as
We :={L € Amp(X) ® R|(, L) = 0}.
(ii)) A chamber with respect to v is a connected component of
Amp(X) @ R\ U, We.
(ili) A polarization H is general with respect to v, if H does not

lie on any wall.

Remark 3.3. The concept of chambers and walls are determined by
rk(IEy + F) and (v?). Thus they do not depend on the choice of Y and
G.

Proposition 3.10. Keep notation as above.

(i) If H and H' belong to the same chamber, then M};I’G(U)SS =
MGE (v)5s.

(il) If H is general, then M}I;’G(vg(F))SS = ME’G (ver (F))** for
F e K(X,Y) withtk FF > 0. Thus MZI’G(UG(F))SS does not
depend on the choice of a Y -sheaf G.

(iii) If

min{—(D?) > 0|D € NS(X), (D, H) = 0} > g(m? + (v?)),

then H is general with respect to v.

The proof is standard (cf. [H-L]) and is left to the reader. By
Proposition 3.10 and Proposition 3.6, we have

Theorem 3.11. Assume that v is a primitive Mukai vector and H
1s general with respect to v. Then all G-twisted semi-stable Y -sheaves
E with vg(F) = v are G-twisted stable. In particular M};’G(v) is a
projective manifold, if it is not empty.

In the next subsection, we show the non-emptyness of the moduli
space. We also show that Mﬁ’G(v) is a K3 surface, if (v?) = 0.

Proposition 3.12. (¢f. [Mu3, Prop. 3.14]) Assume that Pic(X) =
ZH. Let E be a simple twisted sheaf with (vg(E)?) < 0. Then E is
stable.

For the proof, we use Lemma 3.9 and the following;:
Lemma 3.13. [Mu3, Cor. 2.8] If Hom(FE1, E2) = 0, then

dim Ext'(E;, E;) + dim Ext' (Fy, F») < dim Ext'(E, E).
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3.2. Existence of stable sheaves

In this subsection, we shall show that the moduli space of twisted
sheaves is deformation equivalent to the usual one. In particular we
show the non-emptyness of the moduli space.

Theorem 3.14. [H-Sc] HY (X, PGL(r)) — H*(X, u,) is surjective.

Proposition 3.15. For a w € H*(X, p,.), there is a P~ 1-bundle
p:Z — X such that w(Z) = w and €(Z) is p-stable.

D. Huybrechts informed us that the claim follows from the proof
of Theorem 3.14. Here we give another proof which works for other
surfaces.

Proof. Let p:Y — X be a P"~!l-bundle with w(Y) = w. We set
Ey := €(Y). In order to prove our claim, it is sufficient to find a pu-
stable locally free Y-sheaf E of rank r with ¢1(E) = ¢1(Ep). For points
r1,T2,...,Ty € X, let F be a Y-sheaf which is the kernel of a surjection
Ey — @)1 Op-1(4,)(1). We take a smooth divisor D € |mH|, m > 0.

We set D := p~1(D). Let Ext'(F, F(—D))y be the kernel of the trace
map

Ext'(F, F(—D)) — H'(Y, Oy (=D)) = H (X, Ox(—D)).
If n > 0, then by the Serre duality,
Ext?(F, F(—D))o = Hom(F, F(D))o = 0.

Hence Ext!(F, F)y — Extl(F|5, F‘E)O is surjective. Since F|p deforms

to a u-stable vector bundle on D, F' deforms to a Y-sheaf F’ such that

F|/15 is p-stable. Then F’ is also p-stable. Then E := (F')VV satisfies
required properties. Q.E.D.

Theorem 3.16. Let Y — X be a projective bundle and G a lo-
cally free Y -sheaf. Let vg = (r,(,b) be a primitive Mukai vector with

r > 0. Then MI}_;’G(vg) 15 an wrreducible symplectic manifold which is

b;’é)/ﬂ'l

deformation equivalent to Hil for a general polarization H. In

particular

(1) M5%wg) #0 if and only if (v3) > —2.

(2) If (v&) =0, then M}-_?G(Uc;) is a K3 surface.

We divide the proof into several steps.

Step 1 (Reduction to Mg’e(y)(r, 0,—a)) : Let £ be a lifting of w(G).
Then e/ @y = (r,D,b') € H*(X,7). By Theorem 3.14, there is
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a projective bundle Y/ — X such that w(Y’) = [D mod r]. Since
D/r — &/tk(G) = ¢/r € Pic(X) ® Q, o(w(Y')) = o(w(Y)). Let G’
be a locally free Y-sheaf such that ZL_ |, (G') = €(Y’), where we use
the notation in Lemma 1.7. By Lemma 1.8, w(G') = w(e(Y')) = [D
mod r]. Then replacing L by L ® ¢*(P), P € Pic(X), we may assume
that e/ "™*Cyg(G") = (r,D,c), ¢ € Z. Hence vg/(E) = (r,0,—a) for a
Y-sheaf F with vg(E) = (r,(,b). Since H is general with respect to
(r,(,b), Proposition 3.10 implies that M;I/’G(r, ¢,b) = M}_I/’G/(?",O, —a).
By Lemma 3.5, M};’G/(r, 0,—a) = M;’e(yl)(r, 0, —a). Therefore replac-
ing (Y,G) by (Y',e(Y")), we shall prove the assertion for ME’G(T, 0,—a)
with G = €(Y).

Step 2: First we assume that w(Y) € NS(X) ® p, C H?*(X, u,).
Then the Brauer class of Y is trivial, that is, Y = P(F") for a locally free
sheaf F' on X. Since H is general with respect to (r,0, —a), Proposition
3.10 (ii) and Lemma 3.5 imply that M};’G(’I’,O, —a) & MiI(’OX (r,D,c)
with 2ra = (D?) — 2rc. By [Y1, Thm. 8.1], M;; X (r, D, ¢) is deforma-
tion equivalent to Hilbit.

We next treat the general cases. We shall deform the projective
bundle Y — X to a projective bundle in Step 2.

Step 3: We first construct a local family of projective bundles.

Proposition 3.17. Let f : (X, H) — T be a family of polarized K3
surfaces. Letp:Y — X, be a projective bundle associated to a stable
Y -sheaf E. Then there is a smooth morphism U — T whose image
contains to and a projective bundle p : Y — X X1 U such that Vi, =Y.

Proof. We note that p*(K;ﬁ/ Xto) is a vector bundle on X;, and
we have an embedding Y — P(p. (K;}/Xto)). We take an embedding
P(p. (K}\ﬁ/xto )) — PN~1x X, by a suitable quotient O, (—nH;,)®Y —
p*(Kiv//Xto). More generally, let Vg — X x7 S be a projective bundle
and a surjective homomorphism Oy .,.s(—nH)®N — p*(K¥S/XXTS).
Then we have an embedding Vg — PV ~1 x X x¢ S.

Let 2 be a connected component of the Hilbert scheme Hilbpy -1, x /7
containing Y. Let Y € PN~1 x X x19) be the universal subscheme. Let
p:Y — X x79 be the projection. Let 2° be an open subscheme of )
such that ¢y« (¢} is smooth and H'(T\y-1(,.4)) = 0 for (z,t) € X x1Q°.
Since Y € 9P, it is non-empty. Then ¢ is locally trivial on X x7 9°.
Thus YV — X x79° is a projective bundle.
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If Y is a projective bundle associated to a twisted vector bundle E
then the obstruction for the infinitesimal liftings belongs to

H?(End(E)/Ox) = H(End(E)y)",

where End(F)y is the trace free part of End(F). Hence if E is simple
(and rk E' is not divisible by the characteristic), then there is no ob-
struction for the infinitesimal liftings. In particular 9° — T is smooth
at Y. Q.E.D.

Step 4 (A relative moduli space of twisted sheaves): Let f : (X, H) —
T be a family of polarized K3 surfaces and p : JJ — X a projective
bundle on X. We set g := f op. We note that H'()},Qy,,x,) = 0,
i #1and H' (Vy,Qy,/x,) = Cfor t € T. Hence L := Ext,(Ty/x, Oy) =
R'g.(Qy /x) is a line bundle on T'. By the local-global spectral sequence,
we have an isomorphism

Bxt!(Ty, v, g (L") & HO(T, Ext! Ty, g"(LV))) = HY(T, Op).
We take the extension corresponding to 1 € H(T, Or):
0—g"(LY) > G—Tyx—0

such that G, = €(Q%). Let v := (r,(,b) € R*f.Q be a family of
Mukai vectors with ¢ € NS(X/T) ® Q. Then as in the absolute case,

we have a family of the moduli spaces of semi-stable twisted sheaves

M?i{fm yr(v) — T parametrizing G;-twisted semi-stable );-sheaves E

on X;, t € T with vg,(E) = ;. M?}?H)/T(v) — T is a projective

morphism. Let E be a G;-twisted stable );-sheaf. By our choice of (,
det(F) is unobstructed under deformations over T, and hence FE itself is

unobstructed. Therefore M (JngH) /T(v) is smooth over T'.

Step 5 (A family of K3 surfaces): Let M  be the moduli space of the
polarized K3 surfaces (X, H) with (H?) = 2d. My is constructed as a
quotient of an open subscheme T' of a suitable Hilbert scheme Hilbpn /.
Let (X, H) — T be the universal family. Let I" be the abstruct K3 lattice
and h a primitive vector with (h?) = 2d. Let D be the period domain for
polarized K3 surfaces (X, H). Let 7: T — T be the universal covering

and ¢; : H*(X,y,Z) — T, t € T a trivialization on T. We may assume

that ¢z(H, ) = h. Then we have a period map p : T — D. By the
surjectivity of the period map, we can show that p is surjective: Let U
be a suitable analytic neighborhood of a point x € D. Then we have a
family of polarized K3 surfaces (X, Hy) — U and an embedding of X
as a subscheme of PV x U. Thus we have a morphism h : U — T. The
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embedding is unique up to the action of PGL(N +1). Moreover if there
is a point £y € T such that p(to) € U, then we have a lifting h: U — T
of h: U — T such that o = h(p({y)). Then U — T — D is the identity.
Hence we can construct a lifting of any path on D intersecting p(7T )
Since D is connected, we get the assertion.

Step 6 (Reduction to step 2): We take a point ¢ € T. We set
(X, H) := (X, 3, ", 3) Let p:Y — X be a P""'-bundle. Assume
that H is general with respect to v := (r,0,—a). We take a D € T’
with [D mod 7] = ¢x(w(Y)). Let e, ea,...,ean be a Z-basis of ' such
that e; = qb;(HT(;)) and D = aej + bes. For an n € ®?2;7e; with
€)(n?) — (e1,n)? < 0, we set 1] :== ex +71kn € T, k > 0. Since

2
det ((6176(26}1_) rkn) (((E;;ej_ i_kzk):g))> < 0 for k£ > 0, the signature of
the primitive sublattice L := Zey & Zn of T is of type (1,1). Moreover
e;- N L does not contain a (—2)-vector. We take a general w € LTNT'®C
with (w,w) = 0 and (w,@) > 0. Then wt NT = L. Replacing w by its
complex conjugate if necessary, we may assume that w € D. Since p
is surjective, there is a point #; € § such that p(f;) = w. Then X ()
is a K3 surface with Pic(X, 7)) = ZH, 4, & Z¢i (e2 + rkn). Hence

[ﬁbg_ll(D) mod 7| = [¢;_11(a61 + b17) mod r] € Pic(X (?1)) ® fr. Since

T

2
min{—(L?)|0 # L € Pie(X, ). (L. H, ) = 0} > (2% + (%)),

Proposition 3.10 (iii) implies that HT(E) is a general polarization with
respect to v. Then by the following lemma, we can reduce the proof to
Step 2. Therefore we complete the proof of Theorem 3.16.

Lemma 3.18. For t1,t € T let YV — X (t) =1,2 be Pr1-
bundles with w(Y") = [¢7'(D) mod r] and G; e(Yi). Let v =
(r,0,—a) be a primitive Mukai vector. Assume that H i,y @ =1,2 are

1
general polarization. Then M}; (tG)l (r,0,—a) is deformation equivalent
T(t1

Y2,Gs B
toMH( )(7“0 a).

Proof. In order to simplify the notation, we denote MY () (r,0,—a)

by M(Y) for a projective bundle Y over (X, H:). By Proposition 3.15
and Lemma 3.5, we may assume that e(Y") (i = 1,2) is u-stable. Let

3 :[0,1] — T be a path from #; = 3(0) to &, = 5(1) and v := 707. Then
we have a trivialization ¢, : H? (Xy(s)> r) — I ®z . By Proposition
3.15, there is a projective bundle Y, — X5 such that ¢ (w(Ys)) = [D
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mod r] and €(Ys) is p-stable for each s € [0,1]. By Proposition 3.17,
we have a family of projective bundles Y° — X x19)?® over a T-scheme
¢* : P* — T such that there is a point y* € () ' (y(s)) C * with
Ys = V. and ¢ is smooth at y®. Then we have a family of moduli

spaces M?)X’XQT@S,Q)/@S (r,0,—a) — %, where H is the pull-back of ‘H to
X x7Q?* (Step 4). Since 1*® is smooth, 1*(2)?) is an open subscheme of T'
containing (s). We take an analytic open neighborhood Uy, of 7(s) such
that U, is contractible and has a section o : Uy — 2° with os(y(s)) =
y®. Let Vs be a connected neighborhood of s which is contained in
v~ 1(Us). Since [0,1] is compact, we can take a finite open covering of
[0,1]: [0,1] = U1 V5, 81 < s2 < -+ < 8p. Since {t € T'|rkPic(X;) =1}
is a dense subset of T', there is a point t; € Us, N Us,,, such that
t; is sufficiently close to a point v(s; y1), sjj+1 € Vs; NV, and
Pic(X;,) = ZHy,. Under the identification H?( Xy, pr) = H?(X,(s), fir)
for t € Ug, we have w()}j?(tj)) = w(y;) and w(yjji(tj)) = w(y;jﬁ),
where we set 0 := 05, and gy’ := y*/. Since t; is sufficiently close to the
point y(s; j+1), we have w(y;j(tj)) = w(yjji(tj)). Hence by Lemma
3.5, M(Y?, ) is isomorphic to M (Y>7*

j(tj) Uj+1(tj))' By Step 47 M(:))O.j )
is deformation equivalent to M (ygg ( tj)), Therefore M (Y5, ) is de-

i (tj—1)
s;
; o1(t1)

formation equivalent to M (yf_”( : _1)). By using Step 4 again, we also

see that M (Y1) = M (y??o) is deformation equivalent to M (Y?! , ) and

o1 (tl)
M(Y?) = M(yyll) is deformation equivalent to M(y;:(tn_l)). Therefore

our claim holds. Q.E.D.

Remark 3.4. Let vg := (r,(,b) be a Mukai vector with r, (vZ) > 0
which is not necessary primitive. By the same proof, we can also show

that M;G(vg) is an irreducible normal variety for a general H (cf. [Y2]).

3.3. The second cohomology groups of moduli spaces

By Theorem 3.16, M};’G(vg) is an irreducible symplectic manifold,
if v is primitive and H is general. Then H 2(.7\41};’6;(’06;), Z) is equipped
with a bilinear form called the Beauville form. In this subsection, we
shall describe the Beauville form in terms of the Mukai lattice.

Let p: Y — X be a projective bundle with w(Y) = [§ mod r] and
set G := €(Y). We consider a Mukai lattice with a Hodge structure
(H*(X,Z),{ , >,—§) in this subsection. We set w := r(1,0, % —

2
%(;’;)), a € Z. In this subsection, we assume that w is primitive, that

is, ged(r,€,a) = 1. We set v := wet/" = (r,€,a) € H*(X,Z). Then v is
algebraic.
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Let q : M}_;’G(w) — M}_;’G(w) be a projective bundle in subsection
2.3 and & the family of twisted sheaves on Y x M % (w). We set WV :=

G(MI}—I/’G(U’))- Let 7~TM Y x M)yC(w) — ME’G(w) and Ty : Y X

(WV)> is

Y,G
H

M}_I/’G(w) — Y be projections. Then (1y X q). <8 ® T
M

Y,G(

oo (w)

a quasi-universal family on Y x ME’G(w).
Let 7x : X x M}7%(w) — X be the projection. We define a homo-
morphism 0% : vt — H*(M;I/’G(w), Q) by

65w i= [ 1975wl
bl
where [...]3 means the degree 6 part and

tdar )

td x
- VhRp.(GY @ G)) /ch(Rg. (WY @ W)

-ch (R(p x ). (%;(GV) RE® %LY,G(W)(WV)»

H

Q

e H*(X x M)7%(w),Q).

Remark 3.5. 1f £ is algebraic, then Y is isomorphic to the projective
bundle P(FY) and G = FY @ Oy (1), where F is a vector bundle of
rank r on X with ¢;(F) = —¢£. In this case, MI}{/’G(w) is the usual
moduli space of stable sheaves F' with the Mukai vector v and R(p x
Q)«(Ty (Oy (-1) @ €@m (WV)) is a quasi-universal family. Since

H w
chF/\/ch(F @ FV) = e~¢/", we have

thI};,G(w)

O =e 7\/tdx \/ch(Rq*(WV ST

.ch <R(p X q)s (%;;(oy(—n) DEQT (WV)>> .

MH’ (w)

Hence 01(); is the usual Mukai homomorphism, which is defined over Z.

Let p’ : Y/ — X be another P"~!-bundle with w(Y’) = w(Y).
Then by the proof of Lemma 3.5, we see that the following diagram is
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commutative:

”UJ' f— UJ'

efl lef’

H2(M; (w),Q) —— H2(M} % (w),Q),

where G’ := EL_,(G) = ¢(Y’). Since Q is algebraic, 65 preserves
the Hodge structure. By the deformation argument, Remark 3.5 implies
that 0¢ is defined over Z. Moreover it preserves the bilinear forms.
Theorem 3.19. For ¢ € H*(X,Z) with [¢ mod r] = w(Y), we set
v =wes/".
(i) If (v*) > 0, then 65 : vt — HQ(M}LI/’G(U]),Z) is an isometry
of the Hodge structures.
(ii) If (v?) = 0, then 05 induces an isometry of the Hodge struc-
tures v /7w — H2(M§’G(w), 7).
The second claim is due to Mukai [Mu4].

84. Fourier-Mukai transform

4.1. Integral functor

Let p : Y — X be a projective bundle such that 6([Y]) = [o] €
Br(X) and p’ : Y — X’ a projective bundle such that §([Y']) = [@/] €
Br(X’). Let 7x : X’ x X — X and mx/ : X’ x X — X' be projections.
We alsolet Ty : Y/ xY — Y and 7wy : Y/ xY — Y’ be projections. We
set G :=€(Y) and G’ := €(Y”).

Definition 4.1. Let Coh(X’ x X,Y’,Y) be the subcategory of
Coh(Y’ xY) such that @ € Coh(Y’ xY') belongs to Coh(X’' x X, YY)
if and only if (p’ x p)*(p/ X P)«(G'RQRGY) 2 G' ® Q ® GV. In terms
of local trivialization of p, p’, this is equivalent to

Qly;xv; = Oy (=) K Oy, (Aj) @ (p" x p)"(Qiy),
Qi; € Coh(U] x Uj). Coh(X’ x X,Y')Y) is equivalent to Coh(X’ x
X, o/t x Q).

Remark 4.1. We take twisted line bundles £(p'*(o/ ")) on Y’ and
L(p*(a 1)) on Y respectively which give equivalences AL (e Rl
Coh(X’,Y’) = Coh(X’,o/) and AS® (@™)) . Coh(X,Y) = Coh(X,a)
in (1.1). Then we have an equivalence ALET (@)Y AL (@),
Coh(X’ x X,Y'.Y) — Coh(X’ x X,/ ™" x a)

Q = (0 X)L (@) ©Q® L(p*(a™))Y).
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Let D(X'x X, YY) 2 D(X'x X, o/~ xa) be the bounded derived
category of Coh(X’ x X,Y')Y). For Q € D(X' x X,Y'Y), we define
an integral functor

S, . : DX.Y) — D(X,Y)
x —  R7y.(Q® 7y, (2)).
For Qe D(X’'x X, YY) and R € D(X” x X", Y"Y"), we have

@)Q(/%XO(DR//_)X/ :QS”—nX?

where § = Ry v« (T3 v/ (R) @751y (Q)) and 77 ) 1 VXY XY —
() is the projection.

4.1.1. Cohomological correspondence For simplicity, we denote the
pull-backs of G and G’ to Y’ x Y by the same letters. For example
G’ ® Q® GV implies 7}, (G') ® Q@ my (GY). We note that

R(p' x p)«(G'® Q®GY) € D(X' x X)
satisfies
(P’ xp)"(R(p x p)«(G'©Q®G") =G ®Q0®G".
We define a homomorphism
VS _x HY(X,Q) — H' (X, Q)
by
\P)Q(/—»((y)
=7x+ 0 (P X D)s ((p’ x p)* o1y (y)ch(G") ch(Q) ch(GY)
Vidxs tdy xr Vidx tdy)x >
/(G ® G /eh(GY ® G)

\/th/ th
Veh(Rp, (G @ G')) /ch(Rp«(GY @ G))

=T X <7T3k(f(3/)

ch(R(p' X p)«(G' ® Q ® Gv))) ;

where tdx, tdx/,... are identified with their pull-backs.

Lemma 4.1. U5, =U%,_ ,oU%, .
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Proof. my: X" x X'"x X — () denotes the projection to ( ).
We note that

e (R X p)a(G" 2 R@G))
@y x (R X p)(G'® Q® GY))
=R(p" xp' x p)(G" @R ®Q®GY) @ n, (RPL(G" @ G")).

Then

X1 %X (Ch (R(p” X p ) (G" @R ® G’V))) :

Foex (R 916000 6N (G )

=ch (R(p” x p' x p)«(G" @R ® Q@ GY)) m (tdx/).
Since

mxrxxs (Ch (R x p' x p)(G" @R ® Q® GY)) 7k (tdx/))
=ch(Rrxrxx« R xp' xp)(G" @R @ Q®GY)))
=ch(R(p" x p)s o Rty v+ (G" ®R® Q® GY))
=ch(R(p" x p)+(G" @ S® GY)),

we get

U x(2) =7 (Wx (2) ch(R(p" x p)+(G" ® S ® GV))

_ Vidxr tdx )
Veh(Rp! (G"Y @ G")) /ch(Rp.(GY @ G))

:\II)Q(/_)X 0\1’7)%//_>X/(Z).
Q.E.D.

Lemma 4.2. Assume that the canonical bundles Kx, Kx: are triv-
1al. Then

<.I', \II)Q(’—>X(y)> - <\Il)Q(v—>X’(x)7y>7 S H*(Xa @)7 Y € H*(le(@)v

where { | ) is the Mukai pairing.
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Proof.
<m,\IJ)Q(/ﬁx(y)>
:_/ ZE‘I})Q(/_Q((?J)V
X

o I ] e Vidx
 Jxsx ¥ Vh(RpL (G ® G7)) /h(Rp,(GY ® G))

-ch(R(p' x p)«(G' ® Q@ GY)) )

:_/ ( tdx tdx
x'xx \ Vch(Rp.(G" @ G")) v/ch(Rp«(GY @ G))

-ch(R(p' x p).(G" ® Q" ® G))rk (»’U)) (YY)

:_/ lI’)Q(_J(/(x)yv
X/
=(UR_x (2),1).
Q.E.D.

4.2. Fourier-Mukai transform induced by stable twisted
sheaves

Let p: Y — X be a projective bundle over an abelian surface or a
K3 surface. Let G be alocally free Y-sheaf. Assume that X' : M " ( )

is a surface and consists of stable sheaves. We set Y := My, i (v) Let
& be the family on Y’ x Y.
We consider integral functors

%, _y: D(X.Y') — D(X,Y)

7 = Riv.(E @7y (2)),
o5 2] DX, X) — D(X",Y")

y o~ Riayvu(E¥ oy (y)2).

Remark 4.2. Let L(p""(a™!)) and L(p*(a~!)) be twisted line bun-
dles on Y’ and Y respectively in (1.1). Then AL® (@) o ®%, o
(A"“‘(pl*(o‘/_l)))_1 : D(X', /) — D(X, ) is an integral functor with the
kernel R(p/ xp)«(L(p"* (o/ " NQEDL(p* (o 1))V) e D(X'x X, o/ " xa).
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Caldararu [C2] developed a theory of derived category of twisted
sheaves. In particular, Grothendieck-Serre duality holds. Then we see
that ®€ ,[2] is the adjoint of ®%,_ . As in the usual Fourier-Mukai
functor, we see that the following theorem holds (see [Br], [C1]).

Theorem 4.3. (I)g(vﬁx,[Q]o(I)i/_)X =~ 1 and (I)i/HXo(Dg(v_)X/[Q] ~ 1,
Thus ®%,_,  is an equivalence.

Then we have the following which also follows from a more general
statement [H-St, Thm. 0.4].

Corollary 4.4. V%, . induces an isometry of the Hodge struc-

tures: ¢ ¢
(H*(X/7Z)7< ’ >7_?)%(H*(X7Z)7< ) >7_;)'

Proof. Obviously W%, .y induces an isometry of the Hodge struc-
tures over Q. If X is a K3 surface such that w(Y) € NS(X) ® p, and
X' is a fine moduli space, then \I/§<,_> x 1is defined over Z. For a general
case, we use the deformation arguments. Q.E.D.

We also have the following which is used in [Y4].

Corollary 4.5. Assume that X' consists of locally free Y -sheaves.
Then 5|\§,,X{y}, y € Y is a simple Y'-sheaf. If NS(X) = ZH, then
5|§//><{y}7 y €Y is a stable Y'-shealf.

Proof. Since ®5_ ,/[2] is an equivalence, CP;&(V_)X,((’)pfl(p(y))(l)) =
E%ixgyy is a simple Y'-sheaf. If NS(X) = Z, then Proposition 3.12
implies the stability of S|\§,,x{y}. Q.E.D.

Acknowledgement. First of all, I would like to thank Daniel Huy-
brechts and Paolo Stellari. They proved Caldararu’s conjecture. More-
over Huybrechts gave me many valuable suggestions on this paper. 1
would also like to thank Eyal Markman and Shigeru Mukai for valuable
discussions on the twisted sheaves and their moduli spaces. Thanks also
to Max Lieblich for explaining the relation of our moduli spaces with
Simpson’s moduli spaces of modules over the Azumaya algebra.
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Appendix : Proof of Caldararu’s conjecture

Daniel Huybrechts and Paolo Stellari

In this short note we show how to combine Yoshioka’s recent results
on moduli spaces of twisted sheaves on K3 surfaces with more or less
standard methods to prove Caldararu’s conjecture on the equivalence of
twisted derived categories of projective K3 surfaces. More precisely, we
shall show

Theorem 0.1. Let X and X' be two projective K3 surfaces endowed
with B-fields B € H*(X,Q) respectively B' € H*(X',Q). Suppose there
exists a Hodge isometry

g:H(X,B,Z)~ H(X',B',Z)

that preserves the natural orientation of the four positive directions.
Then there exists a Fourier—Mukai equivalence

®:D"(X,a) = DX’ d)

such that the induced action CIDE’B/ on cohomology equals g.
Here, o := ap and o' := ap' are the Brauer classes induced by B
respectively B’.

The twisted Hodge structures and the cohomological Fourier-Mukai
transform (based on the notion of twisted Chern character), indispens-
able for the formulation of the conjecture, were introduced in [4]. For a
complete discussion of the natural orientation of the positive directions
and the cohomological Fourier—-Mukai transform CID*B’B/ we also refer to
[4]. Note that Caldararu’s conjecture was originally formulated purely
in terms of the transcendental lattice. But, as has been explained in
[4], in the twisted case passing from the transcendental part to the full
cohomology is not always possible, so that the original formulation had
to be changed slightly to the above one.

Also note that any Fourier—Mukai equivalence

®:DP(X,a) = D"(X', &)

Received December 13, 2004.
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induces a Hodge isometry as above, but for the time being we cannot
prove that this Hodge isometry also preserves the natural orientation.
In the untwisted case this is harmless, for a given orientation reversing
Hodge isometry can always be turned into an orientation preserving one
by composing with —idg2. In the twisted setting this cannot always be
guaranteed, so that we cannot yet exclude the case of Fourier—Mukai
equivalent twisted K3 surfaces (X, ap) and (X', ap/) which only admit
an orientation reversing Hodge isometry H(X, B,Z) =~ H(X',B',Z). Of
course, this is related to the question whether any Fourier—Mukai equiv-
alence is orientation preserving which seems to be a difficult question
even in the untwisted case (see [3, 11]).
From Yoshioka’s paper [12] we shall use the following

Theorem 0.2. (Yoshioka) Let X be a K3 surface with a rational
B-field B € H*(X,Q) and v € ﬁl’l(X,B,Z) a primitive vector with
(v,v) = 0. Then there exists a moduli space M (v) of stable (with respect
to a generic polarizations) ag-twisted sheaves E with ch® (E)\/td(X) =
v such that:

i) Either M(v) is empty or a K3 surface. The latter holds true if
the degree zero part of v is positive.

ii) On X’ := M(v) one finds a B-field B' € H*(X’',Q) such that
there exists a universal family € on X x X' which is an agl X ap: -
twisted sheaf.

iii) The twisted sheaf € induces a Fourier—-Mukai equivalence

D"(X,ap) = D*(X',ap).

The existence of the moduli space of semistable twisted sheaves has
been proved by Yoshioka for arbitrary projective varieties. Instead of
considering twisted sheaves, he works with coherent sheaves on a Brauer—
Severi variety. Using the equivalence between twisted sheaves and mod-
ules over Azumaya algebras, one can in fact view these moduli spaces
also as a special case of Simpson’s general construction [10]. (The two
stability conditions are indeed equivalent.) In his thesis [5] M. Lieblich
considers similar moduli spaces. (See also [2] for the rank one case.)

The crucial part for the application to Caldararu’s conjecture is i),
in particular the non-emptiness. Yoshioka follows Mukai’s approach,
which also yields ii). Part iii) is a rather formal consequence of the
usual criteria for the equivalence of Fourier—-Mukai transforms already
applied to the twisted case in [1].

In the last section we provide a dictionary between the different
versions of twisted Chern characters and the various notions of twisted
sheaves. Only parts of it is actually used in the proof of the conjecture.
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The rest is meant to complement [4] and to facilitate the comparison of
[4], [5], and [12].

Acknowledgements: It should be clear that the lion’s share of the
proof of Caldararu’s conjecture in the above form is in fact contained in
K. Yoshioka’s paper. We are grateful to him for informing us about his
work and comments on the various versions of this note. Thanks also
to M. Lieblich who elucidated the relation between the different ways
of constructing moduli spaces of twisted sheaves. Our proof follows the
arguments in the untwisted case, due to S. Mukai [6] and D. Orlov [§]
(see also [3, 7]), although some modifications were necessary. During
the preparation of this paper the second named author was partially
supported by the MIUR of the Italian government in the framework of
the National Research Project “Algebraic Varieties” (Cofin 2002).

1. Examples

Let X and X’ be projective K3 surfaces (always over C) with B-fields
B € H?*(X,Q) respectively B’ € H?(X’,Q). We denote the induced
Brauer classes by a = ap = exp(B%?) € H?*(X,0%) respectively
o = ap € H*(X',0%,). We start out with introducing a few exam-
ples of equivalences between the bounded derived categories DP(X, «)
respectively DP(X’, o) of the abelian categories of a-twisted (resp. o-
twisted) sheaves.

i) Let f: X =2 X’ be an automorphism with f*a’ = o. Then ® :=
fv : DP(X,a) — DP(X’,d/), E — Rf.E is a Fourier-Mukai equivalence
with kernel Or, viewed as an a1 X o/-twisted sheaf on X x X'.

If in addition f,(B) = B’ then ®7F = f,.

ii) Let L € Pic(X) be a(n untwisted) line bundle on X. Then
E +— L ® E defines a Fourier-Mukai equivalence L ® () : D?(X,a)
DP(X, ) with kernel i, L considered as an o~ ! Ka-twisted sheaf on X x
X. Here, i : X — X x X denotes the diagonal embedding. The induced

cohomological Fourier-Mukai transform (L @ ( )P . H(X,B,Z) =~

H(X,B,7Z) is given by multiplication with exp(cy(L)).
111) Let b € H? (X, Z) Then ap = OB4p- The identity

id : D*(X, ap) = DP(X, apis)

descends to idZ-B+? . fI(X, B,Z) = ﬁ(X, B+b,7Z) which is given by the
multiplication with exp(b). This follows from the formula ch®™(E) =
ch®(E) - ch®(0) = ch® (E) - exp(b) (see [4, Prop. 1.2]).
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iv) Changing the given B-field B by a class b € H%1(X, Q) does not

affect H(X, B,Z). Thus, the identity can be considered as an orientation

preserving Hodge isometry H(X, B,Z) = H(X,B +b,7Z).

As shall be explained in the last section, this can be lifted to a
Fourier—-Mukai equivalence. More precisely, there is an exact functor
¢ : Coh(X,ap) = Coh(X, aps), whose derived functor, again denoted
by ® : D’(X,ap) = DP(X,ap4sp), is of Fourier-Mukai type and such
that 2710 = id.

v) Let E € DP(X, a) be a spherical object, i.e. Ext'(E, E) = 0 for all
1 except for ¢ = 0, 2 when it is of dimension one. Then the twist functor
Tg that sends F € DP(X, ) to the cone of Hom(E, F) ® E — F defines
a Fourier—-Mukai autoequivalence T : DP(X, a) 22 DP(X, a). The kernel
of T’y is given by the cone of the natural map

E*XE——0ax,

where O, is considered as an o~ Ka-twisted sheaf on X x X. The result
in the untwisted case goes back to Seidel and Thomas [9]. The following
short proof of this, which carries over to the twisted case, has been
communicated to us by D. Ploog [7]. Consider the class Q C D*(X, ) of
objects F' that are either isomorphic to E or contained in its orthogonal
complement E1, i.e. Ext'(E, F) = 0 for all i. It is straightforward to
check that this class is spanning. Since Tg(E) = E[—1] and Tg(F) = F
for F € E*, one easily verifies that Ext’(F}, Fy) = Ext(Te(Fy), Te(Fy))
for all 1, Fy € Q.

In other words, Ty is fully faithful on the spanning class 2 and hence
fully faithful. By the usual argument, the Fourier—Mukai functor Tg is
then an equivalence.

As in the untwisted case, one proves that the induced action on
cohomology is the reflection o — o + (o, v?(E)) - vP(E). Here, v?(E)
is the Mukai vector vB(E) := ch®(E)/td(X).

Special cases of this construction are:

~ Let P! 2 C' C X be a smooth rational curve. As H*(C,0f) is
trivial, its structure sheaf O¢ and any twist Oc(k) can naturally be
considered as a-twisted sheaves. The Mukai vector for k = —1 is given
by v(Oc(-1)) = (0,[C1],0).

— In the untwisted case, the trivial line bundle O (and in fact any
line bundle) provides an example of a spherical object. Its Mukai vector
is (1,0,1) and has, in particular, a non-trivial degree zero component.
It is the latter property that is of importance for the proof in the un-
twisted case. So the original argument goes through if at least one
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spherical object of non-trivial rank can be found. Unfortunately, spher-
ical object (in particular those of positive rank) might not exist at all
in the twisted case. In fact, any spherical object E has a Mukai vector
vB(E) € Pic(X, B) of square (vB(E),vB(E)) = —2 and it is not difficult
to find examples of rational B-fields B # 0 such that such a vector does
not exist.

vi) Let ¢ € Pic(X) be a nef class with (¢,¢) = 0. If w = (0,4, s) is
a primitive vector, then the moduli space M (w) of ap-twisted sheaves
which are stable with respect to a generic polarization is non-empty.
Indeed, in this case ¢ is a multiple n - f of a fibre class f of an elliptic
fibration m : X — P! As ged(n,s) = 1, there exists a stable rank n
vector bundle of degree s on a smooth fibre of © which yields a point in
M (w).

If ¢ is the fibre class of an elliptic fibration X — P!, we can think
of M(w) as the relative Jacobian J°(X/P!) — P

In any case, M (w) is a K3 surface and the universal twisted sheaf
provides an equivalence ® : DP(M (w),ap/) = D?(X,ap) (for some B-
field B’ on M (w)) inducing a Hodge isometry CID*B/’B : ﬁ(M(w), B'\7Z) =
H(X, B,Z) that sends (0,0,1) to w.

§2. The proof

Let g : H(X,B,Z) = H(X’',B',7Z) be an orientation preserving
Hodge isometry. The Mukai vector of k(x) with z € X is vB(k(x)) =
v(k(x)) = (0,0,1). We shall denote its image under g by w := ¢(0,0,1) =
(r,€,s).

1st step. In the first step we assume that r = 0 and ¢ = 0,
g(0,0,1) = £+(0,0,1), and that furthermore g(1,0,0) = £(1,0,0).
composing with —id we may actually assume ¢(0,0,1) = (0,0,1) a
9(1,0,0) = (1,0,0).

In particular, g preserves the grading of H and induces a Hodge
isometry H?(X,7Z) = H?*(X',Z). Denote b := g(B) — B’ € H*(X,Q).
As g respects the Hodge structure, it maps o + B Ao to ¢/ + B’ A o’
and, therefore (o, B) = (¢/, B’). On the other hand, as g is an isometry,
one has (0, B) = (¢/,9(B)). Altogether this yields (¢’,b) = 0, i.e. b €
HY(X, Q).

Now compose g with the orientation preserving Hodge isometry
given by the identity H(X',B',Z) = H(X',g(B) = B' + b,Z). As
the latter can be lifted to a Fourier-Mukai equivalence D (X', ap/) =
D®(X’, ayp)) (see example iv)), it suffices to show that g viewed as a

1.e.
By
nd
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Hodge isometry H(X,B,Z) = H(X, g(B),Z) can be lifted. So we may
from now on assume that B’ = g(B).

As ¢ is orientation preserving, its degree two component defines a
Hodge isometry that maps the positive cone Cx C H1(X) onto the
positive cone Cx, C HV1(X).

If g maps an ample class to an ample class, then by the Global Torelli
Theorem ¢ can be lifted to an isomorphism f : X = X’ which in turn
yields a Fourier-Mukai equivalence ® := f, : D*(X,ap) = D*(X’, ap/).
Obviously, with this definition BB = g (use f.(B) =g(B)=B).

If g does not preserve ampleness, then the argument has to be modi-
fied as follows: After a finite number of reflections s¢, in hyperplanes or-
thogonal to (—2)-classes [C;] we may assume that sc, (... s¢, (h(a))...)
is an ample class. As the reflections s¢, are induced by the twist functors
Toc, (-1 : DP (X’ ap/) = DP(X’ ap/) (see the explanations in the last
section), the Hodge isometry ¢ is induced by a Fourier-Mukai equiva-
lence if and only if the composition s¢, o ...s¢c, o g is. Thus, we have
reduced the problem to the case already treated above.

In the following steps we shall explain how the general case can be
reduced to the case just considered.

2nd step. Suppose ¢g(0,0,1) = +(0,0,1) but ¢g(1,0,0) # £(1,0,0).
Again, by composing with —id we may reduce to ¢(0,0,1) = (0,0,1)
and ¢(1,0,0) # (1,0,0). Then ¢(1,0,0) is necessarily of the form exp(b)
for some b € H?(X’,Z). Hence, we may compose g with the Hodge
isometry exp(—b) : H(X',B',Z) = H(X', B' — b,Z) (that preserves the
orientation) which can be lifted to a Fourier—Mukai equivalence accord-
ing to example iii). This reduces the problem to the situation studied

in the previous step.

3rd step. Suppose that » > 0. Using Theorem 0.2 one finds a K3
surface Xy with a B-field By € H?(Xj, Q) such that over Xy x X’ there
exists a universal ozg,; X g-twisted sheaf parametrizing stable o/ -twisted

. . ’ . .
sheaves on X’ with Mukai vector v® = w. In particular, £ induces an

equivalence ®¢ : DP(Xy, ap,) = D*(X’, ap/) and (IJ(?O’B/(O,O, 1) =w.

Thus, the composition gg := (q)?j’B /)*1 o g yields an orientation

preserving (!) Hodge isometry ﬁ(X, B,Z) = H(Xo, By, Z). (The proof
that the universal family of stable sheaves induces an orientation pre-
serving Hodge isometry is analogous to the untwisted case. This seems
to be widely known [3, 11]. For an explicit proof see [4].) Clearly, g can
be lifted to a Fourier—-Mukai equivalence if and only if gy can. The latter
follows from step one.
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4th step. Suppose g is given with 7 < 0. Then compose with
the orientation preserving Hodge isometry —id of H (X', B’,Z) which
is lifted to the shift functor E +— E[1]. Thus, it is enough to lift the
composition —id o g which can be achieved according to step three.

5th step The remaining case is r = 0 and ¢ # 0. One applies the
construction of example vi) in Section 1 and proceeds as in step 3. The
class ¢ can be made nef by applying —id if necessary to make it effective
(i.e. contained in the closure of the positive cone) and then composing
it with reflections s¢ as in step one.

§3. The various twisted categories and their Chern characters

Let o € H?(X, O%) be a Brauer class represented by a Cech cocycle
{aijnt-

1. The abelian category Coh(X, {a;jr}) of {;i }-twisted coherent
sheaves only depends on the class o« € H?(X,0%). More precisely, for
any other choice of a Cech-cocycle {c/ i} representing «, there exists an
equivalence

‘II{/\U}
Coh(X, {ayjr}) — Coh(X,{a};.}), {Ei, ¢ij} — {Ei, 05 - Nij},

where {\ij € O*(Uy;)} satisfies o aip = Aij - Ajk - Ari- Clearly, {)i;}
exists, as {ai;x} and {a;;. } define the same Brauer class, but it is far
from being unique. In other words, the above equivalence Wy, ; is not
canonical. In order to make this more precise, choose a second {Aj; }.
Then ;5 = Aj; - )\Z-_jl can be viewed as the transition function of a
holomorphic line bundle £y»,. With this notation one finds

\Ij{Agj} = (LAA' ® ( )) © \I[{Azg}
A very special case of this is the equivalence
L& ():Coh(X,{ayk}) — Coh(X, {a;i})

that is induced by the tensor product with a holomorphic line bundle £
given by a cocycle {;;}.

Despite this ambiguity in identifying these categories for different
choices of the Cech-representative, Coh(X, {a;jx}) is often simply de-
noted Coh(X, a).

2. Now fix a B-field B € H?*(X,Q) together with a Cech-repre-
sentative { B;jr }. The induced Brauer class a := exp(B%?) € H?(X, O%)
is represented by the Cech-cocycle {ajx := exp(Bijx)}
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In [4] we introduced
ch? : Coh(X, {ayjr}) —= H**(X, Q).

The construction makes use of a further choice of C*°-functions a;;
with —B;;r = a;; + aji + ag;, but the result does not depend on it.
Indeed, by definition, ch” ({E;, vi;}) = ch({E;, @i; - exp(as;)}). Thus, if
we pass from a;; to a;; +¢;; with ¢;; 4+ cji +cp = 0, then chB({Eij, ©ii})
changes by exp(ci(L)), where £ is given by the transition functions
{exp(ci;j)}. But by the very definition of the first Chern class, one has
er(L) = (e + e+ cua)] = 0.

More generally, we may change the class B by a class b € H2(X, Q)
represented by {b;;x}. Suppose api, = ap € H*(X,0%). We denote
the Cech-representative exp(Bijr + biji) by a;jk. As before, we write
—DBijk = a;j + ajk + ak; and —bijk = Cijj + Cjk + Cki-

The Chern characters ch? and ch®*? fit into the following commu-
tative diagram

Y fexp(—ci;)} ,
Sh(X, {ai;r}) Sh(X, {a;})
ch®B A
H*(X,Q).

Unfortunately, we cannot replace Sh by Coh, for exp(c;;) are only
differentiable functions. Nevertheless, there exist 3;; € O*(U;;), non-
unique, with agjk = ;i - (Bij - Bjk - Bri). Using these one finds a
commutative diagram

Weg. .
Coh (X, {ajx}) — '~ Coh(X, {a};,})

ChBl lchB"'b

H*(X,Q) H*(X,Q).

exp(c1(£))

Here, L is the line bundle given by the transition functions [3;; - exp(c;;).
It is not difficult to see that c1(£) € HY!(X) whenever one has
be HYY(X,Q). Indeed, c1(L£) = {dlog(Bij)} + b, which is of type (1,1),
as bis (1,1) by assumption and the functions (3;; are holomorphic.
Thus, in this case there exists a holomorphic line bundle £ with
¢1(£) = ¢1(£). Now consider the composition ® := (£* @ ()) o Wig,,y e
Coh(X,ap = {a;jr}) = Coh(X,aptp := {aj;}), which is an exact
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~J

equivalence, and denote the derived one again by ® : D°(X,ap) =
DP(X,ap,p). Then the above calculation of the twisted Chern character

implies that (I>*B’B+b = id.

3. Consider again the abelian category Coh(X,{a;;r}). For any
locally free G = {G;, p;;} € Coh(X,{ai;r}) one defines an Azumaya
algebra Ag := End(GY). The abelian category of left Ag-modules will
be denoted Coh(A¢g). An equivalence of abelian categories is given by

Coh(X,{a;jr}) —= Coh(Ag), E+—GY ® E.

In [12] Yoshioka considers yet another abelian category Coh(X,Y)
of certain coherent sheaves on a projective bundle ¥ — X realizing
the Brauer class a. As is explained in detail in [12], one again has
an equivalence of abelian categories Coh(X,Y) = Coh(X, {«a;;r}). In
order to define an appropriate notion of stability, Yoshioka defines a
Hilbert polynomial for objects E € Coh(X,Y). It is straightforward to
see that under the composition

Coh(X,Y) — > Coh(X, {ai;z}) — = Coh(Ag)

his Hilbert polynomial corresponds to the usual Hilbert polynomial for
sheaves F' € Coh(Ag) viewed as Ox-modules. The additional choice of
the locally free object G in Coh(X,Y") or equivalently in Coh (X, {a;x})
needed to define the Hilbert polynomial in [12] enters this comparison
via the equivalence Coh(X, {a;;r}) = Coh(Ag). From here it is easy
to see that the stability conditions considered in [10, 12] are actually
equivalent.

We would like to define a twisted Chern character for objects in
Coh(Ag). Of course, as any F' € Coh(Ag) is in particular an ordinary
sheaf, ch(F) is well defined. In order to define something that takes into
account the Ag-module structure, one fixes B = {B;j;} and assumes
a;;i = exp(Bijk). Then we introduce

chf : Coh(Ag) — H*(X,Q), F'i Ch%fgw

Note that a priori the definition depends on B and G, but the depen-
dence on the latter is well-behaved as will be explained shortly.
Here are the main compatibilities for this new Chern character:
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i) The following diagram is commutative:

COh(X, {Ofijk}) COh(AG)

hB A

H*(X,Q).

Indeed, ch(GY ® E) = ch™Z(GY) - ch®(E).

ii) Let H be a locally free coherent sheaf and G' == G ® H €
Coh(X,{a;jr}). Then the natural equivalence Coh(Ag) — Coh(Ag/),
F +— HY ® F fits in the commutative diagram

Coh(Ag) Coh(Ag')

k /gl

H*(X,Q).

This roughly says that the new Chern character is independent of G.

iii) If 1, Fy € Coh(X,{w;jx}) and F; := GY ® E; € Coh(Ag)
then x(Ey, Ey) := > (—1)"dim Ext’(E;, F») is well-defined and equals
X(F1, Fy) := > (—1)"dim Exti\G (Fy, Fy). Both expressions can be com-
puted in terms of the twisted Chern characters introduced above and
the Mukai pairing. Concretely,

X(Fi, Fy) = —(chZ(Fy) - \/td(X), chS(F) - v/td(X)).

Here ( , ) denotes the generalized Mukai pairing and
X(Fi, Fy) = —(ch®(E1) - Vtd(X), ch® (Ey) - 1/td(X)).

(Be aware of the different sign conventions for K3 surfaces and the gen-
eral case.)

4. There is yet another way to define a twisted Chern character
which is implicitly used in [12]. We use the above notations and de-

fine chg : Coh(Ag) — H*(X,Q) by chg(F) = \/%, where F' and

Ag are considered as ordinary Ox-modules. Using the natural iden-
tifications explained earlier, namely Coh(X,Y) = Coh(X, {wijxr}) =
Coh(Ag), this Chern character can also be viewed as a Chern character
on the other abelian categories.

Although the definition chg seems very natural, it does not behave
nicely under change of G. More precisely, in general chggu(HY @ F) #
ChG (F )
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Fortunately, the situation is less critical for K3 surfaces. Here, the
relation between chg and chg can be described explicitly and using the
results in 3. one deduces from this a formula for the change of chg
under G — G ® H. In fact, it is straightforward to see that the following
diagram commutes:

Coh(Ag)
H*(X,Q) — - H(X.0)

Here Bg := %, where ¢Z(G) is the degree two part of ch®(G). Note

that B and Bg define the same Brauer class. In particular, the Hodge
structures fI*(X, B,Z) and fI*(X, Bg,7Z) are isomorphic.

This relation between ch5 and chg can be used to compare the two
versions of the cohomogical Fourier-Mukai transform in [4] and [12].
With v? := c¢h” . /td(X) and vg := chg - v/td(X) and the implicit
identification Coh(X, a) = Coh(Ag) the following diagram is commu-
tative:

Db(X7 aB) Db(Xlao/)
K Vg
B H*(X,@) %H*(X/,Q) oB'
A) e’:’(—%@\
H*(X,B,Z) — H*(X',B', 7).
3B

Here, the central isomorphism H*(X,Q) = H*(X’, Q) is the correspon-
dence defined by vgvge (€) with € € DP(X x X/, a3’ Mag:) the kernel
defining .
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On integral Hodge classes
on uniruled or Calabi-Yau threefolds

Claire Voisin

To Masaki Maruyama, on his 60th birthday

§0. Introduction

Let X be a smooth complex projective variety of dimension n. The
Hodge conjecture is then true for rational Hodge classes of degree 2n — 2,
that is, the degree 2n — 2 rational cohomology classes of X which are
of Hodge type (n — 1,n — 1) are algebraic, which means that they are
the cohomology classes of algebraic cycles with Q-coefficients. Indeed,
this follows from the hard Lefschetz theorem, which provides an isomor-
phism:

Uci (L)"2: H*(X,Q) = H*"2(X,Q),

from the fact that the isomorphism above sends the space of rational
Hodge classes of degree 2 onto the space of rational Hodge classes of
degree 2n — 2, and from the Lefschetz theorem on (1, 1)-classes.

For integral Hodge classes, Kollar [11], (see also [14]) gave examples
of smooth complex projective manifolds which do not satisfy the Hodge
conjecture for integral degree 2n — 2 Hodge classes, for any n > 3. The
examples are smooth general hypersurfaces X of certain degrees in P 1.
By the Lefschetz restriction theorem, such a variety satisfies

H?*(X,7)=7ZH, H = ¢;(0x(1)),

and
H?""%(X,Z) = Za, < a, H >= 1.

Plane sections C' of X have cohomology class [C] = da, d = deg X,
because
degC =d=<|[C],H > .

Kollar [11] proves the following :

Received December 14, 2004.
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Theorem 1. Consider hypersurfaces X C P*t! of degree d, where
n > 4. Assume d satisfies the property that p™ divides d, for some integer
p coprime to n!. Then for a general X, any curve C' in X has degree
divisible by p, hence its cohomology class is a multiple of pa.. Thus the
class o is not algebraic, that is, it is not the cohomology class of an
algebraic cycle with integral coefficients.

The condition on the degree makes the canonical bundle of X very
ample, since the smallest possible degree available by this construction is
> 2™, Tt is thus natural to try to understand whether this is an artificial
consequence of the method of construction, or whether the positivity of
the canonical bundle is essential.

Another reason to ask whether one could find examples above with
Kodaira dimension equal to —oo is the remark made in [14] :

Lemma 1. Let X be a smooth rational complex projective manifold.
Then the Hodge conjecture is true for integral Hodge classes of degree
2n — 2.

(Note that the whole degree 2n — 2 cohomology of such an X is of
type (n — 1,n — 1), so the statement is that classes of curves generate
H?*"=2(X7) for a rational variety X.)

One can thus ask whether this criterion could be used to produce
new examples of unirational or rationally connected, but non rational
varieties (we refer to [5], [1], [9] for other criteria). Namely, it would suf-
fice to produce a smooth projective rationally connected variety which
does not satisfy the Hodge conjecture for degree 2n — 2 integral coho-
mology classes. The main result of this paper implies that in dimension
3, this cannot be done:

Theorem 2. Let X be a smooth complex projective threefold which
either is uniruled, or satisfies

Kx = Ox, H*(X,0x) = 0.

Then the Hodge conjecture is true for integral degree 4 Hodge classes on
X.

Remark 1. Recall [12] that a complex projective threefold is unir-
uled, that is swept out by rational curves, if and only if it has Kodaira
dimension equal to —oo. Thus our condition is that either x(X) = —c0
or Kx = Ox and H?(X,0x) = 0.

Note that as an obvious corollary, we get the following:
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Corollary 1. Let X be a smooth complex projective n-fold. Assume
X contains a subvariety Y which is a smooth 3-dimensional complete in-
tersection of ample divisors, and satisfies one of the conditions in The-
orem 2. Then the Hodge conjecture is true for integral degree 2n — 2
Hodge classes on X.

Indeed, let 5 be the inclusion of Y into X. By Lefschetz restriction
theorem, the map

Gu : HYY,Z) = Hy(Y,Z) — Ho(X,7) = H*"*(X,7)

is an isomorphism. Thus the Hodge conjecture for integral Hodge classes
of degree 4 on Y implies the Hodge conjecture for integral Hodge classes
of degree 2n — 2 on X. [ |

Note that in higher dimensions, there are two possible generaliza-
tions of the problem studied above. Namely, one can study the Hodge
conjecture for integral Hodge classes in degree 4 or 2n—2. Both problems
are birationally invariant, in the sense that the two groups

Hdg*(X,7)/ < [Z] >, Hdg*"*(X,Z)/ < |Z] >,

where < [Z] > denotes the subgroups generated by classes of algebraic
cycles with integral coefficients, are birational invariants of a smooth
complex projective manifold X of dimension n (see [14]). For both
problems, it is clear that the assumption “uniruled” will not be sufficient
in higher dimension to guarantee that the groups above vanish. Indeed,
starting from one of Kollar’s 3-dimensional example of a pair X,«a €
H*(X,Z), where « is a non-algebraic integral Hodge class (Theorem 1),
we can consider the product

Y = X x P,

and both classes
pria, priaUprs([pt])

in degree 4 and 6 = 2n—2 respectively will give examples of non-algebraic
integral Hodge classes.

However, one may wonder if the analogue of Theorem 2 holds for X
rationally connected, and for integral Hodge classes of degree 4 or 2n — 2
on X, n=dimX.

The proof of Theorem 2 uses the Noether-Lefschetz locus for surfaces
S in an adequately chosen ample linear system on X. This leads to
simple criteria which guarantee that integral degree 2 cohomology classes
on a given S are generated over Z by those which become algebraic
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on some small deformation S; of S. The Lefschetz hyperplane section
Theorem allows then to conclude.

In section 1, we state this criterion, which is an algebraic criterion
concerning the infinitesimal variation of Hodge structure on H?(S), for
varieties X with H2(X,Ox) = 0. In section 2, we prove that this crite-
rion is satisfied for uniruled or K-trivial varieties with trivial H?(X, Ox).
In the case of K-trivial varieties, the criterion had been also checked in
[15], but the proof given here is substantially simpler. In section 3, a
refinement of this criterion for uniruled threefolds with H2(X,Ox) # 0
is given and proven to hold for an adequate choice of linear system.

Thanks. This work was started during the very interesting confer-
ence “Arithmetic Geometry and Moduli Spaces. 1t is a pleasure to thank
the organizers for the nice atmosphere they succeeded to create. I also
wish to thank S. Mori for his help in the proof of Lemma 4 and J. Starr
for interesting discussions on related questions.

§1. An infinitesimal criterion

Let X be a smooth complex projective n-fold. Let j : S — X be a
surface which is a smooth complete intersection of ample divisors. Thus
by Lefschetz theorem, the Gysin map:

ju s HX(S,Z) — H (X, Z)

is surjective.

We assume that the Hilbert scheme H of deformations of S in X is
smooth near S. This is the case if S is a smooth complete intersection of
sufficiently ample divisors. The space HY(S, Ng /x) is the tangent space
to H at S. Let p : H°(S, Ng/x) — HY(S,Ts) be the Kodaira-Spencer
map, which is the classifying map for the first order deformations of the
complex structure on S induced by the universal family 7 : § — H of
surfaces parameterized by H.

For u € H(S,Ts) we have the interior product with u:

ua: H'(S,Qs) — H?*(S,0g).

The criterion we shall use is the following:

Proposition 1. Assume there exists a A € H'(S,Qg) such that the
map

(1.1) px s HY(S, Ng/x) — H?(S,0g),
pa(n) = p(n)aA,
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is surjective. Then any class o € H*"~2(X,Z) is algebraic.

Remark 2. Our assumptions imply immediately that the coho-
mology H?"~2(X,C) is of type (n — 1,n — 1). Indeed, this last fact is
equivalent to the vanishing of the space H™(X, Q}*Q). On the other
hand, interpreting the map p) above in terms of infinitesimal variations
of Hodge structures on the degree 2 cohomology of the surfaces S; pa-
rameterized by H, one sees that I'm u) is contained in

Ker (4. : H*(S,0g) — H™(X, Q% ?)).
Thus the assumptions imply that this last map j, is 0, and as it is
surjective by Lefschetz theorem, it follows that H™ (X, Q?{_Q) =0.

Remark 3. The assumption of Proposition 1 is exactly the assump-
tion of Green’s infinitesimal criterion for the density of the Noether-
Lefschetz locus (see [19], 5.3.4), which allows to conclude that real degree
2 cohomology classes on S can be approximated by rational algebraic
cohomology classes on nearby fibers S;. It had been already used in [16],
[17] to construct interesting algebraic cycles on Calabi-Yau threefolds.

Proof of Proposition. We refer to [19], chapter 5, for more details
on infinitesimal variations of Hodge structures. On a simply connected
neighborhood U in ‘H of the point 0 € H parameterizing S C X, the
restricted family

m:Sy —=U

is differentiably trivial, and in particular the local system
H2 := R*r,.7Z/torsion
is trivial. Thus the locally free sheaf
H? .= H. % ® Oy

is canonically trivial, and denoting by H? the corresponding vector bun-
dle on U, we get a canonical isomorphism

H? = U x H?*(S,C),

since the fiber of H? at 0 is canonically isomorphic to H?(S,C). Com-
posing with the second projection gives us a holomorphic map

7: H? — H*(S,C),
which on each fiber H? = H?(S;,C) is the natural identification

H?(S;,C) = H*(S,C).
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Next the vector bundle H? contains a holomorphic subbundle F!'H?,
which at the point ¢ € U has for fibre the subspace

FYH?(S,) == H*°(S,) @ HY'(S,) ¢ H*(S;, C).

We shall denote by
m : F1H? — H?*(S,C)
the restriction of 7 to F*H?2.
The key point is the following fact, for which we refer to [19], 5.3.4 :

Lemma 2. For A € H'(S;,Qs,), choose any lifting X\ € F*H? of \.
Then the surjectivity of the map

px s H(Se, Ng,/x) — H?(St, Os,)

15 equivalent to the fact that the map 11 is a submersion at .

Having this, we conclude as follows: First of all, we observe that
the assumption of Proposition 1 is a Zariski open condition on \ €
HY(S,Qg5). Now, the space H*(S,Qg) = HY(S) has a real structure,
namely

H"'(S)=H""(S)r®C,
where HY1(S)g = HYY(S) N H?(S,R). Thus if the assumption is satis-
fied for one A € H1(S), it is satisfied for one real A € H'!(S)g.
In the lemma above, choose for lifting X the class A itself. Thus A

is real, and so is 7 (A). As the assumption on A and the lemma imply
that 7 is a submersion at A, so is the restriction

TIR: Hﬂé’l — HQ(S, R)
of 71 to 7; *(H?(S,R)). Here we identified 7; *(H?(S,R)) to
Urer FYH?(S:) N H?(St, R) = Uy HVY (S )p =: Hy'.

As 71 r is a submersion at 5\, and H 1’1(S)R is a smooth real manifold,
because it is a real vector bundle on U and U is smooth, I'm 7 g contains
a non-empty open set of H2(S,R). On the other hand Im 7 g is a cone.
We use now the following elementary lemma:

Lemma 3. Let V be a lattice, and let C' be a non-empty open cone
m Vg :=Vz @ R. Then Vyz 1s generated over Z by the points in Vz N C'.

Proof. Vz N C is non-empty because Vg is dense, and C' is a non-
empty open cone in Vg. Let u € V7, and let v’ € VN C. For q a large
integer, we have %u +u' € C, because C is open. Then u + qu’ := v’ €
VzNC. Thus u = v — qu’ is in the sublattice generated over Z by the
points in Vz N C. [ |
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We apply Lemma 3 to Vz = H?(S,Z)/torsion and to C' an open
cone contained in I'm 7 g. Thus we conclude that H?(S,Z)/torsion is
generated over Z by classes a € Im 7 g. But by definition of 7, if an
integral cohomology class o € H?(S,Z)/torsion is equal to 71 (), for
some

)\t € Hl’l(St)]R C HQ(St,R),

the corresponding class
oy € H*(Sy,Z) [torsion C H?(S;, R)
is equal to \; in H?(S;, R). Thus the class
o = A\ € HYY(Sy) N H?(S;, Z) /torsion

is algebraic on S; by Lefschetz theorem on (1, 1)-classes.

The conclusion is that, under the assumptions of Proposition 1, the
lattice H2(S,Z)/torsion is generated over Z by integral classes which
become algebraic (i.e. are the class of a divisor) on some nearby fiber
S;. As the torsion of H?(S,Z) is algebraic, the same conclusion holds
for H?(S,Z).

Finally, as the map j,. : H%(S,Z) — H?""2(X,7Z) is surjective, we
conclude that H?"~2(X,Z) is generated over Z by classes of 1-cycles in
X.

|

§2. Proof of Theorem 2 when H?(X,0x) =0

In this section, we assume that H?(X,Ox) = 0 and X either has
trivial canonical bundle or is uniruled.
In case where X is uniruled, we have the following result:

Lemma 4. Let X be a uniruled threefold. Then a smooth birational
model X' of X carries an ample line bundle H such that

H?K x: < 0.

Proof. As X is uniruled, X is birationally equivalent to a Q-
Gorenstein threefold Y which is either a singular Fano threefold, or
a Del Pezzo fibration over a smooth curve, or a conic bundle over a
Q-Gorenstein surface. Let us first prove the existence of an ample line
bundle Hy on Y such that KyH% < 0:

a) If Y is Fano, —Ky is ample, so we can take for Hy an integral
multiple of —Ky-.
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b) Otherwise there is a morphism
m:Y — B,

where B is Q-Gorenstein of dimension 1 or 2, and the relative canonical
bundle K has the property that —K is a relatively ample Q-divisor.
Let Hp be an ample line bundle on B, and choose for Hy the Q-divisor

Hy :W*HB —EKﬂ-,

where € is a small rational number. As — K is relatively ample, Hy is
ample for small enough €. We compute now:

H:Ky = (n*Hp — eK;)*(n*Kp + K;)
=T H3K, — 2K m*Hp(n*Kp + K,) + O(€?).

If dim B = 2, the term 7* H3 K. is negative, so that for small ,
H{Ky <0.

If dim B = 1, the first term vanishes but the second term is equal to
—2¢K2n* Hp and this is negative because — K is relatively ample.

Let now Y, Hy be as above, and let 7: X’ — Y be a desingulariza-
tion of Y. Thus X'’ is a smooth birational model of X. Then there is a
relatively ample divisor E on X’ which is supported on the exceptional
divisor of 7. Consider the Q-divisor

H =7"Hy + €E,

for € a sufficiently small rational number. Then we have Kx» = 7* Ky +F
where F' is supported on the exceptional divisor of 7. This gives

H*Kx: = (T*Hy + eE)*(T*Ky + F).
As 7*HZF = 0, the dominating term is equal to
T HimT* Ky = HE Ky < 0.

Thus for small € we have H2K x/ < 0.
[ |

From now on, we will, in the uniruled case, consider X’ instead of
X, which can be done since the statement of Theorem 2 is invariant
under birational equivalence, and we will assume that H satisfies the
conclusion of Lemma 4.

Our aim in this section is to prove the following Proposition, which

by Proposition 1 implies Theorem 2 for uniruled and Calabi-Yau three-
folds X with H?(X,0x) = 0.
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Proposition 2. Let X be a smooth projective uniruled or Calabi-

Yau threefold such that H*(X,Ox) = 0. Let H be an ample line bundle
on X. In the uniruled case, assume that H satisfies H*Kx < 0. Then
for n large enough, and for S a generic surface in | nH |, there is a
A\ € HY(S,Qg) which satisfies the property that

px : H°(S,05(nH)) — H?*(S, Os)

18 surjective.

To see that this is a reasonable statement, note that in the K-
trivial case, the spaces H°(S,Og(nH)) and H?(S,Og) have the same
dimension, since, if S €| nH |, we have by adjunction

HO(Sa KS) = HO(Sa OS(S)) = HO(Sa NS/X)7

with H°(S, Ks) = H?(S,Og)*. Thus the two spaces involved in Propo-
sition 2 have the same dimension. In the uniruled case, we have:

Lemma 5. Assume X, H satisfies H*Kx < 0, then for S €| nH |,
we have

h?(0s(8)) = h°(Ks) + ¢(n),
where ¢(n) = an? + o(n?), a > 0.
Proof. We have Kg = Kx(S)|s. Thus

X(0s(8)) = x(Ks(—Kx))
= X(Kxi5) = X(Os) + 5 (K5 — Kxis(Kxis + nHis)
= x(Ks) + %(nHK)% —nHKx(nH + Kx)).
It follows that
x(0s(9)) — x(Kg) = —%n2H2KX + affine linear term in n.
On the other hand, for large n, the ranks
h'(0s(S)) = 1*(Ox), h*(0s(8)) = h*(Ox),

h'(Ks) = h'(Os) = h*(Ox), h*(Kgs) = C

do not depend on n. It follows that we also have
1
h(05(8)) — h'(Ks) = —§n2H2KX + affine linear term in n,

which proves the result with a = —%H 2Kx > 0. [ |
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By this Lemma, we conclude that in the K-trivial case and in the
uniruled case, we can assume that we have for n large enough, and
S e|lnH |,

h’(Ns/x) = h'(S,05(8)) = B°(Ks) = h*(Os).
This makes possible the surjectivity of the map
2O HO(S7 NS/X) - H2(Sa OS)

of (1.1), and also says that py is surjective if and only if it has maximal
rank.
Another way to see this is to introduce

V= H"(S,Ks), V' := H°(S,Ng/x).

The bilinear map
(2.2) p:Vx V' — HYS, Qs),

(v, ) = plv/) 0
and Serre’s duality H'(S,Qg) = H(S,Qs)* give a dual map

q=p* HY(S,Q5) = (V@ V)" = HOB(V) x P(V'), 0(1,1)),
given by
) © ) =< A (v X v') >

As we have
<\ p(v) v >=— < p(v' )i\ v >,

where the <, > stand for Serre’s duality on H!(S,Qs) on the left and be-
tween H°(S, Ks) and H?(S, Og) on the right, we see that ¢()\) identifies
to ux € Hom (V,V'*).

Thus the condition that ) has maximal rank for generic A is equiv-
alent to the condition that the hypersurface of P(V)) x P(V’) defined by
¢(A) is non singular.

We shall use the following criterion:

Lemma 6. Given u as in (2.2), the generic hypersurface defined by
q(A) is non singular if the following set

(2.3) Z={(v,v) e P(V) x P(V"), u(v xv') =0 € H(S,Qs)}

satisfies
dim Z < dimP(V").
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Proof. Assume to the contrary that the generic g()\) is singular.
Let
Z' CP(H'(S,Q5)) x P(V),
Z" = {(\,v), q()\) is singular at (v,v") for some v' € P(V')}.
By assumption Z’ dominates P(H'(S,{g)). Clearly there is only one
irreducible component Z; of Z’ which dominates P(H 1(8,Q5)). Let 7]

be the second projection of Z{ in P(V).
As Z] dominates P(H'(S,€Qs)) we have

dim Z, > rk H'(S,Qg) — 1.

On the other hand, the fiber of Z over the generic point v, of Z] is
equal to
vy x V)*.

Thus we have

dim Z, = dim Zy + rk H'(S,Qs) — 1 = 1k f1,,,

where pu,, : V' — H'(S,Qg) is the map v' — pu(vg x v').
The condition dim Z), > rk H'(S,Qg) — 1 is thus equivalent to

(2.4) dim Zj > 1k fu,, .

But on the other hand, the unique irreducible component Zy of Z which
dominates Z] has dimension equal to dim Z| 4+ dimP(V') — rk pu,, and
inequality (2.4) implies that this is > dim P(V"). u

Our first task will be thus to study the set Z introduced in (2.3). To
this effect, we degenerate the surface S €| nH | to a surface with many
nodes. The reason for doing that is the following fact (cf [15]):

Lemma 7. Let § — A be a Lefschetz degeneration of surfaces Sy
in | nH |, where the central fiber has ordinary double points x1,...,xTN
as singularities. Then the limiting space

lim T (g, - H'(S1, 9s,) — (HY(S,, Ks,) © HY(S, Os, (nH)))"),

—0

which is a subspace of (H°(So, Ks,) ® H(So, Os,(nH)))*, contains for
each i = 1,..., N the multiplication-evaluation map which is the com-
posite:

HO(So, Ks,) ® HY(So, Og, (nH)) ™" H(Sy, Kg,(nH))

evg,

B (K, (nH),o,)-
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As we want to use this lemma to bound the dimension of the space
Z of (2.3) for a generic surface, it is natural to degenerate the generic
surface to a surface with many nodes. To get surfaces with many nodes,
we use discriminant surfaces as in [2]. We assume here that H is very
ample on X, and we consider a generic symmetric n by n matrix A whose
entries A;; are in HY(X,Ox(H)). Let 04 := discr A € H°(X,Ox(nH))
and Sy be the surface defined by o 4.

Theorem 3. (Barth [2]) The surface Ss has N ordinary double
points as singularities, with

N= <” N 1) H®.
3
Note that for large n, this grows like %3H 3 while both dimensions
h°(Ks), h®(Os(nH)) of the spaces V, V' grow like h®(Ox (nH)), that is
like %SH 3 by Riemann-Roch.

Next we have the following lemma, which might well be known al-
ready, but for which we could not find a reference:

Lemma 8. Let X be a smooth projective threefold, and H a very
ample line bundle on X which satisfies the property that

H'(X,0x(IH)) =0, fori>0,1>0.

Let S5 €| nH | be a generic discriminant surface as above, and let W C
X be its singular set. Then the cohomology group H'(X, Ty ((n+2)H))
vanishes.

Proof. Let G = Grass(2,n) be the Grassmannian of 2-dimensional
vector subspaces of K := C"™. The matrix A as above can be seen as a
family of quadrics A, on P(K) parameterized by x € X, the surface Sx
corresponds to singular quadrics and the singular set W parameterizes
quadrics of rank n—2. Thus W is via the second projection in one-to-one
correspondence with the following algebraic set:

W :={(l,z) € G x X, A, is singular along [}.

Let &£ be the tautological rank 2 quotient bundle on G, whose fiber at
lis H°(Op,(1)). € is a quotient of K* ® Og, and there is the natural
map

e:S?’K* @0 - K*®E.
Let
(2.5) F:=Ime.
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Clearly, a quadric A € S2K* on P(K) is singular along A, if and only if
it vanishes under the map e at the point [. Thus the set W is the zero
locus of a section of the vector bundle

FROx(H)

which is of rank 2n — 1 on G x X. Note that the cokernel of e identifies

to /\2 & =: L where L is the Pliicker line bundle on GG. Thus we have an
exact sequence

(2.6) 0-F—-K'®&E—-L—0

on G.
As W is the zero set of a transverse section of a rank 2n — 1 vector
bundle on G x X, its ideal sheaf admits the Koszul resolution:

2n—1

0 A FROx((—2n+1)H) — ... » F*ROx(-H) — Iy — 0.
Thus the space H' (X, Iw ((n+2)H)) = H'(Gx X, Iz @ pr3 ((n+2)H))
is the abutment of a spectral sequence whose E1-term is equal to

H(Gx X, \F*ROx((n+2—i)H)),i> 1.

By Kiinneth decomposition and the vanishing assumptions, these
spaces split as:

H(G,\NF)@H (X, (n+2-i)H),n+2—i>0,
HY (G, \F) @ H(X,0x)® H™YG, \ F*)® H'(X,0x)
oH' (G, \ F)eH*(X,0x)0H (G, N F)®H*(X,0x), i = n+2,

H™H G, \NF) @ B (X, (n+2— i) H), n+2—i <0.

The proof of Lemma 8 is thus concluded by the following lemma, which
implies that the Fi-terms of the spectral sequence above all vanish.

Lemma 9. On the Grassmannian G = Grass(2,n), the bundle F
being defined as in (2.5), we have the vanishings:

(1) H(GNF)=0n+2-i>0,i>1

(2) H"YG,NF*)=0,n+2—-1i=0.
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(3) H72(G,\'F*)=0,n+2—i=0.
(4) H73(G,NF)=0,n+2-i<0,i>1.
The proof of this last lemma is postponed to an Appendix. [ |

As an immediate corollary, we get the following:

Corollary 2. Under the same assumptions as in Lemma 8, the
numbers

rk H' (X, Kx @ Ty (nH)), rk H' (X, Iy (nH))

are bounded by Cn? for some constant C.

Combining Corollary 2 with Riemann-Roch and Barth’s Theorem
3, we get the following corollary:

Corollary 3. The spaces HO(X, Kx (nH)®Zw) and H*(X, Ty (nH))
have dimension bounded by cn? for some constant c.

We shall use the following consequence of the uniform position prin-
ciple of Harris:

Lemma 10. Let A be generic and let W' C W be a subset of W =
Sing Sa. Then if

H(X,Kx(nH)®Iw) # H(X,Kx(nH) @ Iw),

W' imposes card W' independent conditions to HY(X, Kx(nH)). Simi-
larly, if

HY(X,0x(nH) @ Iw) # H(X,Ox (nH) ® T ),
W' imposes card W' independent conditions to HY(X,Ox(nH)).

Proof. Indeed, we represented in the previous ] proof the set W as
the projection in X of a 0-dimensional subscheme W of G x X, defined
as the zero set of a generic transverse section of the vector bundle F X
Ox(H) on G x X. One verifies that the uniform position principle
[8] applies to W, and this allows to conclude that all subsets of W of
given cardinality impose the same number of independent conditions to
H(X,Kx(nH)) or H(X,Ox(nH)). This number is then obviously
equal to

Min (card W', a)

where a = rk (rest : H(X, Kx(nH))—H®(W, Kx (nH)w))), resp.
a=rk(rest: H(X,Ox(nH))—H°(W,Ow (nH)))

in the second case.
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From now on, we will treat separately the uniruled and the K-trivial
cases.

The uniruled case. We may assume (X, H) satisfies the inequality
H?Kx < 0 of Lemma 4. We want to study the set Z of (2.3) for a generic
surface S €| nH |, and more precisely the irreducible components Z’ of
Z which are of dimension > dim P(V’).

Degenerating S to S4 and applying Lemma 7, we find that the
specialization Z. of Z' is contained in

Zo = {(v,v") € P(Va) x P(V}}), vvjyy, = 0},
where
Va=H%Ss,Ks,), Vi =HS4,Os,(nH)).

Lemma 11. Z! is contained in the union

(2.7) PH?(Sa, Ks, @ Iw) x P(V})
UP(Va) x PH(S4, 05, (nH) ® Iwy).

Proof. We observe that Z; is a union of irreducible components
indexed by subsets W’/ C W, with complementary set W" := W \ W":
Zo =UwrcwZwr,

Zwr :=PH®(Ss, Ks, @ Iy) x PH°(S4, Og, (nH) @ Tyn).

We use now Lemma 10: it says that if both conditions
HO(X,Kx(nH)® Tw:) # H (X, Kx (nH) © Tw),

HY(X,0x(nH) @ Iyn») # H'(X,0x(nH) @ Ty )

hold, then W’ imposes card W' independent conditions to the linear sys-
tem H°(X, Kx(nH)) and W imposes card W” independent conditions
to HY(X,Ox(nH)). Thus the codimension of Zy in P(V4) x P(V})
is equal to card W’ + cardW"” = cardW. But cardW is equal to

%H?’ by Theorem 3, while the dimension of Vi = H°(Sa, Kg,) =

HY(X,Kx(nH)) is equal to

1 1
En?’H?’ + ZnQKXH2 + affine linear term in n

by Riemann-Roch.
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As KxH? < 0, we conclude that for n large enough, if W' is as
above, we have
codim Z' < dimP(Vy),

and thus
dim Zy < dimP(V}).

Thus, for large n, the only components of Zy which may have dimension
> dimP(V}) are the two components PH?(S4, Kg, ® Iy ) x P(V}) and
]P’(VA) XPHO(SA,OSA<TLH)®IV[/). |

Corollary 4. Assume S is generic and Z' C P(V) x P(V') is an
irreducible component of Z which has dimension > dimP(V'). Then
either

i) dimpri(Z') < cn? or

i) dimpra(Z') < en?,

where c is the constant of Corollary 3.

Proof. By Lemma 11, the specialization Z! of Z’ is contained in
the union (2.7). As we have by Corollary 3

dimPH(X, Kx(nH) ® Ty) < en?, dimPH®(X, Ty (nH)) < en?,
this implies that the cycle Z. satisfies:
hie hye (22 = 0 in H(B(Va) x P(V}), 2).

where
h1 := prici1(Opvy) (1)), ha := prici(Opny) (1)),

and [Z!] is the cohomology class of the cycle Z..
It follows that we also have

(2.8) Wi h2< (2] = 0 in H*(P(V) x P(V'), 7).

We claim that this implies that i) or ii) holds. Indeed, as Z’ is irreducible,
there are well defined generic ranks k1, ko of the projection pry|z/, pra|z
respectively, which are also the generic ranks of the pull-back of the
(1,1)-forms priws, priws to Z’', where w; are the Fubini-Study (1, 1)-
forms on P(V'), P(V'). As the form
%, nc? * nc’
priwy Apriwg

is semi-positive on Z’, the condition (2.8) implies that everywhere on Z,
we have

*, nc * n62

priwy ’ N prawy© = 0.
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As dim Z' > 2cn? and (pry, pro) is an immersion on the smooth locus of
Z', this implies easily that either k1 = rkpri; or ko = rkpry has to be
< cn?, that is i) or ii). u

Corollary 5. With the same assumptions as in the previous corol-
lary, if (v,v") € Z', one has either

i) Tk, 2 V! — HY(S,Qg) < cn?, or

i) Tk oy V — HY(S,Qg) < cn?,

where i) and ii) refer to the two cases of Corollary 4 and

o (1) = p(v @), por () = p(- @0).

Proof. Indeed, assume case i) of Corollary 4 holds. As dim Z’ >
dimP(V"), the generic fibre of pry : Z' — P(V’) has dimension >
dimP(V') — en?. But the generic fibre is, by definition of Z, equal
to P(Ker p,). Thus rank p, < cn?.

In case ii), we can do the same reasoning, as we have

dim Z' > dimP(V'") > dimP(V).

The proof that such a Z’ does not exist, and thus, the proof of
Proposition 2 in the uniruled case, concludes now with the following
two Lemmas :

Lemma 12. Let S €| nH | be generic, with n large enough. Let ¢
be any positive constant. Then there exists a constant A such that the
sets

(2.9) I'={veP(V), rkp, <cn?},
(2.10) I = {v' € P(V'), vk ptr < cn?},
both have dimension bounded by A.

Lemma 13. Let A be any positive constant. Let S €| nH | be
generic, with n large enough (depending on A). Then the set

B={veV rku, < A}

reduces to 0.

Indeed, we know by Corollary 5 that our set Z’ should satisfy either
pri(Z') C T (case i) or pra(Z’) C IV (case ii). Thus by Lemma 12, one
concludes that in case i), dim pri1(Z') < A and in case ii), dim pro(Z') <
A, where A does not depend on n.
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In case ii), it follows that dim Z < dimP(V) + A and as we have
dimP(V) 4+ A < dimP(V'") by Lemma 5, this gives a contradiction.

In case i), it follows, arguing as in the proof of Corollary 5, that for
(v,v") € Z’', one has rk u,, < A. This is impossible unless Z’ is empty by
Lemma 13. Thus, assuming Lemmas 12 and 13, Proposition 2 is proved
for uniruled threefolds with H?(X,Ox) = 0. u

Proof of Lemma 12. Our first step is to reduce the statement to
the case where S is a surface in P3. This is done as follows: we choose
once for all a morphism

f: X —P3

given by 4 sections of H, so that f*Ops(1) = H. We shall prove the
result for surfaces of the form S = f~1(2), where ¥ is a generic smooth
surface of degree n in P3. Let fs : S — X be the restriction of f to S.
We have trace maps

fse : HY(S,Qg(sH)) — HY(2,Qx(s)),

fs« : HY(S,Ks(sH)) — H(Z, Kx(s))

for all integers s. We note now that the map p admits obvious twists
that we shall also denote by p:

p: HY(S,Ks(lH)) @ H°(S, Os(nH)) — H'(S,Qs(1H)).
Furthermore, we have similarly defined bilinear maps pu*:
peHY(E, Kx (1) @ H(2,0x(n) — H' (2, Q5(1)).
All the maps p can be defined using the maps
0+ H(S,Ks(IH)) — H'(8,Qs((—n + ) H)),

induced by the exact sequence (which is itself a twist of the normal exact
sequence)

0— Qs(—nH) — ngs — Kg — 0,
twisted by [H, and then the product map
H(S,Q5((—n + ) H)) @ HO(S, Os(nH)) — H'(S, Qs (1H)).

The same is true for the maps uy.
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As there is a commutative diagram of normal exact sequences

0 — TS — TX|S — 05<TLH) — 0

fS*l f*l H )
0 — fTs — [f'Tpsg — Os(nH) — 0

where the bottom line is the normal bundle sequence of ¥ pulled-back
to S, it follows that for v € HY(S, Ks(l)) and n € H(X, Os(n)), we
have:

(2.11) Fsu (o (F3M)) = 155, () (M),
Equation (2.11) implies that
rk (i, ) - H'(3, 0x(n) — H' (2, Qx(1)))

<71k (o : H(S, Og(n)) — H'(S,Qs5(1))).

Let us now prove the first case of Lemma 12, namely for the set I'. The
second proof is done similarly.

Starting from a sufficiently ample H, one finds that H°(X, Ox (4H))
restricts surjectively onto H°(X,,Ox,(4H)), for any u € P23, where
X = f1(u).

We have the following Lemma:

Lemma 14. The image I's, of the composed map
T x H(X,Ox(4H)) % HO(S, Ks(4H)) 5 HO(S, Kx(4)),
where v s the product, has dimension at least equal to %dim I', where
N :=rk H*(X,Ox (4H)).
Proof. Indeed, as the restriction map
H°(X,0x(4H)) — H°(Xy, Ox, (4H))
is surjective, if e; is a basis of H%(X, Ox(4H)), the map
I —Tg, v fsc(yei),

is injective. Thus dimI' < Ndim7T'x,.
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On the other hand, if v € ', a € H°(X,Ox(4H)), we have
Tk prow < Tk iy

because tiqy = api,. Thus we conclude that the following hold:
dimD'y > ! dimT
imI's 2 dimT,

rk ,UE) < rk py, < cnz,

for all w € I's..
As N does not depend on n, it suffices to show the result for generic
¥ in P2 and for the product

p>: HY (S, Ks(4)) x H(Z,0x(n)) — HY(2,Qxs(4)).

This last product is well known (cf [19],6.1.3) to identify to the multi-
plication in the Jacobian ring of X:

ps : HO(2, 0g(n)) x HY(Z, Os(n)) — RE.
Thus we have to show that for generic X, the set
I's :={ve H(Z,0xs(n)), rk us » < ecn}

has dimension bounded by a constant which is independent of n.

For this, we specialize to the case where X is the Fermat surface, that
is, its defining equation is o = Zg X;'. The Jacobian ideal of X is then
generated by the Xz.”_l, and there is thus a natural action of the torus
(C*)* on the Jacobian ring Ry, by multiplication of the coordinates by
a scalar. The subspace

I's; C Rg_l

is thus invariant under (C*)*. Note that the fixed points of the induced
action on P(R%™') are the monomials, and are thus isolated. It follows
that we have the inequality

dimTsx, < number of fixed points on I's;.
Thus we have to bound the number of monomials
X;=XPXPX2XE ig+ig+iz+is=n,

such that
rk Xp: R% — R~ < en?.
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But the kernel of the multiplication by X; above is equal to the ideal
XgTogt . XS,

where S' := HO(P3 Ops(l)), and thus has dimension < >, rk S'.
Hence, if rk X1 < cn?, we must have
(2.12) Zrk S > rk S™ — en?,

k

with >, i = n. It is not hard to see that there exists an integer [ > 0
such that, if n is large enough and (2.12) holds for I, n, one of the i} s
has to be > n — [. Thus the other i;’s have to be non greater than [.
This shows immediately that the number of such monomials is bounded
by a constant independent of n and concludes the proof of Lemma 12.
|

Proof of Lemma 13. The key point is the following fact from [6].

Proposition 3. Let X be any projective manifold and H be a very
ample line bundle on X. Let A be a given constant, and for n > A, let
M C H%(X,Ox(nH)) be a subspace of codimension < A. Then

H°(X,0x(H))-M c H*(X,Ox((n+ 1)H))

has codimension < A, with strict inequality if M has no base-point.

Assume v € V satisfies the condition that rku, < A. Let M =
Ker i, C H°(S,0s(nH)). By Proposition 3, we conclude that if n > A,
we have

H°(S,04(H))-M c H°(S,0s((n +1)H))

has codimension < A. Next, we consider for each [ the map
py s HO(S, Os((n+ D) H)) — H'(S,Qs(1)),
obtained as the composite of the twisted Kodaira-Spencer map
H°(S,0s((n+ ) H)) — H'(S,Ts(1)),
and the contraction with v, using the contraction map
H°(S,Ks)® H'(S,Ts(l)) — H'(S,Qs(1)).
We note that the kernel M; of the map p! contains

My - HY(S, Os((I = 1)H)).



64 C. Voisin

On the other hand, M; also contains the image of the map
H(S,Tx(H)s) — H%(S,0s((n+1)H))

induced by the normal bundle sequence twisted by H. We may assume
that H is ample enough so that HY(X,Tx (1)) is generated by global
sections, and then M; has no base-point. Proposition 3 thus implies
that if n > A, the numbers corank M; are strictly decreasing, starting
from [ > 1. Hence we conclude that

My = H°(S,0s((n + A)H)).
As n is large and A is fixed, we may assume that
HO(X, Kx((2n — AYH)) @ HO(X, Ox ((n + A)H)) — HO(X, Kx (3nH))

is surjective, and that the same is true after restriction to S. Thus we
conclude that

Ma-HO(S,Kx((2n — A)H)s) = H°(S, Kx(3nH))s).

We use now the definition of M4, and the compatibility of the twisted
Kodaira-Spencer maps and the maps v with multiplication. This im-
plies that for any P € HY(S, Kx((3n)H)s), sending to

P e H'(S,Ts(Ks(2nH))),
via the map induced by the twisted normal bundle sequence
0— Ts(Ks(2nH)) — Tx|s(Ks(2nH)) — Kx(3nH)js — 0,
we have
(2.13) Pov=0in H'(S,Qs(Ks(nH))).
We have now a map
§: HY (S, Qs(Ks(nH))) — H*(S, Ks),

induced by the exact sequence

0— Ksg — Qx(Kx(2nH))is — Qs(Ks(nH)) — 0,
and one knows (cf [4]) that up to a multiplicative coefficient, one has

(2.14) I(Pw) =<wv,ress(P) >,
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where on the right, <, > is Serre duality between H°(S, Ks) and H?(S, Os),
and the Griffiths residue map

(2.15) HY(X,Kx(3nH)) "2 H*(S,05)

is described in [19], 6.1.2. The key point for us is that, because in our
case H3(X,Qx) = 0 and because n is large enough, the residue map
(2.15) is surjective, and thus (2.13) together with (2.14) imply that, for
all n € H2(S, Og), one has

<n,v>=0,

which implies that v = 0. [ |

The Calabi-Yau case. Here X has trivial canonical bundle and
satisfies H?(X,0Ox) = 0. We use in this case a variant of Lemma 6.
As Kx is trivial, the spaces V and V' are equal, and the pairing p :
V x V! — HYS,Qg) is symmetric. Thus, using Bertini, Lemma 6 can
be refined as follows (cf [15]):

Lemma 15. Let p : V@ V' — HY(S,Qg) be symmetric and q :
HY(S,Qg) — S2V* be its dual. Then the generic quadric in I'm q is non-
singular if the following condition holds. There is no subset Z C P(V)
contained in the base-locus of Im q and satisfying:

rk p, < dim Z, Vv € Z.

We have to verify that such a Z does not exist for generic S €| nH |,
n large enough. Degenerating S to S4 as before, the base-locus of Im ¢
specializes to a subspace of the base-locus of Im q4. We now use Lemma
7, together with Corollary 3, to conclude that the base-locus of Im gy
has dimension < cn?, for some ¢ independent of n.

Thus the base-locus of Im ¢ also has dimension bounded by cn?, for
generic S.

By definition of Z, it follows that for v € Z one has

rk (1 1 V — H'(S,Qg)) < cn?.

Using Lemma 12, it follows that dim Z < A for some constant A
independent of N. But then, for v € Z, one has

rk (e 1 V — H'(S,Q5)) < A

which implies that Z is empty by Lemma 13. This concludes the proof
of Proposition 2 when X is a Calabi-Yau threefold. [ |
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§3. The case where H%(X,0x) # 0

In this section, we show how to adapt the previous proof to the case
where X is uniruled with H?(X,Ox) # 0.

In this case, a smooth birational model of X admits a map ¢ :
X' --» ¥, with generic fibre isomorphic to P!, where ¥ is a smooth
surface. Note that ¢, sends H?(X,Qx) isomorphically to H?(3Z, Ox).

We may assume that X’ carries a line bundle H such that

HQKX/ < 0,

because there is a smooth birational model of X on which such an H
exists, and by blowing-up this X’ to an X with exceptional relatively
anti-ample divisor F, we may assume that ¢ becomes defined, while
an H of the form 7*H — eF with small ¢ will still satisfy the property
H?.K; <0.

In the sequel X, H, ¢ will satisfy the properties above. For S a
smooth surface in | nH |, we have the Gysin maps:

by : H'(S,Qg) — HY(Z,Qx), ¢ : H*(S,05) — H?*(Z, Ox),
¢« : H*(S,7) — H*(%, 7).
We will denote by
H'(S,Qg)s, H*(S,08)s, H*(S,Z)s

the respective kernels of these maps. The proof will use the following
variant of Proposition 1:

Proposition 4. Assume thereisa S €| nH |, and a X\ € H*(S,Qs)s
such that the natural map

px s HO(S,05(nH)) — H*(S, Os)s

defined as in (1.1) is surjective. Then the Hodge conjecture is true for
integral Hodge classes on X.

Proof. We consider a simply connected open set in | nH | parame-
terizing smooth surfaces and containing the point 0 €| nH | which is the
parameter for S. We study the infinitesimal variation of Hodge structure
on H2(Sy,Z)yx, for t € B.

By the same reasoning as in the proof of Proposition 1, the ex-
istence of A satisfying the property above implies that at some point
A € HY1(S)g », the natural map
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v Hy's, — H?(S,R)s

is a submersion. Here on the left hand side, we have the real vector bun-
dle with fibre H'1(S;)g 5. at the point ¢, and on each fibre H'1(S;)g 5, ¥
is the inclusion H%(S;)rx C H?(S:,R)y, followed by the topological
isomorphism H?(S;,R)y = H?(S,R)x.

This implies that the image of ¢ contains an open cone and we
deduce from this as in the proof of Proposition 1 that H?(S,Z)x is
generated over Z by classes a which are algebraic on some nearby fiber
St.

Consider now the inclusion j : S — X. It induces a surjective Gysin
map j. : H?(S,Z) — H*(X,Z) by Lefschetz hyperplane theorem. On
the other hand, we have a commutative diagram of Gysin maps:

H%(S,Z) 5 HAX,Z)
du | )
HX(X,7) = H*3,7)

From this and the previous conclusion, we deduce that the group
Ker (¢* : H4(X7 Z) - H2(E7Z)) = j*H2(S’ Z)E

is generated by classes of algebraic cycles on X.
Proposition 4 is then a consequence of the following:

Lemma 16. Let a be an integral Hodge class of degree 2 on X.
Then there is an algebraic 1-cycle Z on X such that o = ¢.([Z]).

Indeed, assuming this lemma, if « is an integral Hodge class on X
of degree 4, ¢.« is an integral Hodge class of degree 2 on 3, hence is
equal to ¢.([Z]) for some Z. Hence a — [Z] belongs to Ker ¢, and thus
it is algebraic as we already proved. This proves the Proposition. [ |

Proof of Lemma 16. We may assume by Lefschetz (1, 1) theorem
and because Y is algebraic, that « is the class of a curve C' C S which
is in general position. Thus

¢pc: Xc:=9¢ 1 (C)—C

is a geometrically ruled surface, which admits a section C! C X¢ (see

[3], or [7] for a more general statement).
But then the curve C' C X satisfies ¢.[C'] = [C]. u

By Proposition 4, the proof of Theorem 2 in case where X is uniruled
and satisfies H2(X, Ox) # 0 will now be a consequence of the following
proposition.



68 C. Voisin

Proposition 5. Let the pair (X, H) satisfy the inequality
H’Kx < 0.

Then for n large enough, for S a generic surface in | nH |, there is a
A\ € HY(S,Qg)s which satisfies the property that

px s HO(S,0s(nH)) — H*(S, Os)x

18 surjective.

The proof works exactly as the proof of Proposition 2 in the unir-
uled case. The only thing to note is the fact that the analogue of
Proposition 13 still holds in this case, with V' = H?(S,Kg)s, V' =
H°(S,0s(nH)). This is indeed the only place where we used the as-
sumption H?(X,Ox) = 0.

In this case, we have an isomorphism

b, : H3(Qx) =2 H*(Z, 0x),
so that for S C X a smooth surface
Hz(Sa OS)E = Ker (j* . H2(57 OS) - Hg(Xa QX))7

where j is the inclusion of S into X.

But the theory of Griffiths residues shows that the last kernel is
precisely generated by residues resgw, w € H°(X, Kx(3nH)). Thus,
the arguments of Lemma 13 will show in this case that if v € H°(S, Kg)
satisfies rank p, < A, where A is a given constant, and S €| nH | with
n large enough, then

ve (Kerj,)t,

where L refers to Serre duality between H°(S, Kg) and H?(S,Og). But
as Ker ¢, = Ker j,., we have

(Kerj.)" = ¢*"H°(Z, Ky).
Thus if furthermore v € H°(S, Ks)s, we must have v = 0 because

H°(S, Ks)s N¢*HY (L, Kx) = 0.
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4. Appendix

We give for the convenience of the reader the proof of the vanishing

Lemma 9. Recall that we want to prove the vanishing of the spaces:
(1) H( G, N F*), n+2—-i>0,i>1

(2) H-YG, N\ F*), n+2—i=0.
(3) H2(G, N F*), n+2—i=0.
(4) H=3 (G N F*), n+2-i<0.

We use first the dual of the exact sequence (2.6) to get a resolution
of \' F*:

i—1

U /\(K@g*)®£_1—>/Z\(K®5)*—>/Z\.7:*—>O.

This induces a spectral sequence converging to

Hz(G,/Z\f*)’ Hi—1<G’/\f*), Hz’—2(G’/Z\jE*)’ Hi_3<G,/l\./’T*),

whose F; terms are

1—S

Casel HGNERE)VQL ), n+2>i>1,i>s>0,

1—S

Case 2 Hi+s_1(G,/\(K®5*)®£_S),i:n+2,i2520,

1—S

Case 3 Hi+5_2(G,/\(K®5*)®£_S),i:n+2i2320

1—S

Case 4 H 3G NE@E)QL ), n+2<i,i>s>0

respectively.

Let P C P(K) x G be the incidence scheme, so P is a P!-bundle
over G. Let pr;, i = 1, 2 denote the projections from P to P(K) and G
respectively. Let H := priO(1) and denote also by £ the pull-back of £
to P. Then pr3&* fits into an exact sequence:

0-H ' spi&* -He L —0.
Thus the bundle

1—S

prs(\(K @& )@ L)
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admits a filtration whose successive quotients are line bundles of the

form
H*®(H® E—l)ﬁ QLS S=H *Ffg E—ﬁ—s,

where a + 8 =1i—s, a >0, 8 > 0. As we are interested in
H(G, \(K @) L) = H* (G, Rpra. (pr3 ( \ (K @ £°) @ L)),
it suffices to study the cohomology groups
H*(P,H P @ £L7F=%),
with —a 4+ 8 > 0. These groups are equal to the groups
H*(G,87MPg @ £L757%)
which are partially computed in [18]. The conclusion is the following:

Lemma 17. a) These groups vanish for x # n—2, 2(n —2) and for
B+s<n-—2.

b) For « = n — 2, these groups vanish if —s — a+1 < 0.

c) For « = 2(n — 2), these groups vanish if —s —a > —n + 1.

Case 1. Here x =i 4 s, and the following inequalities hold:
(4.16) >a>0,8+s>n—1

and furthermore
1<i<n+4+2, a+0=i—s.

According to Lemma 17, in order to get a non trivial cohomology group,
we have only two possibilities:

a)i+s=n—2,—s—a+1>0.

b)i+s=2(n—-2), —s—a<-—-n-+1.

In case a), we have f+s>n—1landa+(+2s=i+s=n—2,
which is clearly a contradiction as a + s > 0.

In case b), we have f+s >n —1, a+ s > n and thus

2n—1<a+pf+2s=i+s=2(n—2)

which is clearly a contradiction. [ |

Case 2. Now * =i+ s —1 and ¢« = n + 2. We have again the
inequalities (4.16) and furthermore

t=n+2,a+F=1—s.
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By Lemma 17, in order to get a non trivial cohomology group, we have
only two possibilities:

a)i+s—1=n—-2 —s—a+12>0.

b)i+s—1=2(n—-2),s+a>n.

In case a), we have i =n+2 and s > 0, hence i +s—1=n—2 is
impossible.

In case b), we have i +s = 2n— 3, while s+a >nand f+s>n—1
give a + [+ 2s =1+ s > 2n — 1, contradiction.

|

Case 3. Now * = i+s—2 and i = n+2. We have again the inequal-
ities (4.16) and furthermore i = n+2, o+ 3 =i —s. As before, in order
to get a non trivial cohomology group, we have only two possibilities:

a)i+s—2=n—2 —s—a+1>0.

b)i+s—2=2(n—-2),s+a>n.

In case a), we have i =n+2 and s > 0, hence i + s —2=n — 2 is
impossible.

In case b), we have i +s = 2n—2, while s+a > nand f+s>n—1
give a + 3+ 2s =1+ s > 2n — 1, contradiction.

|

Case 4. Now * = i+s—3 and ¢ > n+2. We have again the inequal-
ities (4.16) and furthermore i > n+2, a+ 3 =i —s. As before, in order
to get a non trivial cohomology group, we have only two possibilities:

a)i+s—3=n—2,—s—a+1>0.

b)i+s—3=2(n—-2),s+a>n.

In case a), we have i > n+2and s > 0thusi+s—-3=n—21is
impossible.

In case b), we have i+s = 2n— 1, while s+a > nand f+s >n—1
give a+ [+ 2s =i+ s > 2n — 1. Thus we must have the two equalities

s+a=n, B+s=n—1.

This contradicts the fact that 3 > a.
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Abstract.

We shall give a complete description of the relatively ample cones
and the relatively movable cones of symplectic resolutions of the clo-
sures of the nilpotent orbits in complex simple Lie algebras. More-
over, we shall prove that all symplectic resolutions of such nilpotent

orbit closures are connected by finite numbers of Mukai flops of type
A, D and Fs.

§1. Introduction

Let G be a complex simple Lie group and let g be its Lie algebra.
Then G has the adjoint action on g. The orbit O, of a nilpotent element
x € g is called a nilpotent orbit. A nilpotent orbit O, admits a non-
degenerate closed 2-form w called the Kostant-Kirillov symplectic form.
The closure O, of O, then becomes a symplectic singularity. In other
words, the 2-form w extends to a holomorphic 2-form on a resolution of
O,. A resolution of O, is called a symplectic resolution if this extended
form is everywhere non-degenerate on the resolution. For a parabolic
subgroup P of G, one can find a unique nilpotent orbit O such that
O Nn(p) is an open dense subset of n(p). Here n(p) is the nil-radical of
p := Lie(P). This orbit is called the Richardson orbit for P. Conversely,
P is called a polarization of O. We then have a generically finite proper
surjective map

p:T*(G/P)— O.
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Here T*(G/P) is the cotangent bundle of the homogenous space G/P.
When deg(p) = 1, u becomes a symplectic resolution of O. We call it a
Springer resolution. Recently, Fu [Fu 1] (see also some corrections in its
e-print version) has shown that, if a nilpotent orbit O has a (projective)
symplectic resolution f, then O has a polarization P such that f coin-
cides with the Springer resolution for P. However, there is a nilpotent
orbit with no polarizations. Moreover, even if O has a polarization, it
is not unique and we may possibly have deg(u) > 1. Spaltenstein [S2]
and Hesselink [He] obtained a necessary and sufficient condition for O
to have a Springer resolution when g is a classical simple Lie algebra.
Moreover, [He| gave an explicit number of such parabolics P up to con-
jugacy class that give Springer resolutions of O, (cf. §4). In this paper
we shall deal with an arbitrary simple Lie algebra. First we introduce
an equivalence relation in the set of parabolic subgroups of GG in terms
of marked Dynkin diagrams (Definition 1, §5). The following is one of
main results of this paper.

Theorem(cf. Theorem 6.1): Let O be a nilpotent orbit of a com-
plex simple Lie algebra. Assume that O has a Springer resolution Yp, =
T*(G/Py). Then, for any parabolic subgroup P equivalent to Py, Yp :=
T*(G/P) is a Springer resolution of O. Moreover, any projective sym-
plectic resolution of O has this form. AllYp (P ~ Py) are connected by
Mukaz flops of type A, D, and Fyg.

A Mukai flop of type A is a kind of Springer resolutions; let = € sl(n)
be a nilpotent element of Jordan type [2F,1"~2*] with 2k < n. Then a
Mukai flop of type A is the diagram of two Springer resolutions of O,:

T*G(k,n) — Oy «+— T*G(n — k,n)

where G(k,n) (resp. G(n—k,n)) is the Grassmannian which parametrizes
k-dimensional (resp. n — k-dimensional) subspaces of C™. This flop nat-
urally appears in the wall-crossing of the moduli spaces of various objects
(eg. stable sheaves on K3 surfaces, quiver varieties and so on). On the
other hand, a Mukai flop of type D comes from an orbit of a simple
Lie algebra of type D. Let x € s0(2k) be a nilpotent element of type
[2F=112], where k is an odd integer with & > 3. Then O, admits two
Springer resolutions

TG} (k,2k) — O, «— T*G,

180 180

(k, 2k)

where G, _(k,2k) and G, (k,2k) are two connected components of the
orthogonal Grassmannian G, (k, 2k). Finally, there are two Mukai