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§0. Introduction

Let X be a smooth projective variety over C. Let α := {αijk ∈
H0(Ui ∩ Uj ∩ Uk,O×

X)} be a 2-cocycle representing a torsion class [α] ∈
H2(X,O×

X). An α-twisted sheaf E := {(Ei, ϕij)} is a collection of
sheaves Ei on Ui and isomorphisms ϕij : Ei|Ui∩Uj

→ Ej|Ui∩Uj
such that

ϕii = idEi , ϕji = ϕ−1
ij and ϕki ◦ ϕjk ◦ ϕij = αijk idEi . We assume that

there is a locally free α-twisted sheaf, that is, α gives an element of the
Brauer group Br(X). A twisted sheaf naturally appears if we consider a
non-fine moduli space M of the usual stable sheaves on X . Indeed the
transition functions of the local universal families satisfy the patching
condition up to the multiplication by constants and gives a twisted sheaf.
If the patching condition is satisfied, i.e., the moduli space M is fine,
than the universal family defines an integral functor on the bounded de-
rived categories of coherent sheaves D(M) → D(X). Assume that X is
a K3 surface and dimM = dimX . Then Mukai, Orlov and Bridgeland
showed that the integral functor is the Fourier-Mukai functor, i.e., it is
an equivalence of the categories. In his thesis [C2], Căldăraru studied
the category of twisted sheaves and its bounded derived category. In
particular, he generalized Mukai, Orlov and Bridgeland’s results on the
Fourier-Mukai transforms to non-fine moduli spaces on a K3 surface.
For the usual derived category, Orlov [Or] showed that the equivalence
class is described in terms of the Hodge structure of the Mukai lattice.
Căldăraru conjectured that a similar result also holds for the derived

Received December 13, 2004.
Revised January 7, 2005.



2 K. Yoshioka

category of twisted sheaves. Recently this conjecture was modified and
proved by Huybrechts and Stellari, if ρ(X) ≥ 12 in [H-St]. As is well-
known, twisted sheaves also appear if we consider a projective bundle
over X .

In this paper, we define a notion of the stability for a twisted sheaf
and construct the moduli space of stable twisted sheaves on X . We also
construct a projective compactification of the moduli space by adding
the S-equivalence classes of semi-stable twisted sheaves. In particular if
H1(X,OX) = 0 (e.g. X is a K3 surface), then the moduli space of lo-
cally free twisted sheaves is the moduli space of projective bundles over
X . Thus we compactify the moduli space of projective bundles by using
twisted sheaves. The idea of the construction is as follows. We consider
a twisted sheaf as a usual sheaf on the Brauer-Severi variety. Instead
of using the Hilbert polynomial associated to an ample line bundle on
the Brauer-Severi variety, we use the Hilbert polynomial associated to
a line bundle coming from X in order to define the stability. Then the
construction is a modification of Simpson’s construction of the moduli
space of usual sheaves (cf. [Y3]). M. Lieblich informed us that our
stability condition coincides with Simpson’s stability for modules over
the associated Azumaya algebra via Morita equivalence. Hence the con-
struction also follows from Simpson’s moduli space [S, Thm. 4.7] and
the valuative criterion for properness.

In section 3, we consider the moduli space of twisted sheaves on aK3
surface. We generalize known results on the moduli space of usual stable
sheaves to the moduli spaces of twisted stable sheaves (cf. [Mu2], [Y1]).
In particular, we consider the non-emptyness, the deformation type and
the weight 2 Hodge structure. Then we can consider twisted version
of the Fourier-Mukai transform by using 2 dimensional moduli spaces,
which is done in section 4. As an application of our results, Huybrechts
and Stellari prove Căldăraru’s conjecture generally (see Appendix).

Since our main example of twisted sheaves are those on K3 surfaces
or abelian surfaces, we consider twisted sheaves over C. But some of the
results (e.g., subsection 2.2) also hold over any field.

E. Markman and D. Huybrechts communicated to the author that
M. Lieblich independently constructed the moduli of twisted sheaves.
In his paper [Li], Lieblich developed a general theory of twisted sheaves
in terms of algebraic stack and constructed the moduli space intrinsic
way. He also studied the moduli spaces of twisted sheaves on surfaces.
There are also some overlap with a paper by N. Hoffmann and U. Stuh-
ler [Ho-St]. They also constructed the moduli space of rank 1 twisted
sheaves and studied the symplectic structure of the moduli space.
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§1. Twisted sheaves

Notation: For a locally free sheaf E on a variety X , P(E) → X
denotes the projective bundle in the sense of Grothendieck, that is,
P(E) = Proj(

⊕∞
n=0 S

n(E)).

Let X be a smooth projective variety over C. Let α := {αijk ∈
H0(Ui ∩ Uj ∩ Uk,O×

X)} be a 2-cocycle representing a torsion class [α] ∈
H2(X,O×

X). An α-twisted sheaf E := {(Ei, ϕij)} is a collection of
sheaves Ei on Ui and isomorphisms ϕij : Ei|Ui∩Uj

→ Ej|Ui∩Uj
such

that ϕii = idEi , ϕji = ϕ−1
ij and ϕki ◦ ϕjk ◦ ϕij = αijk idEi . If all Ei are

coherent, then we say that E is coherent. Let Coh(X,α) be the category
of coherent α-twisted sheaves on X .

If Ei are locally free for all i, then we can glue P(E∨
i ) together

and get a projective bundle p : Y → X with δ([Y ]) = [α], where
[Y ] ∈ H1(X,PGL(r)) is the corresponding cohomology class of Y and
δ : H1(X,PGL(r)) → H2(X,O×

X) is the connecting homomorphism
induced by the exact sequence

1 → O×
X → GL(r) → PGL(r) → 1.

Thus [α] belongs to the Brauer group Br(X). If X is a smooth projective
surface, then Br(X) coincides with the torsion part of H2(X,O×

X). Let
OP(E∨

i )(λi) be the tautological line bundle on P(E∨
i ). Then, ϕij induces

an isomorphism ϕ̃ij : OP(E∨
i )(λi)|p−1(Ui∩Uj) → OP(E∨

j )(λj)|p−1(Ui∩Uj).
L(p∗(α−1)) := {(OP(E∨

i )(λi), ϕ̃ij)} is an p∗(α−1)-twisted line bundle on
Y .

1.1. Sheaves on a projective bundle
In this subsection, we shall interpret twisted sheaves as usual sheaves

on a Brauer-Severi variety. Let p : Y → X be a projective bundle. Let
X = ∪iUi be an analytic open covering of X such that p−1(Ui) ∼=
Ui×Pr−1. We set Yi := p−1(Ui). We fix a collection of tautological line
bundles OYi(λi) on Yi and isomorphisms φji : OYi∩Yj (λj) → OYi∩Yj (λi).
We set Gi := p∗(OYi(λi))∨. Then Gi are vector bundles on Ui and
p∗(Gi)(λi) defines a vector bundle G of rank r on Y . We have the Euler
sequence

0 → OY → G→ TY/X → 0.

Thus G is a non-trivial extension of TY/X by OY .

Lemma 1.1. Ext1(TY/X ,OY ) = C. Thus G is characterized as a
non-trivial extension of TY/X by OY . In particular, G does not depend
on the choice of the local trivialization of p.
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Proof. Since Rp∗(G∨) = 0, the Euler sequence inplies that

Ext1(TY/X ,OY ) ∼= H0(Y,OY ) ∼= C.

Q.E.D.

Definition 1.1. For a projective bundle p : Y → X , let ε(Y )(:= G)
be a vector bundle on Y which is a non-trivial extension

0 → OY → ε(Y ) → TY/X → 0.

By the exact sequence 0 → µr → SL(r) → PGL(r) → 1, we have
a connecting homomorphism δ′ : H1(X,PGL(r)) → H2(X,µr). Let
o : H2(X,µr) → H2(X,O×

X) be the homomorphism induced by the
inclusion µr ↪→ O×

X . Then we have δ = o ◦ δ′.
Definition 1.2. For a Pr−1-bundle p : Y → X corresponding to

[Y ] ∈ H1(X,PGL(r)), we set w(Y ) := δ′([Y ]) ∈ H2(X,µr).

Lemma 1.2 ([C1],[H-Sc]). If p : Y → X is a Pr−1-bundle associated
to a vector bundle E on X, i.e., Y = P(E∨), then

w(Y ) = [c1(E) mod r].

Lemma 1.3. [c1(G) mod r] = p∗(w(Y )) ∈ H2(Y, µr).

Proof. There is a line bundle L on Y ×X Y such that L|Yi×Ui
Yi

∼=
p∗1(OYi(−λi)) ⊗ p∗2(OYi(λi)), where pi : Y ×X Y → Y , i = 1, 2 are i-th
projections. By the definition of G, p1∗(L) ∼= G∨. Hence p1 : Y ×X Y →
Y is the projective bundle P(G∨) → Y . Then we get

−[c1(G∨) mod r] = w(Y ×X Y ) = p∗(w(Y )).

Q.E.D.

Lemma 1.4. Let p : Y → X be a Pr−1-bundle. Then the following
conditions are equivalent.

(1) Y = P(E∨) for a vector bundle on X.
(2) w(Y ) ∈ NS(X) ⊗ µr.
(3) There is a line bundle L on Y such that L|p−1(x)

∼= Op−1(x)(1).

Proof. (2) ⇒ (3): If w(Y ) = [D mod r], D ∈ NS(X), then
c1(ε(Y )) − p∗(D) ≡ 0 mod r. We take a line bundle L on Y with
c1(ε(Y )) − p∗(D) = rc1(L). (3) ⇒ (1): We set E∨ := p∗(L). Then
Y = P(E∨). Q.E.D.



Moduli spaces of twisted sheaves on a projective variety 5

Definition 1.3. Coh(X,Y ) is a subcategory of Coh(Y ) such that
E ∈ Coh(X,Y ) if and only if

E|Yi
∼= p∗(Ei) ⊗OYi(λi)

for Ei ∈ Coh(Ui). For simplicity, we call E ∈ Coh(X,Y ) a Y -sheaf.

By this definition, {(Ui, Ei)} gives a twisted sheaf on X . Thus we
have an equivalence

(1.1) ΛL(p∗(α−1)) : Coh(X,Y ) ∼= Coh(X,α)
E �→ p∗(E ⊗ L∨),

where L(p∗(α−1)) := {(OYi(λi), φij)} is a twisted line bundle on Y and
α−1
ijk idOYi

(λi) = φki ◦ φjk ◦ φij .
We have the following relations:

p∗(G∨ ⊗ E)|Ui
=p∗(p∗(G∨

i ) ⊗OYi(−λi) ⊗ p∗(Ei) ⊗OYi(λi))

=p∗p∗(G∨
i ⊗ Ei) = G∨

i ⊗ Ei,

p∗(E)|Ui
=p∗(p∗(Ei) ⊗OYi(λi))

=Ei ⊗ p∗(OYi(λi)) = G∨
i ⊗ Ei.

Lemma 1.5. A coherent sheaf E on Y belongs to Coh(X,Y ) if and
only if φ : p∗p∗(G∨ ⊗ E) → G∨ ⊗ E is an isomorphism. In particular
E ∈ Coh(X,Y ) is an open condition.

Proof. φ|Yi
is the homomorphism

p∗G∨
i ⊗ p∗p∗(E(−λi)) → p∗G∨

i ⊗ E(−λi).
Hence φ|Yi

is an isomorphism if and only if p∗p∗(E(−λi)) → E(−λi) is
an isomorphism, which is equivalent to E ∈ Coh(X,Y ). Q.E.D.

Lemma 1.6. Assume that H3(X,Z)tor = 0. Then H∗(Y,Z) ∼=
H∗(X,Z)[x]/(f(x)), where f(x) ∈ H∗(X,Z)[x] is a monic polynomial of
degree r. In particular, H2(X,Z)⊗µr′ → H2(Y,Z)⊗µr′ is injective for
all r′.

Proof. R2p∗Z is a local system of rank 1. Since c1(KY/X) is a
section of this local system, R2p∗Z ∼= Z. Let h be the generator. Then
R2ip∗Z ∼= Zhi. Since H3(X,Z)tor = 0, by the Leray spectral sequence,
we get a surjective homomorphism H2(Y,Z) → H0(X,R2p∗Z). Let
x ∈ H2(Y,Z) be a lifting of h. Then xi is a lifting of hi ∈ H0(X,R2ip∗Z).
Therefore the Leray-Hirsch theorem implies that

H∗(Y,Z) ∼= H∗(X,Z)[x]/(f(x)).
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Q.E.D.

Lemma 1.7. Assume that o(w(Y )) = o(w(Y ′)).
(i) Then there is a line bundle L on Y ′ ×X Y such that

L|p′−1(x)×p−1(x)
∼= Op′−1(x)(1) � Op−1(x)(−1)

for all x ∈ X. If L′ ∈ Pic(Y ′×X Y ) also satisfies the property,
then L′ = L⊗ q∗(P ), P ∈ Pic(X), where q : Y ′ ×X Y → X is
the projection.

(ii) We have an equivalence

ΞLY→Y ′ : Coh(X,Y ) → Coh(X,Y ′)
E �→ pY ′∗(p′

∗
Y (E) ⊗ L),

where pY ′ : Y ′ ×X Y → Y ′ and p′Y : Y ′ ×X Y → Y are
projections.

Remark 1.1. We also see that E is a Y -sheaf if and only if p′∗Y (E)⊗
L ∼= p∗Y ′(E′) for a sheaf E′ on Y ′.

Definition 1.4. Assume that H3(X,Z)tor = 0. For a Y -sheaf E of
rank r′, [c1(E) mod r′] ∈ H2(Y, µr′) belongs to p∗(H2(X,µr′)). We set

w(E) := (p∗)−1([c1(E) mod r′]) ∈ H2(X,µr′).

By Lemmas 1.3 and 1.7, we see that

Lemma 1.8. (i) By the functor ΞLY→Y ′ in Lemma 1.7,

w(ΞLY→Y ′(E)) = w(E), for E ∈ Coh(X,Y ).

(ii) w(ε(Y )) = w(Y ).

§2. Moduli of twisted sheaves

2.1. Definition of the stability
Let (X,OX(1)) be a pair of a projective scheme X and an ample

line bundle OX(1) on X . Let p : Y → X be a projective bundle over X .

Definition 2.1. A Y -sheaf E is of dimension d, if p∗(E) is of di-
mension d.

For a coherent sheaf F of dimension d on X , we define ai(F ) ∈ Z
by the coefficient of the Hilbert polynomial of F :

χ(F (m)) =
d∑
i=0

ai(F )
(
m+ i

i

)
.
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Let G be a locally free Y -sheaf. For a Y -sheaf E of dimension d, we set
aGi (E) := ai(p∗(G∨ ⊗ E)). Thus we have

χ(G,E ⊗ p∗OX(m)) = χ(p∗(G∨ ⊗ E)(m)) =
d∑
i=0

aGi (E)
(
m+ i

i

)
.

Definition 2.2. Let E be Y -sheaf of dimension d. Then E is (G-
twisted) semi-stable (with respect to OX(1)), if

(i) E is of pure dimension d,
(ii)

(2.1)
χ(p∗(G∨ ⊗ F )(m))

aGd (F )
≤ χ(p∗(G∨ ⊗ E)(m))

aGd (E)
,m
 0

for all subsheaf F �= 0 of E.
If the inequality in (2.1) is strict for all proper subsheaf F �= 0 of E,
then E is (G-twisted) stable with respect to OX(1).

Theorem 2.1. Let p : Y → X be a projective bundle. There is a
coarse moduli scheme M

h

X/C parametrizing S-equivalence classes of G-
twisted semi-stable Y -sheaves E with the G-twisted Hilbert polynomial
h. M

h

X/C is a projective scheme.

Remark 2.1. The construction also works for a projective bundle
Y → X over any field and also for a family of projective bundles, by the
fundamental work of Langer [L].

Lemma 2.2. Let p′ : Y ′ → X be a projective bundle with o(w(Y ′)) =
o(w(Y )) and ΞLY→Y ′ the correspondence in Lemma 1.7. Then a Y -sheaf
E is G-twisted semi-stable if and only if ΞLY→Y ′(E) ∈ Coh(X,Y ′) is
ΞLY→Y ′(G)-twisted semi-stable. In particular, we have an isomorphism
of the corresponding moduli spaces.

Indeed, since ΞL�OS

Y×S→Y ′×S(∗)s = ΞLY→Y ′(∗ ⊗ k(s)), if we have a flat
family of Y -sheaves {Es}s∈S, E ∈ Coh(Y × S), then {E ′

s}s∈S is also a
flat family of Y ′-sheaves, where E ′ := ΞL�OS

Y×S→Y ′×S(E).

Remark 2.2. For a locally free Y -sheaf G, we have a projective bun-
dle Y ′ → X with ε(Y ′) = ΞLY→Y ′(G). Hence it is sufficient to study the
ε(Y )-twisted semi-stability.

Remark 2.3. This definition is the same as in [C1]. If Y = P(G∨)
for a vector bundle G on X , then Coh(X,Y ) is equivalent to Coh(X)
and G-twisted stability is nothing but the twisted semi-stability in [Y3].
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Definition 2.3. Let λ be a rational number. Let E be a Y -sheaf
of dimension d. Then E is of type λ with respect to the G-twisted
semi-stability, if

(i) E is of pure dimension d,
(ii)

aGd−1(F )
aGd (F )

≤ aGd−1(E)
aGd (E)

+ λ

for all subsheaf F of E.
If λ = 0, then E is µ-semi-stable.

2.2. Construction of the moduli space

From now on, we assume that G = ε(Y ) (cf. Remark 2.2). Let
P (x) be a numerical polynomial. We shall construct the moduli space
of G-twisted semi-stable Y -sheaves E with χ(p∗(G∨ ⊗ E)(n)) = P (n).

2.2.1. Boundedness Let E be a Y -sheaf. Then

p∗p∗(G∨ ⊗ E) ⊗G→ E

is surjective. Indeed p∗p∗(G∨ ⊗ E) → G∨ ⊗ E is an isomorphism and
G⊗G∨ → OY is surjective.

We take a surjective homomorphism OX(−nG)⊕N → p∗(G∨ ⊗ G),
nG 
 0. Then we have a surjective homomorphism p∗(OX(−nG))⊕N →
G∨ ⊗G.

Lemma 2.3. Let E be a Y -sheaf of pure dimension d. If

(2.2) aGd−1(F ) ≥ aGd (F )

(
aGd−1(E)
aGd (E)

− ν

)

for all quotient E → F , then ad−1(F ′) ≥ ad(F ′)
(
aG

d−1(E)

aG
d (E)

− ν − nG

)
for

all quotient p∗(G∨ ⊗ E) → F ′. In particular

Sν :=

{
E ∈ Coh(X,Y )

∣∣∣∣∣ E satisfies (2.2) and

χ(p∗(G∨ ⊗ E)(nH)) = P (n)

}

is bounded.

Proof. Since p∗p∗(G∨ ⊗E) ∼= G∨ ⊗E, we have a surjective homo-
morphism

p∗(OX(−nGH))⊕N ⊗ E → G⊗ p∗p∗(G∨ ⊗ E) → G⊗ p∗(F ′).
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By our assumption, we get

ad−1(p∗(G∨ ⊗G) ⊗ F ′)

≥ad(p∗(G∨ ⊗G) ⊗ F ′)
(
ad−1(p∗(G∨ ⊗ E))
ad(p∗(G∨ ⊗ E))

− nG − ν

)
.

Since ad−1(p∗(G∨ ⊗ G) ⊗ F ′) = rk(G)2ad−1(F ′) and ad(p∗(G∨ ⊗ G) ⊗
F ′) = rk(G)2ad(F ′), we get our claim. The boundedness of Sν follows
from the boundedness of {p∗(G∨ ⊗ E)|E ∈ Sν} and Lemma 2.4 below.

Q.E.D.

Lemma 2.4. Let S be a bounded subset of Coh(X). Then T :=
{E ∈ Coh(X,Y )|p∗(G∨ ⊗ E) ∈ S} is also bounded.

Proof. For E ∈ T , we set I(E) := ker(p∗p∗(G∨ ⊗ E) ⊗ G → E).
We shall show that T ′ := {I(E)|E ∈ T } is bounded. We note that
I(E) ∈ Coh(X,Y ) and we have an exact sequence

0 → p∗(G∨ ⊗ I(E)) → p∗(G∨ ⊗ E) ⊗ p∗(G⊗G∨) → p∗(G∨ ⊗ E) → 0.

Since p∗(G∨ ⊗ E) ∈ S, {p∗(G∨ ⊗ I(E))|E ∈ T } is also bounded. Since
p∗p∗(G∨ ⊗ I(E)) ⊗ G → I(E) is surjective and I(E) is a subsheaf of
p∗p∗(G∨ ⊗ E) ⊗G, T ′ is bounded. Q.E.D.

Corollary 2.5. Under the same assumption (2.2), there is a ratio-
nal number ν′ which depends on ν such that

ad−1(F ′) ≤ ad(F ′)

(
aGd−1(E)
aGd (E)

+ ν′
)

for a subsheaf F ′ ⊂ p∗(G∨ ⊗ E).

Combining this with Langer’s important result [L, Cor. 3.4], we
have the following

Lemma 2.6. Under the same assumption (2.2),

h0(G,E)
aGd (E)

≤
⎡⎣ 1
d!

(
aGd−1(E)
aGd (E)

+ ν′ + c

)d⎤⎦
+

,

where c depends only on (X,OX(1)), G, d and aGd (E).
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2.2.2. A quot-scheme Since p∗(G∨ ⊗ E)(n), n 
 0 is generated by
global sections,

H0(G∨ ⊗ E ⊗ p∗OX(n)) ⊗G→ E ⊗ p∗OX(n)

is surjective. Since Rip∗(G∨ ⊗ E) = 0 for i > 0, we also see that
Hi(G∨ ⊗ E ⊗ p∗OX(n)) = 0, i > 0 and n
 0.

We fix a sufficiently large integer n0. We set N := χ(p∗(G∨ ⊗
E)(n0)) = P (n0). We set V := CN . We consider the quot-scheme Q
parametrizing all quotients

φ : V ⊗G→ E

such that E ∈ Coh(X,Y ) and χ(p∗(G∨ ⊗ E)(n)) = P (n0 + n). By
Lemma 2.4, Q is bounded, in particular, it is a quasi-projective scheme.

Lemma 2.7. Q is complete.

Proof. We prove our claim by using the valuative criterion. Let R
be a discrete valuation ring and K the quotient field of R. Let φ : VR ⊗
G → E be a R-flat family of quotients such that E ⊗R K ∈ Coh(X,Y ),
where VR := V ⊗C R. We set I := kerφ. We have an exact and
commutative diagram:

0 → p∗p∗(I ⊗G∨) → VR ⊗G⊗G∨ → p∗p∗(E ⊗G∨) → 0
↓ ‖ ↓ ψ

0 → I ⊗G∨ → VR ⊗G⊗G∨ → E ⊗G∨ → 0

We shall show that ψ is an isomorphism. Obviously ψ is surjective.
Since E is R-flat, E has no R-torsion, which implies that p∗p∗(E ⊗G∨) is
a torsion free R-module. Hence kerψ is also torsion free. On the other
hand, our choice of E implies that ψ ⊗K is an isomorphism. Therefore
kerψ = 0. Q.E.D.

Since kerφ ∈ Coh(X,Y ), we have a surjective homomorphism

V ⊗ Hom(G,G ⊗ p∗OX(n)) → Hom(G,E ⊗ p∗OX(n))

for n 
 0. Thus we can embed Q as a subscheme of an Grassmann va-
riety Gr(V ⊗W,P (n0 + n)), where W = Hom(G,G ⊗ p∗OX(n)). Since
all semi-stable Y -sheaf are pure, we may replace Q by the closure of
the open subset parametrizing pure quotient Y -sheaves. The same ar-
guments in [Y3] imply that Q//GL(V ) is the moduli space of G-twisted
semi-stable sheaves. The details are left to the reader. For the proof,
we also use the following.
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Let (R,m) be a discrete valuation ring R and the maximal ideal m.
Let K be the fractional field and k the residue field. Let E be a R-flat
family of Y ⊗R-sheaves such that E ⊗R K is pure.

Lemma 2.8. There is a R-flat family of coherent Y ⊗R-sheaves F
and a homomorphism ψ : E → F such that F ⊗R k is pure, ψK is an
isomorphism and ψk is an isomorphic at generic points of Supp(F⊗Rk).

By using [S, Lem. 1.17] or [H-L, Prop. 4.4.2], we first construct F as
a usual family of sheaves. Then the very construction of it, F becomes
a Y ⊗R-sheaf.

2.3. A family of Y -sheaves on a projective bundle over
Mh
X/C

Assume that Qss consists of stable points. Then Qss → M
h

X/C is
a principal PGL(N)-bundle. For a scheme S, fS : Y × S → S de-
notes the projection. Let Q be the universal quotient sheaf on Y ×Qss.
V := HomfQss (G�OQss ,Q) is a locally free sheaf on Qss. We consider
the projective bundle q : P(V ) → Qss. Since Q is GL(N)-linearized,
V is also GL(N)-linearized. Then we have a quotient ψ : P(V ) →
P(V )/PGL(N) with the commutative diagram:

P(V )
q−−−−→ Qss⏐⏐� ⏐⏐�

˜
M

h

X/C := P(V )/PGL(N)
q−−−−→ M

h

X/C

Since (1Y × q)∗(Q)⊗ f∗
P(V )(OP(V )(−1)) is PGL(N)-linearlized, we have

a family of G-twisted stable Y -sheaves E on Y × ˜
M

h

X/C with

(1Y × ψ)∗(E) = (1Y × q)∗(Q) ⊗ f∗
P(V )(OP(V )(−1)).

Hence E∨ ∈ Coh(Y ×M
h

X/C, Y × ˜
M

h

X/C) (if E is locally free). Let W

be a locally free sheaf on
˜
M

h

X/C such that ψ∗(W ) = q∗(V )(−1). Then

we also have W∨ = ε(
˜
M

h

X/C) ∈ Coh(M
h

X/C,
˜
M

h

X/C) and E ⊗ f∗
˜
M

h
X/C

(W∨)

descends to a sheaf on Y ×M
h

X/C.

Remark 2.4. There is also a family of G-twisted stable Y -sheaves E ′

on Y × P(V ∨)/PGL(N) such that

E ′ ∈ Coh(Y ×M
h

X/C, Y × P(V ∨)/PGL(N)).
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§3. Twisted sheaves on a projective K3 surface

3.1. Basic properties
Let X be a projective K3 surface and p : Y → X a projective

bundle.

Lemma 3.1. For a locally free Y -sheaf E of rank r,

c2(Rp∗(E∨ ⊗ E)) ≡ −(r − 1)(w(E)2) mod 2r.

Proof. First we note that (r − 1)(D2) mod 2r is well-defined for
D ∈ H2(Z, µr), Z = X,Y . We take a representative α ∈ H2(X,Z)
of w(E). Then c1(E) ≡ p∗(α) mod r. Hence c2(p∗(Rp∗(E∨ ⊗ E))) =
2rc2(E)− (r − 1)(c1(E)2) ≡ −(r− 1)(p∗(α2)) mod 2r. Since H4(X,Z)
is a direct summand of H4(Y,Z),

c2(Rp∗(E∨ ⊗ E)) ≡ −(r − 1)(α2) mod 2r.

Q.E.D.

Let K(X,Y ) be the Grothendieck group of Y -sheaves.

Lemma 3.2. (1) There is a locally free Y -sheaf E0 such that

rkE0 = min{rkE > 0|E ∈ Coh(X,Y )}.
(2) K(X,Y ) = ZE0 ⊕ K(X,Y )≤1, where K(X,Y )≤1 is the sub-

module of K(X,Y ) generated by E ∈ Coh(X,Y ) of dimE ≤ 1.

Proof. (1) Let F be a Y -sheaf such that rkF = min{rkE > 0|E ∈
Coh(X,Y )}. Then E0 := F∨∨ satisfies the required properties. (2)
We shall show that the image of E ∈ Coh(X,Y ) in K(X,Y ) belongs
to ZE0 ⊕ K(X,Y )≤1 by the induction of rkE. We may assume that
rkE > 0. Let T be the torsion submodule of E. Then E = T + E/T
in K(X,Y ). Since Hom(E0(−nH), E/T ) �= 0 for n
 0, we have a non-
zero homomorphism ϕ : E0(−nH) → E/T . By our choice of E0, ϕ is
injective. Since E0(−nH) = E0 −E0|nH in K(X,Y ), E = ((E/T )/E0 +
E0)+(T−E0|nH). Since rk(E/T )/E0 < rkE, we get (E/T )/E0 ∈ ZE0⊕
K(X,Y )≤1, and hence E also belongs to ZE0 ⊕K(X,Y )≤1. Q.E.D.

Remark 3.1. rkE0 is the order of the Brauer class of Y .

Let 〈 , 〉 be the Mukai pairing on H∗(X,Z):

〈x, y〉 = −
∫
X

x∨y, x, y ∈ H∗(X,Z).
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Definition 3.1. Let G be a locally free Y -sheaf. For a Y -sheaf E,
we define a Mukai vector of E as

vG(E) :=
ch(Rp∗(E ⊗G∨))√
ch(Rp∗(G⊗G∨))

√
tdX

=(rk(E), ζ, b) ∈ H∗(X,Q),
(3.1)

where p∗(ζ) = c1(E) − rk(E) c1(G)
rkG and b ∈ Q. More generally, for

G ∈ Coh(X,Y ) with rkG > 0, we define vG(E) by (3.1).

Since

Rp∗(E1 ⊗G∨) ⊗ Rp∗(E2 ⊗G∨)∨ = Rp∗(E1 ⊗ E∨
2 ) ⊗ Rp∗(G⊗G∨),

〈vG(E1), vG(E2)〉 = −
∫
X

ch(Rp∗(E1 ⊗G∨)) ch(Rp∗(E2 ⊗G∨))∨

ch(Rp∗(G⊗G∨))
tdX

= −
∫
X

ch(Rp∗(E1 ⊗ E∨
2 )) tdX

= − χ(E2, E1).

We define an integral structure on H∗(X,Q) such that vG(E) is
integral. This is due to Huybrechts and Stellari [H-St]. For a positive
integer r and ξ ∈ H2(X,Z), we consider an injective homomorphism

T−ξ/r : H∗(X,Z) → H∗(X,Q)
x �→ e−ξ/rx.

T−ξ/r preserves the bilinear form 〈 , 〉.
Lemma 3.3. We take a representative ξ ∈ H2(X,Z) of w(G) ∈

H2(X,µr), where rk(G) = r. We set (rk(E), D, a) := eξ/rvG(E). Then
(rk(E), D, a) belongs to H∗(X,Z) and [D mod rk(E)] = w(E).

Proof. We set σ := (c1(G) − p∗(ξ))/r ∈ H2(Y,Z). Since p∗(D) =
p∗(ζ) + rk(E)p∗(ξ)/ rk(G) = c1(E) − rk(E)σ ∈ H2(Y,Z), we get D ∈
H2(X,Z). By Lemma 3.1, we see that

〈eξ/rvG(E), eξ/rvG(E)〉 =〈vG(E), vG(E)〉
=c2(Rp∗(E ⊗ E∨)) − 2 rk(E)2

≡(D2) mod 2 rk(E).

Hence a ∈ Z. The last claim is obvious. Q.E.D.
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Remark 3.2. eξ/rvG(E) is the same as the Mukai vector defined by
the rational B-field ξ/r in [H-St]. More precisely, there is a topological
line bundle L on Y with c1(L) = σ and E⊗L−1 is the pull-back of a topo-
logical sheaf Eξ/r on X . Then we see that eξ/rvG(E) = ch(Eξ/r)

√
tdX

(we use Hi(X,Q) = 0 for i > 4, or we deform X so that L becomes
holomorphic).

Definition 3.2. [H-St] We define a weight 2 Hodge structure on
the lattice (H∗(X,Z), 〈 , 〉) as

H2,0(H∗(X,Z) ⊗ C) :=T−1
−ξ/r(H

2,0(X))

H1,1(H∗(X,Z) ⊗ C) :=T−1
−ξ/r(

2⊕
p=0

Hp,p(X))

H0,2(H∗(X,Z) ⊗ C) :=T−1
−ξ/r(H

0,2(X)).

We denote this polarized Hodge structure by (H∗(X,Z), 〈 , 〉,− ξ
r ).

Lemma 3.4. The Hodge structure (H∗(X,Z), 〈 , 〉,− ξ
r ) depends

only on the Brauer class δ′([ξ mod r]).

Proof. If δ′([ξ mod r]) = δ′([ξ′ mod r′]) ∈ H2(X,O×
X), then we

have r′ξ − rξ′ = L+ rr′N , where L ∈ NS(X) and N ∈ H2(X,Z). Then
we have the following commutative diagram:

H∗(X,Z) e−
ξ
r−−−−→ H∗(X,Q)

e−N

⏐⏐� ⏐⏐�e L
rr′

H∗(X,Z) −−−−→
e
− ξ′

r′
H∗(X,Q).

Thus we have an isometry of Hodge structures

(H∗(X,Z), 〈 , 〉,−ξ
r
) ∼= (H∗(X,Z), 〈 , 〉,−ξ

′

r′
).

Q.E.D.

Definition 3.3. Let Y → X be a projective bundle and G a locally
free Y -sheaf. Let ξ ∈ H2(X,Z) be a lifting of w(G) ∈ H2(X,µr), where
r = rk(G).

(i) We define an integral Hodge structure of H∗(X,Q) as

T−ξ/r((H∗(X,Z), 〈 , 〉,−ξ
r
)).
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(ii) v := (r, ζ, b) is a Mukai vector, if v ∈ T−ξ/r(H∗(X,Z)) and
ζ ∈ Pic(X)⊗Q. Moreover if v is primitive in T−ξ/r(H∗(X,Z)),
then v is primitive.

Definition 3.4. Let v := (r, ζ, b) ∈ H∗(X,Q) be a Mukai vector.

(i) M
Y,G

H (r, ζ, b) (resp. MY,G
H (r, ζ, b)) denotes the coarse moduli

space of S-equivalence classes of G-twisted semi-stable (resp.
stable) Y -sheaves E with vG(E) = v.

(ii) MY,G
H (r, ζ, b)ss (resp. MY,G

H (r, ζ, b)s) denotes the moduli stack
of G-twisted semi-stable (resp. stable ) Y -sheaves E with
vG(E) = v.

Lemma 3.5. Assume that o(w(Y )) = o(w(Y ′)). Then ΞLY→Y ′ in-
duces an isomorphism

MY,G
H (v)ss ∼= MY ′,G′

H (v)ss,

where G′ := ΞLY→Y ′(G). Moreover if dimY = dimY ′ and w(Y ) =
w(Y ′), then MY,ε(Y )

H (v)ss ∼= MY ′,ε(Y ′)
H (v)ss.

Proof. We use the notation in Lemma 1.7. For a Y -sheaf E, we
set E′ := ΞLY→Y ′(E). Then p′Y

∗(E ⊗ G∨) ∼= p∗Y ′(E′ ⊗ G′∨). Hence
vG(E) = vG′(E′). If dimY = dimY ′ and w(Y ) = w(Y ′), then since
w(ε(Y )) = w(ε(Y ′)), replacing L by L ⊗ q∗(P ), P ∈ Pic(X), we may
assume that c1(ΞLY→Y ′(ε(Y ))) = c1(ε(Y )). Thus ΞLY→Y ′(ε(Y )) = ε(Y )+
T in K(X,Y ′), where T is a Y -sheaf with dimT = 0. From this fact,

we get MY ′,ΞL
Y →Y ′(ε(Y ))

H (v)ss = MY ′,ε(Y ′)
H (v)ss. Q.E.D.

Let E be a Y -sheaf. Then the Zariski tangent space of the Kuranishi
space is Ext1(E,E) and the obstruction space is the kernel Ext2(E,E)0
of the trace map

tr : Ext2(E,E) → H2(Y,OY ) ∼= H2(X,OX).

Hence as in the usual sheaves on a K3 surfaces [Mu1], we get the fol-
lowing.

Proposition 3.6. Let E be a simple Y -sheaf. Then the Kuranishi
space is smooth of dimension 〈vG(E)2〉+2 with a holomorphic symplectic
form. In particular, 〈vG(E)2〉 ≥ −2.

Corollary 3.7. Let E be a µ-semi-stable Y -sheaf such that E =
lE0 + F ∈ K(X,Y ), F ∈ K(X,Y )≤1. Then 〈vG(E)2〉 ≥ −2l2.
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3.1.1. Wall and Chamber In this subsection, we generalize the no-
tion of the wall and the chamber for the usual stable sheaves to the
twisted case.

Lemma 3.8. Assume that there is an exact sequence of twisted
sheaves

(3.2) 0 → E1 → E → E2 → 0,

such that Ei, i = 1, 2 are µ-semi-stable Y -sheaves. We set Ei = liE0 +
Fi ∈ K(X,Y ) with Fi ∈ K(X,Y )≤1. Then we have

〈vG(E)2〉
l

+ 2l ≥ − (l2vG(F1) − l1vG(F2))2

ll1l2
.

This lemma easily follows from Corollary 3.7 and the following lemma.

Lemma 3.9. Let E0 be a locally free Y -sheaf such that rkE0 =
min{rkE > 0|E ∈ Coh(X,Y )}. For an exact sequence of twisted sheaves

(3.3) 0 → E1 → E → E2 → 0,

we have

〈vG(E1)2〉
l1

+
〈vG(E2)2〉

l2
− 〈vG(E)2〉

l
=

(l2vG(F1) − l1vG(F2))2

ll1l2
,

where Ei = liE0 + Fi and E = lE0 + F in K(X,Y ) with Fi, F ∈
K(X,Y )≤1.

Proof.

〈vG(E1)2〉
l1

+
〈vG(E2)2〉

l2
− 〈vG(E)2〉

l

=
(
l1〈vG(E0)2〉 + 2〈vG(E0), vG(F1)〉 +

〈vG(F1), vG(F1)〉
l1

)
+
(
l2〈vG(E0)2〉 + 2〈vG(E0), vG(F2)〉 +

〈vG(F2), vG(F2)〉
l2

)
−
(
l〈vG(E0)2〉 + 2〈vG(E0), vG(F )〉 +

〈vG(F ), vG(F )〉
l

)
=
〈vG(F1), vG(F1)〉

l1
+

〈vG(F2), vG(F2)〉
l2

− 〈vG(F ), vG(F )〉
l

=
(l2vG(F1) − l1vG(F2))2

ll1l2
.

Q.E.D.
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Definition 3.5. We set v = vG(lE0 + F ), where F is of dimension
1 or 0.

(i) For a ξ ∈ NS(X) with 0 < −(ξ2) ≤ l2

4 (2l2 + 〈v2〉), we define a
wall Wξ as

Wξ := {L ∈ Amp(X) ⊗ R|(ξ, L) = 0}.
(ii) A chamber with respect to v is a connected component of

Amp(X) ⊗ R \⋃ξWξ.
(iii) A polarization H is general with respect to v, if H does not

lie on any wall.

Remark 3.3. The concept of chambers and walls are determined by
rk(lE0 + F ) and 〈v2〉. Thus they do not depend on the choice of Y and
G.

Proposition 3.10. Keep notation as above.
(i) If H and H ′ belong to the same chamber, then MY,G

H (v)ss ∼=
MY,G

H′ (v)ss.
(ii) If H is general, then MY,G

H (vG(F ))ss ∼= MY,G′
H (vG′(F ))ss for

F ∈ K(X,Y ) with rkF > 0. Thus MY,G
H (vG(F ))ss does not

depend on the choice of a Y -sheaf G.
(iii) If

min{−(D2) > 0|D ∈ NS(X), (D,H) = 0} > l2

4
(2l2 + 〈v2〉),

then H is general with respect to v.

The proof is standard (cf. [H-L]) and is left to the reader. By
Proposition 3.10 and Proposition 3.6, we have

Theorem 3.11. Assume that v is a primitive Mukai vector and H
is general with respect to v. Then all G-twisted semi-stable Y -sheaves
E with vG(E) = v are G-twisted stable. In particular MY,G

H (v) is a
projective manifold, if it is not empty.

In the next subsection, we show the non-emptyness of the moduli
space. We also show that MY,G

H (v) is a K3 surface, if 〈v2〉 = 0.

Proposition 3.12. (cf. [Mu3, Prop. 3.14]) Assume that Pic(X) =
ZH. Let E be a simple twisted sheaf with 〈vG(E)2〉 ≤ 0. Then E is
stable.

For the proof, we use Lemma 3.9 and the following:

Lemma 3.13. [Mu3, Cor. 2.8] If Hom(E1, E2) = 0, then

dim Ext1(E1, E1) + dim Ext1(E2, E2) ≤ dim Ext1(E,E).
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3.2. Existence of stable sheaves
In this subsection, we shall show that the moduli space of twisted

sheaves is deformation equivalent to the usual one. In particular we
show the non-emptyness of the moduli space.

Theorem 3.14. [H-Sc] H1(X,PGL(r)) → H2(X,µr) is surjective.

Proposition 3.15. For a w ∈ H2(X,µr), there is a Pr−1-bundle
p : Z → X such that w(Z) = w and ε(Z) is µ-stable.

D. Huybrechts informed us that the claim follows from the proof
of Theorem 3.14. Here we give another proof which works for other
surfaces.

Proof. Let p : Y → X be a Pr−1-bundle with w(Y ) = w. We set
E0 := ε(Y ). In order to prove our claim, it is sufficient to find a µ-
stable locally free Y -sheaf E of rank r with c1(E) = c1(E0). For points
x1, x2, . . . , xn ∈ X , let F be a Y -sheaf which is the kernel of a surjection
E0 → ⊕n

i=1 Op−1(xi)(1). We take a smooth divisor D ∈ |mH |, m 
 0.
We set D̃ := p−1(D). Let Exti(F, F (−D̃))0 be the kernel of the trace
map

Exti(F, F (−D̃)) → Hi(Y,OY (−D̃)) ∼= Hi(X,OX(−D)).

If n
 0, then by the Serre duality,

Ext2(F, F (−D̃))0 ∼= Hom(F, F (D̃))0 = 0.

Hence Ext1(F, F )0 → Ext1(F| eD, F| eD)0 is surjective. Since F| eD deforms

to a µ-stable vector bundle on D̃, F deforms to a Y -sheaf F ′ such that
F ′
| eD

is µ-stable. Then F ′ is also µ-stable. Then E := (F ′)∨∨ satisfies
required properties. Q.E.D.

Theorem 3.16. Let Y → X be a projective bundle and G a lo-
cally free Y -sheaf. Let vG := (r, ζ, b) be a primitive Mukai vector with
r > 0. Then MY,G

H (vG) is an irreducible symplectic manifold which is

deformation equivalent to Hilb〈v2G〉/2+1
X for a general polarization H. In

particular
(1) MY,G

H (vG) �= ∅ if and only if 〈v2
G〉 ≥ −2.

(2) If 〈v2
G〉 = 0, then MY,G

H (vG) is a K3 surface.

We divide the proof into several steps.
Step 1 (Reduction to MY,ε(Y )

H (r, 0,−a)) : Let ξ be a lifting of w(G).
Then eξ/ rk(G)vG = (r,D, b′) ∈ H∗(X,Z). By Theorem 3.14, there is
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a projective bundle Y ′ → X such that w(Y ′) = [D mod r]. Since
D/r − ξ/ rk(G) = ζ/r ∈ Pic(X) ⊗ Q, o(w(Y ′)) = o(w(Y )). Let G′

be a locally free Y -sheaf such that ΞLY→Y ′(G′) = ε(Y ′), where we use
the notation in Lemma 1.7. By Lemma 1.8, w(G′) = w(ε(Y ′)) = [D
mod r]. Then replacing L by L ⊗ q∗(P ), P ∈ Pic(X), we may assume
that eξ/ rkGvG(G′) = (r,D, c), c ∈ Z. Hence vG′(E) = (r, 0,−a) for a
Y -sheaf E with vG(E) = (r, ζ, b). Since H is general with respect to
(r, ζ, b), Proposition 3.10 implies that MY,G

H (r, ζ, b) ∼= MY,G′
H (r, 0,−a).

By Lemma 3.5, MY,G′
H (r, 0,−a) ∼= M

Y ′,ε(Y ′)
H (r, 0,−a). Therefore replac-

ing (Y,G) by (Y ′, ε(Y ′)), we shall prove the assertion for MY,G
H (r, 0,−a)

with G = ε(Y ).
Step 2: First we assume that w(Y ) ∈ NS(X) ⊗ µr ⊂ H2(X,µr).

Then the Brauer class of Y is trivial, that is, Y = P(F ) for a locally free
sheaf F on X . Since H is general with respect to (r, 0,−a), Proposition
3.10 (ii) and Lemma 3.5 imply that MY,G

H (r, 0,−a) ∼= MX,OX

H (r,D, c)
with 2ra = (D2) − 2rc. By [Y1, Thm. 8.1], MX,OX

H (r,D, c) is deforma-
tion equivalent to Hilbra+1

X .
We next treat the general cases. We shall deform the projective

bundle Y → X to a projective bundle in Step 2.
Step 3: We first construct a local family of projective bundles.

Proposition 3.17. Let f : (X ,H) → T be a family of polarized K3
surfaces. Let p : Y → Xt0 be a projective bundle associated to a stable
Y -sheaf E. Then there is a smooth morphism U → T whose image
contains t0 and a projective bundle p : Y → X ×T U such that Yt0 ∼= Y .

Proof. We note that p∗(K∨
Y/Xt0

) is a vector bundle on Xt0 and
we have an embedding Y ↪→ P(p∗(K∨

Y/Xt0
)). We take an embedding

P(p∗(K∨
Y/Xt0

)) ↪→ PN−1×Xt0 by a suitable quotient OXt0
(−nHt0)⊕N →

p∗(K∨
Y/Xt0

). More generally, let YS → X ×T S be a projective bundle
and a surjective homomorphism OX×TS(−nH)⊕N → p∗(K∨

YS/X×TS
).

Then we have an embedding YS ↪→ PN−1 ×X ×T S.
Let Y be a connected component of the Hilbert scheme HilbPN−1×X/T

containing Y . Let Y ⊂ PN−1×X ×T Y be the universal subscheme. Let
ϕ : Y → X ×T Y be the projection. Let Y0 be an open subscheme of Y
such that ϕ|X×T {t} is smooth andH1(Tϕ−1(x,t)) = 0 for (x, t) ∈ X×TY0.
Since Y ∈ Y0, it is non-empty. Then ϕ is locally trivial on X ×T Y0.
Thus Y → X ×T Y0 is a projective bundle.
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If Y is a projective bundle associated to a twisted vector bundle E,
then the obstruction for the infinitesimal liftings belongs to

H2(End(E)/OX) ∼= H0(End(E)0)∨,

where End(E)0 is the trace free part of End(E). Hence if E is simple
(and rkE is not divisible by the characteristic), then there is no ob-
struction for the infinitesimal liftings. In particular Y0 → T is smooth
at Y . Q.E.D.

Step 4 (A relative moduli space of twisted sheaves): Let f : (X ,H) →
T be a family of polarized K3 surfaces and p : Y → X a projective
bundle on X . We set g := f ◦ p. We note that Hi(Yt,ΩYt/Xt

) = 0,
i �= 1 and H1(Yt,ΩYt/Xt

) = C for t ∈ T . Hence L := Ext1g(TY/X ,OY) ∼=
R1g∗(ΩY/X ) is a line bundle on T . By the local-global spectral sequence,
we have an isomorphism

Ext1(TY/X , g∗(L∨)) ∼= H0(T,Ext1g(TY/X , g
∗(L∨))) ∼= H0(T,OT ).

We take the extension corresponding to 1 ∈ H0(T,OT ):

0 → g∗(L∨) → G → TY/X → 0

such that Gt = ε(Yt). Let v := (r, ζ, b) ∈ R∗f∗Q be a family of
Mukai vectors with ζ ∈ NS(X/T ) ⊗ Q. Then as in the absolute case,
we have a family of the moduli spaces of semi-stable twisted sheaves
M

Y,G
(X ,H)/T (v) → T parametrizing Gt-twisted semi-stable Yt-sheaves E

on Xt, t ∈ T with vGt(E) = vt. M
Y,G
(X ,H)/T (v) → T is a projective

morphism. Let E be a Gt-twisted stable Yt-sheaf. By our choice of ζ,
det(E) is unobstructed under deformations over T , and hence E itself is
unobstructed. Therefore MY,G

(X ,H)/T (v) is smooth over T .
Step 5 (A family of K3 surfaces): Let Md be the moduli space of the

polarized K3 surfaces (X,H) with (H2) = 2d. Md is constructed as a
quotient of an open subscheme T of a suitable Hilbert scheme HilbPN/C.
Let (X ,H) → T be the universal family. Let Γ be the abstructK3 lattice
and h a primitive vector with (h2) = 2d. Let D be the period domain for
polarized K3 surfaces (X,H). Let τ : T̃ → T be the universal covering
and φt̃ : H2(Xτ(t̃),Z) → Γ, t̃ ∈ T̃ a trivialization on T̃ . We may assume
that φt̃(Hτ(t̃)) = h. Then we have a period map p : T̃ → D. By the
surjectivity of the period map, we can show that p is surjective: Let U
be a suitable analytic neighborhood of a point x ∈ D. Then we have a
family of polarized K3 surfaces (XU ,HU ) → U and an embedding of X
as a subscheme of PN × U . Thus we have a morphism h : U → T . The
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embedding is unique up to the action of PGL(N +1). Moreover if there
is a point t̃0 ∈ T̃ such that p(t̃0) ∈ U , then we have a lifting h̃ : U → T̃

of h : U → T such that t̃0 = h̃(p(t̃0)). Then U → T̃ → D is the identity.
Hence we can construct a lifting of any path on D intersecting p(T̃ ).
Since D is connected, we get the assertion.

Step 6 (Reduction to step 2): We take a point t̃ ∈ T̃ . We set
(X,H) := (Xτ(et),Hτ(et)). Let p : Y → X be a Pr−1-bundle. Assume
that H is general with respect to v := (r, 0,−a). We take a D ∈ Γ
with [D mod r] = φ

et(w(Y )). Let e1, e2, . . . , e22 be a Z-basis of Γ such
that e1 = φ

et(Hτ(et)) and D = ae1 + be2. For an η ∈ ⊕22
i=3Zei with

(e21)(η
2) − (e1, η)2 < 0, we set η̃ := e2 + rkη ∈ Γ, k 
 0. Since

det
(

(e21) (e1, e2 + rkη)
(e1, e2 + rkη) ((e2 + rkη)2)

)
� 0 for k 
 0, the signature of

the primitive sublattice L := Ze1 ⊕ Zη̃ of Γ is of type (1, 1). Moreover
e⊥1 ∩L does not contain a (−2)-vector. We take a general ω ∈ L⊥∩Γ⊗C
with (ω, ω) = 0 and (ω, ω̄) > 0. Then ω⊥ ∩ Γ = L. Replacing ω by its
complex conjugate if necessary, we may assume that ω ∈ D. Since p

is surjective, there is a point t̃1 ∈ H̃ such that p(t̃1) = ω. Then Xτ(et1)

is a K3 surface with Pic(Xτ(et1)
) = ZHτ(et1)

⊕ Zφ−1
et1

(e2 + rkη). Hence

[φ−1
et1

(D) mod r] = [φ−1
et1

(ae1 + bη̃) mod r] ∈ Pic(Xτ(et1)) ⊗ µr. Since

min{−(L2)|0 �= L ∈ Pic(Xτ(et1)
), (L,Hτ(et1)

) = 0} 
 r2

4
(2r2 + 〈v2〉),

Proposition 3.10 (iii) implies that Hτ(et1)
is a general polarization with

respect to v. Then by the following lemma, we can reduce the proof to
Step 2. Therefore we complete the proof of Theorem 3.16.

Lemma 3.18. For t̃1, t̃2 ∈ T̃ , let Y i → Xτ(t̃i), i = 1, 2 be Pr−1-
bundles with w(Y i) = [φ−1

t̃i
(D) mod r] and Gi := ε(Y i). Let v =

(r, 0,−a) be a primitive Mukai vector. Assume that Hτ(t̃i), i = 1, 2 are

general polarization. Then MY 1,G1
Hτ(t̃1)

(r, 0,−a) is deformation equivalent

to MY 2,G2
Hτ(t̃2)

(r, 0,−a).

Proof. In order to simplify the notation, we denoteMY,ε(Y )
Ht

(r, 0,−a)
by M(Y ) for a projective bundle Y over (Xt,Ht). By Proposition 3.15
and Lemma 3.5, we may assume that ε(Y i) (i = 1, 2) is µ-stable. Let
γ̃ : [0, 1] → T̃ be a path from t̃1 = γ̃(0) to t̃2 = γ̃(1) and γ := τ ◦ γ̃. Then
we have a trivialization φs : H2(Xγ(s), µr) → Γ ⊗Z µr. By Proposition
3.15, there is a projective bundle Ys → Xγ(s) such that φs(w(Ys)) = [D
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mod r] and ε(Ys) is µ-stable for each s ∈ [0, 1]. By Proposition 3.17,
we have a family of projective bundles Ys → X ×T Ys over a T -scheme
ψs : Ys → T such that there is a point ys ∈ (ψs)−1(γ(s)) ⊂ Ys with
Ys = Ysys and ψs is smooth at ys. Then we have a family of moduli

spaces M
Ys,Gs

(X×T Ys, eH)/Ys(r, 0,−a) → Ys, where H̃ is the pull-back of H to
X×TYs (Step 4). Since ψs is smooth, ψs(Ys) is an open subscheme of T
containing γ(s). We take an analytic open neighborhood Us of γ(s) such
that Us is contractible and has a section σs : Us → Ys with σs(γ(s)) =
ys. Let Vs be a connected neighborhood of s which is contained in
γ−1(Us). Since [0, 1] is compact, we can take a finite open covering of
[0, 1]: [0, 1] = ∪nj=1Vsj , s1 < s2 < · · · < sn. Since {t ∈ T | rkPic(Xt) = 1}
is a dense subset of T , there is a point tj ∈ Usj ∩ Usj+1 such that
tj is sufficiently close to a point γ(sj,j+1), sj,j+1 ∈ Vsj ∩ Vsj+1 and
Pic(Xtj ) = ZHtj . Under the identification H2(Xt, µr) ∼= H2(Xγ(s), µr)
for t ∈ Us, we have w(Ysj

σj (tj)
) = w(Ysj

yj ) and w(Ysj+1

σj+1(tj)
) = w(Ysj+1

yj+1 ),
where we set σj := σsj and yj := ysj . Since tj is sufficiently close to the
point γ(sj,j+1), we have w(Ysj

σj (tj)
) = w(Ysj+1

σj+1(tj)
). Hence by Lemma

3.5, M(Ysj

σj(tj)
) is isomorphic to M(Ysj+1

σj+1(tj)
). By Step 4, M(Ysj

σj(tj−1))
is deformation equivalent to M(Ysj

σj(tj)
). Therefore M(Ys1σ1(t1)

) is de-
formation equivalent to M(Ysn

σn(tn−1)
). By using Step 4 again, we also

see that M(Y 1) = M(Y0
y0) is deformation equivalent to M(Ys1σ1(t1)) and

M(Y 2) = M(Y1
y1) is deformation equivalent to M(Ysn

σn(tn−1)
). Therefore

our claim holds. Q.E.D.

Remark 3.4. Let vG := (r, ζ, b) be a Mukai vector with r, 〈v2
G〉 > 0

which is not necessary primitive. By the same proof, we can also show
thatM

Y,G

H (vG) is an irreducible normal variety for a generalH (cf. [Y2]).

3.3. The second cohomology groups of moduli spaces

By Theorem 3.16, MY,G
H (vG) is an irreducible symplectic manifold,

if vG is primitive and H is general. Then H2(MY,G
H (vG),Z) is equipped

with a bilinear form called the Beauville form. In this subsection, we
shall describe the Beauville form in terms of the Mukai lattice.

Let p : Y → X be a projective bundle with w(Y ) = [ξ mod r] and
set G := ε(Y ). We consider a Mukai lattice with a Hodge structure
(H∗(X,Z), 〈 , 〉,− ξ

r ) in this subsection. We set w := r(1, 0, ar −
1
2

(ξ2)
r2 ), a ∈ Z. In this subsection, we assume that w is primitive, that

is, gcd(r, ξ, a) = 1. We set v := weξ/r = (r, ξ, a) ∈ H∗(X,Z). Then v is
algebraic.
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Let q : ˜MY,G
H (w) → MY,G

H (w) be a projective bundle in subsection

2.3 and E the family of twisted sheaves on Y × ˜MY,G
H (w). We set W∨ :=

ε( ˜MY,G
H (w)). Let π̃ ˜MY,G

H (w)
: Y × ˜MY,G

H (w) → ˜MY,G
H (w) and π̃Y : Y ×

˜
MY,G
H (w) → Y be projections. Then (1Y × q)∗

(
E ⊗ π̃∗

˜
MY,G

H (w)
(W∨)

)
is

a quasi-universal family on Y ×MY,G
H (w).

Let πX : X ×MY,G
H (w) → X be the projection. We define a homo-

morphism θGv : v⊥ → H∗(MY,G
H (w),Q) by

θGv (u) :=
∫
X

[Q∨π∗
X(e−ξ/ru)]3

where [...]3 means the degree 6 part and

Q :=
√

tdX√
ch(Rp∗(G∨ ⊗G))

√
tdMY,G

H (w)√
ch(Rq∗(W∨ ⊗W ))

· ch
(
R(p× q)∗

(
π̃∗
Y (G∨) ⊗ E ⊗ π̃∗

˜
MY,G

H (w)
(W∨)

))
∈ H∗(X ×MY,G

H (w),Q).

Remark 3.5. If ξ is algebraic, then Y is isomorphic to the projective
bundle P(F∨) and G = F∨ ⊗ OY (1), where F is a vector bundle of
rank r on X with c1(F ) = −ξ. In this case, MY,G

H (w) is the usual
moduli space of stable sheaves F with the Mukai vector v and R(p ×
q)∗(π̃∗

Y (OY (−1))⊗E⊗ π̃∗
˜

MY,G
H (w)

(W∨)) is a quasi-universal family. Since

chF/
√

ch(F ⊗ F∨) = e−ξ/r, we have

Q =e−
ξ
r

√
tdX

√
tdMY,G

H (w)√
ch(Rq∗(W∨ ⊗W ))

· ch
(
R(p× q)∗

(
π̃∗
Y (OY (−1)) ⊗ E ⊗ π̃∗

˜MY,G
H (w)

(W∨)
))

.

Hence θGv is the usual Mukai homomorphism, which is defined over Z.

Let p′ : Y ′ → X be another Pr−1-bundle with w(Y ′) = w(Y ).
Then by the proof of Lemma 3.5, we see that the following diagram is



24 K. Yoshioka

commutative:

v⊥ v⊥

θG
v

⏐⏐� ⏐⏐�θG′
v

H2(MY,G
H (w),Q) −−−−→ H2(MY ′,G′

H (w),Q),

where G′ := ΞLY→Y ′(G) = ε(Y ′). Since Q is algebraic, θGv preserves
the Hodge structure. By the deformation argument, Remark 3.5 implies
that θGv is defined over Z. Moreover it preserves the bilinear forms.

Theorem 3.19. For ξ ∈ H2(X,Z) with [ξ mod r] = w(Y ), we set
v = weξ/r.

(i) If 〈v2〉 > 0, then θGv : v⊥ → H2(MY,G
H (w),Z) is an isometry

of the Hodge structures.
(ii) If 〈v2〉 = 0, then θGv induces an isometry of the Hodge struc-

tures v⊥/Zv → H2(MY,G
H (w),Z).

The second claim is due to Mukai [Mu4].

§4. Fourier-Mukai transform

4.1. Integral functor
Let p : Y → X be a projective bundle such that δ([Y ]) = [α] ∈

Br(X) and p′ : Y ′ → X ′ a projective bundle such that δ([Y ′]) = [α′] ∈
Br(X ′). Let πX : X ′ ×X → X and πX′ : X ′ ×X → X ′ be projections.
We also let π̃Y : Y ′×Y → Y and π̃Y ′ : Y ′×Y → Y ′ be projections. We
set G := ε(Y ) and G′ := ε(Y ′).

Definition 4.1. Let Coh(X ′ × X,Y ′, Y ) be the subcategory of
Coh(Y ′×Y ) such that Q ∈ Coh(Y ′×Y ) belongs to Coh(X ′×X,Y ′, Y )
if and only if (p′ × p)∗(p′ × p)∗(G′ ⊗Q⊗G∨) ∼= G′ ⊗Q⊗G∨. In terms
of local trivialization of p, p′, this is equivalent to

Q|Y ′
i ×Yj

∼= OY ′
i
(−λ′i) � OYj (λj) ⊗ (p′ × p)∗(Qij),

Qij ∈ Coh(U ′
i × Uj). Coh(X ′ × X,Y ′, Y ) is equivalent to Coh(X ′ ×

X,α′−1 × α).

Remark 4.1. We take twisted line bundles L(p′∗(α′−1)) on Y ′ and
L(p∗(α−1)) on Y respectively which give equivalences ΛL(p′∗(α′−1)) :
Coh(X ′, Y ′) ∼= Coh(X ′, α′) and ΛL(p∗(α−1)) : Coh(X,Y ) ∼= Coh(X,α)
in (1.1). Then we have an equivalence ΛL(p′∗(α′−1))∨ × ΛL(p∗(α−1)):

Coh(X ′ ×X,Y ′, Y ) → Coh(X ′ ×X,α′−1 × α)
Q �→ (p′ × p)∗(L(p′∗(α′−1)) ⊗Q⊗ L(p∗(α−1))∨).
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Let D(X ′×X,Y ′, Y ) ∼= D(X ′×X,α′−1×α) be the bounded derived
category of Coh(X ′ ×X,Y ′, Y ). For Q ∈ D(X ′ ×X,Y ′, Y ), we define
an integral functor

Φ eQ
X′→X : D(X ′, Y ′) → D(X,Y )

x �→ Rπ̃Y ∗(Q⊗ π̃∗
Y ′(x)).

For Q ∈ D(X ′ ×X,Y ′, Y ) and R ∈ D(X ′′ ×X ′, Y ′′, Y ′), we have

ΦQ
X′→X ◦ ΦR

X′′→X′ = ΦS
X′′→X ,

where S = Rπ̃Y ′′×Y ∗(π̃∗
Y ′′×Y ′(R)⊗ π̃∗

Y ′×Y (Q)) and π̃∗
( ) : Y ′′×Y ′×Y →

( ) is the projection.
4.1.1. Cohomological correspondence For simplicity, we denote the

pull-backs of G and G′ to Y ′ × Y by the same letters. For example
G′ ⊗Q⊗G∨ implies π∗

Y ′(G′) ⊗Q⊗ πY (G∨). We note that

R(p′ × p)∗(G′ ⊗Q⊗G∨) ∈ D(X ′ ×X)

satisfies

(p′ × p)∗(R(p′ × p)∗(G′ ⊗Q⊗G∨)) = G′ ⊗Q⊗G∨.

We define a homomorphism

ΨQ
X′→X : H∗(X ′,Q) → H∗(X,Q)

by

ΨQ
X′→X(y)

:=πX∗ ◦ (p′ × p)∗

(
(p′ × p)∗ ◦ π∗

X′(y) ch(G′) ch(Q) ch(G∨)

·
√

tdX′ tdY ′/X′√
ch(G′∨ ⊗G′)

√
tdX tdY/X√
ch(G∨ ⊗G)

)

=πX∗

(
π∗
X′(y)

√
tdX′√

ch(Rp′∗(G′∨ ⊗G′))

√
tdX√

ch(Rp∗(G∨ ⊗G))

· ch(R(p′ × p)∗(G′ ⊗Q⊗G∨))

)
,

where tdX , tdX′ ,... are identified with their pull-backs.

Lemma 4.1. ΨS
X′′→X = ΨQ

X′→X ◦ ΨR
X′′→X′ .
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Proof. π( ) : X ′′ × X ′ × X → ( ) denotes the projection to ( ).
We note that

π∗
X′′×X

(
R(p′′ × p′)∗(G′′ ⊗R⊗G′∨)

)
⊗ π∗

X′×X (R(p′ × p)∗(G′ ⊗Q⊗G∨))

=R(p′′ × p′ × p)∗(G′′ ⊗R⊗Q⊗G∨) ⊗ π∗
X′(Rp′∗(G

′∨ ⊗G′)).

Then

π∗
X′′×X

(
ch
(
R(p′′ × p′)∗(G′′ ⊗R⊗G′∨)

))
·

π∗
X′×X (ch (R(p′ × p)∗(G′ ⊗Q⊗G∨)))π∗

X′

(
tdX′

ch(Rp′∗(G′∨ ⊗G′))

)
=ch (R(p′′ × p′ × p)∗(G′′ ⊗R⊗Q⊗G∨))π∗

X′(tdX′).

Since

πX′′×X∗ (ch (R(p′′ × p′ × p)∗(G′′ ⊗R⊗Q⊗G∨))π∗
X′(tdX′))

= ch (RπX′′×X∗ (R(p′′ × p′ × p)∗(G′′ ⊗R⊗Q⊗G∨)))

= ch(R(p′′ × p)∗ ◦Rπ̃Y ′′×Y ∗(G′′ ⊗R⊗Q⊗G∨))

= ch(R(p′′ × p)∗(G′′ ⊗ S ⊗G∨)),

we get

ΨS
X′′→X(z) =πX∗

(
π∗
X′′(z) ch(R(p′′ × p)∗(G′′ ⊗ S ⊗G∨))

·
√

tdX′′√
ch(Rp′′∗(G′′∨ ⊗G′′))

√
tdX√

ch(Rp∗(G∨ ⊗G))

)
=ΨQ

X′→X ◦ ΨR
X′′→X′(z).

Q.E.D.

Lemma 4.2. Assume that the canonical bundles KX ,KX′ are triv-
ial. Then

〈x,ΨQ
X′→X(y)〉 = 〈ΨQ∨

X→X′(x), y〉, x ∈ H∗(X,Q), y ∈ H∗(X ′,Q),

where 〈 , 〉 is the Mukai pairing.
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Proof.

〈x,ΨQ
X′→X(y)〉

= −
∫
X

xΨQ
X′→X(y)∨

= −
∫
X′×X

π∗
X(x)

(
π∗
X′(y)

√
tdX′√

ch(Rp′∗(G′∨ ⊗G′))

√
tdX√

ch(Rp∗(G∨ ⊗G))

· ch(R(p′ × p)∗(G′ ⊗Q⊗G∨))

)∨

= −
∫
X′×X

( √
tdX′√

ch(Rp′∗(G′∨ ⊗G′))

√
tdX√

ch(Rp∗(G∨ ⊗G))

· ch(R(p′ × p)∗(G′∨ ⊗Q∨ ⊗G))π∗
X(x)

)
π∗
X′(y∨)

= −
∫
X′

ΨQ∨
X→X′(x)y∨

=〈ΨQ∨
X→X′(x), y〉.

Q.E.D.

4.2. Fourier-Mukai transform induced by stable twisted
sheaves

Let p : Y → X be a projective bundle over an abelian surface or a
K3 surface. LetG be a locally free Y -sheaf. Assume thatX ′ := M

Y,G

H (v)

is a surface and consists of stable sheaves. We set Y ′ :=
˜

M
Y,G

H (v). Let
E be the family on Y ′ × Y .

We consider integral functors

ΦE
X′→X : D(X ′, Y ′) → D(X,Y )

x �→ Rπ̃Y ∗(E ⊗ π̃∗
Y ′(x)),

ΦE∨
X→X′ [2] : D(X,X) → D(X ′, Y ′)

y �→ Rπ̃Y ′∗(E∨ ⊗ π̃∗
Y (y)[2]).

Remark 4.2. Let L(p′∗(α−1)) and L(p∗(α−1)) be twisted line bun-
dles on Y ′ and Y respectively in (1.1). Then ΛL(p∗(α−1)) ◦ ΦE

X′→X ◦
(ΛL(p′∗(α′−1)))−1 : D(X ′, α′) → D(X,α) is an integral functor with the
kernel R(p′×p)∗(L(p′∗(α′−1))⊗E⊗L(p∗(α−1))∨) ∈ D(X ′×X,α′−1×α).
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Căldăraru [C2] developed a theory of derived category of twisted
sheaves. In particular, Grothendieck-Serre duality holds. Then we see
that ΦE∨

X→X′ [2] is the adjoint of ΦE
X′→X . As in the usual Fourier-Mukai

functor, we see that the following theorem holds (see [Br], [C1]).

Theorem 4.3. ΦE∨
X→X′ [2]◦ΦE

X′→X
∼= 1 and ΦE

X′→X ◦ΦE∨
X→X′ [2] ∼= 1.

Thus ΦE
X′→X is an equivalence.

Then we have the following which also follows from a more general
statement [H-St, Thm. 0.4].

Corollary 4.4. ΨE
X′→X induces an isometry of the Hodge struc-

tures:

(H∗(X ′,Z), 〈 , 〉,−ξ
′

r
) ∼= (H∗(X,Z), 〈 , 〉,−ξ

r
).

Proof. Obviously ΨE
X′→X induces an isometry of the Hodge struc-

tures over Q. If X is a K3 surface such that w(Y ) ∈ NS(X) ⊗ µr and
X ′ is a fine moduli space, then ΨE

X′→X is defined over Z. For a general
case, we use the deformation arguments. Q.E.D.

We also have the following which is used in [Y4].

Corollary 4.5. Assume that X ′ consists of locally free Y -sheaves.
Then E∨

|Y ′×{y}, y ∈ Y is a simple Y ′-sheaf. If NS(X) ∼= ZH, then
E∨
|Y ′×{y}, y ∈ Y is a stable Y ′-sheaf.

Proof. Since ΦE∨
X→X′ [2] is an equivalence, ΦE∨

X→X′(Op−1(p(y))(1)) =
E∨
|Y ′×{y} is a simple Y ′-sheaf. If NS(X) ∼= Z, then Proposition 3.12

implies the stability of E∨
|Y ′×{y}. Q.E.D.
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Appendix : Proof of Căldăraru’s conjecture

Daniel Huybrechts and Paolo Stellari

In this short note we show how to combine Yoshioka’s recent results
on moduli spaces of twisted sheaves on K3 surfaces with more or less
standard methods to prove Căldăraru’s conjecture on the equivalence of
twisted derived categories of projective K3 surfaces. More precisely, we
shall show

Theorem 0.1. Let X and X ′ be two projective K3 surfaces endowed
with B-fields B ∈ H2(X, Q) respectively B′ ∈ H2(X ′, Q). Suppose there
exists a Hodge isometry

g : H̃(X, B, Z) ∼= H̃(X ′, B′, Z)

that preserves the natural orientation of the four positive directions.
Then there exists a Fourier–Mukai equivalence

Φ : Db(X, α) ∼= Db(X ′, α′)

such that the induced action ΦB,B′
∗ on cohomology equals g.

Here, α := αB and α′ := αB′ are the Brauer classes induced by B
respectively B′.

The twisted Hodge structures and the cohomological Fourier-Mukai
transform (based on the notion of twisted Chern character), indispens-
able for the formulation of the conjecture, were introduced in [4]. For a
complete discussion of the natural orientation of the positive directions
and the cohomological Fourier–Mukai transform ΦB,B′

∗ we also refer to
[4]. Note that Căldăraru’s conjecture was originally formulated purely
in terms of the transcendental lattice. But, as has been explained in
[4], in the twisted case passing from the transcendental part to the full
cohomology is not always possible, so that the original formulation had
to be changed slightly to the above one.

Also note that any Fourier–Mukai equivalence

Φ : Db(X, α) ∼= Db(X ′, α′)

Received December 13, 2004.
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induces a Hodge isometry as above, but for the time being we cannot
prove that this Hodge isometry also preserves the natural orientation.
In the untwisted case this is harmless, for a given orientation reversing
Hodge isometry can always be turned into an orientation preserving one
by composing with −idH2 . In the twisted setting this cannot always be
guaranteed, so that we cannot yet exclude the case of Fourier–Mukai
equivalent twisted K3 surfaces (X, αB) and (X ′, αB′) which only admit
an orientation reversing Hodge isometry H̃(X, B, Z) ∼= H̃(X ′, B′, Z). Of
course, this is related to the question whether any Fourier–Mukai equiv-
alence is orientation preserving which seems to be a difficult question
even in the untwisted case (see [3, 11]).

From Yoshioka’s paper [12] we shall use the following

Theorem 0.2. (Yoshioka) Let X be a K3 surface with a rational
B-field B ∈ H2(X, Q) and v ∈ H̃1,1(X, B, Z) a primitive vector with
〈v, v〉 = 0. Then there exists a moduli space M(v) of stable (with respect
to a generic polarizations) αB-twisted sheaves E with chB(E)

√
td(X) =

v such that:
i) Either M(v) is empty or a K3 surface. The latter holds true if

the degree zero part of v is positive.
ii) On X ′ := M(v) one finds a B-field B′ ∈ H2(X ′, Q) such that

there exists a universal family E on X × X ′ which is an α−1
B � αB′-

twisted sheaf.
iii) The twisted sheaf E induces a Fourier–Mukai equivalence

Db(X, αB) ∼= Db(X ′, αB′).

The existence of the moduli space of semistable twisted sheaves has
been proved by Yoshioka for arbitrary projective varieties. Instead of
considering twisted sheaves, he works with coherent sheaves on a Brauer–
Severi variety. Using the equivalence between twisted sheaves and mod-
ules over Azumaya algebras, one can in fact view these moduli spaces
also as a special case of Simpson’s general construction [10]. (The two
stability conditions are indeed equivalent.) In his thesis [5] M. Lieblich
considers similar moduli spaces. (See also [2] for the rank one case.)

The crucial part for the application to Căldăraru’s conjecture is i),
in particular the non-emptiness. Yoshioka follows Mukai’s approach,
which also yields ii). Part iii) is a rather formal consequence of the
usual criteria for the equivalence of Fourier–Mukai transforms already
applied to the twisted case in [1].

In the last section we provide a dictionary between the different
versions of twisted Chern characters and the various notions of twisted
sheaves. Only parts of it is actually used in the proof of the conjecture.
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The rest is meant to complement [4] and to facilitate the comparison of
[4], [5], and [12].

Acknowledgements: It should be clear that the lion’s share of the
proof of Căldăraru’s conjecture in the above form is in fact contained in
K. Yoshioka’s paper. We are grateful to him for informing us about his
work and comments on the various versions of this note. Thanks also
to M. Lieblich who elucidated the relation between the different ways
of constructing moduli spaces of twisted sheaves. Our proof follows the
arguments in the untwisted case, due to S. Mukai [6] and D. Orlov [8]
(see also [3, 7]), although some modifications were necessary. During
the preparation of this paper the second named author was partially
supported by the MIUR of the Italian government in the framework of
the National Research Project “Algebraic Varieties” (Cofin 2002).

§1. Examples

Let X and X ′ be projective K3 surfaces (always over C) with B-fields
B ∈ H2(X, Q) respectively B′ ∈ H2(X ′, Q). We denote the induced
Brauer classes by α := αB := exp(B0,2) ∈ H2(X,O∗

X) respectively
α′ := αB′ ∈ H2(X ′,O∗

X′). We start out with introducing a few exam-
ples of equivalences between the bounded derived categories Db(X, α)
respectively Db(X ′, α′) of the abelian categories of α-twisted (resp. α′-
twisted) sheaves.

i) Let f : X ∼= X ′ be an automorphism with f∗α′ = α. Then Φ :=
f∗ : Db(X, α) → Db(X ′, α′), E �→ Rf∗E is a Fourier–Mukai equivalence
with kernel OΓf

viewed as an α−1 � α′-twisted sheaf on X × X ′.
If in addition f∗(B) = B′ then ΦB,B′

∗ = f∗.

ii) Let L ∈ Pic(X) be a(n untwisted) line bundle on X . Then
E �→ L ⊗ E defines a Fourier–Mukai equivalence L ⊗ ( ) : Db(X, α) ∼=
Db(X, α) with kernel i∗L considered as an α−1 �α-twisted sheaf on X×
X . Here, i : X ↪→ X ×X denotes the diagonal embedding. The induced
cohomological Fourier–Mukai transform (L ⊗ ( ))B,B

∗ : H̃(X, B, Z) ∼=
H̃(X, B, Z) is given by multiplication with exp(c1(L)).

iii) Let b ∈ H2(X, Z). Then αB = αB+b. The identity

id : Db(X, αB) = Db(X, αB+b)

descends to idB,B+b
∗ : H̃(X, B, Z) ∼= H̃(X, B+b, Z) which is given by the

multiplication with exp(b). This follows from the formula chB+b(E) =
chB(E) · chb(O) = chB(E) · exp(b) (see [4, Prop. 1.2]).
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iv) Changing the given B-field B by a class b ∈ H1,1(X, Q) does not
affect H̃(X, B, Z). Thus, the identity can be considered as an orientation
preserving Hodge isometry H̃(X, B, Z) = H̃(X, B + b, Z).

As shall be explained in the last section, this can be lifted to a
Fourier–Mukai equivalence. More precisely, there is an exact functor
Φ : Coh(X, αB) ∼= Coh(X, αB+b), whose derived functor, again denoted
by Φ : Db(X, αB) ∼= Db(X, αB+b), is of Fourier–Mukai type and such
that ΦB,B+b

∗ = id.

v) Let E ∈ Db(X, α) be a spherical object, i.e. Exti(E, E) = 0 for all
i except for i = 0, 2 when it is of dimension one. Then the twist functor
TE that sends F ∈ Db(X, α) to the cone of Hom(E, F )⊗E → F defines
a Fourier–Mukai autoequivalence TE : Db(X, α) ∼= Db(X, α). The kernel
of TE is given by the cone of the natural map

E∗ � E �� O∆,

where O∆ is considered as an α−1�α-twisted sheaf on X×X . The result
in the untwisted case goes back to Seidel and Thomas [9]. The following
short proof of this, which carries over to the twisted case, has been
communicated to us by D. Ploog [7]. Consider the class Ω ⊂ Db(X, α) of
objects F that are either isomorphic to E or contained in its orthogonal
complement E⊥, i.e. Exti(E, F ) = 0 for all i. It is straightforward to
check that this class is spanning. Since TE(E) ∼= E[−1] and TE(F ) ∼= F

for F ∈ E⊥, one easily verifies that Exti(F1, F2) = Exti(TE(F1), TE(F2))
for all F1, F2 ∈ Ω.

In other words, TE is fully faithful on the spanning class Ω and hence
fully faithful. By the usual argument, the Fourier–Mukai functor TE is
then an equivalence.

As in the untwisted case, one proves that the induced action on
cohomology is the reflection α �→ α + 〈α, vB(E)〉 · vB(E). Here, vB(E)
is the Mukai vector vB(E) := chB(E)

√
td(X).

Special cases of this construction are:
– Let P1 ∼= C ⊂ X be a smooth rational curve. As H2(C,O∗

C) is
trivial, its structure sheaf OC and any twist OC(k) can naturally be
considered as α-twisted sheaves. The Mukai vector for k = −1 is given
by v(OC(−1)) = (0, [C], 0).

– In the untwisted case, the trivial line bundle O (and in fact any
line bundle) provides an example of a spherical object. Its Mukai vector
is (1, 0, 1) and has, in particular, a non-trivial degree zero component.
It is the latter property that is of importance for the proof in the un-
twisted case. So the original argument goes through if at least one
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spherical object of non-trivial rank can be found. Unfortunately, spher-
ical object (in particular those of positive rank) might not exist at all
in the twisted case. In fact, any spherical object E has a Mukai vector
vB(E) ∈ Pic(X, B) of square 〈vB(E), vB(E)〉 = −2 and it is not difficult
to find examples of rational B-fields B 	= 0 such that such a vector does
not exist.

vi) Let � ∈ Pic(X) be a nef class with 〈�, �〉 = 0. If w = (0, �, s) is
a primitive vector, then the moduli space M(w) of αB-twisted sheaves
which are stable with respect to a generic polarization is non-empty.
Indeed, in this case � is a multiple n · f of a fibre class f of an elliptic
fibration π : X → P1. As gcd(n, s) = 1, there exists a stable rank n
vector bundle of degree s on a smooth fibre of π which yields a point in
M(w).

If � is the fibre class of an elliptic fibration X → P1, we can think
of M(w) as the relative Jacobian J s(X/P1) → P1.

In any case, M(w) is a K3 surface and the universal twisted sheaf
provides an equivalence Φ : Db(M(w), αB′ ) ∼= Db(X, αB) (for some B-
field B′ on M(w)) inducing a Hodge isometry ΦB′,B

∗ : H̃(M(w), B′, Z) ∼=
H̃(X, B, Z) that sends (0, 0, 1) to w.

§2. The proof

Let g : H̃(X, B, Z) ∼= H̃(X ′, B′, Z) be an orientation preserving
Hodge isometry. The Mukai vector of k(x) with x ∈ X is vB(k(x)) =
v(k(x)) = (0, 0, 1). We shall denote its image under g by w := g(0, 0, 1) =
(r, �, s).

1st step. In the first step we assume that r = 0 and � = 0, i.e.
g(0, 0, 1) = ±(0, 0, 1), and that furthermore g(1, 0, 0) = ±(1, 0, 0). By
composing with −id we may actually assume g(0, 0, 1) = (0, 0, 1) and
g(1, 0, 0) = (1, 0, 0).

In particular, g preserves the grading of H̃ and induces a Hodge
isometry H2(X, Z) ∼= H2(X ′, Z). Denote b := g(B) − B′ ∈ H2(X, Q).
As g respects the Hodge structure, it maps σ + B ∧ σ to σ′ + B′ ∧ σ′

and, therefore 〈σ, B〉 = 〈σ′, B′〉. On the other hand, as g is an isometry,
one has 〈σ, B〉 = 〈σ′, g(B)〉. Altogether this yields 〈σ′, b〉 = 0, i.e. b ∈
H1,1(X, Q).

Now compose g with the orientation preserving Hodge isometry
given by the identity H̃(X ′, B′, Z) = H̃(X ′, g(B) = B′ + b, Z). As
the latter can be lifted to a Fourier–Mukai equivalence Db(X ′, αB′) ∼=
Db(X ′, αg(B)) (see example iv)), it suffices to show that g viewed as a
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Hodge isometry H̃(X, B, Z) = H̃(X, g(B), Z) can be lifted. So we may
from now on assume that B′ = g(B).

As g is orientation preserving, its degree two component defines a
Hodge isometry that maps the positive cone CX ⊂ H1,1(X) onto the
positive cone CX′ ⊂ H1,1(X ′).

If g maps an ample class to an ample class, then by the Global Torelli
Theorem g can be lifted to an isomorphism f : X ∼= X ′ which in turn
yields a Fourier–Mukai equivalence Φ := f∗ : Db(X, αB) ∼= Db(X ′, αB′).
Obviously, with this definition ΦB,B′

∗ = g (use f∗(B) = g(B) = B′).
If g does not preserve ampleness, then the argument has to be modi-

fied as follows: After a finite number of reflections sCi in hyperplanes or-
thogonal to (−2)-classes [Ci] we may assume that sC1(. . . sCn(h(a)) . . .)
is an ample class. As the reflections sCi are induced by the twist functors
TOCi

(−1) : Db(X ′, αB′) ∼= Db(X ′, αB′) (see the explanations in the last
section), the Hodge isometry g is induced by a Fourier–Mukai equiva-
lence if and only if the composition sC1 ◦ . . . sCn ◦ g is. Thus, we have
reduced the problem to the case already treated above.

In the following steps we shall explain how the general case can be
reduced to the case just considered.

2nd step. Suppose g(0, 0, 1) = ±(0, 0, 1) but g(1, 0, 0) 	= ±(1, 0, 0).
Again, by composing with −id we may reduce to g(0, 0, 1) = (0, 0, 1)
and g(1, 0, 0) 	= (1, 0, 0). Then g(1, 0, 0) is necessarily of the form exp(b)
for some b ∈ H2(X ′, Z). Hence, we may compose g with the Hodge
isometry exp(−b) : H̃(X ′, B′, Z) ∼= H̃(X ′, B′ − b, Z) (that preserves the
orientation) which can be lifted to a Fourier–Mukai equivalence accord-
ing to example iii). This reduces the problem to the situation studied
in the previous step.

3rd step. Suppose that r > 0. Using Theorem 0.2 one finds a K3
surface X0 with a B-field B0 ∈ H2(X0, Q) such that over X0 ×X ′ there
exists a universal α−1

B0
�αB′-twisted sheaf parametrizing stable α′-twisted

sheaves on X ′ with Mukai vector vB′
= w. In particular, E induces an

equivalence ΦE : Db(X0, αB0) ∼= Db(X ′, αB′) and ΦB0,B′
E∗ (0, 0, 1) = w.

Thus, the composition g0 := (ΦB0,B′
E∗ )−1 ◦ g yields an orientation

preserving (!) Hodge isometry H̃(X, B, Z) ∼= H(X0, B0, Z). (The proof
that the universal family of stable sheaves induces an orientation pre-
serving Hodge isometry is analogous to the untwisted case. This seems
to be widely known [3, 11]. For an explicit proof see [4].) Clearly, g can
be lifted to a Fourier–Mukai equivalence if and only if g0 can. The latter
follows from step one.
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4th step. Suppose g is given with r < 0. Then compose with
the orientation preserving Hodge isometry −id of H̃(X ′, B′, Z) which
is lifted to the shift functor E �→ E[1]. Thus, it is enough to lift the
composition −id ◦ g which can be achieved according to step three.

5th step The remaining case is r = 0 and � 	= 0. One applies the
construction of example vi) in Section 1 and proceeds as in step 3. The
class � can be made nef by applying −id if necessary to make it effective
(i.e. contained in the closure of the positive cone) and then composing
it with reflections sC as in step one.

§3. The various twisted categories and their Chern characters

Let α ∈ H2(X,O∗
X) be a Brauer class represented by a Čech cocycle

{αijk}.
1. The abelian category Coh(X, {αijk}) of {αijk}-twisted coherent

sheaves only depends on the class α ∈ H2(X,O∗
X). More precisely, for

any other choice of a Čech-cocycle {α′
ijk} representing α, there exists an

equivalence

Coh(X, {αijk})
Ψ{λij}

�� Coh(X, {α′
ijk}), {Ei, ϕij} � �� {Ei, ϕij · λij},

where {λij ∈ O∗(Uij)} satisfies α′
ijkα−1

ijk = λij · λjk · λki. Clearly, {λij}
exists, as {αijk} and {α′

ijk} define the same Brauer class, but it is far
from being unique. In other words, the above equivalence Ψ{λij} is not
canonical. In order to make this more precise, choose a second {λ′

ij}.
Then γij := λ′

ij · λ−1
ij can be viewed as the transition function of a

holomorphic line bundle Lλλ′ . With this notation one finds

Ψ{λ′
ij} = (Lλλ′ ⊗ ( )) ◦ Ψ{λij}.

A very special case of this is the equivalence

L ⊗ ( ) : Coh(X, {αijk}) �� Coh(X, {αijk})
that is induced by the tensor product with a holomorphic line bundle L
given by a cocycle {γij}.

Despite this ambiguity in identifying these categories for different
choices of the Čech-representative, Coh(X, {αijk}) is often simply de-
noted Coh(X, α).

2. Now fix a B-field B ∈ H2(X, Q) together with a Čech-repre-
sentative {Bijk}. The induced Brauer class α := exp(B0,2) ∈ H2(X,O∗

X)
is represented by the Čech-cocycle {αijk := exp(Bijk)}.
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In [4] we introduced

chB : Coh(X, {αijk}) �� H∗,∗(X, Q).

The construction makes use of a further choice of C∞-functions aij

with −Bijk = aij + ajk + aki, but the result does not depend on it.
Indeed, by definition, chB({Ei, ϕij}) = ch({Ei, ϕij · exp(aij)}). Thus, if
we pass from aij to aij +cij with cij +cjk +cki = 0, then chB({Eij , ϕij})
changes by exp(c1(L)), where L is given by the transition functions
{exp(cij)}. But by the very definition of the first Chern class, one has
c1(L) = [{cij + cjk + cki}] = 0.

More generally, we may change the class B by a class b ∈ H2(X, Q)
represented by {bijk}. Suppose αB+b = αB ∈ H2(X,O∗

X). We denote
the Čech-representative exp(Bijk + bijk) by α′

ijk. As before, we write
−Bijk = aij + ajk + aki and −bijk = cij + cjk + cki.

The Chern characters chB and chB+b fit into the following commu-
tative diagram

Sh(X, {αijk})
Ψ{exp(−cij)}

��

chB
��������������

Sh(X, {α′
ijk})

chB+b
�������������

H∗(X, Q).

Unfortunately, we cannot replace Sh by Coh, for exp(cij) are only
differentiable functions. Nevertheless, there exist βij ∈ O∗(Uij), non-
unique, with α′

ijk = αijk · (βij · βjk · βki). Using these one finds a
commutative diagram

Coh(X, {αijk})
chB

��

Ψ{βij}
�� Coh(X, {α′

ijk})

chB+b

��
H∗(X, Q)

exp(c1(L))
�� H∗(X, Q).

Here, L is the line bundle given by the transition functions βij ·exp(cij).
It is not difficult to see that c1(L) ∈ H1,1(X) whenever one has

b ∈ H1,1(X, Q). Indeed, c1(L) = {d log(βij)}+ b, which is of type (1, 1),
as b is (1, 1) by assumption and the functions βij are holomorphic.

Thus, in this case there exists a holomorphic line bundle L̃ with
c1(L̃) = c1(L). Now consider the composition Φ := (L̃∗ ⊗ ( )) ◦ Ψ{βij} :
Coh(X, αB := {αijk}) ∼= Coh(X, αB+b := {α′

ijk}), which is an exact
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equivalence, and denote the derived one again by Φ : Db(X, αB) ∼=
Db(X, αB+b). Then the above calculation of the twisted Chern character
implies that ΦB,B+b

∗ = id.

3. Consider again the abelian category Coh(X, {αijk}). For any
locally free G = {Gi, ϕij} ∈ Coh(X, {αijk}) one defines an Azumaya
algebra AG := End(G∨). The abelian category of left AG-modules will
be denoted Coh(AG). An equivalence of abelian categories is given by

Coh(X, {αijk}) �� Coh(AG), E
� �� G∨ ⊗ E.

In [12] Yoshioka considers yet another abelian category Coh(X, Y )
of certain coherent sheaves on a projective bundle Y → X realizing
the Brauer class α. As is explained in detail in [12], one again has
an equivalence of abelian categories Coh(X, Y ) ∼= Coh(X, {αijk}). In
order to define an appropriate notion of stability, Yoshioka defines a
Hilbert polynomial for objects E ∈ Coh(X, Y ). It is straightforward to
see that under the composition

Coh(X, Y ) ∼ �� Coh(X, {αijk}) ∼ �� Coh(AG)

his Hilbert polynomial corresponds to the usual Hilbert polynomial for
sheaves F ∈ Coh(AG) viewed as OX -modules. The additional choice of
the locally free object G in Coh(X, Y ) or equivalently in Coh(X, {αijk})
needed to define the Hilbert polynomial in [12] enters this comparison
via the equivalence Coh(X, {αijk}) ∼= Coh(AG). From here it is easy
to see that the stability conditions considered in [10, 12] are actually
equivalent.

We would like to define a twisted Chern character for objects in
Coh(AG). Of course, as any F ∈ Coh(AG) is in particular an ordinary
sheaf, ch(F ) is well defined. In order to define something that takes into
account the AG-module structure, one fixes B = {Bijk} and assumes
αijk = exp(Bijk). Then we introduce

chB
G : Coh(AG) �� H∗(X, Q), F � �� ch(F )

ch−B(G∨)
.

Note that a priori the definition depends on B and G, but the depen-
dence on the latter is well-behaved as will be explained shortly.

Here are the main compatibilities for this new Chern character:
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i) The following diagram is commutative:

Coh(X, {αijk})

chB
��������������

�� Coh(AG)

chB
G�������������

H∗(X, Q).

Indeed, ch(G∨ ⊗ E) = ch−B(G∨) · chB(E).
ii) Let H be a locally free coherent sheaf and G′ := G ⊗ H ∈

Coh(X, {αijk}). Then the natural equivalence Coh(AG) → Coh(AG′),
F �→ H∨ ⊗ F fits in the commutative diagram

Coh(AG)

chB
G �������������

�� Coh(AG′)

chB
G′�������������

H∗(X, Q).

This roughly says that the new Chern character is independent of G.
iii) If E1, E2 ∈ Coh(X, {αijk}) and Fi := G∨ ⊗ Ei ∈ Coh(AG)

then χ(E1, E2) :=
∑

(−1)i dim Exti(E1, E2) is well-defined and equals
χ(F1, F2) :=

∑
(−1)i dim Exti

AG
(F1, F2). Both expressions can be com-

puted in terms of the twisted Chern characters introduced above and
the Mukai pairing. Concretely,

χ(F1, F2) = −〈chB
G(F1) ·

√
td(X), chB

G(F2) ·
√

td(X)〉.
Here 〈 , 〉 denotes the generalized Mukai pairing and

χ(F1, F2) := −〈chB(E1) ·
√

td(X), chB(E2) ·
√

td(X)〉.
(Be aware of the different sign conventions for K3 surfaces and the gen-
eral case.)

4. There is yet another way to define a twisted Chern character
which is implicitly used in [12]. We use the above notations and de-
fine chG : Coh(AG) → H∗(X, Q) by chG(F ) := ch(F )√

ch(AG)
, where F and

AG are considered as ordinary OX -modules. Using the natural iden-
tifications explained earlier, namely Coh(X, Y ) ∼= Coh(X, {αijk}) ∼=
Coh(AG), this Chern character can also be viewed as a Chern character
on the other abelian categories.

Although the definition chG seems very natural, it does not behave
nicely under change of G. More precisely, in general chG⊗H(H∨ ⊗F ) 	=
chG(F ).
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Fortunately, the situation is less critical for K3 surfaces. Here, the
relation between chG and chB

G can be described explicitly and using the
results in 3. one deduces from this a formula for the change of chG

under G �→ G⊗H . In fact, it is straightforward to see that the following
diagram commutes:

Coh(AG)
chB

G

������������
chG

�������������

H∗(X, Q)
exp(−BG)

�� H∗(X, Q).

Here BG := cB
1 (G)
rk(G) , where cB

1 (G) is the degree two part of chB(G). Note
that B and BG define the same Brauer class. In particular, the Hodge
structures H̃∗(X, B, Z) and H̃∗(X, BG, Z) are isomorphic.

This relation between chB
G and chG can be used to compare the two

versions of the cohomogical Fourier–Mukai transform in [4] and [12].
With vB := chB · √

td(X) and vG := chG · √
td(X) and the implicit

identification Coh(X, α) = Coh(AG) the following diagram is commu-
tative:

Db(X, αB) Φ ��

vB

��

vG

�������������
Db(X ′, α′)

vB′

��

vG′

��������������

H∗(X, Q) �� H∗(X ′, Q)

H∗(X, B, Z)
exp(−BG)

�������������

ΦB,B′
∗

�� H∗(X ′, B′, Z).
exp(−BG′ )

		������������

Here, the central isomorphism H∗(X, Q) ∼= H∗(X ′, Q) is the correspon-
dence defined by vG∨�G′(E) with E ∈ Db(X ×X ′, α−1

B �αB′) the kernel
defining Φ.
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On integral Hodge classes
on uniruled or Calabi-Yau threefolds

Claire Voisin

To Masaki Maruyama, on his 60th birthday

§0. Introduction

Let X be a smooth complex projective variety of dimension n. The
Hodge conjecture is then true for rational Hodge classes of degree 2n−2,
that is, the degree 2n − 2 rational cohomology classes of X which are
of Hodge type (n − 1, n − 1) are algebraic, which means that they are
the cohomology classes of algebraic cycles with Q-coefficients. Indeed,
this follows from the hard Lefschetz theorem, which provides an isomor-
phism:

∪c1(L)n−2 : H2(X, Q) ∼= H2n−2(X, Q),

from the fact that the isomorphism above sends the space of rational
Hodge classes of degree 2 onto the space of rational Hodge classes of
degree 2n− 2, and from the Lefschetz theorem on (1, 1)-classes.

For integral Hodge classes, Kollár [11], (see also [14]) gave examples
of smooth complex projective manifolds which do not satisfy the Hodge
conjecture for integral degree 2n − 2 Hodge classes, for any n ≥ 3. The
examples are smooth general hypersurfaces X of certain degrees in Pn+1.
By the Lefschetz restriction theorem, such a variety satisfies

H2(X, Z) = ZH, H = c1(OX(1)),

and
H2n−2(X, Z) = Zα, < α, H >= 1.

Plane sections C of X have cohomology class [C] = dα, d = deg X ,
because

deg C = d =< [C], H > .

Kollár [11] proves the following :

Received December 14, 2004.
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Theorem 1. Consider hypersurfaces X ⊂ Pn+1 of degree d, where
n ≥ 4. Assume d satisfies the property that pn divides d, for some integer
p coprime to n!. Then for a general X, any curve C in X has degree
divisible by p, hence its cohomology class is a multiple of pα. Thus the
class α is not algebraic, that is, it is not the cohomology class of an
algebraic cycle with integral coefficients.

The condition on the degree makes the canonical bundle of X very
ample, since the smallest possible degree available by this construction is
≥ 2n. It is thus natural to try to understand whether this is an artificial
consequence of the method of construction, or whether the positivity of
the canonical bundle is essential.

Another reason to ask whether one could find examples above with
Kodaira dimension equal to −∞ is the remark made in [14] :

Lemma 1. Let X be a smooth rational complex projective manifold.
Then the Hodge conjecture is true for integral Hodge classes of degree
2n − 2.

(Note that the whole degree 2n − 2 cohomology of such an X is of
type (n − 1, n − 1), so the statement is that classes of curves generate
H2n−2(X, Z) for a rational variety X .)

One can thus ask whether this criterion could be used to produce
new examples of unirational or rationally connected, but non rational
varieties (we refer to [5], [1], [9] for other criteria). Namely, it would suf-
fice to produce a smooth projective rationally connected variety which
does not satisfy the Hodge conjecture for degree 2n − 2 integral coho-
mology classes. The main result of this paper implies that in dimension
3, this cannot be done:

Theorem 2. Let X be a smooth complex projective threefold which
either is uniruled, or satisfies

KX
∼= OX , H2(X,OX) = 0.

Then the Hodge conjecture is true for integral degree 4 Hodge classes on
X.

Remark 1. Recall [12] that a complex projective threefold is unir-
uled, that is swept out by rational curves, if and only if it has Kodaira
dimension equal to −∞. Thus our condition is that either κ(X) = −∞
or KX = OX and H2(X,OX) = 0.

Note that as an obvious corollary, we get the following:
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Corollary 1. Let X be a smooth complex projective n-fold. Assume
X contains a subvariety Y which is a smooth 3-dimensional complete in-
tersection of ample divisors, and satisfies one of the conditions in The-
orem 2. Then the Hodge conjecture is true for integral degree 2n − 2
Hodge classes on X.

Indeed, let j be the inclusion of Y into X . By Lefschetz restriction
theorem, the map

j∗ : H4(Y, Z) = H2(Y, Z) → H2(X, Z) = H2n−2(X, Z)

is an isomorphism. Thus the Hodge conjecture for integral Hodge classes
of degree 4 on Y implies the Hodge conjecture for integral Hodge classes
of degree 2n − 2 on X .

Note that in higher dimensions, there are two possible generaliza-
tions of the problem studied above. Namely, one can study the Hodge
conjecture for integral Hodge classes in degree 4 or 2n−2. Both problems
are birationally invariant, in the sense that the two groups

Hdg4(X, Z)/ < [Z] >, Hdg2n−2(X, Z)/ < [Z] >,

where < [Z] > denotes the subgroups generated by classes of algebraic
cycles with integral coefficients, are birational invariants of a smooth
complex projective manifold X of dimension n (see [14]). For both
problems, it is clear that the assumption “uniruled” will not be sufficient
in higher dimension to guarantee that the groups above vanish. Indeed,
starting from one of Kollár’s 3-dimensional example of a pair X, α ∈
H4(X, Z), where α is a non-algebraic integral Hodge class (Theorem 1),
we can consider the product

Y = X × P1,

and both classes
pr∗1α, pr∗1α ∪ pr∗2([pt])

in degree 4 and 6 = 2n−2 respectively will give examples of non-algebraic
integral Hodge classes.

However, one may wonder if the analogue of Theorem 2 holds for X
rationally connected, and for integral Hodge classes of degree 4 or 2n−2
on X, n = dim X .

The proof of Theorem 2 uses the Noether-Lefschetz locus for surfaces
S in an adequately chosen ample linear system on X . This leads to
simple criteria which guarantee that integral degree 2 cohomology classes
on a given S are generated over Z by those which become algebraic
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on some small deformation St of S. The Lefschetz hyperplane section
Theorem allows then to conclude.

In section 1, we state this criterion, which is an algebraic criterion
concerning the infinitesimal variation of Hodge structure on H2(S), for
varieties X with H2(X,OX) = 0. In section 2, we prove that this crite-
rion is satisfied for uniruled or K-trivial varieties with trivial H2(X,OX).
In the case of K-trivial varieties, the criterion had been also checked in
[15], but the proof given here is substantially simpler. In section 3, a
refinement of this criterion for uniruled threefolds with H2(X,OX) �= 0
is given and proven to hold for an adequate choice of linear system.

Thanks. This work was started during the very interesting confer-
ence “Arithmetic Geometry and Moduli Spaces. It is a pleasure to thank
the organizers for the nice atmosphere they succeeded to create. I also
wish to thank S. Mori for his help in the proof of Lemma 4 and J. Starr
for interesting discussions on related questions.

§1. An infinitesimal criterion

Let X be a smooth complex projective n-fold. Let j : S ↪→ X be a
surface which is a smooth complete intersection of ample divisors. Thus
by Lefschetz theorem, the Gysin map:

j∗ : H2(S, Z) → H2n−2(X, Z)

is surjective.
We assume that the Hilbert scheme H of deformations of S in X is

smooth near S. This is the case if S is a smooth complete intersection of
sufficiently ample divisors. The space H0(S, NS/X) is the tangent space
to H at S. Let ρ : H0(S, NS/X) → H1(S, TS) be the Kodaira-Spencer
map, which is the classifying map for the first order deformations of the
complex structure on S induced by the universal family π : S → H of
surfaces parameterized by H.

For u ∈ H1(S, TS) we have the interior product with u:

u� : H1(S, ΩS) → H2(S,OS).

The criterion we shall use is the following:

Proposition 1. Assume there exists a λ ∈ H1(S, ΩS) such that the
map

µλ : H0(S, NS/X) → H2(S,OS),(1.1)
µλ(n) = ρ(n)�λ,
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is surjective. Then any class α ∈ H2n−2(X, Z) is algebraic.

Remark 2. Our assumptions imply immediately that the coho-
mology H2n−2(X, C) is of type (n − 1, n − 1). Indeed, this last fact is
equivalent to the vanishing of the space Hn(X, Ωn−2

X ). On the other
hand, interpreting the map µλ above in terms of infinitesimal variations
of Hodge structures on the degree 2 cohomology of the surfaces St pa-
rameterized by H, one sees that Im µλ is contained in

Ker (j∗ : H2(S,OS) → Hn(X, Ωn−2
X )).

Thus the assumptions imply that this last map j∗ is 0, and as it is
surjective by Lefschetz theorem, it follows that Hn(X, Ωn−2

X ) = 0.

Remark 3. The assumption of Proposition 1 is exactly the assump-
tion of Green’s infinitesimal criterion for the density of the Noether-
Lefschetz locus (see [19], 5.3.4), which allows to conclude that real degree
2 cohomology classes on S can be approximated by rational algebraic
cohomology classes on nearby fibers St. It had been already used in [16],
[17] to construct interesting algebraic cycles on Calabi-Yau threefolds.

Proof of Proposition. We refer to [19], chapter 5, for more details
on infinitesimal variations of Hodge structures. On a simply connected
neighborhood U in H of the point 0 ∈ H parameterizing S ⊂ X , the
restricted family

π : SU → U

is differentiably trivial, and in particular the local system

H2
Z := R2π∗Z/torsion

is trivial. Thus the locally free sheaf

H2 := H2
Z ⊗OU

is canonically trivial, and denoting by H2 the corresponding vector bun-
dle on U , we get a canonical isomorphism

H2 ∼= U × H2(S, C),

since the fiber of H2 at 0 is canonically isomorphic to H2(S, C). Com-
posing with the second projection gives us a holomorphic map

τ : H2 → H2(S, C),

which on each fiber H2
t = H2(St, C) is the natural identification

H2(St, C) ∼= H2(S, C).
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Next the vector bundle H2 contains a holomorphic subbundle F 1H2,
which at the point t ∈ U has for fibre the subspace

F 1H2(St) := H2,0(St) ⊕ H1,1(St) ⊂ H2(St, C).

We shall denote by
τ1 : F 1H2 → H2(S, C)

the restriction of τ to F 1H2.
The key point is the following fact, for which we refer to [19], 5.3.4 :

Lemma 2. For λ ∈ H1(St, ΩSt), choose any lifting λ̃ ∈ F 1H2
t of λ.

Then the surjectivity of the map

µλ : H0(St, NSt/X) → H2(St,OSt)

is equivalent to the fact that the map τ1 is a submersion at λ̃.

Having this, we conclude as follows: First of all, we observe that
the assumption of Proposition 1 is a Zariski open condition on λ ∈
H1(S, ΩS). Now, the space H1(S, ΩS) = H1,1(S) has a real structure,
namely

H1,1(S) = H1,1(S)R ⊗ C,

where H1,1(S)R = H1,1(S) ∩ H2(S, R). Thus if the assumption is satis-
fied for one λ ∈ H1,1(S), it is satisfied for one real λ ∈ H1,1(S)R.

In the lemma above, choose for lifting λ̃ the class λ itself. Thus λ̃
is real, and so is τ1(λ̃). As the assumption on λ and the lemma imply
that τ1 is a submersion at λ̃, so is the restriction

τ1,R : H1,1
R → H2(S, R)

of τ1 to τ−1
1 (H2(S, R)). Here we identified τ−1

1 (H2(S, R)) to

∪t∈UF 1H2(St) ∩ H2(St, R) = ∪t∈UH1,1(St)R =: H1,1
R .

As τ1,R is a submersion at λ̃, and H1,1(S)R is a smooth real manifold,
because it is a real vector bundle on U and U is smooth, Im τ1,R contains
a non-empty open set of H2(S, R). On the other hand Im τ1,R is a cone.
We use now the following elementary lemma:

Lemma 3. Let VZ be a lattice, and let C be a non-empty open cone
in VR := VZ ⊗ R. Then VZ is generated over Z by the points in VZ ∩ C.

Proof. VZ ∩ C is non-empty because VQ is dense, and C is a non-
empty open cone in VR. Let u ∈ VZ, and let u′ ∈ VZ ∩ C. For q a large
integer, we have 1

q u + u′ ∈ C, because C is open. Then u + qu′ := v′ ∈
VZ ∩ C. Thus u = v′ − qu′ is in the sublattice generated over Z by the
points in VZ ∩ C.
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We apply Lemma 3 to VZ = H2(S, Z)/torsion and to C an open
cone contained in Im τ1,R. Thus we conclude that H2(S, Z)/torsion is
generated over Z by classes α ∈ Im τ1,R. But by definition of τ1, if an
integral cohomology class α ∈ H2(S, Z)/torsion is equal to τ1,R(λt), for
some

λt ∈ H1,1(St)R ⊂ H2(St, R),

the corresponding class

αt ∈ H2(St, Z)/torsion ⊂ H2(St, R)

is equal to λt in H2(St, R). Thus the class

αt = λt ∈ H1,1(St) ∩ H2(St, Z)/torsion

is algebraic on St by Lefschetz theorem on (1, 1)-classes.
The conclusion is that, under the assumptions of Proposition 1, the

lattice H2(S, Z)/torsion is generated over Z by integral classes which
become algebraic (i.e. are the class of a divisor) on some nearby fiber
St. As the torsion of H2(S, Z) is algebraic, the same conclusion holds
for H2(S, Z).

Finally, as the map j∗ : H2(S, Z) → H2n−2(X, Z) is surjective, we
conclude that H2n−2(X, Z) is generated over Z by classes of 1-cycles in
X .

§2. Proof of Theorem 2 when H2(X,OX) = 0

In this section, we assume that H2(X,OX) = 0 and X either has
trivial canonical bundle or is uniruled.

In case where X is uniruled, we have the following result:

Lemma 4. Let X be a uniruled threefold. Then a smooth birational
model X ′ of X carries an ample line bundle H such that

H2KX′ < 0.

Proof. As X is uniruled, X is birationally equivalent to a Q-
Gorenstein threefold Y which is either a singular Fano threefold, or
a Del Pezzo fibration over a smooth curve, or a conic bundle over a
Q-Gorenstein surface. Let us first prove the existence of an ample line
bundle HY on Y such that KY H2

Y < 0:
a) If Y is Fano, −KY is ample, so we can take for HY an integral

multiple of −KY .
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b) Otherwise there is a morphism

π : Y → B,

where B is Q-Gorenstein of dimension 1 or 2, and the relative canonical
bundle Kπ has the property that −Kπ is a relatively ample Q-divisor.
Let HB be an ample line bundle on B, and choose for HY the Q-divisor

HY = π∗HB − εKπ,

where ε is a small rational number. As −Kπ is relatively ample, HY is
ample for small enough ε. We compute now:

H2
Y KY = (π∗HB − εKπ)2(π∗KB + Kπ)

= π∗H2
BKπ − 2εKππ∗HB(π∗KB + Kπ) + O(ε2).

If dim B = 2, the term π∗H2
BKπ is negative, so that for small ε,

H2
Y KY < 0.

If dim B = 1, the first term vanishes but the second term is equal to
−2εK2

ππ∗HB and this is negative because −Kπ is relatively ample.
Let now Y, HY be as above, and let τ : X ′ → Y be a desingulariza-

tion of Y . Thus X ′ is a smooth birational model of X . Then there is a
relatively ample divisor E on X ′ which is supported on the exceptional
divisor of τ . Consider the Q-divisor

H = τ∗HY + εE,

for ε a sufficiently small rational number. Then we have KX′ = τ∗KY +F
where F is supported on the exceptional divisor of τ . This gives

H2KX′ = (τ∗HY + εE)2(τ∗KY + F ).

As τ∗H2
Y F = 0, the dominating term is equal to

τ∗H2
Y τ∗KY = H2

Y KY < 0.

Thus for small ε we have H2KX′ < 0.

From now on, we will, in the uniruled case, consider X ′ instead of
X , which can be done since the statement of Theorem 2 is invariant
under birational equivalence, and we will assume that H satisfies the
conclusion of Lemma 4.

Our aim in this section is to prove the following Proposition, which
by Proposition 1 implies Theorem 2 for uniruled and Calabi-Yau three-
folds X with H2(X,OX) = 0.
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Proposition 2. Let X be a smooth projective uniruled or Calabi-
Yau threefold such that H2(X,OX) = 0. Let H be an ample line bundle
on X. In the uniruled case, assume that H satisfies H2KX < 0. Then
for n large enough, and for S a generic surface in | nH |, there is a
λ ∈ H1(S, ΩS) which satisfies the property that

µλ : H0(S,OS(nH)) → H2(S,OS)

is surjective.

To see that this is a reasonable statement, note that in the K-
trivial case, the spaces H0(S,OS(nH)) and H2(S,OS) have the same
dimension, since, if S ∈| nH |, we have by adjunction

H0(S, KS) = H0(S,OS(S)) = H0(S, NS/X),

with H0(S, KS) = H2(S,OS)∗. Thus the two spaces involved in Propo-
sition 2 have the same dimension. In the uniruled case, we have:

Lemma 5. Assume X, H satisfies H2KX < 0, then for S ∈| nH |,
we have

h0(OS(S)) = h0(KS) + φ(n),

where φ(n) = αn2 + o(n2), α > 0.

Proof. We have KS = KX(S)|S . Thus

χ(OS(S)) = χ(KS(−KX))

= χ(KX |S) = χ(OS) +
1
2
(K2

X|S − KX|S(KX|S + nH|S))

= χ(KS) +
1
2
(nHK2

X − nHKX(nH + KX)).

It follows that

χ(OS(S)) − χ(KS) = −1
2
n2H2KX + affine linear term in n.

On the other hand, for large n, the ranks

h1(OS(S)) = h2(OX), h2(OS(S)) = h3(OX),

h1(KS) = h1(OS) = h1(OX), h2(KS) = C

do not depend on n. It follows that we also have

h0(OS(S)) − h0(KS) = −1
2
n2H2KX + affine linear term in n,

which proves the result with α = − 1
2H2KX > 0.
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By this Lemma, we conclude that in the K-trivial case and in the
uniruled case, we can assume that we have for n large enough, and
S ∈| nH |,

h0(NS/X) = h0(S,OS(S)) ≥ h0(KS) = h2(OS).

This makes possible the surjectivity of the map

µλ : H0(S, NS/X) → H2(S,OS)

of (1.1), and also says that µλ is surjective if and only if it has maximal
rank.

Another way to see this is to introduce

V := H0(S, KS), V ′ := H0(S, NS/X).

The bilinear map

µ : V × V ′ → H1(S, ΩS),(2.2)
µ(v, v′) = ρ(v′)�v

and Serre’s duality H1(S, ΩS) ∼= H1(S, ΩS)∗ give a dual map

q = µ∗ : H1(S, ΩS) → (V ⊗ V ′)∗ = H0(P(V ) × P(V ′),O(1, 1)),

given by
q(λ)(v ⊗ v′) =< λ, µ(v × v′) > .

As we have
< λ, ρ(v′)�v >= − < ρ(v′)�λ, v >,

where the <, > stand for Serre’s duality on H1(S, ΩS) on the left and be-
tween H0(S, KS) and H2(S,OS) on the right, we see that q(λ) identifies
to µλ ∈ Hom (V, V ′∗).

Thus the condition that µλ has maximal rank for generic λ is equiv-
alent to the condition that the hypersurface of P(V )× P(V ′) defined by
q(λ) is non singular.

We shall use the following criterion:

Lemma 6. Given µ as in (2.2), the generic hypersurface defined by
q(λ) is non singular if the following set

Z = {(v, v′) ∈ P(V ) × P(V ′), µ(v × v′) = 0 ∈ H1(S, ΩS)}(2.3)

satisfies
dim Z < dim P(V ′).
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Proof. Assume to the contrary that the generic q(λ) is singular.
Let

Z ′ ⊂ P(H1(S, ΩS)) × P(V ),

Z ′ = {(λ, v), q(λ) is singular at (v, v′) for some v′ ∈ P(V ′)}.
By assumption Z ′ dominates P(H1(S, ΩS)). Clearly there is only one
irreducible component Z ′

g of Z ′ which dominates P(H1(S, ΩS)). Let Z ′
1

be the second projection of Z ′
g in P(V ).

As Z ′
g dominates P(H1(S, ΩS)) we have

dim Z ′
g ≥ rk H1(S, ΩS) − 1.

On the other hand, the fiber of Z ′
g over the generic point vg of Z ′

1 is
equal to

µ(vg × V ′)⊥.

Thus we have

dim Z ′
g = dim Z ′

1 + rk H1(S, ΩS) − 1 − rk µvg ,

where µvg : V ′ → H1(S, ΩS) is the map v′ �→ µ(vg × v′).
The condition dim Z ′

g ≥ rk H1(S, ΩS) − 1 is thus equivalent to

dim Z ′
1 ≥ rk µvg .(2.4)

But on the other hand, the unique irreducible component Z0 of Z which
dominates Z ′

1 has dimension equal to dim Z ′
1 + dim P(V ′) − rk µvg and

inequality (2.4) implies that this is ≥ dim P(V ′).

Our first task will be thus to study the set Z introduced in (2.3). To
this effect, we degenerate the surface S ∈| nH | to a surface with many
nodes. The reason for doing that is the following fact (cf [15]):

Lemma 7. Let S → ∆ be a Lefschetz degeneration of surfaces St

in | nH |, where the central fiber has ordinary double points x1, . . . , xN

as singularities. Then the limiting space

lim
t→0

Im (qt : H1(St, ΩSt) → (H0(St, KSt) ⊗ H0(St,OSt(nH)))∗),

which is a subspace of (H0(S0, KS0)⊗H0(S0,OS0(nH)))∗, contains for
each i = 1, . . . , N the multiplication-evaluation map which is the com-
posite:

H0(S0, KS0) ⊗ H0(S0,OS0(nH)) mult→ H0(S0, KS0(nH))

evxi→ H0(KS0(nH)|xi
).
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As we want to use this lemma to bound the dimension of the space
Z of (2.3) for a generic surface, it is natural to degenerate the generic
surface to a surface with many nodes. To get surfaces with many nodes,
we use discriminant surfaces as in [2]. We assume here that H is very
ample on X , and we consider a generic symmetric n by n matrix A whose
entries Aij are in H0(X,OX(H)). Let σA := discr A ∈ H0(X,OX(nH))
and SA be the surface defined by σA.

Theorem 3. (Barth [2]) The surface SA has N ordinary double
points as singularities, with

N =
(

n + 1
3

)
H3.

Note that for large n, this grows like n3

6 H3 while both dimensions
h0(KS), h0(OS(nH)) of the spaces V, V ′ grow like h0(OX(nH)), that is
like n3

6 H3 by Riemann-Roch.
Next we have the following lemma, which might well be known al-

ready, but for which we could not find a reference:

Lemma 8. Let X be a smooth projective threefold, and H a very
ample line bundle on X which satisfies the property that

Hi(X,OX(lH)) = 0, for i > 0, l > 0.

Let SA ∈| nH | be a generic discriminant surface as above, and let W ⊂
X be its singular set. Then the cohomology group H1(X, IW ((n+2)H))
vanishes.

Proof. Let G = Grass(2, n) be the Grassmannian of 2-dimensional
vector subspaces of K := Cn. The matrix A as above can be seen as a
family of quadrics Ax on P(K) parameterized by x ∈ X , the surface SA

corresponds to singular quadrics and the singular set W parameterizes
quadrics of rank n−2. Thus W is via the second projection in one-to-one
correspondence with the following algebraic set:

W̃ := {(l, x) ∈ G × X, Ax is singular along l}.

Let E be the tautological rank 2 quotient bundle on G, whose fiber at
l is H0(O∆l

(1)). E is a quotient of K∗ ⊗ OG, and there is the natural
map

e : S2K∗ ⊗OG → K∗ ⊗ E .

Let

F := Im e.(2.5)
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Clearly, a quadric A ∈ S2K∗ on P(K) is singular along ∆l if and only if
it vanishes under the map e at the point l. Thus the set W̃ is the zero
locus of a section of the vector bundle

F � OX(H)

which is of rank 2n− 1 on G×X . Note that the cokernel of e identifies
to

∧2 E =: L where L is the Plücker line bundle on G. Thus we have an
exact sequence

0 → F → K∗ ⊗ E → L → 0(2.6)

on G.
As W̃ is the zero set of a transverse section of a rank 2n− 1 vector

bundle on G × X , its ideal sheaf admits the Koszul resolution:

0 →
2n−1∧

F∗ � OX((−2n + 1)H) → . . . → F∗ � OX(−H) → I
fW

→ 0.

Thus the space H1(X, IW ((n+2)H)) = H1(G×X, I
fW
⊗pr∗2((n+2)H))

is the abutment of a spectral sequence whose E1-term is equal to

Hi(G × X,
i∧
F∗ � OX((n + 2 − i)H)), i ≥ 1.

By Künneth decomposition and the vanishing assumptions, these
spaces split as:

Hi(G,

i∧
F∗) ⊗ H0(X, (n + 2 − i)H), n + 2 − i > 0,

Hi(G,

i∧
F∗) ⊗ H0(X,OX) ⊕ Hi−1(G,

i∧
F∗) ⊗ H1(X,OX)

⊕Hi−2(G,

i∧
F∗)⊗H2(X,OX)⊕Hi−3(G,

i∧
F∗)⊗H3(X,OX), i = n+2,

Hi−3(G,

i∧
F∗) ⊗ H3(X, (n + 2 − i)H), n + 2 − i < 0.

The proof of Lemma 8 is thus concluded by the following lemma, which
implies that the E1-terms of the spectral sequence above all vanish.

Lemma 9. On the Grassmannian G = Grass(2, n), the bundle F
being defined as in (2.5), we have the vanishings:

(1) Hi(G,
∧i F∗) = 0, n + 2 − i ≥ 0, i ≥ 1

(2) Hi−1(G,
∧i F∗) = 0, n + 2 − i = 0.
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(3) Hi−2(G,
∧i F∗) = 0, n + 2 − i = 0.

(4) Hi−3(G,
∧i F∗) = 0, n + 2 − i ≤ 0, i ≥ 1.

The proof of this last lemma is postponed to an Appendix.

As an immediate corollary, we get the following:

Corollary 2. Under the same assumptions as in Lemma 8, the
numbers

rk H1(X, KX ⊗ IW (nH)), rk H1(X, IW (nH))

are bounded by Cn2 for some constant C.

Combining Corollary 2 with Riemann-Roch and Barth’s Theorem
3, we get the following corollary:

Corollary 3. The spaces H0(X, KX(nH)⊗IW ) and H0(X, IW (nH))
have dimension bounded by cn2 for some constant c.

We shall use the following consequence of the uniform position prin-
ciple of Harris:

Lemma 10. Let A be generic and let W ′ ⊂ W be a subset of W =
Sing SA. Then if

H0(X, KX(nH) ⊗ IW ′) �= H0(X, KX(nH) ⊗ IW ),

W ′ imposes cardW ′ independent conditions to H0(X, KX(nH)). Simi-
larly, if

H0(X,OX(nH) ⊗ IW ′) �= H0(X,OX(nH) ⊗ IW ),

W ′ imposes cardW ′ independent conditions to H0(X,OX(nH)).

Proof. Indeed, we represented in the previous proof the set W as
the projection in X of a 0-dimensional subscheme W̃ of G × X , defined
as the zero set of a generic transverse section of the vector bundle F �
OX(H) on G × X . One verifies that the uniform position principle
[8] applies to W̃ , and this allows to conclude that all subsets of W of
given cardinality impose the same number of independent conditions to
H0(X, KX(nH)) or H0(X,OX(nH)). This number is then obviously
equal to

Min (cardW ′, a)

where a = rk (rest : H0(X, KX(nH))→H0(W, KX(nH)|W ))), resp.

a = rk (rest : H0(X,OX(nH))→H0(W,OW (nH)))

in the second case.
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From now on, we will treat separately the uniruled and the K-trivial
cases.

The uniruled case. We may assume (X, H) satisfies the inequality
H2KX < 0 of Lemma 4. We want to study the set Z of (2.3) for a generic
surface S ∈| nH |, and more precisely the irreducible components Z ′ of
Z which are of dimension ≥ dim P(V ′).

Degenerating S to SA and applying Lemma 7, we find that the
specialization Z ′

s of Z ′ is contained in

Z0 := {(v, v′) ∈ P(VA) × P(V ′
A), vv′|W = 0},

where
VA = H0(SA, KSA), V ′

A = H0(SA,OSA(nH)).

Lemma 11. Z ′
s is contained in the union

PH0(SA, KSA ⊗ IW ) × P(V ′
A)(2.7)

∪ P(VA) × PH0(SA,OSA(nH) ⊗ IW ).

Proof. We observe that Z0 is a union of irreducible components
indexed by subsets W ′ ⊂ W , with complementary set W ′′ := W \ W ′:

Z0 = ∪W ′⊂W ZW ′ ,

ZW ′ := PH0(SA, KSA ⊗ IW ′) × PH0(SA,OSA(nH) ⊗ IW ′′ ).

We use now Lemma 10: it says that if both conditions

H0(X, KX(nH) ⊗ IW ′) �= H0(X, KX(nH) ⊗ IW ),

H0(X,OX(nH) ⊗ IW ′′) �= H0(X,OX(nH) ⊗ IW )

hold, then W ′ imposes cardW ′ independent conditions to the linear sys-
tem H0(X, KX(nH)) and W ′′ imposes cardW ′′ independent conditions
to H0(X,OX(nH)). Thus the codimension of ZW ′ in P(VA) × P(V ′

A)
is equal to cardW ′ + cardW ′′ = cardW . But cardW is equal to
n(n2−1)

6 H3 by Theorem 3, while the dimension of VA = H0(SA, KSA) ∼=
H0(X, KX(nH)) is equal to

1
6
n3H3 +

1
4
n2KXH2 + affine linear term in n

by Riemann-Roch.
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As KXH2 < 0, we conclude that for n large enough, if W ′ is as
above, we have

codim Z ′ < dim P(VA),

and thus
dim ZW ′ < dim P(V ′

A).

Thus, for large n, the only components of Z0 which may have dimension
≥ dim P(V ′

A) are the two components PH0(SA, KSA ⊗IW )×P(V ′
A) and

P(VA) × PH0(SA,OSA(nH) ⊗ IW ).

Corollary 4. Assume S is generic and Z ′ ⊂ P(V ) × P(V ′) is an
irreducible component of Z which has dimension ≥ dim P(V ′). Then
either

i) dim pr1(Z ′) ≤ cn2 or
ii) dim pr2(Z ′) ≤ cn2,
where c is the constant of Corollary 3.

Proof. By Lemma 11, the specialization Z ′
s of Z ′ is contained in

the union (2.7). As we have by Corollary 3

dim PH0(X, KX(nH) ⊗ IW ) < cn2, dim PH0(X, IW (nH)) < cn2,

this implies that the cycle Z ′
s satisfies:

hnc2

1 hnc2

2 [Z ′
s] = 0 in H∗(P(VA) × P(V ′

A), Z),

where
h1 := pr∗1c1(OP(VA)(1)), h2 := pr∗2c1(OP(V ′

A)(1)),

and [Z ′
s] is the cohomology class of the cycle Z ′

s.
It follows that we also have

hnc2

1 hnc2

2 [Z ′] = 0 in H∗(P(V ) × P(V ′), Z).(2.8)

We claim that this implies that i) or ii) holds. Indeed, as Z ′ is irreducible,
there are well defined generic ranks k1, k2 of the projection pr1|Z′ , pr2|Z′

respectively, which are also the generic ranks of the pull-back of the
(1, 1)-forms pr∗1ω1, pr∗2ω2 to Z ′, where ωi are the Fubini-Study (1, 1)-
forms on P(V ), P(V ′). As the form

pr∗1ω
nc2

1 ∧ pr∗1ωnc2

2

is semi-positive on Z ′, the condition (2.8) implies that everywhere on Z,
we have

pr∗1ωnc2

1 ∧ pr∗2ω
nc2

2 = 0.
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As dim Z ′ ≥ 2cn2 and (pr1, pr2) is an immersion on the smooth locus of
Z ′, this implies easily that either k1 = rk pr1 or k2 = rk pr2 has to be
< cn2, that is i) or ii).

Corollary 5. With the same assumptions as in the previous corol-
lary, if (v, v′) ∈ Z ′, one has either

i) rk µv : V ′ → H1(S, ΩS) < cn2, or
ii) rk µv′ : V → H1(S, ΩS) < cn2,
where i) and ii) refer to the two cases of Corollary 4 and

µv(·) = µ(v ⊗ ·), µv′(·) = µ(· ⊗ v′).

Proof. Indeed, assume case i) of Corollary 4 holds. As dim Z ′ ≥
dim P(V ′), the generic fibre of pr1 : Z ′ → P(V ′) has dimension >
dim P(V ′) − cn2. But the generic fibre is, by definition of Z, equal
to P(Ker µv). Thus rank µv < cn2.

In case ii), we can do the same reasoning, as we have

dim Z ′ ≥ dim P(V ′) ≥ dim P(V ).

The proof that such a Z ′ does not exist, and thus, the proof of
Proposition 2 in the uniruled case, concludes now with the following
two Lemmas :

Lemma 12. Let S ∈| nH | be generic, with n large enough. Let c
be any positive constant. Then there exists a constant A such that the
sets

Γ = {v ∈ P(V ), rk µv < cn2},(2.9)
Γ′ = {v′ ∈ P(V ′), rk µv′ < cn2},(2.10)

both have dimension bounded by A.

Lemma 13. Let A be any positive constant. Let S ∈| nH | be
generic, with n large enough (depending on A). Then the set

B = {v ∈ V, rk µv < A}

reduces to 0.

Indeed, we know by Corollary 5 that our set Z ′ should satisfy either
pr1(Z ′) ⊂ Γ (case i) or pr2(Z ′) ⊂ Γ′ (case ii). Thus by Lemma 12, one
concludes that in case i), dim pr1(Z ′) ≤ A and in case ii), dim pr2(Z ′) ≤
A, where A does not depend on n.
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In case ii), it follows that dim Z ≤ dim P(V ) + A and as we have
dim P(V ) + A < dim P(V ′) by Lemma 5, this gives a contradiction.

In case i), it follows, arguing as in the proof of Corollary 5, that for
(v, v′) ∈ Z ′, one has rk µv < A. This is impossible unless Z ′ is empty by
Lemma 13. Thus, assuming Lemmas 12 and 13, Proposition 2 is proved
for uniruled threefolds with H2(X,OX) = 0.

Proof of Lemma 12. Our first step is to reduce the statement to
the case where S is a surface in P3. This is done as follows: we choose
once for all a morphism

f : X → P3

given by 4 sections of H , so that f∗OP3(1) = H . We shall prove the
result for surfaces of the form S = f−1(Σ), where Σ is a generic smooth
surface of degree n in P3. Let fS : S → Σ be the restriction of f to S.
We have trace maps

fS∗ : H1(S, ΩS(sH)) → H1(Σ, ΩΣ(s)),

fS∗ : H0(S, KS(sH)) → H0(Σ, KΣ(s))

for all integers s. We note now that the map µ admits obvious twists
that we shall also denote by µ:

µ : H0(S, KS(lH)) ⊗ H0(S,OS(nH)) → H1(S, ΩS(lH)).

Furthermore, we have similarly defined bilinear maps µΣ:

µΣ : H0(Σ, KΣ(l)) ⊗ H0(Σ,OΣ(n)) → H1(Σ, ΩΣ(l)).

All the maps µ can be defined using the maps

δ : H0(S, KS(lH)) ↪→ H1(S, ΩS((−n + l)H)),

induced by the exact sequence (which is itself a twist of the normal exact
sequence)

0 → ΩS(−nH) → Ω2
X |S → KS → 0,

twisted by lH , and then the product map

H1(S, ΩS((−n + l)H)) ⊗ H0(S,OS(nH)) → H1(S, ΩS(lH)).

The same is true for the maps µΣ.
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As there is a commutative diagram of normal exact sequences

0 → TS → TX |S → OS(nH) → 0
fS∗ ↓ f∗ ↓ ‖

0 → f∗TΣ → f∗TP3 |S → OS(nH) → 0
,

where the bottom line is the normal bundle sequence of Σ pulled-back
to S, it follows that for v ∈ H0(S, KS(l)) and η ∈ H0(Σ,OΣ(n)), we
have:

fS∗(µv(f∗
Sη)) = µΣ

fS∗(v)(η),(2.11)

Equation (2.11) implies that

rk (µΣ
fS∗(v) : H0(Σ,OΣ(n)) → H1(Σ, ΩΣ(l)))

≤ rk (µv : H0(S,OS(n)) → H1(S, ΩS(l))).

Let us now prove the first case of Lemma 12, namely for the set Γ. The
second proof is done similarly.

Starting from a sufficiently ample H , one finds that H0(X,OX(4H))
restricts surjectively onto H0(Xu,OXu(4H)), for any u ∈ P3, where
Xu := f−1(u).

We have the following Lemma:

Lemma 14. The image ΓΣ of the composed map

Γ × H0(X,OX(4H)) ν→ H0(S, KS(4H))
fS∗→ H0(Σ, KΣ(4)),

where ν is the product, has dimension at least equal to 1
N dim Γ, where

N := rk H0(X,OX(4H)).

Proof. Indeed, as the restriction map

H0(X,OX(4H)) → H0(Xu,OXu(4H))

is surjective, if ei is a basis of H0(X,OX(4H)), the map

Γ → ΓD
Σ , γ �→ fS∗(γei),

is injective. Thus dim Γ ≤ Ndim ΓΣ.
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On the other hand, if v ∈ Γ, α ∈ H0(X,OX(4H)), we have

rk µαv ≤ rk µv

because µαv = αµv. Thus we conclude that the following hold:

dim ΓΣ ≥ 1
N

dim Γ,

rk µΣ
w ≤ rk µv ≤ cn2,

for all w ∈ ΓΣ.
As N does not depend on n, it suffices to show the result for generic

Σ in P3 and for the product

µΣ : H0(Σ, KΣ(4)) × H0(Σ,OΣ(n)) → H1(Σ, ΩΣ(4)).

This last product is well known (cf [19],6.1.3) to identify to the multi-
plication in the Jacobian ring of Σ:

µΣ : H0(Σ,OΣ(n)) × H0(Σ,OΣ(n)) → R2n
Σ .

Thus we have to show that for generic Σ, the set

ΓΣ := {v ∈ H0(Σ,OΣ(n)), rk µΣ,v ≤ cn2}

has dimension bounded by a constant which is independent of n.
For this, we specialize to the case where Σ is the Fermat surface, that

is, its defining equation is σ =
∑3

0 Xn
i . The Jacobian ideal of Σ is then

generated by the Xn−1
i , and there is thus a natural action of the torus

(C∗)4 on the Jacobian ring RΣ, by multiplication of the coordinates by
a scalar. The subspace

ΓΣ ⊂ Rn−1
Σ

is thus invariant under (C∗)4. Note that the fixed points of the induced
action on P(Rn−1

Σ ) are the monomials, and are thus isolated. It follows
that we have the inequality

dim ΓΣ ≤ number of fixed points on ΓΣ.

Thus we have to bound the number of monomials

XI = X i0
0 X i1

1 X i2
2 X i3

3 , i0 + i2 + i3 + i4 = n,

such that
rk XI : Rn

Σ → R2n−1
Σ ≤ cn2.
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But the kernel of the multiplication by XI above is equal to the ideal

Xn−i0
0 Si0 + . . . Xn−i3

3 Si3 ,

where Sl := H0(P3,OP3(l)), and thus has dimension ≤
∑

k rk Sik .
Hence, if rk XI ≤ cn2, we must have∑

k

rk Sik ≥ rk Sn − cn2,(2.12)

with
∑

k ik = n. It is not hard to see that there exists an integer l > 0
such that, if n is large enough and (2.12) holds for I, n, one of the i′ks
has to be ≥ n − l. Thus the other ij’s have to be non greater than l.
This shows immediately that the number of such monomials is bounded
by a constant independent of n and concludes the proof of Lemma 12.

Proof of Lemma 13. The key point is the following fact from [6].

Proposition 3. Let X be any projective manifold and H be a very
ample line bundle on X. Let A be a given constant, and for n > A, let
M ⊂ H0(X,OX(nH)) be a subspace of codimension ≤ A. Then

H0(X,OX(H)) · M ⊂ H0(X,OX((n + 1)H))

has codimension ≤ A, with strict inequality if M has no base-point.

Assume v ∈ V satisfies the condition that rk µv < A. Let M :=
Ker µv ⊂ H0(S,OS(nH)). By Proposition 3, we conclude that if n > A,
we have

H0(S,OS(H)) · M ⊂ H0(S,OS((n + 1)H))

has codimension < A. Next, we consider for each l the map

µl
v : H0(S,OS((n + l)H)) → H1(S, ΩS(l)),

obtained as the composite of the twisted Kodaira-Spencer map

H0(S,OS((n + l)H)) → H1(S, TS(l)),

and the contraction with v, using the contraction map

H0(S, KS) ⊗ H1(S, TS(l)) → H1(S, ΩS(l)).

We note that the kernel Ml of the map µl
v contains

M1 · H0(S,OS((l − 1)H)).
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On the other hand, M1 also contains the image of the map

H0(S, TX(H)|S) → H0(S,OS((n + 1)H))

induced by the normal bundle sequence twisted by H . We may assume
that H is ample enough so that H0(X, TX(1)) is generated by global
sections, and then M1 has no base-point. Proposition 3 thus implies
that if n > A, the numbers corank Ml are strictly decreasing, starting
from l ≥ 1. Hence we conclude that

MA = H0(S,OS((n + A)H)).

As n is large and A is fixed, we may assume that

H0(X, KX((2n − A)H)) ⊗ H0(X,OX((n + A)H)) → H0(X, KX(3nH))

is surjective, and that the same is true after restriction to S. Thus we
conclude that

MA · H0(S, KX((2n − A)H)|S) = H0(S, KX(3nH)|S).

We use now the definition of MA, and the compatibility of the twisted
Kodaira-Spencer maps and the maps �v with multiplication. This im-
plies that for any P ∈ H0(S, KX((3n)H)|S), sending to

P ∈ H1(S, TS(KS(2nH))),

via the map induced by the twisted normal bundle sequence

0 → TS(KS(2nH)) → TX |S(KS(2nH)) → KX(3nH)|S → 0,

we have

P�v = 0 in H1(S, ΩS(KS(nH))).(2.13)

We have now a map

δ : H1(S, ΩS(KS(nH))) → H2(S, KS),

induced by the exact sequence

0 → KS → ΩX(KX(2nH))|S → ΩS(KS(nH)) → 0,

and one knows (cf [4]) that up to a multiplicative coefficient, one has

δ(P�v) =< v, resS(P ) >,(2.14)
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where on the right, <, > is Serre duality between H0(S, KS) and H2(S,OS),
and the Griffiths residue map

H0(X, KX(3nH)) resS→ H2(S,OS)(2.15)

is described in [19], 6.1.2. The key point for us is that, because in our
case H3(X, ΩX) = 0 and because n is large enough, the residue map
(2.15) is surjective, and thus (2.13) together with (2.14) imply that, for
all η ∈ H2(S,OS), one has

< η, v >= 0,

which implies that v = 0.

The Calabi-Yau case. Here X has trivial canonical bundle and
satisfies H2(X,OX) = 0. We use in this case a variant of Lemma 6.
As KX is trivial, the spaces V and V ′ are equal, and the pairing µ :
V × V ′ → H1(S, ΩS) is symmetric. Thus, using Bertini, Lemma 6 can
be refined as follows (cf [15]):

Lemma 15. Let µ : V ⊗ V ′ → H1(S, ΩS) be symmetric and q :
H1(S, ΩS) → S2V ∗ be its dual. Then the generic quadric in Im q is non-
singular if the following condition holds. There is no subset Z ⊂ P(V )
contained in the base-locus of Im q and satisfying:

rk µv ≤ dim Z, ∀v ∈ Z.

We have to verify that such a Z does not exist for generic S ∈| nH |,
n large enough. Degenerating S to SA as before, the base-locus of Im q
specializes to a subspace of the base-locus of Im qA. We now use Lemma
7, together with Corollary 3, to conclude that the base-locus of Im qA

has dimension ≤ cn2, for some c independent of n.
Thus the base-locus of Im q also has dimension bounded by cn2, for

generic S.
By definition of Z, it follows that for v ∈ Z one has

rk (µv : V → H1(S, ΩS)) ≤ cn2.

Using Lemma 12, it follows that dim Z ≤ A for some constant A
independent of N . But then, for v ∈ Z, one has

rk (µv : V → H1(S, ΩS)) ≤ A

which implies that Z is empty by Lemma 13. This concludes the proof
of Proposition 2 when X is a Calabi-Yau threefold.
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§3. The case where H2(X,OX) �= 0

In this section, we show how to adapt the previous proof to the case
where X is uniruled with H2(X,OX) �= 0.

In this case, a smooth birational model of X admits a map φ :
X ′ ��� Σ, with generic fibre isomorphic to P1, where Σ is a smooth
surface. Note that φ∗ sends H3(X, ΩX) isomorphically to H2(Σ,OΣ).

We may assume that X ′ carries a line bundle H such that

H2KX′ < 0,

because there is a smooth birational model of X on which such an H
exists, and by blowing-up this X ′ to an X̃ with exceptional relatively
anti-ample divisor E, we may assume that φ becomes defined, while
an H̃ of the form τ∗H − εE with small ε will still satisfy the property
H̃2.K

eX < 0.
In the sequel X, H, φ will satisfy the properties above. For S a

smooth surface in | nH |, we have the Gysin maps:

φ∗ : H1(S, ΩS) → H1(Σ, ΩΣ), φ∗ : H2(S,OS) → H2(Σ,OΣ),

φ∗ : H2(S, Z) → H2(Σ, Z).

We will denote by

H1(S, ΩS)Σ, H2(S,OS)Σ, H2(S, Z)Σ

the respective kernels of these maps. The proof will use the following
variant of Proposition 1:

Proposition 4. Assume there is a S ∈| nH |, and a λ ∈ H1(S, ΩS)Σ
such that the natural map

µλ : H0(S,OS(nH)) → H2(S,OS)Σ

defined as in (1.1) is surjective. Then the Hodge conjecture is true for
integral Hodge classes on X.

Proof. We consider a simply connected open set in | nH | parame-
terizing smooth surfaces and containing the point 0 ∈| nH | which is the
parameter for S. We study the infinitesimal variation of Hodge structure
on H2(St, Z)Σ for t ∈ B.

By the same reasoning as in the proof of Proposition 1, the ex-
istence of λ satisfying the property above implies that at some point
λ ∈ H1,1(S)R,Σ, the natural map
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ψ : H1,1
R,Σ → H2(S, R)Σ

is a submersion. Here on the left hand side, we have the real vector bun-
dle with fibre H1,1(St)R,Σ at the point t, and on each fibre H1,1(St)R,Σ, ψ
is the inclusion H1,1(St)R,Σ ⊂ H2(St, R)Σ, followed by the topological
isomorphism H2(St, R)Σ ∼= H2(S, R)Σ.

This implies that the image of ψ contains an open cone and we
deduce from this as in the proof of Proposition 1 that H2(S, Z)Σ is
generated over Z by classes α which are algebraic on some nearby fiber
St.

Consider now the inclusion j : S → X . It induces a surjective Gysin
map j∗ : H2(S, Z) → H4(X, Z) by Lefschetz hyperplane theorem. On
the other hand, we have a commutative diagram of Gysin maps:

H2(S, Z)
j∗→ H4(X, Z)

φ∗ ↓ φ∗ ↓
H2(Σ, Z) = H2(Σ, Z) .

From this and the previous conclusion, we deduce that the group

Ker (φ∗ : H4(X, Z) → H2(Σ, Z)) = j∗H
2(S, Z)Σ

is generated by classes of algebraic cycles on X .
Proposition 4 is then a consequence of the following:

Lemma 16. Let α be an integral Hodge class of degree 2 on Σ.
Then there is an algebraic 1-cycle Z on X such that α = φ∗([Z]).

Indeed, assuming this lemma, if α is an integral Hodge class on X
of degree 4, φ∗α is an integral Hodge class of degree 2 on Σ, hence is
equal to φ∗([Z]) for some Z. Hence α− [Z] belongs to Ker φ∗ and thus
it is algebraic as we already proved. This proves the Proposition.

Proof of Lemma 16. We may assume by Lefschetz (1, 1) theorem
and because Σ is algebraic, that α is the class of a curve C ⊂ S which
is in general position. Thus

φC : XC := φ−1(C) → C

is a geometrically ruled surface, which admits a section C′ ⊂ XC (see
[3], or [7] for a more general statement).

But then the curve C′ ⊂ X satisfies φ∗[C′] = [C].

By Proposition 4, the proof of Theorem 2 in case where X is uniruled
and satisfies H2(X,OX) �= 0 will now be a consequence of the following
proposition.
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Proposition 5. Let the pair (X, H) satisfy the inequality

H2KX < 0.

Then for n large enough, for S a generic surface in | nH |, there is a
λ ∈ H1(S, ΩS)Σ which satisfies the property that

µλ : H0(S,OS(nH)) → H2(S,OS)Σ

is surjective.

The proof works exactly as the proof of Proposition 2 in the unir-
uled case. The only thing to note is the fact that the analogue of
Proposition 13 still holds in this case, with V = H0(S, KS)Σ, V ′ =
H0(S,OS(nH)). This is indeed the only place where we used the as-
sumption H2(X,OX) = 0.

In this case, we have an isomorphism

φ∗ : H3(ΩX) ∼= H2(Σ,OΣ),

so that for S ⊂ X a smooth surface

H2(S,OS)Σ = Ker (j∗ : H2(S,OS) → H3(X, ΩX)),

where j is the inclusion of S into X .
But the theory of Griffiths residues shows that the last kernel is

precisely generated by residues resSω, ω ∈ H0(X, KX(3nH)). Thus,
the arguments of Lemma 13 will show in this case that if v ∈ H0(S, KS)
satisfies rank µv ≤ A, where A is a given constant, and S ∈| nH | with
n large enough, then

v ∈ (Ker j∗)⊥,

where ⊥ refers to Serre duality between H0(S, KS) and H2(S,OS). But
as Ker φ∗ = Ker j∗, we have

(Ker j∗)⊥ = φ∗H0(Σ, KΣ).

Thus if furthermore v ∈ H0(S, KS)Σ, we must have v = 0 because

H0(S, KS)Σ ∩ φ∗H0(Σ, KΣ) = 0.
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§4. Appendix

We give for the convenience of the reader the proof of the vanishing
Lemma 9. Recall that we want to prove the vanishing of the spaces:

(1) Hi(G,
∧i F∗), n + 2 − i ≥ 0, i ≥ 1

(2) Hi−1(G,
∧i F∗), n + 2 − i = 0.

(3) Hi−2(G,
∧i F∗), n + 2 − i = 0.

(4) Hi−3(G,
∧i F∗), n + 2 − i ≤ 0.

We use first the dual of the exact sequence (2.6) to get a resolution
of

∧i F∗:

. . . →
i−1∧

(K ⊗ E∗) ⊗ L−1 →
i∧

(K ⊗ E)∗ →
i∧
F∗ → 0.

This induces a spectral sequence converging to

Hi(G,

i∧
F∗), Hi−1(G,

i∧
F∗), Hi−2(G,

i∧
F∗), Hi−3(G,

i∧
F∗),

whose E1 terms are

Case 1 Hi+s(G,

i−s∧
(K ⊗ E∗) ⊗ L−s), n + 2 ≥ i ≥ 1, i ≥ s ≥ 0,

Case 2 Hi+s−1(G,
i−s∧

(K ⊗ E∗) ⊗ L−s), i = n + 2, i ≥ s ≥ 0,

Case 3 Hi+s−2(G,

i−s∧
(K ⊗ E∗) ⊗ L−s), i = n + 2 i ≥ s ≥ 0

Case 4 Hi+s−3(G,

i−s∧
(K ⊗ E∗) ⊗ L−s), n + 2 ≤ i, i ≥ s ≥ 0

respectively.
Let P ⊂ P(K) × G be the incidence scheme, so P is a P1-bundle

over G. Let pri, i = 1, 2 denote the projections from P to P(K) and G
respectively. Let H := pr∗1O(1) and denote also by L the pull-back of L
to P . Then pr∗2E∗ fits into an exact sequence:

0 → H−1 → pr∗2E∗ → H ⊗ L−1 → 0.

Thus the bundle

pr∗2(
i−s∧

(K ⊗ E∗) ⊗ L−s)
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admits a filtration whose successive quotients are line bundles of the
form

H−α ⊗ (H ⊗ L−1)β ⊗ L−s = H−α+β ⊗ L−β−s,

where α + β = i − s, α ≥ 0, β ≥ 0. As we are interested in

H∗(G,

i−s∧
(K ⊗ E∗) ⊗ L−s) = H∗(G, R0pr2∗(pr∗2(

i−s∧
(K ⊗ E∗) ⊗ L−s))),

it suffices to study the cohomology groups

H∗(P, H−α+β ⊗ L−β−s),

with −α + β ≥ 0. These groups are equal to the groups

H∗(G, S−α+βE ⊗ L−β−s)

which are partially computed in [18]. The conclusion is the following:

Lemma 17. a) These groups vanish for ∗ �= n−2, 2(n−2) and for
β + s ≤ n − 2.

b) For ∗ = n − 2, these groups vanish if −s − α + 1 < 0.
c) For ∗ = 2(n − 2), these groups vanish if −s − α ≥ −n + 1.

Case 1. Here ∗ = i + s, and the following inequalities hold:

β ≥ α ≥ 0, β + s ≥ n − 1(4.16)

and furthermore
1 ≤ i ≤ n + 2, α + β = i − s.

According to Lemma 17, in order to get a non trivial cohomology group,
we have only two possibilities:

a) i + s = n − 2, −s − α + 1 ≥ 0.
b) i + s = 2(n − 2), −s − α < −n + 1.
In case a), we have β + s ≥ n − 1 and α + β + 2s = i + s = n − 2,

which is clearly a contradiction as α + s ≥ 0.
In case b), we have β + s ≥ n − 1, α + s ≥ n and thus

2n − 1 ≤ α + β + 2s = i + s = 2(n − 2)

which is clearly a contradiction.

Case 2. Now ∗ = i + s − 1 and i = n + 2. We have again the
inequalities (4.16) and furthermore

i = n + 2, α + β = i − s.
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By Lemma 17, in order to get a non trivial cohomology group, we have
only two possibilities:

a) i + s − 1 = n − 2, −s − α + 1 ≥ 0.
b) i + s − 1 = 2(n − 2), s + α ≥ n.
In case a), we have i = n + 2 and s ≥ 0, hence i + s − 1 = n − 2 is

impossible.
In case b), we have i+s = 2n−3, while s+α ≥ n and β +s ≥ n−1

give α + β + 2s = i + s ≥ 2n − 1, contradiction.

Case 3. Now ∗ = i+s−2 and i = n+2. We have again the inequal-
ities (4.16) and furthermore i = n+2, α+β = i− s. As before, in order
to get a non trivial cohomology group, we have only two possibilities:

a) i + s − 2 = n − 2, −s − α + 1 ≥ 0.
b) i + s − 2 = 2(n − 2), s + α ≥ n.
In case a), we have i = n + 2 and s ≥ 0, hence i + s − 2 = n − 2 is

impossible.
In case b), we have i+s = 2n−2, while s+α ≥ n and β +s ≥ n−1

give α + β + 2s = i + s ≥ 2n − 1, contradiction.

Case 4. Now ∗ = i+s−3 and i ≥ n+2. We have again the inequal-
ities (4.16) and furthermore i ≥ n+2, α+β = i− s. As before, in order
to get a non trivial cohomology group, we have only two possibilities:

a) i + s − 3 = n − 2, −s − α + 1 ≥ 0.
b) i + s − 3 = 2(n − 2), s + α ≥ n.
In case a), we have i ≥ n + 2 and s ≥ 0 thus i + s − 3 = n − 2 is

impossible.
In case b), we have i+s = 2n−1, while s+α ≥ n and β +s ≥ n−1

give α + β + 2s = i + s ≥ 2n− 1. Thus we must have the two equalities

s + α = n, β + s = n − 1.

This contradicts the fact that β ≥ α.
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Abstract.

We shall give a complete description of the relatively ample cones
and the relatively movable cones of symplectic resolutions of the clo-
sures of the nilpotent orbits in complex simple Lie algebras. More-
over, we shall prove that all symplectic resolutions of such nilpotent
orbit closures are connected by finite numbers of Mukai flops of type
A, D and E6.

§1. Introduction

Let G be a complex simple Lie group and let g be its Lie algebra.
Then G has the adjoint action on g. The orbit Ox of a nilpotent element
x ∈ g is called a nilpotent orbit. A nilpotent orbit Ox admits a non-
degenerate closed 2-form ω called the Kostant-Kirillov symplectic form.
The closure Ōx of Ox then becomes a symplectic singularity. In other
words, the 2-form ω extends to a holomorphic 2-form on a resolution of
Ōx. A resolution of Ōx is called a symplectic resolution if this extended
form is everywhere non-degenerate on the resolution. For a parabolic
subgroup P of G, one can find a unique nilpotent orbit O such that
O ∩ n(p) is an open dense subset of n(p). Here n(p) is the nil-radical of
p := Lie(P ). This orbit is called the Richardson orbit for P . Conversely,
P is called a polarization of O. We then have a generically finite proper
surjective map

µ : T ∗(G/P ) → Ō.

Received January 25, 2005.
Revised November 30, 2005.
Partially supported by Japanese Ministry of Education and Science,

Grant-in-Aid (B).



76 Y. Namikawa

Here T ∗(G/P ) is the cotangent bundle of the homogenous space G/P .
When deg(µ) = 1, µ becomes a symplectic resolution of Ō. We call it a
Springer resolution. Recently, Fu [Fu 1] (see also some corrections in its
e-print version) has shown that, if a nilpotent orbit Ō has a (projective)
symplectic resolution f , then O has a polarization P such that f coin-
cides with the Springer resolution for P . However, there is a nilpotent
orbit with no polarizations. Moreover, even if O has a polarization, it
is not unique and we may possibly have deg(µ) > 1. Spaltenstein [S2]
and Hesselink [He] obtained a necessary and sufficient condition for Ō
to have a Springer resolution when g is a classical simple Lie algebra.
Moreover, [He] gave an explicit number of such parabolics P up to con-
jugacy class that give Springer resolutions of Ōx (cf. §4). In this paper
we shall deal with an arbitrary simple Lie algebra. First we introduce
an equivalence relation in the set of parabolic subgroups of G in terms
of marked Dynkin diagrams (Definition 1, §5). The following is one of
main results of this paper.

Theorem(cf. Theorem 6.1): Let O be a nilpotent orbit of a com-
plex simple Lie algebra. Assume that Ō has a Springer resolution YP0 :=
T ∗(G/P0). Then, for any parabolic subgroup P equivalent to P0, YP :=
T ∗(G/P ) is a Springer resolution of Ō. Moreover, any projective sym-
plectic resolution of Ō has this form. All YP (P ∼ P0) are connected by
Mukai flops of type A, D, and E6.

A Mukai flop of type A is a kind of Springer resolutions; let x ∈ sl(n)
be a nilpotent element of Jordan type [2k, 1n−2k] with 2k < n. Then a
Mukai flop of type A is the diagram of two Springer resolutions of Ōx:

T ∗G(k, n) → Ōx ← T ∗G(n − k, n)

where G(k, n) (resp. G(n−k, n)) is the Grassmannian which parametrizes
k-dimensional (resp. n−k-dimensional) subspaces of Cn. This flop nat-
urally appears in the wall-crossing of the moduli spaces of various objects
(eg. stable sheaves on K3 surfaces, quiver varieties and so on). On the
other hand, a Mukai flop of type D comes from an orbit of a simple
Lie algebra of type D. Let x ∈ so(2k) be a nilpotent element of type
[2k−1, 12], where k is an odd integer with k ≥ 3. Then Ōx admits two
Springer resolutions

T ∗G+
iso(k, 2k) → Ōx ← T ∗G−

iso(k, 2k)

where G+
iso(k, 2k) and G−

iso(k, 2k) are two connected components of the
orthogonal Grassmannian Giso(k, 2k). Finally, there are two Mukai flops
of type E6. We call them of type E6,I and of type E6,II . The Mukai
flop of type E6,I (resp. E6,II) consists of two resolutions of the nilpotent



Birational geometry of nilpotent orbits 77

orbit closure Ō2A1 (resp. ŌA2+2A1) in E6. For details on these flops, see
§5. Let us consider a family of Mukai flops parametrized by a variety
T : Y → W ← Y ′. By definition, there is a bundle map W → T with a
typical fiber Ōx such that, for each t ∈ T , Yt → Ōx ← Y ′

t is a Mukai
flop. A flop

Z → X ← Z ′

is called a locally trivial family of Mukai flop if there is a smooth surjec-
tive map X → W and it is the pull-back by this map of the family of
Mukai flops above. The last statement of Theorem claims that, for any
two YP and YP ′ , the birational map YP −− → YP ′ is decomposed into
diagrams Yi → Xi ← Yi+1 (i = 1, ..., m−1) with Y1 = YP and Ym = YP ′

so that each diagram is a locally trivial family of Mukai flops.
In the course of the proof of Theorem, we describe the ample cones

and movable cones of symplectic resolutions of Ō. Even when g is classi-
cal, it would clarify the geometric meaning of the results of Spaltenstein
and Hesselink. To illustrate these, three examples will be given (see
Examples 6.7, 6.8, 6.9).

Another purpose of this paper is to give an affirmative answer to
the following conjecture in the case of (the normalization of) a nilpotent
orbit closure in a simple Lie algebra (Theorem 7.9).

Conjecture([F-N]): Let W be a normal symplectic singularity. Then
for any two symplectic resolutions fi : Xi → W , i = 1, 2, there are
deformations Xi

Fi→ W of fi over a parameter space S such that, for
s ∈ S − {0}, Fi,s : Xi,s → Ws are isomorphisms. In particular, X1 and
X2 are deformation equivalent.

This conjecture is already proved in [F-N] when W is a nilpotent
orbit closure in sl(n). On the other hand, a weaker version of this con-
jecture is proved in [Fu 2] when W is the normalization of a nilpotent
orbit closure in a classical simple Lie algebra. According to the idea of
Borho and Kraft [B-K], we shall define a deformation of Ōx by using a
Dixmier sheet. Corresonding to each parabolic subgroup P , this defor-
mation has a simultaneous resolution. These simultaneous resolutions
would give the desired deformations of the conjecture. Details on the
construction of them can be found in §7.

The content of this paper is as follows. Main body of the paper are
§§. 5,6,7. The first three sections §§. 2,3,4 are preliminaries for the later
sections. In the proof of Proposition 5.1, we shall use Springer’s corre-
spondence (cf. Theorem 3.1, Proposition 4.3) to calculate the dimension
of fibers of Springer maps. The proofs of Theorem 6.1 are written in an
abstract way so that they are valid for exceptional Lie algebras. One
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can, however, find a more explicit treatment in Example 6.5 when g is
classical.

Finally, the author would like to thank S. Mukai for an important
comment on an earlier version of the present paper and he would like to
thank D. Alvis for sending him the paper [Al].

Notation. (1) A partition d of n is a set of positive integers
[d1, ..., dk] such that Σdi = n and d1 ≥ d2 ≥ ... ≥ dk. We mean by
[dj1

1 , ..., djk

k ] the partition where di appear in ji multiplicity. If (p1, ..., ps)
is a sequence of positive integers, then we define the partition d =
ord(p1, ..., ps) by di := � {j; pj ≥ i}. In particular, for a partition
d, td := ord(d1, ..., dk) is called the dual partition of d. We define
di := (td)i.

(2) For a proper birational map f of algebraic varieties, we say that
f is divisorial if Exc(f) contains a divisor, and otherwise, we say that f
is small. Note that the terminology of “small” is, for example, different
from that in [B-M].

§2. Classification of nilpotent orbits

Let G be a complex simple Lie group and let g be its Lie algebra. G
has the adjoint action on g. The orbit Ox of a nilpotent element x ∈ g

for this action is called a nilpotent orbit. This orbit carries a natural
closed non-degenerate 2-form (Kostant-Kirillov form) ω (cf. [C-G], Prop.
1.1.5, [C-M], 1.3), and its closure Ōx becomes a symplectic singularity,
that is, the symplectic 2-form ω extends to a holomorphic 2-form on a
resolution Y of Ōx. When g is classical, g is naturally a Lie subalgebra
of End(V ) for a complex vector space V . Then we can attach a partition
d of n := dim V to each orbit as the Jordan type of an element contained
in the orbit. Here a partition d := [d1, d2, ..., dk] of n is a set of positive
integers with Σdi = n and d1 ≥ d2 ≥ ... ≥ dk. When a number e
appears in the partition d, we say that e is a part of d. We call d very
even when d consists with only even parts, each having even multiplicity.
The following result can be found, for example, in [C-M, §5].

Proposition 2.1. Let No(g) be the set of nilpotent orbits of g.

(1)(An−1): When g = sl(n), there is a bijection between No(g) and
the set of partitions d of n.

(2)(Bn): When g = so(2n + 1), there is a bijection between No(g)
and the set of partitions d of 2n+1 such that even parts occur with even
multiplicity.
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(3)(Cn): When g = sp(2n), there is a bijection between No(g) and
the set of partitions d of 2n such that odd parts occur with even multi-
plicity

(4)(Dn): When g = so(2n), there is a surjection f from No(g)
to the set of partitions d of 2n such that even parts occur with even
multiplicity. For a partition d which is not very even, f−1(d) consists
of exactly one orbit, but, for very even d, f−1(d) consists of exactly two
different orbits.

When g is of exceptional type, we need different methods to clas-
sify nilpotent orbits. Dynkin [D] associates a weighted Dynkin diagram
with each nilpotent orbit. The weighted Dynkin diagram uniquely deter-
mines a nilpotent orbit. However, all weighted Dynkin diagrams do not
come from nilpotent orbits. Bala and Carter [B-L] has classified which
weighted Dynkin diagram is realized, and they give a label (Bala-Carter
label) to each nilpotent orbit. We shall use these labels to indicate
nilpotent orbits in an exceptional Lie algebra g (cf. [B-C],[C-M]).

§3. Springer’s correspondence

Let G be a complex simple Lie group and let B be a Borel subgroup
of G. Let g (resp. b) be the Lie algebra of G (resp. B). The set of
nilpotent elements N of g is called the nilpotent variety. It coincides with
the closure of the regular nilpotent orbit in g. The (original) Springer
resolution

π : T ∗(G/B) → N

is constructed as follows. Let n(b) be the nil-radical of b. Then the
cotangent bundle T ∗(G/B) of G/B is identified with G ×B n(b), which
is, by definition, the quotient space of G × n(b) by the equivalence
relation ∼. Here (g, x) ∼ (g′, x′) if g′ = gb and x′ = Adb−1(x) for
some b ∈ B. Then we define π([g, x]) := Adg(x). According to Borho-
MacPherson [B-M], we shall briefly review Springer’s correspondence
[Sp]. The nilpotent variety N is decomposed into the disjoint union of
nilpotent orbits Ox, where x is a distinguished base point of the orbit
Ox. We put dx := dimπ−1(x). Now π1(Ox) acts on H2dx(π−1(x),Q)
by monodromy. Decompose H2dx(π−1(x),Q) into irreducible represen-
tations of π1(Ox):

H2dx(π−1(x),Q) = ⊕φ(Vφ ⊗ V(x,φ)),

where φ : π1(Ox) → End(Vφ) are irreducible representations and V(x,φ) =
Homπ1(Ox)(Vφ, H2dx(π−1(x),Q)). By definition, dimV(x,φ) coincides with
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the multiplicity of φ in H2dx(π−1(x),Q). We call (x, φ) is π-relevant if
V(x,φ) 	= 0. Fix a maximal torus T in B, and let W be the Weyl group
relative to T . Then there is a natural action of W on H2dx(π−1(x),Q)
commuting with the action of π1(Ox). Each factor Vφ ⊗ V(x,φ) becomes
a W -module, where W acts trivially on Vφ and V(x,φ) is an irreducible
representation of W . These representations were originally constructed
by Springer. In [B-M], they are given in terms of the decomposition the-
orem of intersection cohomology by Beilinson, Bernstein, Deligne and
Gabber. The following theorem is called Springer’s correspondence:

Theorem 3.1. Any irreducible representaion of W is isomorphic
to V(x,φ) for a unique π-relevant pair (x, φ).

One can find the tables on Springer’s correspondence in [C, 13.3] for
each simple Lie group (see also [A-L], [B-L]).

§4. Parabolic subgroups and Springer maps

Let G be a complex reductive Lie group and let g be its Lie algebra.
Fix a Cartan subalgebra h of g and let

g = h ⊕
⊕
α∈Φ

gα

be the root space decomposition. Let ∆ ⊂ Φ be a base of Φ and denote
by Φ+ (resp. Φ−) the set of positive roots (resp. negative root). We
define a Borel subalgebra b of g as

b := h ⊕
⊕

α∈Φ+

gα.

For a subset Θ ⊂ ∆, let < Θ > be the sub-root system generated by Θ.
We put < Θ >+:=< Θ > ∩Φ+ and < Θ >−:=< Θ > ∩Φ−. We define

pΘ := h ⊕
⊕

α∈Φ+

gα ⊕
⊕

α∈<Θ>−

gα.

By definition, pΘ is a parabolic subalgebra containing b. Moreover, any
parabolic subalgebra p of g is G-conjugate to pΘ for some Θ ⊂ ∆. pΘ

and pΘ′ are G-conjugate if and only if Θ = Θ′. Therefore, there is
a one-to-one correspondence between subsets of ∆ and the conjugacy
classes of parabolic subalgebras of g. An element of ∆ is called a simple
root, which corresponds to a vertex of the Dynkin diagram attached
to g. A Dynkin diagram with some vertices being marked is called a
marked Dynkin diagram. If Θ ⊂ ∆ is given, we have a marked Dynkin
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diagram by marking the vertices which correspond to ∆ \ Θ. A marked
Dynkin diagram with only one marked vertex is called a single marked
Dynkin diagram. A conjugacy class of parabolic subgroups P ⊂ G with
b2(G/P ) = 1 corresponds to a single marked Dynkin diagram.

Example 4.1. When G = SL(n), the parabolic subgroup of flag
type (k, n − k) corresponds to the marked Dynkin diagram

� - - - �

k
- - - �.

Example 4.2. Let ε denote the number 0 or 1. Assume that V is a
C-vector space equipped with a non-degenerate bilinear form <, > such
that

< v, w >= (−1)ε < w, v >, (v, w ∈ V ).

When ε = 0 (resp. ε = 1), this means that the bilinear form is symmetric
(resp. skew-symmetric). We shall describe parabolic subgroups of SO(V )
and Sp(V ). We put

H := {x ∈ GL(V ); < xv, xw >=< v, w >, (v, w ∈ V )},

and
G := {x ∈ H ; det(x) = 1}.

Note that

H =
{

O(V ) (ε = 0)
Sp(V ) (ε = 1)

and

G =
{

SO(V ) (ε = 0)
Sp(V ) (ε = 1)

A flag F := {Fi}1≤i≤s of V is called isotropic if F⊥
i = Fs−i for 1 ≤

i ≤ s. An isotropic flag F is admissible if the stabilizer group P of F has
no finner stabilized flag than F . In other words, let PF := {g ∈ G; gFi ⊂
Fi ∀i}. Then, for any i, there is no PF -invariant subspace F ′

i such that
Fi ⊂ F ′

i ⊂ Fi+1 with F ′
i 	= Fi, Fi+1. When the length s of an isotropic

flag F is even, one can write the type of F as (p1, ..., pk, pk, ..., p1) with
k = s/2. On the other hand, when s is odd, one can write the type of
F as (p1, ..., pk, q, pk, ..., p1) with k = (s− 1)/2. For the consistency, we
shall write the flag type of F as (p1, ..., pk, 0, pk, ..., p1) when s is even.
An isotropic flag F is not admissible when ε = 0 and q = 2. In fact,
one can always find a PF -invariant subspace F ′

k such that Fk ⊂ F ′
k ⊂

Fk+1 and dim(F ′
k/Fk) = 1. This is the only case where an isotropic
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flag is not admissible. The stabilizer group of an admissible isotropic
flag becomes a parabolic subgroup of G. If a parabolic subgroup of G
has a stabilized (admissible) flag F of type (p1, ..., pk, q, pk, ..., p1), then
π := ord(p1, ..., pk, q, pk, ..., p1) is called the Levi type of P .

When G = SO(2n + 1), the parabolic subgroup of flag type (k, 2n −
2k + 1, k) corresponds to the marked Dynkin diagram

� - - - �

k
- - - �⇒ �.

When G = Sp(2n), the parabolic subgroup of flag type (k, 2n−2k, k)
corresponds to the marked Dynkin diagram

� - - - �

k
- - - �⇐ �.

Finally, assume that G = SO(2n). Then the parabolic subgroup
corresponding to the marked Dynkin diagram (k ≥ 3)

�

1
�

2

�
�

� - - - �

k
�

has flag type (n − k + 1, 2k − 2, n− k + 1). On the other hand, two
marked Dynkin diagrams

�

�

�
�

� - - - �,

�

�

�
�

� - - - �

both give parabolic subgroups of flag type (n, 0, n) which are not G-
conjugate.

For a parabolic subgroup P of G, let p be its Lie algebra and let
n(p) be the nil-radical of p. There is a unique nilpotent orbit O ⊂ g such
that O ∩ n(p) is an open dense subset of n(p). This nilpotent orbit is
called the Richardson orbit for P . Conversely, such parabolic subgroup
P is called a polarization of O. When x ∈ n(p) and P is a polarization
of Ox, we call P a polarization of x. A parabolic subgroup P is a
polarization of x if and only if x ∈ n(p) and dimOx = 2 dim(G/P ) (cf.
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[He]). The cotangent bundle T ∗(G/P ) of the homogenous space G/P
is naturally isomorphic to G ×P n(p), which is the quotient space of
G × n(p) by the equivalence relation ∼. Here (g, x) ∼ (g′, x′) if g′ = gp
and x′ = Adp−1(x) for some p ∈ P . The Springer map

µ : T ∗(G/P ) → O

is defined as µ([g, x]) = Adg(x). The Springer map µ is a generically
finite surjective proper map. When degµ = 1, it is called a Springer
resolution. For a nilpotent orbit Ox ⊂ O, we call Ox is µ-relevant if

dimµ−1(x) = codim(Ox ⊂ O)/2.

From now on, we assume that g is a simple Lie algebra. For the Springer
resolution π for a Borel subgroup B, every nilpotent orbit is π-relevant.
However, this is not the case for a general parabolic subgroup P . The
µ-relevancy is closely related to Springer’s correspondence. In order to
state the result, we shall prepare some terminology. Let L be a Levi
subgroup of P . Fix a maximal torus T of L. Then T is also a maximal
torus of G. Let W (L) be the Weyl group for L relative to T and let W
be the Weyl group for G relative to T . Now we have a natural inclusion
W (L) ⊂ W . Let εW (L) be the sign representation of W (L). Denote by
εW
W (L) the induced representation of εW (L) to W . By Theorem 3.1, every

irreducible representation of W has the form V(x,φ) for a π-relevant pair
(x, φ). Recall that φ is an irreducible representation of π1(Ox). Denote
by 1 the trivial representation. Then (x, 1) is a π-relevant pair (cf. [B-M,
Lemma 1.2]).

Proposition 4.3. A nilpotent orbit Ox ⊂ O is µ-relevant if and
only if V(x,1) occurs in εW

W (L).

Proof. See [B-M, Collorary 3.5, (b)].

In the remainder of this section we shall review some results on
Richardson orbits and polarizations when g is a complex classical Lie
algebra. Let x ∈ g be a nilpotent element and denote by Pol(x) the set
of polarizations of x.

Theorem 4.4. Let x ∈ sl(n) be a nilpotent element. Then Pol(x) 	=
∅. Assume that x is of type d = [d1, ..., dk]. Then P ∈ Pol(x) has the
flag type (p1, ..., ps) such that ord(p1, ..., ps) = d. Conversely, for any se-
quence (p1, ..., ps) with ord(p1, ..., ps) = d, there is a unique polarization
P ∈ Pol(x) which has the flag type (p1, ..., ps).

Proof. We shall construct a flag F of type (p1, ..., ps) such that
xFi ⊂ Fi−1 for all i. We identify the partition d with a Young table
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consisting of n boxes, where the i-th row consists of di boxes for each i.
We denote by (i, j) the box of d lying on the i-th row and on the j-th
column. Let e(i, j), (i, j) ∈ d be a Jordan basis of V := Cn such that
xe(i, j) = e(i − 1, j). We consruct a flag by the induction on n. Define
first F1 := Σ1≤j≤p1Ce(1, j). Then x induces a nilpotent endomorphism
x̄ of V/F1. The Jordan type of x̄ is [d1−1, ..., dp1 −1, dp1+1, ..., dk]. Note
that this coincides with ord(p2, ..., pk). By the induction hypothesis, we
already have a flag of type (p2, ..., pk) on V/F1 stabilized by x̄; hence
we have a desired flag F . Let P be the stabilizer group of F . Then it
is clear that x ∈ n(P ). By an explicit calculation dimOx = 2 dimG/P .
Q.E.D.

Next consider simple Lie algebras of type B, C or D. Let V be an
n dimensional C-vector space with a non-degenerate symmetric (skew-
symmetric) form. As in Example 4.2, ε = 0 when this form is symmetric
and ε = 1 when this form is skew-symmetric. Let Pε(n) be the set of
partitions d of n such that �{i; di = m} is even for every integer m
with m ≡ ε (mod 2). Note that these partitions are nothing but those
which appear as the Jordan types of nilpotent elements of so(n) or of
sp(n). Next, let q be a non-negative integer and assume moreover that
q 	= 2 when ε = 0. We define Pai(n, q) to be the set of partitions π
of n such that πi ≡ 1 (mod 2) if i ≤ q and πi ≡ 0 (mod 2) if i > q.
Note that, if (p1, ..., pk, q, pk, ..., p1) is the type of an admissible flag of
V , then ord(p1, ..., pk, q, pk, ..., p1) ∈ Pai(n, q). Now we shall define the
Spaltenstein map S from Pai(n, q) to Pε(n). For π ∈ Pai(n, q), let

I(π) := {j ∈ N|j 	≡ n (mod 2), πj ≡ ε (mod 2), πj ≥ πj+1 + 2}.

Then the Spaltenstein map (cf. [He])

S : Pai(n, q) → Pε(n)

is defined as

S(π)j :=

⎧⎨
⎩

πj − 1 (j ∈ I(π))
πj + 1 (j − 1 ∈ I(π))

πj (otherwise)

Theorem 4.5. Let G be SO(V ) or Sp(V ) according as ε = 0 or ε =
1. Let x ∈ g be a nilpotent element of type d ∈ Pε(n). For π ∈ Pai(n, q)
, define Pol(x, π) to be the set of polarizations of x with Levi type π (cf.
Example 4.2). Then Pol(x, π) 	= ∅ if and only if S(π) = d.

Proof. The proof of this theorem can be found in [He], Theorem 7.1,
(a). But we prove here that Pol(x, π) 	= ∅ if S(π) = d because we will
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later use this argument. There is a basis {e(i, j)} of V indexed by the
Young diagram d with the following properties (cf. [S-S], p.259, see also
[C-M], 5.1.)

(i) {e(i, j)} is a Jordan basis of x, that is, xe(i, j) = e(i − 1, j) for
(i, j) ∈ d.

(ii) < e(i, j), e(p, q) > 	= 0 if and only if p = dj − i + 1 and q =
β(j), where β is a permutation of {1, 2, ..., d1} which satiesfies: β2 = id,
dβ(j) = dj , and β(j) 	≡ j (mod 2) if dj 	≡ ε (mod 2). One can choose an
arbitrary β within these restrictions.

For a sequence (p1, ..., ps) with π = ord(p1, ..., ps) and pi = ps+1−i,
(1 ≤ i ≤ s), we shall construct an admissible flag F of type (p1, ..., ps)
such that xFi ⊂ Fi−1 for all i. We proceed by the induction on s. When
s = 1, π = [1n] and π = d. In this case, x = 0 and F is a trivial flag F1 =
V . When s > 1, we shall construct an isotropic flag 0 ⊂ F1 ⊂ Fs−1 ⊂ V .
Put p := p1(= ps) and let ρ := ord(p2, ..., ps−1) ∈ Pai(n − 2p, q). Then
we have

ρj :=
{

πj − 2 (j ≤ p)
πj (j > p)

Let
S′ : Pai(n − 2p, q) → Pε(n − 2p)

be the Spatenstein map and we put µ := S′(ρ). There are two cases (A)
and (B). The first case (A) is when i(π) = {p} ∪ I(ρ) and p /∈ I(ρ). In
this case, p 	≡ n (mod 2), πp ≡ ε (mod 2) and πp = πp+1 + 2. Now we
have

µj = dj − 2, (j < p),

µp = dp − 1,

µp+1 = dp+1 − 1,

µj = dj , (j > p + 1),

where dp = dp+1. The second case is exactly when (A) does not occur.
In this case, I(π) = I(ρ) and

µj = dj − 2, (j ≤ p),

µj = dj , (j > p).

Let us assume that the case (A) occurs. We choose the basis e(i, j) of
V in such a way that the permutaion β satisfies β(p) = p+1. There are
two choices for F1. The first one is to put

F1 = Σ1≤j≤pCe(1, j).
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The second one is to put

F1 = Σ1≤j≤p+1,j �=pCe(1, j).

In any case, we put Fs−1 = F⊥
1 . Then x induces a nilpotent endomor-

phism of Fs−1/F1 of type µ. Next assume that the case (B) occurs. In
this case, we put

F1 = Σ1≤j≤pCe(1, j)

and Fs−1 = F⊥
1 . Then x induces a nilpotent endomorphism of Fs−1/F1

of type µ. By the induction on s, we have an admissible filtration 0 ⊂
F1 ⊂ ... ⊂ Fs−1 ⊂ V with desired properties. Let P be the stabilizer
group of F . Then it is clear that x ∈ n(P ). By an explicit calculation
dimOx = 2 dimG/P .

Theorem 4.6. Let G and g be the same as Theorem 4.5. Let x ∈ g

be a nilpotent element of type d and denote by O the orbit containing x.
Assume that P is a polarization of x with Levi type π. Let

µ : T ∗(G/P ) → Ō

be the Springer map. Then

deg(µ) :=
{

2�I(π)−1 (q = ε = 0, πi 	≡ 0 (mod 2)∃i)
2�I(π) (q + ε ≥ 1 or q = ε = 0, πi ≡ 0 (mod 2)∀i)

Moreover, if deg(µ) = 1, then the Levi type of P is unique. In other
words, if two polarizations of x respectively give Springer resolutions of
Ō, then they have the same Levi type.

Proof. The first part is [He], Theorem 7.1, (d) (cf. [He], §1). The
proof of the second part is rather technical, but for the completeness,
we include it here. Let

B(d) = {j ∈ N; dj > dj+1, dj 	≡ ε (mod2)}.

Note that S(π) = d, where S is the Spaltenstein map. When ε = 0,
B(d) = ∅ if and only if q = 0 and di ≡ 0 (mod 2) for all i. Assume
that B(d) = ∅. Since deg(µ) = 1, by the first part of our theorem,
�I(π) = 0. Then π = d. Assume that B(d) 	= ∅. If q 	= 0 for our π
or ε = 1, then �I(π) = 0; hence π = d. If ε = 0 and q = 0 for π, then
�I(π) = 1. Since �I(π) = 1/2 �{j; dj ≡ 1 (mod2)} by [He], Lemma 6.3,
(b). This implies that �{j; dj ≡ 1 (mod 2)} = 2. Note that π with q = 0
is uniquely determined by d because the Spaltenstein map is injective
([He], Prop. 6.5, (a)).
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Now let us prove the second part of our theorem. When ε = 1,
we should have π = d by the argument above. Next consider the case
where ε = 0. Assume that there exist two polarizations P1 and P2 giving
Springer resolutions. Let π1 and π2 be their Levi types. Assume that
π1 ∈ Pai(n, 0) and π2 ∈ Pai(n, q2) with q2 > 0. By the argument above,
we see that �{j; dj ≡ 1 (mod2)} = 2. On the other hand, since q2 > 0,
π2 = d. This shows that q2 = 2; but, when ε = 0, q2 	= 2 by Example
4.2, which is a contradiction. Hence, in this case, π is also uniquely
determined by d.

§5. Equivalence relation in the set of parabolic subgroups

Proposition 5.1. Let G be a complex simple Lie group. Assume
that b2(G/P ) = 1. Then the following are equivalent.

(i) degµ = 1 and Codim(Exc(µ)) ≥ 2,

(ii) The single marked Dynkin diagram associated with P is one of
the following:

An−1 (k < n/2)

� - - - �

k
- - - �

� - - - �

n-k
- - - �

Dn (n : odd ≥ 4)
�

�

�
�

� - - - �

�

�

�
�

� - - - �

E6,I :

� � �

�

� �

� � �

�

� �

E6,II :
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� � �

�

� �

� � �

�

� �

Remark 5.2. In (ii) there are exactly two different markings for
each Dynkin diagram An−1 with k < n/2, Dn, E6,I or E6,II . They are
called dual marked Dynkin diagrams. Let P and P ′ be the corresponding
(conjugacy classes of) parabolic subgroups of G. Then p and p′ have
conjugate Levi factors by Proposition 6.3 of [B-C]. This implies that P
and P ′ have the same Richardson orbit.

Proof of Proposition 5.1. Assume that the single marked Dynkin
diagram is one of first two series in (ii). For this case we shall prove in
Lemmas 5.4 and 5.6, that the Springer map µ : T ∗(G/P ) → Ō becomes
a small resolution (cf. Notation (2)). If the single marked diagram is
of type E6,I , then the Richardson orbit O of P coincides with orbit
O2A1 in the list of [C-M],p.129, which has dimension 32. The maximal
orbit contained in Ō2A1 − O2A1 is OA1 , which has dimension 22. This
shows that Sing(Ō) has codimension ≥ 10 in Ō. On the other hand,
since π1(O2A1) = 1 (cf. [C-M], p.129), deg(µ) = 1. If µ is a divisorial
birational contraction, then Codim(Sing(Ō) ⊂ Ō) = 2 (cf. [Na 1, Cor.
1.5]), which is absurd. Hence µ should be a small resolution. If the
single marked diagram is of type E6,II , then the Richardson orbit O of
P coincides with the orbit OA2+2A1 in the list of [C-M], p.129, which
has dimension 50. Moreover, π1(OA2+2A1) = 1. By looking at the
closure ordering of E6 orbits (cf. [C], p.441), we see that the maximal
orbit contained in ŌA2+2A1 − OA2+2A1 is the orbit OA2+A1 , which has
dimension 46. By the same argument as above, µ becomes a small
resolution.

To prove the implication (i) ⇒ (ii), let us assume that the single
marked Dynkin diagram is not contained in the list of (ii). Let O be the
corresponding Richardson orbit. We shall first prove that Ō contains a
nilpotent orbit O′ of codimension 2 (STEP 1). Next we shall prove that
O′ is µ-relevant(STEP 2). These imply that µ is a divisorial birational
contraction map if deg(µ) = 1.

STEP 1: Assume that g is classical. If g is of type An−1, then
we must look at the single marked Dynkin diagram with k = n/2. In
this case, we will see in Remark 5.5 that µ is a divisorial birational
contraction map.
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When g is of type Bn, Cn or Dn, the parabolic subgroup P is a
stabilizer group of an admissible isotropic flag. Its flag type is written as
(k, q, k). When g is of type Bn, we have k > 0, q > 0 and 2k+q = 2n+1.
When g is of type Cn or of type Dn, we have k > 0, q ≥ 0 and 2k+q = 2n.
Denote by π the dual partition of ord(k, q, k) and call π the Levi type
of P .

Assume that g is of type Bn. The Levi type of P is given by

π :=
{

[32n+1−2k, 23k−2n−1] (k > (2n + 1)/3)
[3k, 12n−3k+1] (k ≤ (2n + 1)/3)

When k > (2n + 1)/3, k must be an odd number. In fact, if k
is even, then I(π) 	= ∅ and deg(µ) > 1 (cf. Theorem 4.6). Recall
that the Richardson orbit O of P has the Jordan type S(π), where
S is the Spaltenstein map (cf. Theorem 4.5). Since now I(π) = ∅,
S(π) = π. Let us consider the nilpotent orbit O′ of the Jordan type
[32n+1−2k, 23k−2n−3, 14] (resp. [3k−1, 22, 12n−3k], [3k−1, 13]) when k >
(2n + 1)/3 (resp. k < (2n + 1)/3, k = (2n + 1)/3). In any case, we have
O′ ⊂ Ō. By the dimension formula of nilpotent orbits ([C-M, Corollary
6.1.4]), we see that dimO′ = dimO − 2.

Assume that g is of type Cn. The Levi type of P is given by

π :=
{

[32n−2k, 23k−2n] (k > 2n/3)
[3k, 12n−3k] (k ≤ 2n/3)

When k ≤ 2n/3, k must be an even number. In fact, if k is odd,
then I(π) 	= ∅ and deg(µ) > 1 (cf. Theorem 4.6). The Richardson orbit
O has the Jordan type π. Let us consider the nilpotent orbit O′ of the
Jordan type [32n−2k, 23k−2n−1, 12] (resp. [3k−2, 24, 12n−3k−2], [3k−2, 23])
when k > 2n/3 (resp. k < 2n/3, k = 2n/3). In any case, we have
O′ ⊂ Ō. By the dimension formula of nilpotent orbits ([C-M, Corollary
6.1.4]), we see that dimO′ = dimO − 2.

Assume that g is of type Dn. First assume that the Levi type of P
is [2k]. The single marked Dynkin diagram is not contained in the list of
(ii) exactly when k is even. In this case, we will see in Remark 5.7 that
µ is a divisorial birational contraction map. We next assume k < n. In
this case, the Levi type of P is given by

π :=
{

[32n−2k, 23k−2n] (n > k > 2n/3)
[3k, 12n−3k] (k ≤ 2n/3)

When k > 2n/3, k must be an even number. In fact, if k is odd, then
I(π) 	= ∅ and deg(µ) > 1 (cf. Theorem 4.6). Recall that the Richardson
orbit O of P has the Jordan type S(π), where S is the Spaltenstein map
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(cf. Theorem 4.5). Since now I(π) = ∅, S(π) = π. Let us consider
the nilpotent orbit O′ of the Jordan type [32n−2k, 23k−2n−2, 14] (resp.
[3k−1, 22, 12n−3k−1], [3k−1, 13]) when k > 2n/3 (resp. k < 2n/3, k =
2n/3). In any case, we have O′ ⊂ Ō. By the dimension formula of
nilpotent orbits ([C-M, Corollary 6.1.4]), we see that dimO′ = dimO−2.

When g is of type G2, there are exactly two single marked Dynkin
diagrams. In the table of G2 nilpotent orbits in [C-M, p.128], OG2(a1) is
the Richardson orbit of the parabolic subgroups corresonding to these di-
agrams. The orbit OÃ1

is contained in ŌG2(a1). Note that dimOG2(a1) =
10 and dimOÃ1

= 8.
When g is of type F4, there are exactly four single marked Dynkin

diagrams. Richardson orbits of the parabolic subgroups corresponding
to them are OA2 , OÃ2

, OF4(a3) in the table of [C-M, p.128]. Note that
two non-conjugate parabolic subgroups have the same Richardson orbit
OF4(a3). By looking at the closure ordering of F4 orbits [C, p.440], we
see that the closure of each orbit contain a codimension 2 orbit.

When g is of type E6, there are exactly 6 single marked Dynkin
diagrams. Four of them are already contained in the list of (ii). The
Richardson orbits corresponding to other diagrams are OA2 and OD4(a1)

in the list of E6 nilpotent orbits in [C-M, p.129]. ŌA2 contains a codi-
mension 2 orbit O3A1 . ŌD4(a1) contains a codimension 2 orbit OA3+A1 .

When g is of type E7, there are exactly 7 single marked Dynkin
diagrams. Richardson orbits of the parabolic subgroups corresponding
to them are O(3A1)′′ , OA2 , O2A2 , OA2+3A1 , OD4(a1), OA3+A2+A1 and
OA4+A2 in the table of [C-M, p.130-p.131]. By looking at the closure
ordering of E7 orbits [C, p.442], we see that the closure of each orbit
contains a codimension 2 orbit.

When g is of type E8, there are exactly 8 single marked Dynkin
diagrams. In the table of [C-M, p.132-p.134], Richardson orbits of the
parabolic subgroups corresponding to them are OA2 , O2A2 , OD4(a1),
OD4(a1)+A2 , OA4+A2 , OA4+A2+A1 , OE8(a7) and OA6+A1 . By looking at
the closure ordering of E8 orbits, we see that the closure of each orbit
contains a codimension 2 orbit.

STEP 2: Assume that g is classical. Let f : Õ → Ō be the normal-
ization map. By STEP 1 we may assume that Ō contains a codimension
2 orbit O′. In the classical case, by [K-P, 14], we see that Õ has actually
singularities along f−1(O′). The Springer map µ is factorized as

T ∗(G/P )
µ′

→ Õ f→ Ō.
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If deg(µ) = 1, then µ′ is a birational maps of normal varieties. Then, by
Zariski’s main theorem, µ′ must have a positive dimensional fiber over
a point of f−1(O′). This implies that µ is a divisorial birational map.

Assume that g is of exceptional type. As explained above, the codi-
mension 2 orbit O′ of Ō can be specified. It is enough to show that O′

is µ-relevant. By the previous proposition, we have to check that V(x,1)

occurs in εW
W (L) for x ∈ O′. In [Al], Alvis describes an irreducible de-

composition of the induced representation IndW
W (L)(ρ) for any irreducible

representation ρ of W (L). Hence, this can be done by using the tables
of [Al] (see also the tables in [A-L], [B-L] and [C, 13.3]). Note that Spal-
tenstein [S1] (cf. the footnote of p.68, [B-M]) has already checked that
a special orbit is µ-relevant by using these tables. Hence it is enough
to check for non-special orbits O′. One can find which orbits are non-
special in the tables of [C-M, 8.4]. Q.E.D.

Example 5.3. (Mukai flops): Let P and P ′ be two parabolic sub-
groups of G which correspond to dual marked Dynkin diagrams in the
proposition above. Let O be the Richardson orbit of them. Then we have
a diagram

T ∗(G/P )
µ→ Ō µ′

← T ∗(G/P ′).

The birational maps µ and µ′ are both small by the proposition, Lem-
mas 5.4 and 5.6. Moreover, T ∗(G/P ) − − → T ∗(G/P ′) is not an iso-
morphism. In fact, T ∗(G/P ), T ∗(G/P ′) and Ō all have G actions,
and µ and µ′ are G-equivariant. If the birational map is an isomor-
phism, this would become a G-equivariant isomorphism. This implies
that G/P and G/P ′ are isomorphic as G-varieties. In particular, P
and P ′ are G-conjugate, which is absurd. Since the relative Picard num-
bers ρ(T ∗(G/P )/Ō) and ρ(T ∗(G/P ′)/Ō) equal 1, we see that the dia-
gram above is a flop. The diagram is called a Mukai flop of type An−1,k

(resp. Dn, E6,I , E6,II) according to the type of the corresponding marked
Dynkin diagram.

We shall describe Mukai flops of type A and D in terms of flags.

Mukai flop of type A. Let x ∈ sl(n) be a nilpotent element of type
[2k, 1n−2k] and let O be the nilpotent orbit containing x. By Theorem
4.4, there are two polarizations P and P ′ of x, where P has the flag type
(k, n−k) and P ′ has the flag type (n−k, k). The closure Ō of O admits
two Springer resolutions

T ∗(SL(n)/P ) π→ Ō π′
← T ∗(SL(n)/P ′).
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Note that SL(n)/P is isomorphic to the Grassmannian G(k, n) and
SL(n)/P ′ is isomorphic to G(n − k, n).

Lemma 5.4. When k < n/2, π and π′ are both small birational
maps and the diagram becomes a flop.

Proof. The closure Ō consists of finite number of orbits
{O[2i,1n−2i]}0≤i≤k. The main orbit O[2k,1n−2k] is an open set of Ō. A
fiber of π (resp. π′) over a point of O[2i,1n−2i] is isomorphic to the
Grassmannian G(k − i, n− 2i) (resp. G(n− i− k, n− 2i)). By a simple
dimension count, if k < n/2, then π and π′ are both small birational
maps. Next let us prove that the diagram is a flop. This is already
proved in Example 5.3. But, we shall give here a more explicit proof.
Let τ ⊂ O⊕n

G(k,n) (resp. τ ′ ⊂ O⊕n
G(n−k,n)) be the universal subbundle.

Denote by T (resp. T ′) the pull-back of τ (resp. τ ′) by the projection
T ∗G(k, n) → G(k, n) (resp. T ∗G(n − k, n) → G(n − k, n)). We shall
describe the strict transform of ∧kT by the birational map T ∗G(k, n)−
− → T ∗G(n − k, n). Take a point y ∈ O[2k,1n−2k]. Note that T ∗G(k, n)
is naturally embedded in G(k, n) × Ō. Then the fiber π−1(y) consists
of one point ([Im(y)], y) ∈ G(k, n) × Ō. The fiber Tπ−1(y) of the vector
bundle T over π−1(y) coincides with the vector space Im(y). Hence
(∧kT )π−1(y) is isomorphic to ∧kIm(y). Now let L be the strict transform
of ∧kT by T ∗G(k, n) − − → T ∗G(n − k, n). First note that (π′)−1(y)
also consists of one point ([Ker(y)], y) ∈ G(n − k, n) × Ō. Then, by
definition, L(π′)−1(y) = ∧kIm(y). Since ∧kIm(y) ∼= (∧n−kKer(y))∗, we
see that L ∼= (∧n−kT ′)−1. Now ∧kT is a negative line bundle. On the
other hand, its strict transform L becomes an ample line bundle. This
implies that our diagram is a flop. Q.E.D.

Remark 5.5. When k = n/2, π and π′ are both divisorial birational
contraction maps. Moreover, two resolutions are isomorphic.

Mukai flop of type D. Assume that k is an odd integer with k ≥ 3.
Let V be a C-vector space of dim 2k with a non-degenerate symmetric
form <, >. Let x ∈ so(V ) be a nilpotent element of type [2k−1, 12] and
let O be the nilpotent orbit containing x. Let S : Pai(2k, 0) → Pε(2k)
be the Spaltenstein map, where ε = 0 in our case. Then, for π :=
(2k) ∈ Pai(2k, 0), S(π) = [2k−1, 12]. Let us recall the construction of
the stabilized flags by the polarizations of x in the proof of Theorem 4.5.
Since I(π) = {k}, the case (A) occurs (cf. the proof of Theorem 4.5);
hence there are two choices of the flags. We denote by P+ the stabilizer
subgroup of SO(V ) of one flag, and denote by P− the stabilizer sub-
group of another one. Let Giso(k, V ) be the orthogonal Grassmannian
which parametrizes k dimensional isotropic subspaces of V . Giso(k, V )
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has two connected components G+
iso(k, V ) and G−

iso(k, V ). Note that
SO(V )/P+ ∼= G+

iso(k, V ) and SO(V )/P− ∼= G−
iso(k, V ). The closure

Ō of O admits two Springer resolutions

T ∗(SO(V )/P+) π+

→ Ō π−
← T ∗(SO(V )/P−).

Lemma 5.6. π+ and π− are both small birational maps and the
diagram becomes a flop.

Proof. The closure Ō consists of the orbits
{O[2k−2i−1,14i+2]}1≤i≤1/2(k−1). The main orbit is an open set of Ō. A
fiber of π+ (resp. π−) over a point of O[2k−2i−1,14i+2] is isomorphic to
G+

iso(2i + 1, 4i + 2) (resp. G−
iso(2i + 1, 4i + 2)). By dimension counts

of each orbit and of each fiber, we see that π+ and π− are both small
birational maps. Next let us prove that the diagram is a flop. This
is already proved in Example 5.3. But, we shall give here a more ex-
plicit proof. Let τ+ ⊂ O⊕2k

G+
iso(k,V ) (resp. τ− ⊂ O⊕2k

G−
iso(k,V )) be the

universal subbundle. Denote by T + (resp. T−) the pull-back of τ+

(resp. τ−) by the projection T ∗(G+
iso(k, V )) → G+

iso(k, V ) (resp.
T ∗(G−

iso(k, V )) → G−
iso(k, V )). We shall describe the strict transform

of ∧kT− by the birational map T ∗(G−
iso(k, V ))−− → T ∗(G+

iso(k, V )).
Take a point y ∈ O[2k−1,12]. Let g ∈ SO(V ) be an element such that
gxg−1 = y. Note that T ∗(G+

iso(k, V )) (resp. T ∗(G−
iso(k, V ))) is natu-

rally embedded in G+
iso(k, V ) × Ō (resp.

G−
iso(k, V )×Ō). Then the fiber (π+)−1(y) (resp. (π−)−1(y)) consists of

one point ([F+
y ], y) ∈ G+

iso(k, V )×Ō (resp. ([F−
y ], y) ∈ G−

iso(k, V )×Ō)
where F+

y ⊂ V (resp. F−
y ⊂ V ) is the flag stabilized by gP+g−1 (resp.

gP−g−1). Note that gP+g−1 and gP−g−1 are both polarizations of y.
Let us recall the construction of flags in the proof of Theorem 4.5. For
y we choose a Jordan basis {e(i, j)} of V as in the proof of Theorem
4.5. Since d = [2k−1, 12], β is a permutation of {1, 2, ..., k, k + 1}. But
it preserves the subsets {1, 2, ..., k − 1} and {k, k + 1} respectively. We
assume that β(k) = k + 1 and β(k + 1) = k. In our situation, the case
(A) occurs. There are two choices of the flags:

Σ1≤j≤k−1Ce(1, j) + Ce(1, k)

and
Σ1≤j≤k−1Ce(1, j) + Ce(1, k + 1).

Note that one of these is stabilized by gP+g−1 and another one is sta-
bilized by gP−g

−1. We may assume that

F+
y = Σ1≤j≤k−1Ce(1, j) + Ce(1, k),
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and
F−

y = Σ1≤j≤k−1Ce(1, j) + Ce(1, k + 1).

Since Ker(y) = Σ1≤j≤k+1e(1, j) and Im(y) = Σ1≤j≤k−1e(1, j), we have
two exact sequences

0 → Ker(y)/F+
y → V/F+

y → Im(y) → 0,

and
0 → Im(y) → F−

y → F−
y /Im(y) → 0.

Since F−
y /Im(y) ∼= Ker(y)/F+

y , we conclude that

∧kF−
y

∼= ∧k(V/F+
y ).

Let L be the strict transform of ∧kT− by the birational map
T ∗(G−

iso(k, V )) − − → T ∗(G+
iso(k, V )). The fiber T−

(π−)−1(y) of the
vector bundle T− is isomorphic to the vector space ∧kF−

y . Hence, by
the definition of L, L(π+)−1(y) = ∧kF−

y . By the observation above, we
see that L(π+)−1(y) = ∧k(V/F+

y ). This shows that L ∼= (∧kT +)−1. Now
∧kT− is a negative line bundle. On the other hand, its strict transform L
is an ample line bundle. This implies that our diagram is a flop. Q.E.D.

Remark 5.7. When k is an even integer with k ≥ 2, there are two
nilpotent orbits O+ and O− with Jordan type [2k]. They have Springer
resolutions

T ∗(G+
iso(k, 2k)) → Ō+,

and
T ∗(G−

iso(k, 2k)) → Ō−.

These resolutions are both divisorial birational contraction maps. When
k = 1, three varieties T ∗(G+

iso(1, 2)), T ∗(G−
iso(1, 2)) and Ō are all

isomorphic.

Let us return to the general situation. The following notion will
play important roles in the later section.

Definition 1. (i) Let D be a marked Dynkin diagram with exactly
l marked vertices. Choose l − 1 marked vertices from them. Making
the remained one vertex unmarked, we have a new marked Dynkin di-
agram D̄. This procedure is called a contraction of a marked Dynkin
diagram. Next remove from D these l − 1 vertices and edges touching
these vertices. We then have a (non-connected) diagram; one of its con-
nected component is a single marked Dynkin diagram. Assume that this
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single marked Dynkin diagram is one of those listed in Proposition 5.1.
Replace this single marked Dynkin diagram by its dual and leave other
components untouched. Connecting again removed edges and vertices as
before, we obtain a new marked Dynkin diagram D′. Note that D′ (resp.
D̄) has exactly l (resp. l − 1) marked vertices. Now we say that D′ is
adjacent to D by means of D̄.

(ii) Two marked Dynkin diagrams D and D′ are called equivalent
and are written as D ∼ D′ if there is a finite chain of adjacent diagrams
connecting D and D′.

(iii) Let P be a parabolic subgroup of G and let DP be the corre-
sponding marked Dynkin diagram. Two parabolic subgroups P and P ′ of
G are called equivalent and are written as P ∼ P ′ if DP ∼ DP ′ .

Example 5.8. Let us consider the marked Dynkin diagram

D: � �

2
�

3
⇒ �

where vertices 2 and 3 are marked. We choose the vertex 3. Making
the remained one vertex (= the vertex 2) unmarked, we have a marked
Dynkin diagram

D̄: � �

2
�

3
⇒ �

Now the following marked Dynkin diagram D′ is adjacent to D by
D̄.

D′: � �

2
�

3
⇒ �

§6. Main Theorem

The following is our main theorem. For the notion of a relative ample
cone and a relative movable cone, see [Ka 1], where some elementary
roles of these cones in birational geometry are discussed.

Theorem 6.1. Let O ⊂ g be a nilpotent orbit of a complex simple
Lie algebra g. Assume that its closure Ō has a Springer resolution µP0 :
T ∗(G/P0) → Ō. Then the following hold.
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(i) For a parabolic subgroup P of G such that P ∼ P0, YP :=
T ∗(G/P ) gives a symplectic resolution of Ō. Conversely, any symplectic
resolution is a Springer resolution of this form.

(ii) The closure Amp(YP /Ō) of the relative ample cone is a simpli-
cial polyhedral cone.

(iii) Mov(YP0/O) = ∪P∼P0Amp(YP /O), where Mov(YP0/O) is the
closure of the relative movable cone of YP0 over O.

(iv) A codimension 1 face of Amp(YP /O) corresponds to a small
birational contraction map when it is a face of another ample cone, and
corresponds to a divisorial contraction map when it is not a face of any
other ample cone.

(v) {YP }P∼P0 are connected by Mukai flops of type A, D, E6,I and
E6,II .

Remark 6.2. For a classical complex Lie algebra, it is already
known which nilpotent orbit closure has a Springer resolution (cf. The-
orems 4.5 and 4.6). When g is G2, there are exactly 2 nilpotent orbits
OG2 and OG2(a1) whose closures admit Springer resolutions. When g is
F4, such orbits are OA2 , OÃ2

, OF4(a3), OB3 , OC3 , OF4(a2), OF4(a1) and
OF4 . When g is E6, such orbits are O2A1 , OA2 , O2A2 , OA2+2A1 , OA3 ,
OD4(a1), OA4 , OD4 , OA4+A1 , OD5(a1), OE6(a3), OD5 , OE6(a1), and OE6 .

The statement (ii) of Theorem 6.1 follows from the next Lemma.

Lemma 6.3. Let G be a complex simple Lie group and let P be a
parabolic subgroup. Let Ô be the Stein factorization of a Springer map
µ : YP := T ∗(G/P ) → Ō. Then Amp(YP /Ô) is a simplicial polyhedral
cone.

Proof. Let D be the marked Dynkin diagram corresponding to P .
Assume that D has k marked vertices, say, v1, ..., vk. Then b2(G/P ) = k.
Choose l vertices vi1 , ..., vil

, 1 ≤ i1 < ... < il ≤ k and let Di1,...,il
be the

marked Dynkin diagram such that exactly these l vertices are marked
and its underlying diagram is the same as D. We denote by Xi1,...,il

the
image of YP ⊂ G/P × Ō by the projection

G/P × Ō → G/P11,...,il
× Ō.

Let
νi1,...,il

: YP → Xi1,...,il

be the induced map. Then the Stein factorization of νi1,...,il
is a bira-

tional contraction map, which corresponds to a codimension k− l face of
Amp(YP /Ô). We shall denote by Fi1,...,il

this face. Then Amp(YP /Ô)
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is a simplicial polyhedral cone generated by F1, F2, ..., and Fk. In fact,
any l dimensional face generated by Fi1 , ..., Fil

corresponds to the Stein
factorization of νi1,...,il

, which is not an isomorphism. Q.E.D.

Next assume that two marked Dynkin diagrams D and D′ are ad-
jacent by means of D̄. We have three parabolic subgroups P , P ′ and
P̄ of G corresponding to D, D′ and D̄ respectively. One can assume
that these subgroups contain the same Borel subgroup B of G and P̄
contains both P and P ′. Let µ : T ∗(G/P ) → g and µ′ : T ∗(G/P ′) → g

be the Springer maps.

Proposition 6.4. (i) The Richardson orbits O of P is the Richard-
son orbit of P ′

(ii) Let ν be the composed map

T ∗(G/P ) → G/P × Ō → G/P̄ × Ō

and let ν′ be the composed map

T ∗(G/P ′) → G/P ′ × Ō → G/P̄ × Ō.

Then Im(ν) = Im(ν′).

(iii) If we put X := Im(ν), then

T ∗(G/P ) → X ← T ∗(G/P ′)

is a locally trivial family of Mukai flops of type A, D, E6,I or E6,II . In
particular, ν and ν′ are both small birational maps. If deg(µ) = 1, then
deg(µ′) = 1.

Proof. (i): Take a Levi decomposition

p̄ = l(p̄) ⊕ n(p̄).

In the reductive Lie algebra l(p̄), p∩ l(p̄) and p′∩ l(p̄) are parabolic sub-
algebras corresponding to dual marked Dynkin diagrams in Proposition
5.1. Hence they have conjugate Levi factors by Remark 5.2. On the
other hand, we have

l(p) = l(p ∩ l(p̄)),

and
l(p′) = l(p′ ∩ l(p̄)).

Therefore, l(p) and l(p′) are conjugate. Since p and p′ have conjugate
Levi factors, their Richardson orbits coincide (cf. [C-M, Theorem 7.1.3]).
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(ii): Let O be the Richardson orbit of p and p′. Springer maps
µ : T ∗(G/P ) → Ō and µ′ : T ∗(G/P ′) → Ō are both G-equivariant with
respect to natural G-actions. Then U := µ−1(O) and U ′ := (µ′)−1(O)
are open dense orbits of T ∗(G/P ) and T ∗(G/P ′) respectively. Since ν

and ν′ are proper maps, Im(ν) = ν(U) and Im(ν′) = ν′(U ′). In the
following we shall prove that ν(U) = ν′(U ′).

(ii-1): We regard T ∗(G/P ) (resp. T ∗(G/P ′)) as a closed subvariety
of G/P × Ō (resp. G/P ′ × Ō). By replacing P ′ by a suitable conjugate
in P̄ , we may assume that there exists an element x ∈ O such that
([P ], x) ∈ U and ([P ′], x) ∈ U ′. In fact, for a Levi decomposition

p̄ = l(p̄) ⊕ n(p̄),

we have a direct sum decomposition

n(p) = n(p ∩ l(p̄)) ⊕ n(p̄).

Let p1 : n(p) → n(p ∩ l(p̄)) be the 1-st projection. Let O′ ⊂ l(p̄) be
the Richardson orbit of the parabolic subalgebra p ∩ l(p̄) of l(p̄). Since
p−1
1 (n(p) ∩ O′) and n(p) ∩ O are both Zariski open subsets of n(p), we

can take an element

x ∈ p−1
1 (n(p) ∩ O′) ∩ (n(p) ∩ O).

Since x ∈ n(p) ∩ O, we have ([P ], x) ∈ U . Decompose x = x1 + x2

according to the direct sum decomposition. Then x1 ∈ O′. The orbit O′

is also the Richardson orbit of p′ ∩ l(p̄). Therefore, for some g ∈ L(P̄ )
(the Levi factor of P̄ corresponding to l(P̄ )),

x1 ∈ n(Adg(p′ ∩ l(p̄))).

The Levi decomposition of p̄ induces a direct sum decomposition

n(Adg(p′)) = n(Adg(p′) ∩ l(p̄)) ⊕ n(p̄).

Note that Adg(p′) ∩ l(p̄) = Adg(p′ ∩ l(p̄)). Hence we see that x1 + x2 ∈
n(Adg(p′)). Now, for Adg(P ′) ⊂ P̄ , we have ([Adg(P ′)], x) ∈ U ′.

(ii-2): Any element of U can be written as ([gP ], Adg(x)) for some
g ∈ G. Then

ν([gP ], Adg(x)) = ([gP̄ ], Adg(x)).

For the same g ∈ G, we have ([gP ′], Adg(x)) ∈ U ′ and

ν′([gP ′], Adg(x)) = ([gP̄ ], Adg(x)).
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Therefore, ν(U) ⊂ ν′(U ′). By the same argument, we also have ν′(U ′) ⊂
ν(U).

(iii): For g ∈ G, Adg(n(p̄)) is the nil-radical of Adg(p̄). Since Adg(p̄)
depends only on the class [g] ∈ G/P̄ , Adg(n(p̄)) also depends on the
class [g] ∈ G/P̄ . We denote by Adg(l(p̄)) the quotient of Adg(p̄) by its
nil-radical Adg(n(p̄)). Let us consider the vector bundle over G/P̄

∪[g]∈G/P̄ Adg(p̄) → G/P̄ .

Let L be its quotient bundle whose fiber over [g] ∈ G/P̄ is Adg(l(p̄)). We
call L the Levi bundle. Let O′ be the Richardson orbit of the parabolic
subalgebra p ∩ l(p̄) of l(p̄). Note that O′ is also the Richardson orbit of
p′ ∩ l(p̄). In L, we consider the fiber bundle

W := ∪[g]∈G/P̄ Adg(Ō′)

whose fiber over [g] ∈ G/P̄ is Adg(Ō′). Put X := Im(ν). Define a map

f : X → W

as f([g], x) := ([g], x1), where x1 is the first factor of x under the direct
sum decomposition

Adg(p̄) = Adg(l(p̄)) ⊕ n(Adg(p̄)).

Note that x1 ∈ Adg(Ō′). In fact, in the direct sum decomposition, we
have

n(Adg(p)) = n(Adg(p) ∩ Adg(l(p̄))) ⊕ n(Adg(p̄)).

Therefore
x1 ∈ n(Adg(p) ∩ Adg(l(p̄))) ⊂ Adg(Ō′).

Since W → G/P̄ is an Ō′ bundle, we have a family of Mukai flops
parametrized by G/P̄ :

Y → W ← Y ′.

By pulling back this diagram by f : X → W , we have the diagram

T ∗(G/P ) → X ← T ∗(G/P ′).

Q.E.D.

Example 6.5. Let g be a simple Lie algebra of type B, C or D.
This long example will explain what actually goes on in the proof of
Proposition 6.4. The example consists of two claims.
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Claim 6.5.1. Let V be a C-vector space of dim n with a non-
degenerate bilinear form such that < v, w >= (−1)ε < w, v > for
all v, w ∈ V . Let g be the Lie algebra so(V ) or sp(V ) according as
ε = 0 or ε = 1. Let x ∈ g be a nilpotent element of type d. Sup-
pose that for π ∈ Pai(n, q), d = S(π) where S is the Spaltenstein
map. Let (p1, ..., pk, q, pk, ..., p1) be a sequence of integers such that
π = ord(p1, ..., pk, q, pk, ..., p1). Fix an admissible flag F of type
(p1, ..., pk, q, pk, ..., p1) such that xFi ⊂ Fi−1 for all i.

(i) Assume that pj−1 	= pj for an index 1 ≤ j ≤ k. Then we obtain
a new flag F ′ of type (p1, ..., pj, pj−1, ..., pk, q, pk, ..., pj−1, pj, ..., p1) from
F such that xF ′

i ⊂ F ′
i−1 for all i by the following operation.

(The case where pj−1 < pj): x induces an endomorphism x̄ ∈
End(Fj/Fj−2). For the projection φ : Fj → Fj/Fj−2, we put F ′

j−1 :=
φ−1(Ker(x̄)). We then put

F ′
i :=

⎧⎨
⎩

Fi (i 	= j − 1, 2k + 2 − j)
F ′

j−1 (i = j − 1)
(F ′

j−1)
⊥ (i = 2k + 2 − j)

(The case where pj−1 > pj): x induces an endomorphism x̄ ∈
End(Fj/Fj−2). For the projection φ : Fj → Fj/Fj−2, we put F ′

j−1 :=
φ−1(Im(x̄)). We then put

F ′
i :=

⎧⎨
⎩

Fi (i 	= j − 1, 2k + 2 − j)
F ′

j−1 (i = j − 1)
(F ′

j−1)
⊥ (i = 2k + 2 − j)

(ii) Assume that q = 0 and pk is odd. Then there is an admissible
flag F ′ of V of type (p1, ..., pk, pk, ..., p1) such that

xF ′
i ⊂ F ′

i−1 for all i,

F ′
i = Fi for i 	= k and

F ′
k 	= Fk.

Proof. (i): When pj−1 < pj, rank(x̄) = pj−1 for x̄ ∈ End(Fj/Fj−2).
In fact, since xFj ⊂ Fj−1, rank(x̄) ≤ pj−1. Assume that rank(x̄) <
pj−1. Then we can construct a new flag from F by replacing Fj−1 with
a subspace F ′

j−1 containing Fj−2 such that

Im(x̄) ⊂ F ′
j−1/Fj−2 ⊂ Ker(x̄)

and dimF ′
j−1/Fj−2 = pj−1. The new flag satisfies xF ′

i ⊂ F ′
i−1 for all

i and it has the same flag type as F . Since there are infinitely many
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choices of F ′
j−1, we have infinitely many such F ′. This contradicts the

fact that x has only finite polarizations. Hence, rank(x̄) = pj−1. Then
the flag F ′ in our Lemma satisfies the desired properties. When pj−1 >
pj, we see that dim Ker(x̄) = pj−1 by a similar way. Then the latter
argument is the same as when pj−1 < pj.

(ii): According to the proof of Theorem 4.5. we construct a flag F
such that xFi ⊂ Fi−1. Since q = 0 and pk is odd, we have the case (A)
in the last step. As a consequence, we have two choices of the flags. One
of them is F and another one is F ′. Q.E.D.

Let F be the flag in Claim 6.5.1, (i) or (ii). In the claim, we have
constructed another flag F ′. Let G be the complex Lie group Sp(V )
or SO(V ) according as V is a C-vector with a non-degenerate skew-
symmetric form or with a non-degenerate symmetric form. Let P ⊂ G
(resp. P ′ ⊂ G) be the stabilizer group of the flag F (resp. F ′). Then P
and P ′ are both polarizations of x ∈ g. Let O ⊂ g be the nilpotent orbit
containing x. Let us consider two Springer maps

T ∗(G/P )
µ→ Ō µ′

← T ∗(G/P ′).

Note that T ∗(G/P ) (resp. T ∗(G/P ′)) is embedded in G/P × Ō (resp.
G/P ′ × Ō). The variety G/P (resp. G/P ′) is identified with the set of
parabolic subgroups of G which are conjugate to P (resp. P ′). Assume
that

µ−1(x) = {(Pi, x)}1≤i≤m,

where deg(µ) = m and P1 = P . Fix stabilized flags F (i) of Pi. Here
F (1) = F . For each F (i), we make a flag (F (i))′ by Claim 6.5.1. Thus
we have deg(µ′) = m. An element y ∈ O can be written as y = gxg−1

for some g ∈ G. Then we have

µ−1(y) = {([g(F (i))], y)}1≤i≤m,

and
(µ′)−1(y) = {([g((F (i))′)], y)}1≤i≤m.

Here we identify a flag with the parabolic subgroup stabilizing it. We
define the flag F̄ in the following manner. If F is the flag in Claim
6.5.1, (i), then F̄ is the flag obtained from F by deleting subspaces Fj−1

and F2k+2−j . Finally, if F is the flag in Claim 6.5.1, (ii), then F̄ is the
flag obtained from F by deleting Fk. Note that F̄ is also obtained from
F ′ by the same manner. Let P̄ ⊂ G be the stabilizer group of the flag
F̄ . We then have two projections

G/P
p→ G/P̄

p′

← G/P ′.
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By two projections

G/P × Ō p×id→ G/P̄ × Ō p′×id← G/P ′ × Ō,

T ∗(G/P ) and T ∗(G/P ′) have the same image X in G/P̄ × Ō. Since p
and p′ are both proper maps, X is a closed subvariety of G/P̄ × Ō. The
following diagram has been obtained as a consequence:

T ∗(G/P ) → X ← T ∗(G/P ′).

Claim 6.5.2. When F is the flag in Claim 6.5.1, (i), the diagram

T ∗(G/P )
f→ X

f ′

← T ∗(G/P ′)

is locally a trivial family of Mukai flops of type A. When F is the flag
in Claim 6.5.1, (ii), the diagram is locally a trivial family of Mukai flops
of type D.

Proof. Consider the situation in Claim 6.5.1, (i). A point of G/P̄
corresponds to an isotropic flag F̄ of V of type
(p1, ..., pj−1 + pj, ..., pk, q, pk, ..., pj−1 + pj, ..., p1). Let

0 ⊂ F̄1 ⊂ ... ⊂ F̄2k−1 = (OG/P̄ )n

be the universal subundles on G/P̄ . Let

W ⊂ End(F̄j−1/F̄j−2)

be the subvariety consisting of the points ([F̄ ], x̄) where x̄ ∈ End(F̄j−1/F̄j−2),
x̄2 = 0 and rank(x̄) ≤ min(pj , pj−1). If we put m := pj−1 + pj and
r := min(pj , pj−1), then

W → G/P̄

is an Ō[2r,1m−2r ] bundle over G/P̄ . Let us recall the definition of X.

X ⊂ G/P̄ × Ō

consists of the points ([F̄ ], x) such that xF̄i ⊂ F̄i−1 for all i 	= j−1, 2k−j
and xF̄i ⊂ F̄i for i = j−1, 2k− j. Moreover, the induced endomorphism
x̄ ∈ End(F̄j−1/F̄j−2) satisfies x̄2 = 0 and rank(x̄) ≤ min(pj−1, pj). Let

φ : X → W

be the projection defined by φ([F̄ ], x) = ([F̄ ], x̄), where x̄ ∈ End(F̄j−1/F̄j−2)
is the induced endomorphism by x. It can be checked that φ is an affine
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bundle. Since W is an Ō[2r,1m−2r ] bundle over G/P̄ , there exists a family
of Mukai flops of type A:

Y → W ← Y ′

parametrized by G/P̄ . The diagram

T ∗(G/P ) → X ← T ∗(G/P ′)

coincides with the pull back of the previous diagram by φ : X → W .
Since φ is an affine bundle, this diagram is locally a trivial family of
Mukai flops of type A.

Next consider the situation in Claim 6.5.1, (ii). A point of G/P̄
corresponds to an isotropic flag F̄ of V of type (p1, ..., 2pk, ..., p1). Let

0 ⊂ F̄1 ⊂ ... ⊂ F̄2k−1 = (OG/P̄ )n

be the universal subundles on G/P̄ . Let

W ⊂ End(F̄k/F̄k−1)

be the subvariety consisting of the points ([F̄ ], x̄) where

x̄ ∈ Ō[2pk−1,12] ⊂ so(F̄k/F̄k−1).

W → G/P̄ is an Ō[2pk−1,12] bundle over G/P̄ . Let us recall the definition
of X.

X ⊂ G/P̄ × Ō
consists of the points ([F̄ ], x) such that xF̄i ⊂ F̄i−1 for all i 	= k and
xF̄k ⊂ F̄k. Moreover, the induced endomorphism x̄ ∈ so(F̄k/F̄k−1) is
contained in Ō[2pk−1,12]. Let

φ : X → W

be the projection defined by φ([F̄ ], x) = ([F̄ ], x̄), where x̄ ∈ so(F̄k/F̄k−1)
is the induced endomorphism by x. It can be checked that φ is an affine
bundle. Since W is an Ō[2pk−1,12] bundle over G/P̄ , there exists a family
of Mukai flops of type D:

Y → W ← Y ′

parametrized by G/P̄ . The diagram

T ∗(G/P ) → X ← T ∗(G/P ′)

coincides with the pull back of the previous diagram by φ : X → W .
Since φ is an affine bundle, this diagram is locally a trivial family of
Mukai flops of type D. Q.E.D.
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Now let us return to the general situation. Let D be a marked
Dynkin diagram and let D̄ be the diagram obtained from D by a con-
traction. Let P and P̄ be parabolic subgroups of G corresponding to D
and D̄ respectively. One can assume that P̄ contains P . Let O be the
Richardson orbit of P and let ν be the compoed map

T ∗(G/P ) → G/P × Ō → G/P̄ × Ō.

We put X := Im(ν). As above, µ : T ∗(G/P ) → Ō is the Springer map.

Proposition 6.6. Let g be a complex simple Lie algebra. Assume
that no marked Dynkin diagram is adjacent to D by means of D̄. If
deg(µ) = 1, then ν : T ∗(G/P ) → X is a divisorial birational contraction
map.

Proof. As in the proof of Proposition 6.4, (iii), we construct an Ō′

bundle W over G/P̄ and define a map f : X → W. There is a family of
Springer maps

Y
σ→ W → G/P̄ .

By pulling back Y
σ→ W by f : X → W , we have the ν : T ∗(G/P ) → X .

Since degµ = 1, ν is a birational map. Hence σ should be a birational
map. Hence σ : Y → W is a family of Springer resolutions. By the
assumption, there are no marked Dynkin diagrams adjacent to D by
means of D̄. Now Proposition 5.1 shows that the Springer resolution is
divisorial. Therefore, ν is also divisorial. Q.E.D.

Now let us prove Theorem 6.1. By Proposition 6.4, (iii), YP :=
T ∗(G/P ) all give symplectic resolutions of Ō for P ∼ P0. Hence the
first statement of (i) has been proved. Moreover, {YP } are connected by
Mukai flops, which is nothing but (v). Let us consider ∪P∼P0Amp(YP /Ō)
in N1(YP0/Ō). Then (iv) follows from Proposition 6.4, (iii) and Propo-
sition 6.6. For an Ō-movable divisor D on YP0 , a KYP0

+ D-extremal
contraction is a small birational map. Therefore, the corresponding codi-
mension 1 face of Amp(YP0/Ō) becomes a codimension 1 face of another
Amp(YP /Ō). For this small birational map, there exists a flop. Replace
D by its proper transform and continue the same. We shall prove that
this procedure ends in finite times. Suppose to the contrary. Since the
flops occur between finite number of varieties {YP }, a variety, say YP1 ,
appears at least twice in the sequence of flops:

YP1 −− → YP2 −− → ... −− → YP1 .

For the first flop
YP1

ν1→ X1 ← YP2 ,
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take a discrete valation v of the function field K(YP1) in such a way
that its center is contained in the exceptional locus Exc(ν1) of ν1. Let
Di ⊂ YPi be the proper transforms of D. Then we have inequalities for
discrepancies (cf. [KMM], Proposition 5-1-11):

a(v, D1) < a(v, D2) ≤ .... ≤ a(v, D1).

Here the first inequality is a strict one since the center of v is contained
in Exc(ν1). This is absurd. Hence the procedure ends in finite times,
which implies that D ∈ Amp(YP /Ō) for some P . Therefore, (iii) has
been proved. The second statement of (i) immediately follows from (iii).

Example 6.7. Assume that g = sl(6). The marked Dynkin diagram
D

� � � � �

gives a parabolic subgroup P1,2,3 ⊂ SL(6) of flag type (1, 2, 3). We
put Y1,2,3 := T ∗(G/P1,2,3). There are 5 other marked Dynkin diagrams
which are equivalent to D:

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

Five parabolic subgroups P1,3,2, P3,1,2, P3,2,1, P2,3,1, P2,1,3 corre-
spond to the marked Dynkin diagrams above respectively. We put Yi,j,k :=
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T ∗(SL(6)/Pi,j,k). Let O be the Richardson orbit of these parabolic sub-
groups. Then Mov(Y1,2,3/Ō) ∼= R2, which is divided into six chambers
by the ample cones of Yi,j,k in the following way:

�
�

�
�
�

�
��

�
�

�
�
�

�
��

�
�

�
�

�
�

��

�
�

�
�

�
�

��

Y1,2,3

Y1,3,2

Y3,1,2

Y3,2,1

Y2,3,1

Y2,1,3

Example 6.8. Assume that g = so(10). The marked Dynkin dia-
gram

�

�

�
�

� � �

gives a parabolic subgroup P+
3,2,2,3 of flag type (3, 2, 2, 3). There are

three marked Dynkin diagrams equivalent to this marked diagram:
�

�

�
�

� � �

�

�

�
�

� � �

�

�

�
�

� � �
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Three parabolic subgroups P+
2,3,3,2, P−

2,3,3,2, P−
3,2,2,3 correspond to

these marked Dynkin diagrams respectively. Note that there are ex-
actly two conjugacy classes of parabolic subgroups with the same flag
type (cf. Example 4.2). We put Y +

i,j := T ∗(SO(10)/P+
i,j,j,i) and put

Y −
i,j := T ∗(SO(10)/P−

i,j,j,i). Let O be the Richardson orbit of these para-
bolic subgroups. Then Mov(Y +

3,2/Ō) is divided into four chambers by the
ample cones of Y +

3,2, Y +
2,3, Y −

2,3, Y −
3,2 in the following way:

�
�
�
�
�
�
�
�

�
�

�
�

�
�

�
�

Y −
2,3Y +

2,3

Y −
3,2,Y +

3,2

Example 6.9. Assume that g is of type E6. Consider the nilpotent
orbit O := OA3 (cf. [C-M], p.129). This is the unique orbit with dimen-
sion 52. By a dimension count, we see that O is the Richardson orbit
of the parabolic subgroup P1 ⊂ G associated with the marked Dynkin
diagram

� � �

�

� �.

Since π1(O) = 1 ([C-M], p.129], the Springer map ν1 : T ∗(G/P1) →
Ō has degree 1. The following marked Dynkin diagrams are equivalent
to the diagram above:

� � �

�

� �

� � �

�

� �
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� � �

�

� �

Denote by P2, P3, P4 respectively the parabolic subgroups correspond-
ing to the diagrams above. We put Yi := T ∗(G/Pi) for i = 1, 2, 3, 4.
Then Mov(Y1/Ō) is divided into four chambers by the ample cones of
Yi:

�
�
�
�
�
�
�
�

�
�

�
�

�
�

�
�

Y3Y2

Y4Y1

Y1 and Y2 are connected by a Mukai flop of type D5 (cf. Proposition
6.4, (iii)). Y2 and Y3 are connected by a Mukai flop of type A5,1 (for the
notation, see Example 5.3). Y3 and Y4 are connected by a Mukai flop of
type D5.

Derived categories: Two smooth quasi-projective varieties Y and
Y ′ are called D-equivalent if there is an equivalence between the bounded
derived categories of coherent sheaves Db(Coh(Y )) and Db(Coh(Y ′)).
On the other hand, if we can take common resolutions µ : Z → Y
and µ′ : Z → Y ′ in such a way that µ∗(KY ) = µ′∗(KY ′), then we say
that Y and Y ′ are K-equivalent. The following conjecture is posed by
Kawamata [Ka 2].

Conjecture 1. If Y and Y ′ are K-equivalent, then they are D-
equivalent.

Assume that Y and Y ′ are two different symplectic resolutions of
a nilpotent orbit closure Ō in a complex simple Lie algebra. Since Ō
admits a good C∗-action, the conjecture is true as a special case of a
result recently proved by Bezrukavnikov and Kaledin [K]. It would be



Birational geometry of nilpotent orbits 109

interesting to know whether the equivalence in Conjecture is realized
as Fourier-Mukai functors associated with suitable objects of Db(Y ×
Y ′). Actually, for the Mukai flop of type An,1 (cf. Example 5.3), the
Fourier-Mukai functor induced from the fiber product Y ×Ō Y ′ gives an
equivalence [Na 2]. However, the same functor is no more an equivalence
for the Mukai flop of type An,k with k > 1 ([Na 3]).

§7. Deformations of nilpotent orbits

Let x ∈ g be a nilpotent element of a Lie algebra attached to a
complex simple Lie group G. Let O be the nilpotent orbit containing
x. In this section, by using an idea of Borho and Kraft [B-K], we shall
construct a morphism f : S → k such that

(i) f−1(0) = Ō for 0 ∈ k,

(ii) for any Springer resolution T ∗(G/P ) → Ō, there is a smooth
morphism τP : EP → k with (τP )−1(0) = T ∗(G/P ) such that there is a
proper birational morphism

νP : EP → S,

and
(iii) the induced map (νP )t : (τP )−1(t) → f−1(t) is a resolution for

every t ∈ k and it is an isomorphism for a general point t ∈ k.

As a corollary of this construction, we can verify Conjecture 2 in [F-
N] for the closure of a nilpotent orbit of a simple Lie algebra. Conjecture
2 has already been proved for sl(n) in [F-N], Theorem 4.4 in a very
explicit form. Note that, a weaker version of this conjecture has been
proved by Fu [Fu 2] for the closure of a nilpotent orbit of a classical
simple Lie algebra.

The Lie algebra g becomes a G-variety via the adjoint action. Let
Z ⊂ g be a closed subvariety. For m ∈ N, put

Z(m) := {x ∈ Z; dimGx = m}.

Z(m) becomes a locally closed subset of Z. We put m(Z) := max{m; m =
dimGx, ∃x ∈ Z}. Then Zm(Z) is an open subset of Z, which will be de-
noted by Zreg. A sheet of Z is an irreducible component of some Z(m).
A sheet of g is called a Dixmier sheet if it contains a semi-simple element
of g. We fix a maximal torus H of G. In the remainder, all parabolic
subgroups are assumed to contain H . Denote by h the Lie algebra of H .

Let P ⊂ G be a parabolic subgroup and let p be its Lie algebra. Let
m(P ) be the Levi factor of p such that h ⊂ m(P ). We put k(P ) := gm(P )
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where
gm(P ) := {x ∈ g; [x, y] = 0, ∀y ∈ m(P )}.

Let r(P ) be the radical of p.

Theorem 7.1. Gr(P ) = Gk(P ) and Gr(P )reg (= Gk(P )
reg

) is a
Dixmier sheet.

Proof. See [B-K], Satz 5.6.

Every element x of g can be uniquely written as x = xn + xs with
xn nilpotent and with xs semi-simple such that [xn, xs] = 0. Let W be
the Weyl group of g with respect to h. The set of semi-simple orbits is
identified with h/W . Let g → h/W be the map defined as x → [Oxs ].
There is a direct sum decomposition

r(P ) = k(P ) ⊕ n(P ), (x → x1 + x2)

where n(P ) is the nil-radical of p (cf. [Slo], 4.3). We have a well-defined
map

G ×P r(P ) → k(P )

by sending [g, x] ∈ G ×P r(P ) to x1 ∈ k(P ) and there is a commutative
diagram

G ×P r(P ) → Gr(P )

↓ ↓

k(P ) → h/W.

by [Slo], 4.3.

Lemma 7.2. The induced map

G ×P r(P )
µP→ k(P ) ×h/W Gr(P )

is a birational map.

Proof. Let h ∈ k(P )reg and denote by h̄ ∈ h/W its image by the
map k(P ) → h/W . Then the fiber of the map Gr(P ) → h/W over h̄
coincides with a semi-simple orbit Oh of g containing h. In fact, by
Theorem 7.1, the fiber actally contains this orbit. The fiber is closed
in g because Gr(P ) is closed subset of g by Theorem 7.1. Note that
a semi-simple orbit of g is also closed. Hence if the fiber and Oh does
not coincide, then the fiber contains an orbit with larger dimension than
dimOh. This contradicts the fact that Gk(P )reg = Gr(P ). Take a point



Birational geometry of nilpotent orbits 111

(h, h′) ∈ k(P )reg ×h/W Gr(P ). Then h′ is a semi-simple element G-
conjugate to h. Fix an element g0 ∈ G such that h′ = g0h(g0)−1. We
have

(µP )−1(h, h′) = {[g, x] ∈ G ×P r(P ); x1 = h, gxg−1 = h′}.

Since x = px1p
−1 for some p ∈ P and conversely (px1p

−1)1 = x1 for any
p ∈ P (cf. [Slo], Lemma 2, p.48), we have

(µP )−1(h, h′) = {[g, php−1] ∈ G×P r(P ); g ∈ G, p ∈ P, (gp)h(gp)−1 = h′}

= {[gp, h] ∈ G ×P r(P ); g ∈ G, p ∈ P, (gp)h(gp)−1 = h′} =

{[g, h] ∈ G ×P r(P ); ghg−1 = h′} =

{[g0g
′, h] ∈ G ×P r(P ); g′ ∈ ZG(h)} = g0(ZG(h)/ZP (h)).

Here ZG(h) (resp. ZP (h)) is the centralizer of h in G (resp. P ).
By [Ko], 3.2, Lemma 5, ZG(h) is connected. Moreover, since gh ⊂
p, Lie(ZG(h)) = Lie(ZP (h)). Therefore, ZG(h)/ZP (h) = {1}, and
(µP )−1(h, h′) consists of one point.

Lemma 7.3. The map

G ×P r(P ) → Gr(P )

is a proper map.

Proof. As a vector subbundle, we have a closed immersion

G ×P r(P ) → G/P × g.

This map factors through G/P × Gr(P ), and hence we have a closed
immersion

G ×P r(P ) → G/P × Gr(P ).

Our map is the composition of this closed immersion and the projection

G/P × Gr(P ) → Gr(P ).

Since G/P is compact, this projection is a proper map.

Lemma 7.4. Let g be a nilpotent orbit of a complex simple Lie
algebra and denote by O a nilpotent orbit. Then the polarizations of O
giving Springer resolutions of Ō all have conjugate Levi factors.

Proof. This follows from Theorem 6.1 and Proposition 6.4.
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Lemma 7.5. Let O be the same as the previous lemma. Let P and
P ′ be polarizations of O. Assume that they both give Springer resolutions
of Ō. Then k(P ) and k(P ′) are conjugate to each other.

Proof. Let MP and MP ′ be Levi factors of P and P ′ respectively.
Then MP and MP ′ are conjugate by the previous lemma. Hence their
centralizers are also conjugate. The Lie algebras of these centralizers are
k(P ) and k(P ′).

Corollary 7.6. For P , P ′ which give Springer resolutions of Ō, we
have Gr(P ) = Gr(P ′).

Proof. By Theorem 7.1, Gr(P ) = Gk(P ) and Gr(P ′) = Gk(P ′).
Since Gk(P ) = Gk(P ′), we have the result.

Lemma 7.7. The image of the composed map

Gr(P ) → g → h/W

coincides with k(P )/WP , where

WP = {w ∈ W ; w(k(P )) = k(P )}.

Proof. By definition, k(P )/WP ⊂ h/W , which is a closed subset.
Since Gr(P ) = Gk(P ), we only have to prove that the image of Gk(P )
by the map g → h/W coincides with k(P )/WP . Every element of Gk(P )
is semi-simple, and the map Gk(P ) → h/W sends an element of Gk(P )
to its (semi-simple) orbit. Hence the image coincides with k(P )/WP .

Corollary 7.8. k(P ) and k(P ′) are W -conjugate in h.

Proof. Let q : h → h/W be the quotient map. Since Gr(P ) =
Gr(P ′), q(k(P )) = q(k(P ′)) by the previous lemma. Put kπ := q(k(P )).
Then k(P ) and k(P ′) are both irreducible components of q−1(kπ). Hence,
k(P ) and k(P ′) are W -conjugate in h.

We fix a polarization of P0 of O which gives a Springer resolution
of Ō. Let P be another such polarization. By the corollary above, k(P )
and k(P0) are finite coverings of kπ , and there is a kπ-isomorphism k(P ) ∼=
k(P0). We fix such an isomorphism. Then it induces an isomorphism

k(P ) ×h/W Gr(P ) ιP→ k(P0) ×h/W Gr(P0).

We put νP := ιP ◦ µP , and

S := k(P0) ×h/W Gr(P0).
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Denote by f the first projection S → k(P0). Then f−1(0) = Ō, and for
each polarization P of x,

G ×P
r(P ) νP→ S → k(P0)

gives a simultaneous resolution of f . This simultaneous resolution coin-
cides with the Springer resolution T ∗(G/P ) → Ō over 0 ∈ k(P0).

The following conjecture is posed in [F-N].

Conjecture 2. Let Z be a normal symplectic singularity. Then
for any two symplectic resolutions fi : Xi → Z, i = 1, 2, there are flat
deformations Xi

Fi→ Z → T such that, for t ∈ T − {0}, Fi,t : Xi,t → Zt

are isomorphisms.

Theorem 7.9. Let g be a complex simple Lie algebra. Assume a
nilpotent orbit closure Ō ⊂ g admits a Springer resolution. Then the
conjecture holds for the normalization Õ of Ō.

Proof. By Theorem 6.1, all symplectic resolutions of Õ are realized
as Springer resolutions. Take a general curve T ⊂ k(P0) passing through
0 ∈ k(P0), and pull back the family

G ×P r(P ) νP→ S → k(P0)

by T → k(P0). Put Z̄ := S ×k(P0) T . Then, for each P , we have a
simultaneous resolution of Z̄ → T :

XP → Z̄ → T.

Let Z be the normalization of Z̄. Then the map XP → Z̄ factors through
Z. Now

XP → Z → T

gives a desired deformation of the Springer resolution T ∗(G/P ) → Õ.

Example 7.10. Our abstract construction coincides with the ex-
plicit construction in [F-N], Theorem 4.4 in the case where g = sl(n).
Let us briefly observe the correspondence between two constructions. As-
sume that Ox ⊂ sl(n) is the orbit containing an nilpotent element x
of type d := [d1, ..., dk]. Let [s1, ..., sm] be the dual partition of d (cf.
Notation (1)). By Theorem 4.4, the polarizations of x have the flag
type (sσ(1), · · · , sσ(m)) with σ ∈ Σm. We denote them by Pσ. We put
P0 := Pid. Define Fσ := SL(n)/Pσ. Let

τ1 ⊂ · · · ⊂ τm−1 ⊂ C
n ⊗C OFσ
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be the universal subbundles on Fσ. A point of T ∗Fσ is expressed as a
pair (p, φ) of p ∈ Fσ and φ ∈ End(Cn) such that

φ(Cn) ⊂ τm−1(p), · · · , φ(τ2(p)) ⊂ τ1(p), φ(τ1(p)) = 0.

The Springer resolution

sσ : T ∗Fσ → Ō

is defined as sσ((p, φ)) := φ. In [F-N], Theorem 4.4, we have next
defined a vector bundle Eσ with an exact sequence

0 → T ∗Fσ → Eσ
ησ→ Om−1

Fσ
→ 0.

For p ∈ Fσ, we can choose a basis of Cn such that T ∗Fσ(p) consists of
the matrices of the following form

⎛
⎜⎜⎝

0 ∗ · · · ∗
0 0 · · · ∗
· · · · · ·
0 0 · · · 0

⎞
⎟⎟⎠ .

Then Eσ(p) is the vector subspace of sl(n) consisting of the matrices
A of the following form⎛

⎜⎜⎝
aσ(1) ∗ · · · ∗

0 aσ(2) · · · ∗
· · · · · ·
0 0 · · · aσ(m)

⎞
⎟⎟⎠ ,

where ai := aiIsi and Isi is the identity matrix of the size si × si. Since
A ∈ sl(n), Σisiai = 0. Here we define the map ησ(p) : Eσ(p) → C⊕m−1

as ησ(p)(A) := (a1, a2, · · · , am−1). This vector bundle Eσ is nothing but
our SL(n) ×Pσ r(Pσ). Moreover, the map

ησ : Eσ → C
m−1

coincides with the map

SL(n) ×Pσ r(Pσ) → k(P0),

where we identify k(Pσ) with k(P0) by an kπ-isomorphism. Finally, in [F-
N], Theorem 4.4 we have defined N ⊂ sl(n) to be the set of all matrices
which is conjugate to a matrix of the following form:⎛

⎜⎜⎝
b1 ∗ · · · ∗
0 b2 · · · ∗
· · · · · ·
0 0 · · · bm

⎞
⎟⎟⎠ ,
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where bi = biIsi and Isi is the identity matrix of order si. Furthermore
the zero trace condition

∑
i sibi = 0 was required. For A ∈ N , let

φA(x) := det(xI − A) be the characteristic polynomial of A. Let φi(A)
be the coefficient of xn−i in φ(A). Here the characteristic map ch : N →
Cn−1 has been defined as ch(A) := (φ2(A), ..., φn(A)). This N is nothing
but our SL(n)r(Pσ). As is proved in Corollary 7.6, this is independent
of the choice of Pσ. The characteristic map ch above coincides with the
composed map

SL(n)r(Pσ) ⊂ sl(n) → h/W.
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The moduli stack of rank-two Gieseker bundles
with fixed determinant on a nodal curve

Takeshi Abe

§1. Introduction

Let {Yt} be a family of smooth curves degenerating to a nodal curve
X0. It is an interesting problem to consider how the moduli spaces of
vector bundles on Yt degenerate. Since the moduli space of vector bun-
dles on the nodal curve X0 is not compact, we need to find a good com-
pactification. One way to compactify it is to add torsion-free sheaves.
Another way, which is originally due to Gieseker [G] and developed by
Nagaraj-Seshadri [NS] and Kausz [K2], is to add those vector bundles
on a certain semistalbe model of X0, which let us call Gieseker vector
bundles. In these works they consider moduli spaces of vector bundles
with fixed degree. In this paper we’d like to consider moduli spaces of
vector bundles with fixed determinant.(See [Sun] for related results.)

This paper is heavily based on the work of Kausz [K1] [K2]. So, let
me here explain his results briefly. In [K1], Kausz introduced a concept
of generalized isomorphisms and showed that a projective variety KGln
that is a compactification of Gln is the fine moduli space of generalized
isomorphisms. Then in [K2] he showed that the normalization of the
moduli space of Gieseker vector bundles on X0 is a KGln-bundle over
the moduli space of vector bundles on the normalization X̃0 of X0. The
purpose of this paper is to show that with the techniques invented by
Kausz, we can also describe the structure of the moduli space of Gieseker
vector bundles of rank 2 with fixed determinant on an irreducible nodal
curve X0.

The contents of the sections are as follows. In section 2 we intro-
duce basic definitions. In section 3 we define θ-determinant general-
ized isomorphisms (only for rank 2 case), and see that the equivalence

Received March 2, 2005.
Revised November 21, 2005.
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classes of θ-determinant generalized isomorphisms form a projective va-
riety KSL2. In section 4 we define the moduli stack of Gieseker-SL2-
bundles. In section 5 we investigate the local structure of this stack.
In section 6 first using the results in section 5 we see that the moduli
stack of Gieseker-SL2-bundles on X0 is a union of two closed substacks.
Then we describe the structure of each substack. Our main theorems
(Theorem 6.4 and Theorem 6.5) say that one of the two closed sub-
stacks is a KSL2-bundle over the moduli stack of vector bundles with
fixed determinant on the normalization X̃0 of X0, and that the other is
non-reduced and its induced reduced substack is a PGl2(� P3)-bundle
over the moduli stack of vector bundles with fixed (but different from
the former one) determinant on X̃0.

The moduli stack of Gieseker-SL2-bundles treated in this paper
is not semistable. In a forthcoming paper, the author constructs its
semistable model as a certain moduli stack.

§2. Preliminaries and Notations

In this section, we explain some notions and fix some notations that
are used in this paper. Most of them are cited directly from [K2, §3].

Throughout this paper, B := Spec C[[t]], B0 ↪→ B is the closed point
and Bη is the generic point. π : X → B is a stable curve of genus g ≥ 2
over B such that the generic fiber Xη is smooth, the special fiberX0 is
an irreducible curve with only one node Q. We assume that X is regular
and π : X → B is induced by an analytic family X an → Ban, where
Ban is a small open neighborhood of 0 ∈ C. We fix a C[[t]]-algebra
isomorphism

ÔX ,Q � C[[u, v, t]]/(uv − t)

that is induced by an analytic isomorphism

Oan
Xan,Q � C{{u, v, t}}/(uv − t).

n : X̃0 → X0 denotes the normalization and put {P1, P2} := n−1(Q).

2.1. Let R := R1 ∪ · · · ∪ Rl (l ≥ 1) be a chain of rational curves,
where Ri � P1, and Ri ∩ Rj �= ∅ if and only if |i − j| ≤ 1. Let a, b be
closed points of R1, Rl respectively such that if l = 1 then a �= b, and
if l > 1 then a �= R1 ∩ R2 and b �= Rl−1 ∩ Rl. Let Xl be the nodal
curve that is obtained by identifying the pair of points (P1, P2) on X̃0

with (a, b) on R. We have the natural morphism q : X̃0 
 R → Xl.
By abuse of notation, the points q(P1), q(P2) on Xl are also denoted by
P1, P2 respectively, and R, Ri, X̃0 also denote their isomorphic image in
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Xl by q. By collapsing R to the singular point Q on X0, we have the
morphism k : Xl → X0. Throughout this paper, we fix this Xl and the
morphism k. By convention we let k also denote id : X0 → X0.

Definition 2.2. (i) Let T be a B-scheme and let f : T → B denote
the structure morphism. A modification of X over T is a commutative
diagram

Y X ×B T

T

�

�
�
�
���

�
�

�
���

pr2pr2◦h

h

such that Y is flat, proper and of finite presentation over T , and that
for any field K and any morphism Spec K → T if f(Spec K) is Bη

then h × idSpec K : Y ×T Spec K → X ×B Spec K is an isomorphism,
and if f(Spec K) is B0 then for some l ≥ 0, there is an isomorphism
g : Xl×SpecK → Y×T Spec K satisfying (h×idSpecK)◦g = k×idSpecK .
(ii) Let T be a B0-scheme. A modification of X0 over T is a modification
of X over T , where T is regarded as a B-scheme by B0 ↪→ B.
(iii) If K is a field and Spec K → B0 is a morphism and Y

h−→ X0×Spec K
is a modification of X0 over Spec K, then l that appears in (i) is called
the length of the modification.

Definition 2.3. Let K be a field over C.
(i) h := k × id : Xl × Spec K → X0 × Spec K is a modification of length
l ≥ 0 of X0 over Spec K. A vector bundle E on Xl × Spec K is said to
be admissible if either (a) or (b) below holds;

(a) l = 0
(b) l ≥ 1 and E|Ri is isomorphic to ORi(1)m ⊕ OrankE−m

Ri
with

0 < m ≤ rankE for 1 ≤ i ≤ l and H0(R, (E|R)(−P1 − P2)) = 0.
(ii) Let h : Y → X0 × Spec K be a modification of X0 over Spec K and
let g : Xl × Spec K → Y be as in (i) of Definittion 2.2. A vector bundle
E on Y is said to be admissible if g∗E is admissible.
(iii) Let f : T → B be a morphism and let h : Y → X ×B T be a
modification of X over T . A vector bundle E on Y is said to be admissible
if for any Spec K → T , where K is a field, such that f(Spec K) = B0,
the pullback of E to Y ×T Spec K is admissible.
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§3. KSL2

Definition 3.1. Let S be a scheme. If we are given 2-bundles V1 and
V2 on S, and an isomorphism θ :

∧2 V1 →
∧2 V2, then a θ-determinant

generalized isomorphism from V1 to V2 is the following data.
(i) 2-bundles Ui (i = 1, 2) on S;
(ii) bf-morphisms of rank one (cf. [K1, Definition 5.1])

gi := (Mi, µi,Ui
g�

i−→ Vi,Mi ⊗ Ui
g�

i←− Vi),

(i = 1, 2) from Ui to Vi;
(iii) an isomorphism υ : M1 → M2 such that υ(µ1) = µ2;
(iv) an isomorphism ξ : U1 → U2, where we require them to satisfy

the conditions (a) and (b) below.
(a) For ∀s ∈ S, we have

ξ[s]
(
Ker g�

1[s]
)
∩ Ker g�

2[s] = {o},

where ?[s] means the restriction of ? to the fiber over s.
(b) The diagram

(3.1)

M1 ⊗
∧2 U1

υ⊗∧2ξ−−−−→ M2 ⊗
∧2 U2

∧−2g1

�⏐⏐ �⏐⏐∧−2g2∧2 V1 −−−−→
θ

∧2 V2

commutes. (See [K1, Proposition 6.1] for the definition of ∧−2gi.)

Definition 3.2. Keep the notation in Definition 3.1. Let Φ(l) :=(
U (l)

i , g
(l)
i ,M(l)

1
υ(l)

−−→ M(l)
2 ,U (l)

1

ξ(l)

−−→ U (l)
2

)
(l = 1, 2) be a θ-determinant

generalized isomorphism from V1 to V2, where g
(l)
i is the tuple

(M(l)
i , µ

(l)
i ,U (l)

i

g
�(l)
i−−−→ V(l)

i ,M(l)
i ⊗ U (l)

i

g
�(l)
i←−−− V(l)

i ).

An equivalence from Φ(1) to Φ(2) consists of isomorphisms M(1)
j � M(2)

j

and U (1)
j � U (2)

j (j = 1, 2) that are compatible with υ(l), ξ(l) and g
(l)
i .

Definition 3.3. Keep the notation in Definition 3.1. KSL2(V1,V2)
is the functor from the category of S-schemes to the category of sets
that associates to an S-scheme T

φ−→ S the set of equivalence classes of
φ∗(θ)-determinant generalized isomorphisms from φ∗V1 to φ∗V2.
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Then, as in [K1], we have

Proposition 3.4. The functor KSL2(V1,V2) is representable by a
projective S-scheme KSL2(V1,V2).

Sketch of Proof. We may construct KSL2(V1,V2) locally over S.
Therefore we may assume that V1 = V2 = O⊕2

S and that θ :
∧2 V1(=

OS) →
∧2 V2(= OS) is the identity. We let P denote the S-scheme

ProjOS [x11, x12, x21, x22, x00] and KSL2(V1,V2) be the closed subscheme
of P defined by x11x22 − x12x21 − x2

00 = 0. Put B := KSL2(V1,V2) ∩
{x00 = 0}. Let π be the projection KSL2(V1,V2) → S. Let x :
π∗V1 → π∗V2 ⊗OKSL2(B) be given by the matrix (xij/x00)1≤i,j≤2. Put
U1 := x−1(π∗V2) and U2 := x(U1) ⊂ π∗V2. We have natural morphisms
π∗Vi ↪→ Ui ⊗ O(B) (i = 1, 2). These data give us π∗(θ)-determinat
generalized isomorphism from π∗V1 to π∗V2, and one can check that it
represents the functor KSL2(V1,V2). Q.E.D.

§4. Gieseker SL2-bundles

In the rest of this paper, we fix a line bundle P on X , of degree d
on the fibers over B. Put P0 := P|X0 .

Definition 4.1. Let S be a B-scheme. A Gieseker-SL2-bundle
with determinat P on X over S, or a Gieseker-SL2-bundle on (X ;P)
over S, is a triple (h : Y → X ×B S, E , δ : det E → (pr1 ◦ h)∗P), where
h : Y → X ×B S is a modification, E is an admissible 2-bundle on Y of
degree d on the fibers over S, and δ is a morphism of OY -modules such
that its restriction to every fiber of Y/S is nonzero.

GSL2B(X/B;P) denotes the B-groupoid that associates to an affine
B-scheme S the groupoid consisting of all the Gieseker-SL2-bundles on
(X ;P) over S. GSL2B(X0/B0;P0), or simply GSL2B(X0;P0), donotes
the B0-groupoid that is the restriction of GSL2B(X/B;P) to the cate-
gory of affine B0-schemes.

Proposition 4.2. GSL2B(X/B;P) and GSL2B(X0/B0;P0) are
algebraic stacks.

Remark 4.3. Let {ϕλµ : Tµ → Tλ}λ≺µ be a projective system of
affine B0-schemes and let T

ϕλ−−→ Tλ be a projective limit. By [EGAIV, §8
and (11.2.6)], we know that G := GSL2B(X0;P0) satisfies the conditions
(i) and (ii) below;

(i) For any object x ∈ G(T ), there exist λ and an object xλ ∈ G(Tλ)
such that ϕ∗

λ(xλ) � x;
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(ii) Take λ0 and xλ0 , yλ0 ∈ G(Tλ0). Then the map

lim−→HomG(Tµ)(ϕ∗
λ0µxλ0 , ϕ

∗
λ0µyλ0) → HomG(T )(ϕ∗

λ0
xλ0 , ϕ

∗
λ0

yλ0)

is bijective. By this fact, in many proofs we can assume that T is of
finite type over B0.

§5. Local Structure

In this section, we investigate the local structure of the algebraic
stack of Gieseker-SL2-bundles.

Let K be a field extension of C. Let (Y h−→ X0×B0Spec K, E , det E δ−→
(pr1 ◦ h)∗P0) be a Gieseker-SL2-bundle over Spec K.

Lemma 5.1. There are three possibilities:
(Type 0) Y is a modification of lengh 0, i.e. h is an isomorphism.
(Type 1) Y is a modification of lengh 1, moreover if R is P1 of Y

colapsing to the singular point of X0 ×B0 Spec K, then deg E|R = 2.
(Type 2) Y is a modification of lengh 2, moreover if Ri (i = 1, 2) is

P1 of Y colapsing to the singular point of X0×B0Spec K, then deg E|Ri =
1 for i = 1and 2.

Proof. We have only to exclude the possibility that Y is a modifi-
cation of lengh 1 and deg E|R = 1. Suppose that we had such a Gieseker-
SL2-bundle. Then δ|R is zero since deg E|R = 1 > deg(pr1◦h)∗P0|R = 0.
Hence δ|

eX0×B0Spec K factors as

det E|
eX0×B0Spec K → (pr1 ◦ h)∗P0|

eX0×B0SpecK(−P1 − P2)

↪→ (pr1 ◦ h)∗P0|
eX0×B0Spec K .

Since

deg E|
eX0×B0Spec K = deg E−1 > deg(pr1 ◦h)∗P0|

eX0×B0SpecK(−P1−P2),

we have δ|
eX0×B0SpecK = 0, which implies δ = 0. This contradicts the

definition of a Gieseker-SL2-bundle. Q.E.D.

Notation 5.2. Let h : Y → X0 × Spec K be a modification of
length l ≥ 0 and let g : Xl × Spec K → Y be as in (i) of Definition 2.2.
Recall from the paragraph 2.1 that if l ≥ 1 then we have P1, P2 on Xl.
From now on, for l ≥ 1 the points g(P1), g(P2) on Y are also denoted
by P1, P2. If l = 2, then the point g(R1 ∩ R2) on Y is denoted by P0.
Moreover if l = 0, then the point g(Q) on Y is denoted by P0. The
reason why we use this notation will be clear in Proposition 6.1.
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In order to investigate the local structure of GSL2B(X/B;P), we in-
troduce several deformation functors. Let A be the category of artinian
local C[[t]]-algebra with residue field C. Throughout this section, we fix
an object E0 := (Y h0−→ X0, E0, detE0

δ0−→ h∗
0P0) of GSL2B(X/B;P)(B0).

Put L0 := (det E0)∨ ⊗ h∗
0P0, and let σ0 be the global section of L0 cor-

responding to δ0. Let L0 denote the triple (Y h0−→ X0, L0, σ0).

Definition 5.3. Three funtors G, F and M from A to the category
of sets are defined as follows. For A ∈ A,

G(A) :=

⎧⎪⎨⎪⎩
E := (Y h−→ X ×B Spec A, E , det E δ−→ (pr1 ◦ h)∗P)
∈ GSL2B(X/B;P)(Spec A)
with isomorphism E ×SpecA B0

α−→ E0.

⎫⎪⎬⎪⎭
/

∼G ,

F(A) :=⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
L := (Y h−→ X ×B Spec A,L, σ)
with isomorphism

L ×SpecA B0
β−→ L0

∣∣∣∣∣∣∣∣∣∣
Y h−→ X ×B Spec A is
a modification of X/B
over Spec A.
L is a line bundle on Y.
σ ∈ L is a global section.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
/

∼F ,

M(A) :=⎧⎪⎪⎪⎨⎪⎪⎪⎩
Y h−→ X ×B Spec A
with isomorphism

(Y h−→ X ×B Spec A) ×SpecA B0
γ−→ (Y h0−→ X0)

∣∣∣∣∣∣∣∣∣
Y h−→ X ×B Spec A is
a modification of X/B
over Spec A.

⎫⎪⎪⎪⎬⎪⎪⎪⎭
/

∼M,

where the equivalence relations ∼G , ∼F and ∼M are as below.

• (E, α) ∼ (E′, α′) if and only if there is an isomorphism E
a−→ E′

such that α = α′ ◦ (a ×SpecA B0).

• (L, σ) ∼ (L′, σ′) if and only if there is an isomorphism L
b−→ L′

such that β = β′ ◦ (b ×SpecA B0).

• (Y h−→ X ×B Spec A, γ) ∼ (Y ′ h′
−→ X ×B Spec A, γ′) if and only

if there is an isomorphism (Y h−→ X ×B Spec A) c−→ (Y ′ h′
−→

X ×B Spec A) such that γ = γ′ ◦ (c ×Spec A B0).

Lemma 5.4. G, F and M satisfy the Schlessinger’s condition (i.e.
(H1) (H2) and (H3) in Theorem2.11 of [Sch]). Therefore they have a
hull.
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Proof. We omit the proof. Q.E.D.

We have the natural morphism Φ : F → M of functors. Using the
notation in Definition5.3, by associating (Y h−→ X ×B Spec A, (det E)∨ ⊗
(pr1 ◦ h)∗P , σ) ∈ F(A) to (E, α) ∈ G(A) (where σ is the one determined
by δ), we have the natural morphism Ψ : G → F .

Lemma 5.5. Ψ : G → F is smooth.

Proof. Left to the reader. Q.E.D.

Let Â be the category of complete noetherian local C[[t]]-algebras
A such that A/mn is in A for all n ∈ N. For R ∈ Â, we set hR(A) :=
Hom(R, A) to define a functor hR on A.

Theorem 5.6. Let hR → F be a hull of F .
(0) If E0 is of Type 0, then we have an isomorphism

R � C[[t]] of C[[t]]-algebras.
(1) If E0 is of Type 1, then we have an isomorphism

R � C[[t, t1]]/(t − t21) of C[[t]]-algebras.
(2) If E0 is of Type 2, then we have an isomorphism

R � C[[t, t0, t1]]/(t − t0t
2
1) of C[[t]]-algebras.

Corollary 5.7. The algebraic B-stack GSL2B(X/B;P) is regular.

Proof. This follows from Lemma 5.5 and Theorem 5.6. Q.E.D.

The rest of this section is devoted to the proof of Theorem 5.6.

Proof of (0) of Theorem 5.6. It suffices to prove that for any A ∈
A, F(A) is a set consisting of one element. Since E0 is of Type 0, we
may assume that L0 = (X0

id−→ X0,OX0 , 1). For A ∈ A, L := (X ×B

Spec A
id−→ X ×B Spec A,OX×BSpec A, 1) with the canonical isomorphism

L ×SpecA B0
β−→ L0 gives an element of F(A). Take an element (L′, β′)

of F(A), where L′ = (Y h′
−→ X ×B Spec A,L, σ) and β′ : L′×SpecA B0

∼−→
L0. Let us prove that (L, β) ∼F (L′, β′). Since h′ is an isomorphism
and σ is a nowhere-vanishing section of L, we may assume that L′ =
(X ×B Spec A

id−→ X ×B Spec A,OX×BSpec A, 1). Then β′ must be the
canonical isomorphism. Thus (L, β) ∼F (L′, β′). Q.E.D.

We shall give a proof of only (2) of Theorem 5.6 because (1) of
Theorem 5.6 is proved similarly. In the rest of the proof of Theorem
5.6, we assume that E0 is of Type 2. Put W := Spec C[[t0, t1, t2]] and
let f : W → B be given by f∗(t) = t0t1t2. By [G, §4], there exists a
modification Y h−→ X ×B W of X/B over W that gives a hull of M.
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Since Y
h0−→ X0 is a modification of length 2, Y is a union of X̃0 and a

chain R1 ∪ R2 of P1 with {Pi} = X̃0 ∩ Ri and {P0} := R1 ∩ R2.(Recall
the notation 5.2.) Moreover we can find an isomorphism

(♠) ÔY,Pi � C[[t0, t1, t2, xi, yi]]/(xiyi − ti),

of C[[t0, t1, t2]]-algebra (0 ≤ i ≤ 2) such that for i = 1, 2 on the closed
fiber, the branch xi = 0 corresponds to X̃0. We fix (♠) and injective
morphisms
(5.1)
C[[t0, t1, t2, xi, yi]]/(xiyi − ti) ↪→ C[[t0, t1, t2]]((xi)) ⊕ C[[t0, t1, t2]]((yi)),

given by xi �→ (xi, ti/yi) and yi �→ (ti/xi, yi).
If A is an artinian local C[[t0, t1, t2]]-algebra with residue field C, the

pull-back of the versal deformation by Spec A → W gives an infinitesimal
deformation YA

hA−−→ X ×B Spec A of Y
h0−→ X0. Let j

(i)
A be the natural

morphism j
(i)
A : Spec ÔYA,Pi → YA (i = 1, 2). Put UA := YA \ {P1, P2}.

The base change of (5.1) gives rise to the isomorphism

(♣A) H0
(
Spec ÔYA,Pi \ {Pi},O

)
� A((xi)) ⊕ A((yi)).

By the definition of L0, we have deg L0|
eX0

= 2 and deg L0|Ri = −1
(i = 1, 2). The nonzero section σ0 vanishes on R1 ∪ R2, and gives an
isomorphism O

eX0

∼−→ (L0|
eX0

)(−P1 − P2). Therefore L0 is obtained
by gluing at P1 and P2 the two line bundles O

eX0
(P1 + P2) on X̃0

and OR1∪R2(−P1 − P2) on R1 ∪ R2. By this, we have the trivial-
izations ϕ

(i)
C

: j
(i)∗
C

L0
∼−→ ÔY0,Pi (i = 1, 2) and ψC : L0|UC

∼−→ OUC

such that on Spec ÔY0,Pi \ {Pi}, the morphism ψC ◦ ϕ
(i)−1
C

is given by
(aixi,

1
yi

)-multiplication for some nonzero complex number ai, where C
is considered as a C[[t0, t1, t2]]-algebra by C � C[[t0, t1, t2]]/(t0, t1, t2).
By replacing the isomorphisms (♠) if necessary, we may assume that
a1 = a2 = 1. Moreover replacing ϕ

(i)
C

and ψC if necessary, we may
assume that ϕ

(i)
C

(j(i)∗
C

σ0) = yi and

(5.2) ψC(σ0|UC
) =

{
1 on X̃0 \ {P1, P2}
0 on R1 ∪ R2 \ {P1, P2}.

Put R := C[[t0, t1, t2]]/(t1 − t2) and let m be its maximal ideal. For
∀k > 0, we let LR/mk be a line bundle on YR/mk (the pull-back by
Spec R/mk → W of the versal deformation) that has the trivializa-
tions ϕ

(i)

R/mk : j
(i)∗
R/mkLR/mk

∼−→ ÔY
R/mk ,Pi and ψR/mk : LR/mk |U

R/mk

∼−→
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OU
R/mk

such that ψR/mk ◦ ϕ
(i)−1

R/mk on Spec ÔY
R/mk,Pi

\ {Pi} is given by
(xi,

1
yi

)-multiplication. Let σR/mk be the global section of LR/mk such

that ϕ
(i)

R/mk(j(i)∗
R/mkσR/mk) = yi and

(5.3) ψR/mk(σR/mk |U
R/mk

) =

{
1 on X̃0 \ {P1, P2}
t1 = t2 on R1 ∪ R2 \ {P1, P2},

(note that, as a topological space, UR/mk is a disjoint union of X̃0 \
{P1, P2} and R1 ∪ R2 \ {P1, P2}). These data give us the formal object
(L∞, σ∞), where L∞ is a line bundle on Y ×W Spf R, and thus an
element ξ̂ = (ξk) ∈ lim←−F(R/mk), in other words, a morphism of functors
Υ : hR → F .

The following proposition completes the proof of Theorem 5.6 (2).

Proposition 5.8. Υ : hR → F is a hull of F .

Proof. We will apply Propositon 7.1. Lemma 5.4 implies (a). Since
M(C[[t]]/(t2)) = φ and we have a morphism of functors F Φ−→ M, (b)
also holds. R satisfies (i). Let us see that (ii) holds. Let ϕ be the natural
injective morphism

(5.4) Homloc C[[t]]−alg(R, C[ε]) ↪→ Homloc C[[t]]−alg(C[[t0, t1, t2]], C[ε]),

where ε2 = 0 and C[ε] is considered as a C[[t]]-algebra by t �→ 0. We
have the commutative diagram

(5.5)

Homloc C[[t]]−alg(R, C[ε]) −−−−→ F(C[ε])

ϕ

⏐⏐� ⏐⏐�Φ

Homloc C[[t]]−alg(C[[t0, t1, t2]], C[ε]) −−−−→ M(C[ε]),

where the morphism in the bottom row is an isomorphism. Consider
the category K whose objects are triples (L, σ, β : L|X2

∼−→ L0), where
L is a line bundle on X2 ×SpecC Spec C[ε], σ is a global section of L
and β is an isomorphism with β(σ|X2 ) = σ0, and whose morphisms
from (L, σ, β : L|X2

∼−→ L0) to (L′, σ′, β′ : L′|X2

∼−→ L0), are pairs
(f : X2 × Spec C[ε] → X2 × Spec C[ε],L τ−→ f∗L′), where f is C[ε]-
isomorphism with f |X2 = idX2 and (h0× idSpecC[ε])◦f = h0× idSpec C[ε],
and τ is an isomorphism with τ(σ) = f∗σ′. Then KerΦ is isomorphic
to the set of isomorphism classes of the category K.

Claim 5.8.1. Every object in the category K is isomorphic to the
trivial one, i.e., Φ is injective.
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Proof of Claim 5.8.1. In the proof we will use Čech cohomologies
involving formal neighborhoods. See Proposition 7.3 for the justification
of this calculation.

Take an object (L, σ, β : L|X2

∼−→ L0) of the categry K. Since
we have the trivial extension of L0 over X2 × Spec C[ε], the equiva-
lence classes of extensions of L0 over X2 × Spec C[ε] are classified by

H1(X2,OX2). Let H1(X2,OX2)
H1

σ−−→ H1(X2, L0) be the morphism in-
duced by the global section σ0. For a ∈ H1(X2,OX2), let La be the
corresponding extension of L0. Then H1

σ(a) is the obstruction for the
existence of a lifting of σ0 to La. Hence L corresponds to a cohomology
class in KerH1

σ. Note that H1
σ factors as

H1(X2,OX2)
H1(1)

σ−−−→ H1(X̃0,O
eX0

)
H1(2)

σ−−−→ H1(X2, L0),

and H1(2)
σ is injective because of the long exact sequence of cohomologies

of the exact sequence 0 → O
eX0

→ L0 → OR1∪R2(−P1 − P2) → 0. Thus

we have KerH1
σ = KerH1(1)

σ . On the other hand the exact sequence
0 →OR1∪R2(−P1−P2)→OX2 →O

eX0
→0 gives rise to the exact sequence

0 → H1(R1 ∪ R2,OR1∪R2(−P1 − P2)) → H1(OX2 ) → H1(O
eX0

) → 0.
Therefore

(5.6) KerH1
σ � H1(R1 ∪ R2,OR1∪R2(−P1 − P2)).

It is easily seen that we have an isomorphism

(5.7) H1(R1 ∪ R2,OR1∪R2(−P1 − P2)) � C,

by which the cohomology class [α1(x1), α2(x2)] (αi(xi) ∈ C[[xi]]) corre-
sponds to α1(0) − α2(0). So we have L = La for some a = [(a1, a2)] ∈
H1(R1 ∪R2,OR1∪R2(−P1 −P2)) ⊂ H1(X2,OX2) with ai ∈ C ⊂ C((xi)).
Let f : X2 × Spec C[ε] → X2 × Spec C[ε] be the C[ε]-automorphism
with f |X2 = idX2 constructed as follows. We choose a coordinate zi

of Ri(� P1) so that Pi = {zi = 0} and P0 = {zi = ∞}. (Then at
Pi we have zi = xiA(xi) with A(xi) ∈ C[[xi]] and A(0) �= 0.) Let
f |R1∪R2 : (R1 ∪ R2) × Spec C[ε] → (R1 ∪ R2) × Spec C[ε] be the C[ε]-
automorphism given by (f |R1∪R2)#(zi) = (1 − ai · ε)zi. f |R1∪R2 and
id : X̃0×Spec C[ε] → X̃0×Spec C[ε] coincide along {Pi}×SpecC[ε] and
give rise to a C[ε]-automorphism f of X2 × Spec C[ε] with f |X2 = idX2 .

Claim 5.8.2. f∗L is a trivial extension over X2 × Spec C[ε] of L0.

Proof of Claim 5.8.2. To prove this claim, we shall use the follow-
ing general fact.
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Fact. Let Z be a C-scheme. Then H0(TZ) classifies automorphisms
of Z×Spec C[ε] over Spec C[ε] which are identity over Spec C. Moreover,
let U = {Ui} be an affine open covering of Z and M0 a line bundle on Z
defined by a cocycle {ξij} ∈ Z1(U ,O×

Z ). Let f be a C[ε]-automorphism
of Z×Spec C[ε] determined by a derivation ∂ ∈ H0(TZ). If a line bundle
M on Z×Spec C[ε] is an extension of M0 determined by µ ∈ H1(Z,OZ)
and if µ′ ∈ H1(Z,OZ) is the cohomology class corresponding to f∗M,
then the cohomology class µ′ − µ ∈ H1(Z,OZ) is given by the cocycle
{∂ξij/ξij}.

Around Pi (i = 1, 2), f# : C[ε][[xi, yi]]/(xiyi) → C[ε][[xi, yi]]/(xiyi)
is given by xi �→ xi + xiBi(xi) · ε and yi �→ yi, where Bi(xi) ∈ C[[xi]]
with Bi(0) = −ai. Thus derivation ∂ corresponding to f is written
as ∂(A(xi, yi)) = xiBi(xi) ∂

∂xi
A(xi, 0). Hence ∂(xi, 1/yi)/(xi, 1/yi) =

(Bi(xi), 0). Therefore by the above fact, the difference between f∗L and
L is given by the cohomology class b = [(B1(x1), B2(x2))] ∈ H1(R1 ∪
R2,O(−P1 − P2)) ⊂ H1(X2,OX2). We have f∗L = La+b. By the
isomorphism (5.7), a + b ∈ H1(R1 ∪ R2,O(−P1 − P2)) corresponds to
a1 − a2 + (B1(0) − B2(0)) = 0. Therefore f∗L is a trivial extension of
L0. This completes the proof of Claim 5.8.2. Q.E.D.

By Claim 5.8.2, we may assume that L itself has an isomorphism
τ : L � L0⊗C[ε] such that (τ |X2 ) = β. We have τ(σ) = (1+c ·ε)(σ0⊗1).
Replacing τ by (1 − c · ε)τ , we obtain an isomorphism in K between
(L, σ, β : L|X2 � L0) and the trivial deformation. This completes the
proof of Claim 5.8.1. Q.E.D.

Since φ and Φ are injective, the next claim completes the proof of
Proposition 5.8.

Claim 5.8.3. Im ϕ → Im Φ is bijective.

Proof of Claim 5.8.3. We have only to prove the surjectivity of
Im ϕ → Im Φ. Let g : Spec C[ε] → W = Spec C[[t0, t1, t2]] be the
morphism given by g#(tj) = aj · ε (aj ∈ C). Assume that the pull-
back Y ×W Spec C[ε] by g of the versal family Y/W is in Im Φ. This
means that there is a line bundle L with a section σ on Y ×W Spec C[ε]
that is an extension of the line bundle L0 and its global section σ0 on
Y ×W Spec C � X2. At Pi ∈ Y ×W Spec C[ε], we have the isomorphism

ÔY×W Spec C[ε],Pi
� C[ε][[xi, yi]]/(xiyi − aiεi)

induced by (♠). Let L′ be the extension of L0 to Y ×W Spec C[ε] given
by the Čech cocycle {(xi, 1/yi)}i=1,2, where (xi, 1/yi) ∈ C[ε]((xi)) ⊕
C[ε]((yi)) � H0(Spec ÔY×W SpecC[ε],Pi

−{Pi},O). Let o(L) and o(L′) ∈



Rank-two Gieseker bundles 129

H1(X2, L0) be the obstructions for the existence of a lifting of σ0 of L0

to L and L′ respectively. It is easy to see that o(L) − o(L′) = σ0 · ξ,
where ξ is an element of H1(X2, L0) corresponding to the difference of
L and L′. By assumption we have o(L) = 0. As in the proof of Claim
5.8.1, we have the exact sequence
(5.8)

H1(X2,OX2)
H1

σ−−→ H1(X2, L0)
restr.−−−→ H1(R1 ∪ R2,O(−P1 − P2)) → 0.

By a concrete calculation, we find that o(L′)|R1∪R2 is represented by
the Čech cocycle (a1, a2), where ai ∈ C is considered as an element of
H0(Spec ÔRi,Pi−{Pi},O(−Pi)). By the isomorphism (5.7), the cohomol-
ogy class [(a1, a2)] corresponds to a1 − a2. o(L′)|R1∪R2 = 0 implies a1 =
a2. Thus g factors as Spec C[ε] → Spec R ↪→ W = Spec C[[t0, t1, t2]].
This completes the proof of Claim 5.8.3. Q.E.D.

We complete the proof of Proposition 5.8. Q.E.D.

Now for the fixed E0 := (Y h0−→ X0, E0, detE0
δ0−→ h∗

0P0), assume
that Y

h0−→ X0 is of type 1 or 2. For A ∈ A and an element L = (Y h−→
X ×B Spec A,L, σ) in F(A), let Zi be the closed subscheme of Y whose
support is {Pi} and whose defining ideal is the first Fitting ideal of
ΩY/ SpecA at Pi. Then (pr2 ◦h)|Zi : Zi → Spec A is a closed immersion,
and it is an isomorphism if and only if the infinitesimal deformation of
the node Pi is a trivial deformation. Moreover we have

Corollary 5.9. (pr2 ◦h)|Zi : Zi → Spec A (i = 1, 2) define the same
closed subscheme of Spec A.

Proof. Y h−→ X ×B Spec A is isomorphic to the pull-back of the
versal deformation by some morphism g : Spec A → Spec R, where
R = C[[t, t1, t2]]/(t − t1t2, t1 − t2) if Y

h0−→ X0 is of type 1, and R =
C[[t, t0, t1, t2]]/(t − t0t1t2, t1 − t2) if Y

h0−→ X0 is of type 2. The closed
subscheme (pr2 ◦ h)|Zi : Zi → Spec A is defined by g∗(ti). Since t1 = t2
in R, we have g∗(t1) = g∗(t2). Q.E.D.

We here prepare one proposition that is used in the next section.
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Proposition 5.10. For A ∈ A, let

(5.9)

Y
g−−−−→ Y

h0

⏐⏐� ⏐⏐�h

X0 −−−−→ X ×B Spec A⏐⏐� ⏐⏐�
B0 = Spec C −−−−→ Spec A

be an object of M(A). Let ι0 : X̃0 → Y denote the unique morphism
satisfying h0 ◦ ι0 = n. Assume that (pr2 ◦h)|Zi : Zi → Spec A (i = 1, 2)
are isomorphisms, or equivalently that the infinitesimal deformations of
the nodes Pi are trivial. Then there exists a unique closed immersion
ι : X̃0 ×Spec C Spec A → Y such that ι|

eX0
= g ◦ ι0 and that the closed

subscheme of Y determined by ι|{Pi}×Spec A : {Pi} × Spec A → Y is Zi

for i = 1, 2.

Proof. Fix two distinct points a1, a2 on P1. Let αi denote the
section (a1, idSpec C[[u]]) : Spec C[[u]] → P1×Spec C[[u]] of the projection
pr2 : P1 × Spec C[[u]] → Spec C[[u]]. Let β : G → P1 × Spec C[[u]]
be the blowing-up at (a1, 0). Let si : Spec C[[u]] → G be the section of

G
pr2 ◦β−−−−→ Spec C[[u]] with β◦si = αi. The section (Pi, id) : Spec C[[u]] →

X̃0 × Spec C[[u]] is denoted by s′i (i = 1, 2). Let q : P1 → X0 be the
composite P1 pr−→ Spec C → {Q} ⊂ X0. (Recall that Q is the unique
node of X0.) Put m := (q× idSpec C[[u]])◦β. If Y∗ denotes the flat family
over Spec C[[u]] that is constructed from X̃0×Spec C[[u]] and G by gluing
the sections si and s′i (i = 1, 2), then we have a morphism h : Y∗ →
X0 × Spec C[[u]] because m ◦ si = (n × 1) ◦ s′i. Regard C[[u]] as a C[[t]]-
algebra by C[[t]]/(t) ↪→ C[[u]]. Applying Proposition 7.1, it is easily
seen that h : Y∗ → X0×Spec C[[u]] is a versal family of the deformation
of the modification h0 : Y → X0 with the singularities P1, P2 non-
deformed. This implies the existence of ι : X̃0 × Spec A → Y in the
proposition. The uniqueness follows since infinitesimal automorphism of
X̃0 with {Pi} fixed are trivial because the 2-pointed curve (X̃0; P1, P2)
is stable. Q.E.D.

§6. Global Structure

Proposition 6.1. Let T be a B0-scheme.
Let (h : Y → X0×B0T, E , δ : ∧2E → (pr1◦h)∗P0) be a Gieseker-SL2-

bundle on (X0,P0) over T . Then there are closed subsets Πi (i = 0, 1, 2)
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of Y such that Πi ×T Spec κ(t) = {Pi} for every t ∈ T . (Here recall the
notation 5.2.)

Proof. We may assume that T is reduced irreducible and of finite
type over B0. We may also assume that T is normal. (In fact, if T
is not normal, let g : T ′ → T be the normalization and (h′ : Y ′(:=
Y ×T T ′) → X0 ×B0 T ′, E ′, δ′) be the base-change by g of (h : Y →
X0 ×B0 T, E , δ : ∧2E → (pr1 ◦ h)∗P0). If Π′

i is a closed subset of Y ′ such
that Π′

i ×T ′ Spec κ(t′) = {Pi} for every t′ ∈ T ′, then let Πi be the image
of Π′

i to Y.) For 0 ≤ l ≤ 2, Tl is defined to be the subset of T that consists
of all points t ∈ T such that h×T id : Y×T Spec κ(t) → X0×B0 Spec κ(t)
is of length l. It is easy to see that

⋃
l≤m Tl is open in T . Let η be the

generic point of T . We have an isomorphism

(6.1) Y ×T Spec κ(η) � Xl ×B0 Spec κ(η)

over X0 ×B0 Spec κ(η) for some 0 ≤ l ≤ 2. Let σi : Spec κ(η) →
Y ×T Spec κ(η) be the morphism that maps η to Pi, and put Πi :=
σi(η) ⊂ Y, which is given the reduced scheme structure, where i = 0
if l = 0, i ∈ {1, 2} if l = 1, and i ∈ {0, 1, 2} if l = 2. Since the
isomorphism (6.1) extends over a nonempty open subset U ⊂ T , we
have Πi ×T Spec κ(t) = {Pi} for ∀t ∈ U . If Z is the closed subscheme of
Y defined by the first Fitting ideal of ΩY/T , then Πi ⊂ Z. By this, we
know that Πi → T is a finite birational morphism, hence an isomorphism
because of the assumption that T is normal.

Claim 6.1.1. Πi ∩ Πj = ∅ for i �= j.

Proof of Claim 6.1.1. Suppose that Πi ∩ Πj �= ∅ for i �= j. Take a
C-valued point t0 ∈ T such that Πi ×T Spec κ(t0) ∩ Πj ×T Spec κ(t0) �=
∅. Then we can find a morphism V := Spec C[[v]] α−→ T such that
α(the closed point of V ) = t0 and α(the generic point of V ) ∈ U . The
base-changes of Πi and Πj give us two sections σi, σj : V → Y ×T

V such that σi(the closed point of V ) = σj(the closed point of V ) and
σi(the generic point of V ) = {Pi} and σj(the generic point of V ) = {Pj}.
Taking into account the fact that both σi and σj factor through Z ×T

V ↪→ Y ×T V , we know σi and σj coincide on the closed subscheme
Spec C[[v]]/(vN ) ⊂ V for ∀N > 0. Then we have σi(V ) = σj(V ). This
is a contradiction. Q.E.D.

Claim 6.1.2. If Πi ×T Spec κ(t) = {Pm} for m = 1 or 2 and t ∈ T ,
then i = m.

Proof of Claim 6.1.2. If Πi×T Spec(t) = {Pm} for some t ∈ T , then
it holds for some C-valued point t0 ∈ T . So we may assume that t ∈ T
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is a C-valued point. Take V := Spec C[[v]] α−→ T as in the proof of Claim
6.1.1. Let (YV

hV−−→ X0 × V, EV ,∧2EV
δV−−→ (pr1 ◦ hV )∗P0) be the pull-

back by α of the given Gieseker-SL2-bundle over T . Put ZV := Z ×T V
and ΠiV := Πi ×T V . Put VN := Spec C[[v]]/(vN+1)(↪→ V ). ZV is a
disjoint union of the closed subschemes Z(i)

V such that for ∀N > 0 the
support of Z(k)

VN
(:= ZV ×V VN ) is {Pk}, where k ∈ {1, 2} if the length

of the modification YV ×V V0 is 1, and k ∈ {0, 1, 2} if the length is 2.
Since ΠiV → V is an isomorphism, we have ΠiVN

∼−→ Z(m)
VN

∼−→ VN for

∀N > 0, hence ΠiV = Z(m)
V . By this, we know that the deformation

of the singularity of YV ×V VN at Pm is trivial. By Corollary 5.9, the
deformation of the singularity of YV ×V VN at P3−m is also trivial. Then
by Proposition 5.10 and algebraization (cf. (5.1.8) of [EGAIII]), we have
the closed immersion g : X̃0 × V ↪→ YV with hV ◦ g = n× idV such that
g({Pj} × V ) = Z(j)

V (j = 1, 2). Therefore Z(m)
V ×V Spec C((v)) = {Pm}.

Since ΠiV = Z(m)
V , ΠiV ×V Spec C((v)) = {Pm}. This implies i = m

since α(the generic point of V ) ∈ U . Q.E.D.

With these claims prepared, we will prove the proposition.

Case (i). T = T2: In this case, the above claims imply that Π0, Π1, Π2

have the desired property.

Case (ii). T0 = ∅ and T1 �= ∅: In this case we have Π1, Π2. Using
the above claims plus a similar argument as in the proof of Claim 6.1.2,
one can check that Πj ×T Spec κ(t) = {Pj} for ∀t ∈ T , j = 1, 2. On
Y×T T2, by Case(i) we have the desired Π0 ⊂ Y×T T2. These Π0, Π1, Π2

are what we want.

Case (iii). T0 �= ∅: We have Π0. By Claim 6.1.2, we have Π0 ×T

Spec κ(t) = {P0} for ∀t ∈ T . Therefore T1 = ∅. On Y ×T T2, by Case(i)
we have Π1, Π2 ⊂ Y×T T2 having the desired property. These Π0, Π1, Π2

are what we want.

This is the end of the proof of Proposition 6.1. Q.E.D.

6.2. By this proposition, if we are given a Gieseker SL2-bundle
(h : Y → X0×B0 T, E ,∧2E δ−→ (pr1 ◦h)∗P0) on (X0,P0) over T , the locus
of Y where the morphism pr2 ◦ h is not smooth is the disjoint union of
three closed subsets Π0, Π1, Π2. Instead of reduced scheme structure,
let us now endow each Πi with the scheme structure defined by the first
Fitting ideal of ΩY/T .

Then (pr2 ◦ h)|Πi : Πi → T is a closed immersion. Let Ii(⊂ OT ) be
its defining ideal. By Corollary 5.9, we have I1 = I2. Moreover, by the
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description of the versal family, we have I0I1I2(= I0I2
1 = I0I2

2 ) = 0.
Using these ideals, we shall define closed substacks of GSL2B(X0;P0).

Definition 6.3. We define closed substacks GSL2B(X0;P0)(0),
GSL2B(X0;P0)(1) and GSL2B(X0;P0)

(1)
red of the stack GSL2B(X0;P0)

as follows:
For an affine B0-scheme T , an object (h : Y → X0 ×B0 T, E ,∧2E δ−→

(pr1 ◦ h)∗P0) of GSL2B(X0;P0)(T ) is in GSL2B(X0;P0)(0)(T ) [resp.
GSL2B(X0;P0)(1)(T ) or GSL2B(X0;P0)

(1)
red(T )] if and only if I0 = 0

[resp. I2
1 = 0 or I1 = 0].

Put P̃0 := n∗P0. Let SU2(X̃0, P̃0) be the moduli stack of 2-bundles
on X̃0 with determinant P̃0. More precisely, for an affine B0-scheme T ,
objects of the groupoid SU2(X̃0, P̃0)(T ) are 2-bundles F on X̃0 ×B0 T

together with an isomorphism ∧2F → pr∗1P̃0.
Put σi := (Pi, id) : SU2(X̃0, P̃0) → X̃0 × SU2(X̃0, P̃0), i = 1, 2. On

X̃0 × SU2(X̃0, P̃0), we have the universal 2-bundle Funiv together with
the isomorphism ∧2Funiv → pr∗1P̃0. Note that we have the canonical
isomorphism σ∗

1pr∗1P̃0 � σ∗
2pr∗1P̃0 and thus the canonical isomorphism

θ : ∧2σ∗
1Funiv

∼−→ ∧2σ∗
2Funiv . This allows us to consider the stack

KSL2(σ∗
1Funiv , σ∗

2Funiv).

Theorem 6.4. We have an isomorphism of B0-stacks

(6.2) GSL2B(X0;P0)(0) � KSL2(σ∗
1Funiv , σ∗

2Funiv).

Next consider the moduli stack SU2(X̃0, P̃0 ⊗O
eX0

(−P1 + P2)). On
X̃0 × SU2(X̃0, P̃0 ⊗ O

eX0
(−P1 + P2)), we have the universal 2-bundle

Wuniv with the isomorphism ∧2Wuniv � pr∗1(P̃0 ⊗ O
eX0

(−P1 + P2)).
Let τi denote the morphism (Pi, id) : SU2(X̃0, P̃0 ⊗O

eX0
(−P1 + P2)) →

X̃0 × SU2(X̃0, P̃0 ⊗O
eX0

(−P1 + P2)).

Theorem 6.5. We have an isomorphism of B0-stacks

(6.3) GSL2B(X0;P0)
(1)
red � PGl(τ∗

1Wuniv , τ∗
2Wuniv).

(See §8 and §9 of [K1] for the definition of PGl.)

Remark 6.6. For i = 1, 2, let X ′
i be the nodal curve obtained

from X̃0 and R1 ∪ · · · ∪ Ri by identifying the point P2 ∈ X̃0 and b ∈
R1 ∪ · · · ∪ Ri(here we are using the notation in the paragraph 2.1). Let
g : X ′

i → Xi be the morphism that glues the points P1 and a. In the
proof of Theorem 6.5, for a bundle E on Xi, we first consider g∗E plus
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the associated gluing data between g∗E|P1 and g∗E|a. At this point, the
symmetry in P1 and P2 breaks. This is why the statement of Theorem
6.5 is not symmetric with respect to P1 and P2.

The rest of this section is devoted to the proof of the above two
theorems.

Definition 6.7. Let
Ỹ X̃0 ×B0 T�h̃

T

�
�

�
�

�
��

s1, s2

�
�

�
�

�
��

P1 × id,
P2 × id

pr2
pr2 ◦ h̃

be a modification of the two-pointed curve (X̃0; P1, P2) over T (cf. Def-
inition 4.4 of [K2]). It is said to be bi-simple if and only if for any
t : Spec κ(t) → T either (i) or (ii) below holds.

(i) Ỹ ×T Spec κ(t) h̃×t−−→ X̃0 ×B0 Spec κ(t) is an isomorphism.
(ii) Both (h̃ × t)−1(P1) and (h̃ × t)−1(P2) are isomorphic to P1

κ(t).

Definition 6.8. The B0-groupoid GSL2BD(X̃0, P1, P2; P̃0)(0) of
Gieseker-SL2-bundle data is defined as follows.

For an affine B0-scheme T , an object of GSL2BD(X̃0, P1, P2; P̃0)(0)(T )
is the following collection of data.

(i) A bi-simple modification (Ỹ, s1, s2, h̃) of (X̃0, P1, P2) over T ,

Ỹ X̃0 ×B0 T�h̃

T

�
�

�
�

�
��

s1, s2

�
�

�
�

�
��

P1 × id,
P2 × id

pr2
pr2 ◦ h̃

(ii) A 2-bundle Ẽ on Ỹ ,
(iii) An isomorphism ξ : s∗1Ẽ

∼−→ s∗2Ẽ ,
(iv) An isomorphism

η : O(−s1 − s2) ⊗ (pr1 ◦ h̃)∗O(P1 + P2)
∼−→ (∧2Ẽ)∨ ⊗ (pr1 ◦ h̃)∗P̃0.

Furthermore, we require that they satisfy the following condition.
(a) The pair (Ẽ , ξ : s∗1Ẽ

∼−→ s∗2Ẽ) is admissible for (Ỹ, s1, s2, h̃) in the
sense of Definition 4.5 of [K2].

(b) The diagram (♥)
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s∗1

(
O(−s1−s2)⊗(pr1◦h̃)∗O(P1+P2)

)

s∗2

(
O(−s1−s2)⊗(pr1◦h̃)∗O(P1+P2)

)

s∗1(∧2Ẽ)∨⊗s∗1(pr1◦h̃)∗P̃0�s∗1(η)

s∗2(∧2Ẽ)∨⊗s∗2(pr1◦h̃)∗P̃0�s∗2(η)

O

�

	

s∗1(µ)

s∗2(µ)
	

(∧ξ)∨⊗(canonical)

commutes, where µ is the section of O(−s1−s2)⊗(pr1◦h̃)∗O(P1+P2) such
that its image by the canonical injection O(−s1−s2)⊗ (pr1◦ h̃)∗O(P1+
P2) ↪→ (pr1◦ h̃)∗O(P1+P2) is the pull-back by pr1 ◦ h̃ of the canonical
section of O

eX0
(P1 + P2). (This is the section defined in Construction

5.2 in [K2].)
Morphisms of the groupoid GSL2BD(X̃0, P1, P2; P̃0)(0)(T ) are de-

fined obviously.

Lemma 6.9. Let (Ỹ , s1, s2, h̃) be a bi-simple modification of the
2-pointed curve (X̃0, P1, P2) over an affine B0-scheme T . Let L be a
line bundle on Ỹ and λ a section of L such that λ|

eY×T Specκ(t) �= 0 for

∀t ∈ T . Put M := O(−s1 − s2) ⊗ (pr1 ◦ h̃)∗O(P1 + P2) and µ the
canonical section defined in Definition 6.8(b). Assume that we have
L|
eY×T Specκ(t) � M|

eY×T Specκ(t) for ∀t ∈ T . Then there is a unique
isomorphism L � M in which λ and µ corrspond.

Proof. We may assume that T is of finite type over B0. We have
that OT

∼−→ (pr2 ◦ h̃)∗O
eY (cf. Lemma 3.9 of [K2]). If we have two

isomorphisms αi : L → M (i = 1, 2) with αi(λ) = µ, then α2 ◦ α−1
1 is

(pr2 ◦ h̃)∗(a)-multiplication for some a ∈ OT . We have the commutative
diagram

(6.4)

OT = (pr2 ◦ h̃)∗O
eY

(pr2◦h̃)∗(µ)−−−−−−−→ (pr2 ◦ h̃)∗M∥∥∥ ⏐⏐�×a

(pr2 ◦ h̃)∗O
eY

(pr2◦h̃)∗(µ)−−−−−−−→ (pr2 ◦ h̃)∗M.

Since dim H0(M|
eY×T Spec κ(t)) = 1 and µ|

eY×T Specκ(t) �= 0 for ∀t ∈ T ,

(pr2 ◦ h̃)∗(µ) is an isomorphism by base-change theorem. So a = 1,
which proves the uniqueness. By the uniqueness it suffices to prove
the lemma locally on T . Moreover it suffices to prove that for any
closed point t ∈ T , there is a Zariski open neighborhood U ⊂ T such
that L|(pr2◦h̃)−1(U) � M|(pr2◦h̃)−1(U). In fact, if so, we can adjust the
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isomorphism so that λ and µ correspond because (pr2 ◦ h̃)∗(λ) : OT →
(pr2 ◦ h̃)∗L and (pr2 ◦ h̃)∗(µ) : OT → (pr2 ◦ h̃)∗M are isomorphisms.

Claim 6.9.1. If T = Spec A, where (A, m) is an artinian local C-
algebra with C

∼−→ A/m, then the lemma holds.

Proof of Claim 6.9.1. We prove the claim by induction on l =
dimC A. If l = 1, by assumption the calim is true. If l > 1, let I ⊂ A

be an ideal of length one and put T ′ := Spec A/I and Ỹ ′ := Ỹ ×T T ′.
By induction we have L|

eY′ � M|
eY′ in which λ|

eY′ and µ|
eY′ correpond.

L and M are two extensions over Ỹ of the line bunle L|
eY′(� M|

eY′)
on Ỹ ′. We can express their difference by an element e ∈ H1(Ỹ ×T

Spec A/m,O). Since the sections λ|
eY′ and µ|

eY′ extend over Ỹ ′, we have
e · (µ|

eY×T Spec A/m
) = 0 in H1(Ỹ ×T Spec A/m,M|

eY×T SpecA/m
). Since

H1(Ỹ ×T Spec A/m,O)
µ−→ H1(Ỹ ×T Spec A/m,M|

eY×T Spec A/m
) is bijec-

tive, we have e = 0, by which we have L � M. Adjusting this so that λ
and µ correspond, we prove the claim. Q.E.D.

Take a closed point t ∈ T . Since we have (pr2◦h̃)∗HomO
eY
(L,M)⊗OT

ÔT,t
∼−→ lim←−Hom(L ⊗OT OT /mn,M⊗OT OT /mn), the above claim im-

plies that we can find ϕ ∈ (pr2 ◦ h̃)∗HomO
eY
(L,M) ⊗OT ÔT,t such that

ϕ ⊗OT OT,t/m : L|
eY×T SpecOT,t/m

→ M|
eY×T SpecOT,t/m

is an isomor-
phism. Extending ϕ over some Zariski open neighborhood of t, we com-
plete the proof of the lemma. Q.E.D.

Proposition 6.10. We have an isomorphism of B0-groupoids

GSL2B(X0;P0)(0)
∼−→ GSL2BD(X̃0, P1, P2; P̃0)(0).

Proof. It suffices to establish the isomorphism over the full subcat-
egory of affine schemes of finite type over B0.

Construction ofΦ:GSL2B(X0;P0)(0)→GSL2BD(X̃0, P1, P2; P̃0)(0).
Let T be an affine scheme of finite type over B0 and let (Y h−→

X0 × T, E ,∧2E δ−→ (pr1 ◦ h)∗P0) be an object of GSL2B(X0;P0)(0)(T ).
Let Π0 ⊂ Y be as in the paragraph 6.2. In our situation Π0 is a section
over T . Let Ỹ g−→ Y be the blowing-up along Π0. It is easily checked that
Ỹ is flat over T and that there is a unique morphism h̃ : Ỹ → X̃0 × T
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satisfying (n × idT ) ◦ h̃ = h ◦ g.

(6.5)

Ỹ h̃−−−−→ X̃0 × T

g

⏐⏐� ⏐⏐�n×id

Y h−−−−→ X0 × T

g−1(Π0) consists of the disjoint two sections s1 and s2 over T such that
h̃ ◦ si = (Pi, idT ). Then (h̃ : Ỹ → X̃0 × T, s1, s2) is a bi-simple modi-
fication of (X̃0, P1, P2) over T . Put Ẽ := g∗E . Let ξ be the composite
of natural isomorphisms s∗1Ẽ � s∗1g

∗E � Π∗
0E � s∗2g

∗E � s∗2Ẽ . We have
g∗(δ) : ∧2Ẽ � g∗ ∧2 E → g∗(pr1 ◦ h)∗P0 � (pr1 ◦ h̃)∗P̃0, which induces a
morphism λ : O

eY → (∧2Ẽ)∨ ⊗ (pr1 ◦ h̃)∗P̃0. By Lemma 6.9, there is a
unique isomorphism η : M := O(−s1 − s2) ⊗ (pr1 ◦ h̃)∗O(P1 + P2)

∼−→
(∧2Ẽ)∨ ⊗ (pr1 ◦ h̃)∗P̃0 such that λ corresponds to the canonical sec-
tion µ of M. Since λ is a pull-back of the morphism on Y, the dia-
gram (♥) in Definition 6.8 commutes. These data define an object of
GSL2BD(X̃0, P1, P2; P̃0)(0)(T ).

Construction ofΨ:GSL2BD(X̃0, P1, P2; P̃0)(0)→GSL2B(X0;P0)(0).

Given an object of GSL2BD(X̃0, P1, P2; P̃0)(0)(T ), ((Ỹ h̃−→ X̃0 ×
T, s1, s2), Ẽ , s∗1Ẽ

ξ−→ s∗2Ẽ , η : O(−s1 − s2) ⊗ (pr1 ◦ h̃)∗O(P1 + P2)
∼−→

(∧2Ẽ)∨ ⊗ (pr1 ◦ h̃)∗P̃0), let g : Ỹ → Y be a cokernel of T
s1−→−→
s2

Ỹ. There

is a unique T -morphism h : Y → X0 × T with h ◦ g = (n× idT ) ◦ h̃. Put

Π0 := g ◦si and E := Ker(g∗Ẽ
s#
2 −ξ◦s#

1−−−−−−→ s∗2Ẽ). The commutativity of the
diagram (♥) in Definition 6.8 induces a morphism O → (∧2E)∨ ⊗ (pr1 ◦
h)∗P0, which gives δ : ∧2E → (pr1 ◦ h)∗P0.

We can see that the construction Φ and Ψ commute with isomor-
phisms and base changes and that they are inverses to each other.

Q.E.D.

Proposition 6.11. We have an isomorphism of B0-groupoids

GSL2BD(X̃0, P1, P2; P̃0)(0) � KSL(σ∗
1Funiv , σ∗

2Funiv).

Lemma 6.12. Let S be a locally noetherian scheme, and let π :
C → S be a proper, flat morphism with connected geometric fibers of
dimension one, and let s : S → C be a section over S such that s(S)
is in the smooth locus of π. Let (C′, f, π′, s′) be a simple modification
of (C, π, s) (cf. Definition 5.1 of [K2]). Let n ≥ 1 and 1 ≤ d ≤ n,
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and let E ′ be a rank n vector bundle on C′ that is admissible of degree d
for (C′, f, π, s′) (cf. Definition 7.1 of [K2]). Put N := (f∗OC(s))(−s′),

N := s′∗N and F := (f∗E ′(−s′))(s). Let g : s′∗E ′
⊗N
�−→ s∗F be the bf-

morphism of rank n − d constructed in §7 of [K2]. Then there exists a
unique isomorphism ρ : ∧nE ′ ∼−→ f∗(∧nF)⊗N−d such that s′∗(ρ) = ∧ng
(See §6 of [K2] for the definition of ∧ng).

Proof. By Lemma 7.6 of [K2], for ∀x ∈ C there exists an open
neighborhood U of x such that we have an isomorphims α : E ′|f−1(U) →
(N−1)⊕d ⊕O⊕n−d

f−1(U). Let β be the composite of isomorphims

F|U =f∗(E ′⊗N )|U →O⊕d⊕(f∗(N )|U )⊕n−d (1⊕d,f∗(ν)⊕n−d)←−−−−−−−−−−−O⊕d
U ⊕O⊕n−d

U ,

where ν is the canonical section of N . We define the morphism ρ|f−1(U) :
∧nE ′|f−1(U) → f∗(∧nF)⊗N−d|f−1(U) by (∧nα) ◦ (f∗(∧nβ)⊗ idN−d)−1.
One can check that ρ|f−1(U) is independent of the choice of α. Therefore
we have globally an isomorphism ρ : ∧nE ′ ∼−→ f∗(∧nF)⊗N−d. s′∗(ρ) =
∧ng follows from Lemma 7.5 of [K2]. The uniqueness follows from the
isomorphism π′

∗(OC′) ∼−→ s′∗OC′ . Q.E.D.

Proof of Proposition 6.11.
Construction of GSL2BD(X̃0, P1, P2; P̃0)(0)→KSL2(σ∗

1Funiv , σ∗
2Funiv).

Let T be an affine B0-scheme. As in the proof of Proposition 6.10,

we may assume that T is of finite type over B0. Let ((Ỹ h̃−→ X̃0 ×
T, s1, s2), Ẽ , s∗1Ẽ

ξ−→ s∗2Ẽ , η : M := O(−s1−s2)⊗ (pr1 ◦ h̃)∗O(P1 +P2)
∼−→

(∧2Ẽ)∨ ⊗ (pr1 ◦ h̃)∗P̃0) be an object of GSL2BD(X̃0, P1, P2; P̃0)(0)(T ).
Let µ be the canonical section of M. Put F := h̃∗(Ẽ ⊗M), Mi := s∗iM
and µi := s∗i (µ). Then by §7 of [K2], we have bf-morphisms of rank one

αi : s∗i Ẽ
⊗Mi
�−→ (Pi, idT )∗F . Taking ξ into account, we have diagram (♦),

(P1, idT )∗F (P2, idT )∗F

s∗1Ẽ s∗2Ẽ�
ξ

	 	

α1 α2

⊗M1 ⊗M2

�

By Lemma 6.12, we have the natural isomorphism ∧2F � h̃∗(∧2Ẽ ⊗M).
Combining this with h̃∗(η), we have the isomorphism ζ : ∧2F ∼−→ pr∗1P̃0
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such that (Pi, idT )∗(ζ) is the composite

∧2(Pi, id)∗F ∧−2αi−−−−→ (∧2s∗i Ẽ) ⊗ M1

s∗
i (η⊗id∧2

eE)
−−−−−−−−→ s∗i (pr1 ◦ h̃)∗P̃0 = (Pi, idT )∗pr∗1P̃0.

There is a unique isomorphism v : M1 → M2 such that the composite

(P1, idT )∗pr∗1P̃0
(P1,idT )∗(ζ)−1

−−−−−−−−−−→ (P1, idT )∗ ∧2 F
∧−2α1−−−−→ ∧2s∗1Ẽ ⊗ M1

∧2ξ⊗v−−−−→ ∧2s∗2Ẽ ⊗ M2

(∧−2α2)−1

−−−−−−−→ ∧2(P2, idT )∗F (P2,idT )∗(ζ)−−−−−−−−→ (P2, idT )∗pr∗1P̃0

is the canonical morphism. Moreover by the diagram (♥), we have
v(µ1) = µ2. The admissibility of the pair (Ẽ , ξ) implies that

∩2
i=1 Ker(s∗i Ei → (Pi, idT )∗F) = {o}.

Therefore these data give an object of KSL2(σ∗
1Funiv , σ∗

2Funiv)(T ).
Construction of KSL2(σ∗

1Funiv , σ∗
2Funiv)→GSL2BD(X̃0, P1, P2; P̃0)(0).

Take an object of KSL2(σ∗
1Funiv , σ∗

2Funiv)(T ), that is, the following
data:

• a 2-bundle F on X̃0 × T ;
• an isomorphism ζ : ∧2F ∼−→ pr∗1P̃0;
• two line bundles M1, M2 on T and their sections µ1, µ2;
• an isomorphism v : M1

∼−→ M2 satisfying v(µ1) = µ2;
• two line bundles E1, E2 on T ;
• an isomorphism ξ : E1

∼−→ E2;

• two bf-morphisms αi : Ei

⊗Mi
�−→ (Pi, idT )∗F , i = 1, 2,

such that
(6.6)

ξ (Ker(E1[t] → (P1, idT )∗F [t])) ∩ Ker(E2[t] → (P2, idT )∗F [t]) = {o},

and the diagram

(6.7)

∧2E1 ⊗ M1
∧2ξ⊗v−−−−→ ∧2E2 ⊗ M2

∧2α1

�⏐⏐ �⏐⏐∧2α2

∧2(P1, idT )∗F ∧2(P2, idT )∗F

(P1,idT )∗(ζ)

⏐⏐� ⏐⏐�(P2,idT )∗(ζ)

(P1, idT )∗pr∗1P̃0
canonical isom.−−−−−−−−−−→ (P2, idT )∗pr∗1P̃0
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commutes. Making use of the bf-morphisms α1 and α2, we obtain a
bi-simple modification (h̃ : Ỹ → X̃0 × T, s1, s2)

Ỹ X̃0 ×B0 T�h̃

T

�
�

�
�

�
��

s1, s2

�
�

�
�

�
��

P1 × id,
P2 × id

pr2
pr2 ◦ h̃

plus isomorphisms εi : s∗iM
∼−→ Mi with εi(µ) = µi by §5 of [K2],

where M := O(−s1 − s2)⊗ (pr1 ◦ h̃)∗O(P1 + P2) and µ is the canonical
section of M. By Construction 7.1 in [K2], there exists a 2-bundle Ẽ
on Ỹ together with isomorphisms h̃∗(Ẽ ⊗ M) � F and s∗i Ẽ � Ei such
that they give rise to the bf-morphisms αi. Ẽ and the isomorphisms are
unique up to unique isomorphism by Lemma 7.7 of [K2]. By Lemma
6.12, we have a unique isomorphism β : M ∼−→ (∧2Ẽ)∨ ⊗ ∧2h̃∗F such
that s∗i (β)⊗1∧2

eE = 1M⊗ (∧2αi). Put η := (1(∧2
eE)∨ ⊗ h̃∗(ζ))◦β : M ∼−→

(∧2Ẽ)∨⊗(pr1◦h̃)∗P̃0. ξ : E1
∼−→ E2 induces the isomorphism s∗1Ẽ

∼−→ s∗2Ẽ ,
which, by abuse of notation, we denote also by ξ. Then by (6.6), (Ẽ , ξ)
is admissible for the above bi-simple modification. The diagram (6.7)
implies the commutativity of the diagram (♥) in Definition 6.8. Thus
these data give an object of GSL2BD(X̃0, P1, P2; P̃0)(0)(T ).

One can check that the above constructions commute with iso-
morphisms and base-changes and that they are inverses to each other.

Q.E.D.

Sketch of proof of Theorem 6.5. The proof is analogous to that of
Theorem 6.4. Here we shall deal with only one direction, that is, Φ :
GSL2B(X0;P0)

(1)
red → PGl(τ∗

1Wuniv , τ∗
2Wuniv) and leave the construc-

tion of its inverse to the reader.
Let T be an affine scheme of finite type over B0. Take an object

(h : Y → X0 × T, E , δ : ∧2E → (pr1 ◦ h)∗P0) of GSL2B(X0;P0)
(1)
red(T ).

By the definition of GSL2B(X0;P0)
(1)
red, (pr2 ◦ h)|Π1 : Π1 → T is an

isomorphism, where Πi is the one described in the paragraph 6.2. Let
g : Ỹ → Y be the blowing-up along Π1. Let h̃ : Ỹ → X̃0×T be such that
(n× idT )◦ h̃ = h◦g. g−1(Π1) consists of two sections of Ỹ → T , and let s̃

be one of them such that h̃◦s̃ = (P2, idT ). Put Ẽ := g∗E . Then by Propo-

sition 8.6 of [K2], we have a family of nodal curves Z π′
−→ T over T with a

section s′ and a T -morphism f2 : Ỹ → Z and f1 : Z → X̃0×T such that
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f2 is a simple modification of (Z, π′, s′) and that f1 is a simple modifica-
tion of (X̃0 ×T, pr2, (P2, idT )) and that Ẽ is admissible of degree one for
(Z, π′, s′) and that F1 := (f2∗Ẽ(−s̃))(s′) is admissible of degree two for
(X̃0 ×T, pr2, (P2, idT )) (See Definition 7.1 of [K2]). Then Constructions
9.1 and 9.2 of [K2] give a 2-bundle F := f1∗(F1(−s′))((P2, idT )(T ))

on X̃0 × T and bf-morphisms g1 : (P1, idT )∗F
⊗(L1
λ1)

�−→ F1 and g0 :

F1

⊗(L0
λ0)
�−→ (P2, idT )∗F , where F1 := s′∗F1. Since (pr2 ◦h)|Π2 : Π2 → T

is also an isomorphism by Corollary 5.9, we have λ0 = 0. Let M be
the line bundle (pr1 ◦ f1 ◦ f2)∗O

fX0
(P1 + P2) ⊗ f∗

2OZ(−s′) ⊗ OY(−s̃).
If 1 ∈ pr∗1OfX0

(P1 + P2) denotes the canonical section, then f∗
11 ∈

f∗
1 pr∗1OfX0

(P1 + P2) vanishes along s′ (in fact it vanishes on f−1
1 ({P2}×

T )), thus it defines a section µ′ of f∗
1 pr∗1OfX0

(P1 + P2) ⊗OZ(−s′). The
section f∗

2 µ′ ∈ f∗
2 f∗

1 pr∗1OfX0
(P1 +P2)⊗f∗

2OZ(−s′) vanishes on s̃, thus it
defines a section µ of M. Let λ be the global section of (∧2E)∨ ⊗ h∗P0

induced by δ. Then just as Lemma 6.9 we have the unique isomorphism

(6.8) (∧2Ẽ)∨ ⊗ h̃∗P̃0 � M

in which g#(λ) and µ correspond. The isomorphism (6.8) and Lemma
6.12 give the isomorphism ∧2F � pr∗1(P̃0 ⊗O(−P1 + P2)). These data
determine an object of PGl(τ∗

1Wuniv , τ∗
2Wuniv)(T ). Q.E.D.

§7. Appendix

In this appendix, we gather several propositions that are used in
this paper.

Proposition 7.1. Let k be a field. Let Λ be a complete noetherian
local k-algebra with maximal ideal µ such that k

∼−→ Λ/µ. Let A [resp.
Â] be the category of artinian local Λ-algebras [resp. complete noetherian
local Λ-algebras] having residue field k. Let F be a functor from A to
the category of sets. Assume that

(a) F has a hull,
(b) for any ideal J of Λ with µ ⊃ J ⊃ µ2 and dimk µ/J = 1, we

have F (Λ/J) = φ.

Assume that we are given S ∈ Â and hS(:= Hom(S,−)) u−→ F such that
(i) as a k-algebra, S is a ring of formal power series over k,
(ii) hS((Λ/µ)[ε]) � F ((Λ/µ)[ε]), where (Λ/µ)[ε] is the Λ/µ-algebra

with ε2 = 0.
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Then hS
u−→ F is a hull.

Proof. By (a) we can find a hull hR
v−→ F , where R ∈ Â. Then we

have a morphism ϕ : R → S in Â such that v ◦hϕ = u, where hϕ : hS →
hR is the morphism induced by ϕ. Let m, n be the maximal ideals of
R and S, respectively. By (ii), the morphism m/µR + m2 ϕ̄−→ n/µS +
n2 induced by ϕ is an isomorphism. By (b) Homloc Λ−alg(R, Λ/J) =
Homloc Λ−alg(S, Λ/J) = φ, for any ideal J of Λ as in (b). This implies
that µR ⊂ m2 and µS ⊂ n2. (In fact, suppose that µR � m2 for example.
Then we can find an element x ∈ µ such that the image of x in R/m2 is
not zero. So we can find an ideal m ⊃ a ⊃ m2 with dimk m/a = 1 such
that the image of x in R/a is not zero. Λ → R/a is surjective, hence
R/a is of the form Λ/J with an ideal J of Λ as in (b). This contradicts
Hom(R, Λ/J) = ∅.) Therefore ϕ induces the isomorphism ϕ̄ : m/m2 →
n/n2. By (i), there exists a local k-algebra homomorphism θ : S → R
such that the induced morphism θ̄ : n/n2 → m/m2 is ϕ̄−1. Then θ is
surjective and ϕ ◦ θ is bijective. Hence ϕ is an isomorphism. Q.E.D.

Lemma 7.2. Let R be a commutative ring with identity. Let f ∈ R

and let R̂ be the (f)-adic completion of R. Then for any R-module M ,
the complex

(7.1) M
α−→ (M ⊗R R̂) ⊕ Mf

β−→ M ⊗R R̂f

is exact, where α(m) := (m⊗1, m) and β((m⊗a, m′

fN )) := m⊗a−m′⊗ 1
fN .

Moreover either if M is f -regular, or if R̂ is flat over R, then α is
injective.

Proof. Put T := Ker(M → Mf ), Mf/M := Coker(M → Mf) and
M := M/T . Then we have the natural morphism Mf/M � Mf/M .
Since M is f -regular, by Lemme 3(a) in [BL], we have TorR

1 (R̂, Mf/M) =
0. Hence we have the exact sequence

(7.2) 0 → (M/T )⊗R R̂ → Mf ⊗R R̂ → (Mf/M) ⊗R R̂ → 0.

Consider the commutative diagram
(7.3)
0 → T → M → Mf � M/Mf

ϕ ↓ ↓ ↓ ↓ ψ

T ⊗R R̂
θ→ M ⊗R R̂ → Mf ⊗R R̂ � (Mf/M) ⊗R R̂,

in which both top and bottom rows are exact. By Lemme 1 in [BL], ϕ
and ψ are bijective. This and diagram chasing prove the first part of the
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lemma. If M is f -regular or if R̂ is R-flat, then θ in the above diagram
is injective. This implies the latter part of the lemma. Q.E.D.

Proposition 7.3. Let k be a field. Let X be a scheme of finite
type over k and of pure dimension one. Let Pi (1 ≤ i ≤ N) be closed
points of X such that U := X − {P1, . . . , PN} is affine. Let mPi and
m̂Pi denote the maximal ideal of OX,Pi and ÔX,Pi respectively. Put
Qi := H0(SpecOX,Pi −{mPi},O) and Q̂i := H0(Spec ÔX,Pi −{m̂Pi},O).
For a quasi-coherent sheaf F on X, we have natural morphisms ρi :
H0(U,F) → FPi ⊗OPi

Q̂i and γi : FPi ⊗OPi
ÔPi → FPi ⊗OPi

Q̂Pi .
We define the complex C•(F) of k-vector spaces as follows. C0(F) :=
H0(U,F) ⊕ ⊕N

i=1(FPi ⊗OPi
ÔPi) and C1(F) := ⊕N

i=1(FPi ⊗OPi
Q̂i) and

Cm(F) = 0 for m �= 0, 1. d0 : C0(F) → C1(F) maps (sU , (si)N
i=1) ∈

C0(F) to (ρi(sU ) − γi(si))N
i=1 and dm = 0 for m �= 0. Then we have

(1) If 0 → F ′ → F → F ′′ → 0 is an exact sequence of quasi-coherent
sheaves, we have a long exact sequence of cohomologies Hm(C•(−)).
(2) For a quasi-coherent sheaf F , we have an isomorphism Hm(X,F) →
Hm(C•(F)) that is functorial in F and compatible with long exact se-
quences.

Proof. (1) follows easily from the flatness of ÔPi and Qi over OPi .
We have the natural morphism H0(X,F) → H0(C•(F)). Let fi ∈ mPi be
such that OX,Pi/(fi) is artinian. Then we have the isomorphisms Qi �
(OX,Pi)fi and Q̂i � (ÔX,Pi)fi . Then applying Lemma 7.2, we know
that H0(X,F) → H0(C•(F)) is bijective. To establish an isomorphism
H1(X,F) → H1(C•(F)), it suffices to prove H1(C•(F)) = 0 if F is
a flasque quasi-coherent sheaf. Suppose F is flasque. Then the maps
FPi → F ⊗OPi

Qi are surjective, hence so are γi (1 ≤ i ≤ N). Hence
H1(C•(F)) = 0. Q.E.D.
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Vector bundles on curves and theta functions

Arnaud Beauville

Abstract.

This is a survey lecture on the “theta map” from the moduli space of
SLr-bundles on a curve C to the projective space of r-th order theta functions
on JC. Some recent results and a few open problems about that map are
discussed.

Introduction

These notes survey the relation between the moduli spaces of vector
bundles on a curve C and the spaces of (classical) theta functions on the
Jacobian J of C. The connection appears when one tries to describe
the moduli space Mr of rank r vector bundles with trivial determinant
as a projective variety in an explicit way (as opposed to the somewhat
non-constructive way provided by GIT). The Picard group of the moduli
space is infinite cyclic, generated by the determinant line bundle L ; thus
the natural maps from Mr to projective spaces are those defined by the
linear systems |Lk|, and in the first instance the map ϕL : Mr ��� |L|∗.
The key point is that this map can be identified with the theta map

θ : Mr ��� |rΘ|

which associates to a general bundle E ∈ Mr its theta divisor ΘE , an
element of the linear system |rΘ| on J – we will recall the precise defi-
nitions below. This description turns out to be sufficiently manageable
to get some information on the behaviour of this map, at least when r
or g are small.

We will describe the results which have been obtained so far – most
of them fairly recently. Thus these notes can be viewed as a sequel to
[B2], though with a more precise focus on the theta map. For the con-
venience of the reader we have made this paper independent of [B2], by
recalling in §1 the necessary definitions. Then we discuss the indetermi-
nacy locus of θ (§2), the case r = 2 (§3), the case g = 2 (§4), and the
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higher rank case (§5). Finally, as in [B2] we will propose a small list of
questions and conjectures related to the topic (§6).

§1. The moduli space Mr and the theta map

(1.1) Throughout this paper C will be a complex curve of genus
g ≥ 2. We denote by J its Jacobian variety, and by Jk the variety
(isomorphic to J = J0) parametrizing line bundles of degree k on C.

For r ≥ 2, we denote by Mr the moduli space of semi-stable vector
bundles of rank r and trivial determinant on C. It is a normal, projec-
tive, unirational variety, of dimension (r2 − 1)(g− 1). The points of Mr

correspond to isomorphism classes of vector bundles with trivial deter-
minant which are direct sums of stable vector bundles of degree zero.
The singular locus consists precisely of those bundles which are decom-
posable (with the exception of M2 in genus 2, which is smooth). The
corresponding singularities are rational Gorenstein – that is, reasonably
mild.

(1.2) The Picard group of Mr has been thoroughly studied in
[D-N]; let us recall the main results. Fix some L ∈ Jg−1, and consider
the reduced subvariety

∆L := {E ∈ Mr | H0(C, E ⊗ L) �= 0} .

Then ∆L is a Cartier divisor in Mr; the line bundle L := OMr (∆L),
called the determinant bundle, is independent of the choice of L and
generates Pic(Mr). The canonical bundle of Mr is L−2r.

(1.3) To study the rational map ϕL : Mr ��� |L|∗ associated to
the determinant line bundle, the following construction is crucial. For a
vector bundle E ∈ Mr, consider the locus

ΘE := {L ∈ Jg−1 | H0(C, E ⊗ L) �= 0} .

Since χ(E ⊗ L) = 0 for L in Jg−1, it is readily seen that ΘE is in a
natural way a divisor in Jg−1 – unless it is equal to Jg−1. The latter
case (which may occur only for special bundles) is a serious source of
trouble – see §2 below. In the former case we say that E admits a theta
divisor; this divisor belongs to the linear system |rΘ|, where Θ is the
canonical Theta divisor in Jg−1. In this way we get a rational map

θ : Mr ��� |rΘ| .

Proposition 1.4. [BNR] There is a canonical isomorphism |L|∗ ∼−→ |rΘ|
which identifies ϕL to θ.
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As a consequence, the base locus of |L| is the locus of bundles E
in Mr such that H0(C, E ⊗ L) �= 0 for all L ∈ Jg−1. This is also the
indeterminacy locus of θ (because |L| cannot have a fixed component).

(1.5) The r-torsion subgroup J [r] of J acts on Mr by tensor prod-
uct; it also acts on |rΘ| by translation, and the map θ is equivariant with
respect to these actions. In particular, the image of θ is J [r]-invariant.

(1.6) The case when θ is a morphism is much easier to analyze:
we know then that it is finite (since |L| is ample, θ cannot contract any
curve), we know its degree by the Verlinde formula, etc. Unfortunately
there are few cases where this is known to happen:

Proposition 1.6. The base locus of |L| is empty in the following cases:
a) r = 2 ;
b) r = 3, g = 2 or 3 ;
c) r = 3, C is generic.

All these results except the case r = g = 3 are due to Raynaud
[R]. While a) and the first part of b) are easy, c) and the second part of
b) are much more involved. We will discuss the latter in §5 below. The
proof of c) is reduced, through a degeneration argument, to an analogous
statement for torsion-free sheaves on a rational curve with g nodes.

§2. Base locus

(2.1) Recall that the slope of a vector bundle E of rank r and degree
d is the rational number µ = d/r. It is convenient to extend the definition
of the theta divisor to vector bundles E with integral slope µ, by putting
ΘE := {L ∈ Jg−1−µ | H0(C, E ⊗L) �= 0}. If δ is a line bundle such that
δ⊗r ∼= detE, the vector bundle E0 := E ⊗ δ−1 has trivial determinant
and ΘE0 ⊂ Jg−1 is the translate by δ of ΘE ⊂ Jg−1−µ.

(2.2) We have the following relations between stability and exis-
tence of the theta divisor:

(2.2 a) If E admits a theta divisor, it is semi-stable;
(2.2 b) If moreover ΘE is a prime divisor, E is stable.

Indeed let F be a proper subbundle of E. If µ(F ) > µ(E), the Riemann-
Roch theorem implies H0(C, F⊗L) �= 0, and therefore H0(C, E⊗L) �= 0,
for all L in Jg−1−µ. If µ(F ) = µ(E), one has ΘE = ΘF + ΘE/F , so that
ΘE is not prime.

(2.3) The converse of these assertions do not hold. We will see in
(2.6) examples of stable bundles with a reducible theta divisor. The first
examples of stable bundles with no theta divisor are due to Raynaud [R].
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They are restrictions of projectively flat vector bundles on J . Choose a
theta divisor Θ on J . The line bundle OJ(nΘ) is invariant under the
n-torsion subgroup J [n] of J . The action of J [n] does not lift to OJ(nΘ),
but it does lift to the vector bundle H0(J,OJ(nΘ))∗ ⊗C OJ (nΘ). Thus
this vector bundle is the pull back under the multiplication nJ : J → J
of a vector bundle En on J . Restricting En to the curve C embedded in
J by an Abel-Jacobi mapping gives the Raynaud bundle Rn. It is well
defined up to a twist by an element of J , has rank ng and slope g

n . It
has the property that H0(C, Rn ⊗ α) �= 0 for all α ∈ J . Thus if n | g
Rn has integral slope and no theta divisor. More generally, Schneider
has shown that a general vector bundle on C of rank ng, slope g−1 and
containing Rn is still stable [S2]. This gives a very large dimension for
the base locus of |L|, approximately (1 − 1

n ) dimMr if r = ng. Some
related results are discussed in [A].

(2.4) Another series of examples have been constructed by Popa
[P]. Let L be a line bundle on C spanned by its global sections. The
evaluation bundle EL is defined by the exact sequence

0 → E∗
L −→ H0(L) ⊗C OC

ev−→ L → 0 ;

it has the same degree as L and rank h0(L)−1. In particular, if we choose
deg L = g + r with r ≥ g + 2, EL has rank r and slope µ = 1 + g

r . Then,
for all p such that 2 ≤ p ≤ r − 2 and pµ ∈ Z, the vector bundle ΛpEL

does not admit a theta divisor (see [S1]). For instance, when r = 2g,
Λ2EL gives a base point of |L| in Mg(2g−1).

(2.5) An interesting limit case of this construction is when µ = 2;
this occurs when L = KC , or r = g. The first case has been studied in
[FMP]. It turns out that the vector bundle ΛpEK has a theta divisor,
equal to Cg−p−1 − Cp (here Ck denotes the locus of effective divisor
classes in Jk). While the proof is elementary for p = 1, it is extremely
involved for the higher exterior powers: it requires going to the moduli
space of curves and computing various divisor classes in the Picard group
of this moduli space. It remains a challenge to find a direct proof.

(2.6) The case deg L = 2g is treated in [B4], building on the results
of [FMP]. Here again ΛpEL admits a theta divisor, at least if L is general
enough; it has two components, namely Cg−p−1−Cp and the translate of
Cg−p−Cp−1 by the class [K⊗L−1]. These are the first examples defined
on a general curve of stable bundles with a reducible theta divisor.

(2.7) Since |L| has usually a large base locus, it is natural to look at
the systems |Lk| to improve the situation. There has been much progress
on this question in the recent years:
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Proposition 2.7. (i) [P-R] |Lk| is base point free on Mr for k ≥ [ r2

4 ].
(ii) [E-P] For k ≥ r2 + r, the linear system |Lk| defines an injective

morphism of Mr into |Lk|∗, which is an embedding on the stable locus.

On the other hand Popa [P] has observed that one should not be
too optimistic, at least if one believes in the strange duality conjecture
(see [B2]): this conjecture implies that for n | g the Raynaud bundle
Rn, twisted by an appropriate line bundle, is a base point of |Lk| when
k ≤ n(1 − n

g ).

§3. Rank 2

(3.1) In rank 2 the situation is now well understood. As pointed
out in (1.6), θ : M2 → |2Θ| is a finite morphism. In genus 2, θ is actually
an isomorphism onto P

3 [N-R1]. If C is hyperelliptic of genus g ≥ 3,
it follows from [D-R] and [B1] that θ factors through the involution ι∗

induced by the hyperelliptic involution and embeds M2/〈ι∗〉 into |2Θ|;
moreover the image admits an explicit geometric description [D-R].

(3.2) In the non-hyperelliptic case, after much effort we have now a
complete answer, which is certainly one of the highlights of the subject:

Theorem 3.2. If C is not hyperelliptic, θ : M2 ↪→ |2Θ| is an embedding.

The fact that θ embeds the stable locus of M2 is proved in [B-V1],
and the remaining part in [vG-I]. Both parts are highly nontrivial, and
involve some beautiful geometric constructions.

(3.3) Thus we can identify M2 with a subvariety of |2Θ| ∼= P
2g−1,

canonically associated to C, of dimension 3g − 3 (1.1). This variety is
invariant under the natural action of J [2] on |2Θ| (1.5). Its degree can
be computed from the Verlinde formula (see e.g. [Z], Thm. 1(iii)):

degM2 = (3g − 3)! 2g(2π)2−2gζ(2g − 2) ,

which gives degM2 = 1 for g = 2, 4 for g = 3, 96 for g = 4, etc.
The singular locus SingM2 is the locus of decomposable bundles in

M2 (1.1), which are of the form α⊕α−1, for α ∈ J ; the map α �→ α⊕α−1

identifies SingM2 to the Kummer variety K of J – that is, the quotient of
J by the involution α �→ α−1. The restriction of θ to K = SingM2 is the
classical embedding of K in |2Θ|, deduced from the map α �→ Θα +Θ−α

from J to |2Θ|.
(3.4) The case g = 3, which had been treated previously in [N-

R2], is particularly interesting: we obtain a hypersurface in |2Θ|, of
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degree 4, which is J [2]-invariant and singular along the Kummer variety.
Now Coble shows in [C2] that there is a unique such quartic (the J [2]-
invariance is actually superfluous, see [B5]). Thus in genus 3, the theta
map identifies M2 with the Coble quartic hypersurface.

Coble gives an explicit equation for this hypersurface, which we
now express in modern terms. Recall that Mumford’s theory of the
Heisenberg group allows us to find canonical coordinates (Xv)v∈V in the
projective space |2Θ|, where V is a 3-dimensional vector space over F2.
Then Coble equation reads:

α
∑

u∈V

X4
u +

∑

�={u,v}
αd(�) X2

u X2
v +

∑

P={t,u,v,w}
αd(P )XtXuXvXw = 0

where the second sum (resp. the third) is taken over the set of affine
lines (resp. planes) in V , and d(
) ∈ P(V ) (resp. d(P ) ∈ P(V ∗)) denotes
the direction of the line 
 (resp. of the plane P ).

In many ways the Coble quartic Q ⊂ P
7 can be seen as an analogue

of the Kummer quartic surface in P
3. Pauly has proved that Q shares

a famous property of the Kummer surface, the self-duality : the dual
hypersurface Q∗ ⊂ (P7)∗ is isomorphic to Q [Pa]. The proof is geometric,
and includes several beautiful geometric constructions along the way.

(3.5) In genus 4, M2 is a variety of dimension 9 and degree 96 in
P

15. Oxbury and Pauly have observed that there exists a unique J [2]-
invariant quartic hypersurface singular along M2 [O-P]. A geometric
interpretation of this quartic is not known.

(3.6) In arbitrary genus, the quartic hypersurfaces in |2Θ| contain-
ing M2 have been studied in [vG] and [vG-P]. Here is one sample of
their results:

Proposition 3.6. Assume that C has no vanishing thetanull. A J [2]-
invariant quartic form F on |2Θ| vanishes on M2 if and only if the
hypersurface F = 0 is singular along K.

(Note that though the action of J [2] on |2Θ| does not come from a
linear action, it does lift to the space of quartic forms on |2Θ|. Requiring
the invariance of F is stronger than the invariance of the corresponding
hypersurface.)

Van Geemen and Previato also describe the quartics containing
M2 in terms of the Prym varieties associated to C – this is related to
the Schottky-Jung configuration studied by Mumford.
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§4. Genus 2

(4.1) Going to higher rank, it is natural to look first at the genus
2 case. There a curious numerical coincidence occurs, namely

dimMr = dim |rΘ| = r2 − 1 .

Recall that θ is a finite morphism for r = 2, 3 (1.6). However
already for r = 4 it is only a rational map: the Raynaud bundle R2 has
rank 4 and slope 1 (2.3), so once twisted by appropriate line bundles of
degree −1 it provides finitely many (actually 16) base points of |L|.

We have seen that θ is an isomorphism in rank 2. In rank 3 there
is again a beautiful story, surprisingly analogous to the rank 2, genus 3
case. Indeed the Coble quartic has a companion, the Coble cubic : this
is the unique cubic hypersurface C ⊂ |3Θ|∗ singular along J1 embedded
in |3Θ|∗ by the linear system |3Θ| (this is implicit in Coble [C1]; see [B5]
for a modern explanation).

Theorem 4.2. The map θ : M3 → |3Θ| is a double covering; the
corresponding involution of M3 is E �→ ι∗E∗, where ι is the hyperelliptic
involution. The branch locus S ⊂ |3Θ| of θ is a sextic hypersurface,
which is the dual of the Coble cubic C ⊂ |3Θ|∗.

This is fairly straightforward (see [O]) except for the duality state-
ment, which was conjectured by Dolgachev and proved in [O] (a different
proof appears in [N]).

(4.3) Like for the Coble quartic we get an explicit equation for C by
choosing a level 3 structure on C, which provides canonical coordinates
(Xv)v∈V on |3Θ|∗, where V is a 2-dimensional vector space over F3.
Then from [C1] we get the following equation for C:

α0

∑

v∈V

X3
v + 6

∑

�={u,v,w}
αd(�)XuXvXw = 0 ,

where the second sum is taken over the set of affine lines in V , and
d(
) ∈ P(V ) is the direction of the line 
. The 5 coefficients (αi) satisfy
the Burkhardt equation

α4
0 − α0

∑

p∈P(V )

α3
p + 3

∏

p∈P(V )

αp = 0

(see [H], 5.3).

(4.4) In rank r ≥ 4 we start getting base points, and this causes a
lot of trouble – since θ is only rational, we cannot compute its degree
using intersection theory. However we still have:
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Proposition 4.5. [B6] The rational map θ : Mr ��� |rΘ| is generically
finite (or, equivalently, dominant).

The idea is to prove the finiteness of θ−1(Θ + ∆), where ∆ is a
general element of |(r − 1)Θ|. Any decomposable bundle in that fibre
must be of the form OC⊕F for some F ∈ Mr−1 with ΘF = ∆; reasoning
by induction on r we can assume that there are finitely many such F .
Thus the whole point is to control the stable bundles E with ΘE = Θ+∆.
Now the condition ΘE ⊃ Θ means by definition H0(C, E(p)) �= 0 for
all p ∈ C, or equivalently H0(C, E′(−p)) �= 0 for all p ∈ C, where
E′ := E∗ ⊗ K−1

C is the Serre dual of E. Since h0(E′) = r by stability
of E, this implies that the global sections of E′ generate a subbundle
of rank < r. A precise analysis of this situation allows us to prove that
there are only finitely many such bundles E with ΘE = Θ + ∆.

(4.6) The map θ is no longer finite in rank r ≥ 4, in fact it admits
some fibres of dimension ≥ [ r

2 ]− 1 [B6]. When r is even, this is seen by
restricting θ to the moduli space of symplectic bundles: the correspond-
ing moduli space has dimension 1

2r(r + 1), but its image under θ lands
in the subspace |rΘ|+ of |rΘ| corresponding to even theta functions of
order r, which has dimension r2

2 + 1. For r odd one considers bundles
of the form OC ⊕ F with F symplectic.

(4.7) It would be interesting to find the degree of θ, which is un-
known already in genus 4. For trivial reasons it has to grow exponentially
with g (see [B6], 2.3). Brivio and Verra have found a nice geometric in-
terpretation of the generic fibre of θ which might lead at least to a good
estimate for deg θ [B-V2].

§5. Higher rank and genus

Not much is known here. We already mentioned the following result
proved in [B6]:

Proposition 5.1. In genus 3 the map θ : M3 → |3Θ| is a finite
morphism.

The proof is rather roundabout, and gives actually a more inter-
esting result: the complete list of stable vector bundles E of rank 3 and
degree 0 such that ΘE ⊃ Θ. It turns out that each bundle in this list
admits a theta divisor. Since ΘE = J implies ΘE ⊃ Θ, Proposition 5.1
follows.

(5.2) The idea for establishing that list is to translate the problem
into a classical question of projective geometry. Similarly to the genus 2
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case, the condition ΘE ⊃ Θ means H0(E(p+ q)) �= 0 for all p, q in C, or
equivalently H0(E′(−p−q)) �= 0, where E′ := E∗⊗K−1

C is the Serre dual
of E. One checks that stability implies h0(E′) = 6 and h0(E′(−p)) = 3
for p general in C. This gives a family of 2-planes in P(H0(E′)) ∼= P

5,
parametrized by C, such that any two planes of the family intersect.
It turns out that the maximal such families have been classified in a
beautiful paper by Morin [M]: there are three families given by linear
algebra (like the 2-planes contained in a given hyperplane), and three
coming from geometry: the 2-planes contained in a smooth quadric, the
tangent planes to the Veronese surface, and the planes intersecting the
Veronese surface along a conic. Translating back this result in terms of
vector bundles gives the list we were looking for.

(5.3) This list also shows that θ−1(Θ + ΘF ) = {OC ⊕ F} for F
general in M2. This might indicate that θ has degree one; it would
follow if we could prove the injectivity of its tangent map at OC ⊕E for
some E in M2, perhaps in the spirit of [vG-I].

§6. Questions and conjectures

The list of results ends at this point, but let me finish with a (small)
list of open problems. About the general behaviour of the theta map,
the most optimistic statement would be:

Speculation 6.1. For g ≥ 3, θ is generically injective if C is not hyper-
elliptic, and generically two-to-one onto its image if C is hyperelliptic.

Note that in the hyperelliptic case θ factors as in thm. 4.2 through
the non-trivial involution E �→ ι∗E∗. Admittedly the evidence for 6.1 is
very weak: the only case where it is known is in rank 2.

As for base points, Proposition 1.6 leads naturally to:

Conjecture 6.2. Every bundle E ∈ M3 has a theta divisor.

(6.3) There exists an integer r(C) such that θ is a morphism for
r < r(C) but only a rational map for r ≥ r(C) (observe that if E ∈ Mr

has no theta divisor, so does E ⊕F for any F in Ms, s ≥ 1). We know
very little about this integer: we have r(C) = 4 for g = 2, 4 ≤ r(C) ≤ 8
for g = 3, and r(C) ≤ 1

2 (g + 1)(g + 2) [A].

Questions 6.4. a) Does r(C) depend only on g?
b) Put r(g) := min r(C) for all curves C of genus g. Is r(g) an

increasing function of g?
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The next question does not involve directly the theta map, but it
is related to several questions about the existence of theta divisors.

Conjecture 6.5. Let π : C′ → C be a finite morphism between smooth
projective curves of genus ≥ 2. The direct image π∗L of a general vector
bundle L on C′ is stable.

One reduces readily to the case when L is a line bundle. The
problem depends in a crucial way on the degree of L: one can prove for
instance that π∗L is stable (for L generic) if |χ(L)| < g + g2

r , where r is
the degree of π and g the genus of C (see [B3]).

One of the relations between this conjecture and the existence of
theta divisors is the following: the conjecture for a general line bundle L
of degree d is implied by the existence of a vector bundle E of rank r and
degree g(C′)− 1− d such that π∗E admits a prime theta divisor. Indeed
we have Θπ∗L⊗E = (π∗)−1(ΘL⊗π∗E); if Θπ∗E is prime, so is Θπ∗L⊗E for
general L, and as in (2.2) this implies that π∗L is stable.
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Sci. École Norm. Sup. (4), 36 (2003), 553–581.

[vG] B. Van Geemen, Schottky-Jung relations and vector bundles on hy-
perelliptic curves, Math. Ann., 281 (1988), 431–449.

[vG-I] B. Van Geemen and E. Izadi, The tangent space to the moduli space
of vector bundles on a curve and the singular locus of the theta
divisor of the Jacobian, J. Algebraic Geom., 10 (2001), 133–177.

[vG-P] B. Van Geemen and E. Previato, Prym varieties and the Verlinde
formula, Math. Annalen, 294 (1992), 741–754.

[H] B. Hunt, The geometry of some special arithmetic quotients, Lecture
Notes in Math., 1637, Springer-Verlag, Berlin.

[M] U. Morin, Sui sistemi di piani a due a due incidenti, Atti Ist. Veneto,
89 (1930), 907–926.

[N-R1] M. S. Narasimhan and S. Ramanan, Moduli of vector bundles on a
compact Riemann surface, Ann. of Math. (2), 89 (1969), 14–51.

[N-R2] M. S. Narasimhan and S. Ramanan, 2θ-linear systems on Abelian va-
rieties, In: Vector bundles on algebraic varieties, Oxford University
Press, 1987, 415–427.

[N] Q. M. Nguyen, The moduli space of rank 3 vector bundles with
trivial determinant over a curve of genus 2 and duality, preprint,
math.AG/ 0408318.

[O] A. Ortega, On the moduli space of rank 3 vector bundles on a genus 2
curve and the Coble cubic, J. Algebraic Geom., 14 (2005), 327–356.

[O-P] W. Oxbury and C. Pauly, Heisenberg invariant quartics and SUC(2)
for a curve of genus four, Math. Proc. Cambridge Philos. Soc., 125
(1999), 295–319.

[Pa] C. Pauly, Self-duality of Coble’s quartic hypersurface and applica-
tions, Michigan Math. J., 50 (2002), 551–574.

[P] M. Popa, On the base locus of the generalized theta divisor, C. R.
Acad. Sci. Paris Sér. I Math., 329 (1999), 507–512.



156 A. Beauville

[P-R] M. Popa and M. Roth, Stable maps and Quot schemes, Invent. Math.,
152 (2003), 625–663.

[R] M. Raynaud, Sections des fibrés vectoriels sur une courbe, Bull. Soc.
Math. France, 110 (1982), 103–125.
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Université de Nice
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On the finiteness of abelian varieties
with bounded modular height

Atsushi Moriwaki

Abstract.

In this paper, we propose a definition of modular heights of
abelian varieties defined over a field of finite type over Q, and prove
its bounding property, that is, the finiteness of abelian varieties with
bounded modular height.

§ Introduction

The modular heights of abelian varieties and their bounding prop-
erty played a crucial role in Faltings’ first proof [2] of the Mordell conjec-
ture. Although many important results concerning finiteness properties
over number fields (conjectures of Tate, Shafarevich and Mordell among
others) are now available over arbitrary fields of finite type over Q, a
similar generalization of the aforementioned theory of Faltings does not
seem to have been explicitly formulated. In this paper, we propose a defi-
nition of the modular heights of abelian varieties and prove the finiteness
of abelian varieties with bounded modular height over a general field of
finite type over Q.

Let K be a field of finite type over Q. In order to properly define the
height function over K, we have to fix a polarization of K (see [9]). A
polarization of K is, by definition, a collection of data (B; H1, . . . , Hd),
where

• B is a normal and projective scheme over Spec(Z) such that
its function field is isomorphic to K;

• d = tr. degQ(K) and H1, . . . , Hd are nef C∞-hermitian line
bundles on B.

Let A be an abelian variety over K. By use of the Néron model of A
over B defined in codimension one (see Section 1.1), the Hodge sheaf

Received 22 March, 2005.
Revised 5 December, 2005.
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λ(A/K; B) attached to A is canonically defined as a reflexive sheaf of
rank one on B. Moreover it carries a locally integrable singular hermitian
metric ‖ · ‖Fal induced by Faltings’ metric on the good reduction part of
the Néron model of A. The arithmetic first Chern class

ĉ1(λ(A/K; B), ‖ · ‖Fal)

is represented by a pair of a Weil divisor and a locally integrable function.
We define the modular height h(A) of A as the arithmetic intersection
number of ĉ1(λ(A/K; B), ‖ · ‖Fal) with H1, . . . , Hd:

h(A) = d̂eg
(
ĉ1(H1) · · · ĉ1(Hd) · ĉ1(λ(A/K; B), ‖ · ‖Fal)

)
.

The main objective of the present paper is to show the following finite-
ness result:

Theorem A (cf. Theorem 6.1). Assume that the arithmetic divisors
H1, . . . , Hd are big. Then, for an arbitrary fixed real number c, the set
of K-isomorphism classes of the abelian varieties over K with h(A) ≤ c
is finite.

This theorem can be viewed as an Arakelov geometric analogue of a
result of Moret-Bailly [8], where the ground field K is replaced by a
function field over a finite field and the height is defined by means of the
ordinary intersection theory.

In our proof, we have to look at the compactified moduli space of
abelian varieties and the local behavior of Faltings’ metric around the
boundary. We do not need, however, strong assertions due to Faltings-
Chai [4]; basic facts stated in [12] together with a lemma of Gabber
(Lemma 1.2.2) are sufficient for our purpose.

The present paper is organized as follows. Basic notions and facts
are prepared in Section 1. In Section 2, we study height functions of
singular hermitian line bundles with logarithmic singularities. In Section
3, we observe some properties of the Faltings modular height. The proof
of the bounding property is done from Section 4 through Section 6.

Finally we would like to express hearty thanks to the referee for a
lot of comments to improve the paper.

§1. Preliminaries

1.1. Néron model
Let B be a noetherian normal integral scheme and K its function

field. Let A be an abelian variety over K. A smooth group scheme A →
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B is called a Néron model of A over B if the following two conditions
are satisfied:

(a) The generic fiber A×B Spec(K) of A → B is isomorphic to A
over K;

(b) (Universal property) If X → B is a smooth B-scheme and X its
generic fiber, then any K-morphism X → A uniquely extends
to a B-morphism X → A.

If B is a Dedekind scheme, then there exists a Néron model of A over
B (cf. [1]). When B has higher dimension, we still have a partial Néron
mode A of A defined over a big open subset U ⊆ B (i.e. B \ U is of
codimension ≥ 2), and we call A a Néron model over B in codimension
one:

Proposition 1.1.1. There exists a Néron model of A over a big
open set U of B.

Proof. Let us begin with the following lemma:

Lemma 1.1.2. Let S be a noetherian normal integral scheme and K
its function field. Let A be an abelian variety over K, and let A → S be
a smooth group scheme over S such that, for each point x of codimension
one in S, the restriction of A → S to A×S Spec(OS,x) is a Néron model
of A over Spec(OS,x). If X → S is a smooth S-scheme and X its generic
fiber, then any K-morphism X → A uniquely extends to an S-morphism
X → A.

Proof. This follows from the universal property of Néron models
and Weil’s extension theorem (cf. [1, Theorem 1 in 4.4]). �

Let us go back to the proof of Proposition 1.1.1. First of all, we
choose a non-empty Zariski open set U0 of B and an abelian scheme
A0 → U0 whose generic fiber is A. Let x1, . . . , xl be points of codimen-
sion one in B \ U0. Then there are open neighborhoods U1, . . . , Ul of
x1, . . . , xl respectively, and smooth group schemes Ai over Ui of finite
type with the following properties:

(i) xj �∈ Ui for all i �= j.
(ii) The restriction of Ai → Ui to A ×Ui Spec(OB,xi) is a Néron

model of A over Spec(OB,xi) for all i.
(iii) Ai → Ui is an abelian scheme over Ui \ {xi} for all i.

For each i = 0, . . . , l, let Ai be the generic fiber of Ai → Ui and φi :
A → Ai an isomorphism over K. Note that x1, . . . , xl �∈ Ui ∩ Uj for
i �= j. Thus, by Lemma 1.1.2, the isomorphism φj ◦ φ−1

i : Ai → Aj over
K extends uniquely to an isomorphism ψji : Ai|Ui∩Uj

→ Aj |Ui∩Uj
over

Ui ∩Uj . Clearly, ψkj ◦ψji = ψki. Thus, if we set U = U0 ∪U1 ∪ · · · ∪Ul,
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then we can construct a smooth group scheme A over U of finite type
such that A|Ui

is isomorphic to Ai over Ui. The universal property of
A → U is obvious by Lemma 1.1.2. �

1.2. Semiabelian reduction

Let B be a noetherian normal integral scheme and K the function
field of B. Let A be an abelian variety over K. We say A has semiabelian
reduction over B in codimension one if there are a big open set U of B
(i.e. codim(B \U) ≥ 2) and a semiabelian scheme A → U such that the
generic fiber of A → U is isomorphic to A.

Proposition 1.2.1. Let B, K and A be same as above. Let m be
a positive integer which has a factorization m = m1m2 with m1, m2 ≥ 3
and m1 and m2 relatively prime (for example m = 12 = 3 · 4). If
A[m](K) ⊆ A(K), then A has semiabelian reduction in codimension
one over B.

Proof. Let x be a point of codimension one in B. Then there is mi

which is not divisible by the characteristic of the residue field of OB,x.
Moreover, A[mi](K) ⊆ A(K). Thus, by [11, exposé 1, Corollaire 5.18],
A has semiabelian reduction at x.

Let U0 be a non-empty Zariski open subset of B over which we
can take an abelian scheme A0 → U0 whose generic fiber is A. Let
x1, . . . , xl be points of codimension one in B \ U0. Then there are open
neighborhoods U1, . . . , Ul of x1, . . . , xl, and semiabelian schemes Ai over
Ui with the following properties:

(i) xj �∈ Ui for all i �= j.
(ii) Ai → Ui is an abelian scheme over Ui \ {xi}.

Thus, as in Proposition 1.1.1, if we set U = U0 ∪ U1 ∪ · · · ∪ Ul, then we
have our desired semiabelian scheme A → U . �

Lemma 1.2.2 (Gabber’s lemma). Let U be a dense Zariski open
set of an integral, normal and excellent scheme S and A an abelian
scheme over U . Then there is a proper, surjective and generically finite
morphism π : S′ → S of integral, normal and excellent schemes such that
the abelian scheme A ×U π−1(U) over π−1(U) extends to a semiabelian
scheme over S′

Proof. In [12, Théorème and Proposition 4.10 in Exposé V], the
existence of π : S′ → S and the extension of the abelian scheme is
proved under the assumption π : S′ → S is proper and surjective. Let
S′

η be the generic fiber of π. Let z be the closed point of S′
η and Z the
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closure of z in S′. Moreover, let S1 be the normalization of Z. Then
π1 : S1 → Z → S is our desired morphism. �

1.3. The Hodge sheaf of an abelian variety

Let G → S be a smooth group scheme over S. Then the Hodge line
bundle λG/S of G → S is given by

λG/S = det
(
ε∗
(
ΩG/S

))
,

where ε : S → G is the identity of the group scheme G → S.
Let B be a noetherian, normal, integral scheme and K its function

field. Let A be an abelian variety over K and let A → U be the Néron
model over B in codimension one (see Section 1.1). The Hodge sheaf
λ(A/K; B) of A with respect to B is defined by

λ(A/K; B) = ι∗
(
λA/U

)
,

where ι : U → B be the natural inclusion map. Note that λ(A/K; B) is
a reflexive sheaf of rank one on B.

From now on, we assume that the characteristic of K is zero. Let
φ : A → A′ be an isogeny of abelian varieties over K. Since there is an
injective homomorphism

φ∗ : λ(A′/K; B) → λ(A/K; B),

we can find an effective Weil divisor Dφ such that

c1(λ(A′/K; B)) + Dφ = c1(λ(A/K; B)).

The ideal sheaf OB(−Dφ) is denoted by Iφ.

Lemma 1.3.3. Let φ∨ : A′∨ → A∨ be the dual of φ : A → A′. We
assume that B is the spectrum of a discrete valuation ring R and that
A, A′ have semiabelian reduction over B. Then Iφ · Iφ∨ = deg(φ)R.

Proof. Let R′ be an extension of R such that R′ is a complete
discrete valuation ring and the residue field of R′ is algebraically closed
(cf. [7, Theorem 29.1]). Then, by [12, Exposé VII, Théroèm 2.1.1],
(Iφ ·Iφ∨)R′ = deg(φ)R′. Here R′ is faithfully flat over R. Thus Iφ ·Iφ∨ =
deg(φ)R. �



162 A. Moriwaki

1.4. Locally integrable hermitian metric

Let M be a complex manifold and L a line bundle on M . A singular
hermitian metric ‖ · ‖ of L is a C∞-hermitian metric of L|U , where U
is a certain dense Zariski open subset of M . If ‖ · ‖0 is an arbitrary
C∞-hermitian metric of L and σ �= 0 is a local section of L around x,
the ratio µ = ‖σ‖/‖σ‖0 of the two norms is independent of σ, and hence
µ is a positive C∞-function defined on U . A locally integrable hermitian
metric (or L1

loc-hermitian metric) is a singular hermitian metric such
that the function log(µ) on U extends to a locally integrable function
on M (of course this definition does not depend on the choice of the
C∞-hermitian metric ‖ · ‖0).

Lemma 1.4.1. Let M be a complex manifold and (L, ‖ · ‖) a her-
mitian line bundle on M . Let s be a non-zero meromorphic section of L
over M . Then the hermitian metric ‖ · ‖ is locally integrable if and only
if so is log ‖s‖.

Proof. Let ‖ · ‖0 be a C∞-hermitian metric of L. Then

log ‖s‖ = log(‖ · ‖/‖ · ‖0) + log ‖s‖0.

Note that log ‖s‖0 is locally integrable. Thus log ‖s‖ is locally integrable
if and only if so is log(‖ · ‖/‖ · ‖0). �

Lemma 1.4.2. Let f : Y → X be a surjective, proper and generi-
cally finite morphism of non-singular varieties over C. Let (L, ‖ · ‖) be
a singular hermitian line bundle on X. Assume that there are a non-
empty Zariski open set U of X and a hermitian line bundle (L′, ‖ ·‖′) on
Y such that (L′, ‖ · ‖′) is isometric to f∗(L, ‖ · ‖) over f−1(U). If ‖ · ‖′
is locally integrable, then so is ‖ · ‖.

Proof. Shrinking U if necessarily, we may assume that f is étale
over U . We set V = f−1(U). Let s be a non-zero rational section of
L. Note that there is a divisor D on Y such that L′ = f∗(L) ⊗OY (D)
and Supp(D) ⊆ Y \ V . Thus f∗(s) gives rise to a rational section
s′ of L′. Then log ‖s′‖′ is locally integrable by Lemma 1.4.1. Since
f∗(log ‖s‖)|V = log ‖s′‖′|V , we can see that f∗(log ‖s‖) is locally inte-
grable. Let [f∗(log ‖s‖)] be a current associated to the locally integrable
function f∗(log ‖s‖). Then, by [5, Proposition 1.2.5], there is a locally
integrable function g on X with f∗[f∗(log ‖s‖)] = [g]. Since f is étale
over U , we can easily see that

(f |V )∗[(f |V )∗( log ‖s‖|U )] = deg(f)[ log ‖s‖|U ].
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Thus g = deg(f) log ‖s‖ almost everywhere over U . Therefore so is over
X because U is a non-empty Zariski open set of X . Hence log ‖s‖ is
locally integrable on X . �

1.5. Hermitian metric with logarithmic singularities
Let X be a normal variety over C and Y a proper closed subscheme

of X . Let (L, ‖·‖) be a hermitian line bundle on X . We say that (L, ‖·‖)
is a C∞-hermitian line bundle with logarithmic singularities along Y if
the following conditions are satisfied:

(1) ‖ · ‖ is C∞ over X \ Y .
(2) Let ‖ · ‖0 be a C∞-hermitian metric of L. For each x ∈ Y , let

f1, . . . , fm be a system of local equations of Y around x, i.e.,
Y is given by {z ∈ X | f1(z) = · · · = fm(z) = 0} around x.
Then there are positive constants C and r such that

max
{

‖ · ‖
‖ · ‖0

,
‖ · ‖0

‖ · ‖

}
≤ C

(
−

m∑
i=1

log |fi|
)r

around x.
Note that the above definition does not depend on the choice of the
system of local equations f1, . . . , fm. Moreover it is easy to see that if
(L, ‖ · ‖) is a C∞-hermitian line bundle with logarithmic singularities
along Y , then ‖ · ‖ is locally integrable.

Lemma 1.5.1. Let π : X ′ → X be a proper morphism of normal
varieties over C and Y a proper closed subscheme of X. Let (L, ‖ · ‖)
be a hermitian line bundle on X such that ‖ · ‖ is C∞ over X \ Y . If
π(X ′) �⊆ Y and (L, ‖ · ‖) has logarithmic singularities along Y , then so
does π∗(L, ‖·‖) along π−1(Y ). Moreover, if π is surjective and π∗(L, ‖·‖)
has logarithmic singularities along π−1(Y ), then so does (L, ‖ · ‖) along
Y .

Proof. Let {f1, . . . , fm} be a system of local equations of Y . Then
{π∗(f1), . . . , π∗(fm)} is a system of local equation of π−1(Y ). Thus our
assertion is obvious. �

1.6. Faltings’ metric
Let X be a normal variety over C and let f : A → X be a g-

dimensional semiabelian scheme over X . We assume that there is a
non-empty Zariski open set U of X such that f is an abelian scheme
over U . Let λA/X be the Hodge line bundle of A → X , i.e.,

λA/X = det
(
ε∗
(
ΩA/X

))
,
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where ε : X → A is the identity of the semiabelian scheme A → X . Via
the natural isomorphism ρ : λAx

∼−→ fx∗(det(ΩAx)) at each x ∈ U , we
define Faltings’ metric ‖ · ‖Fal of λA/X by

(‖α‖Fal,x)2 =
(√

−1
2

)g ∫
Ax

ρ(α) ∧ ρ(α).

Faltings’ metric is a C∞-hermitian metric on U and hence it is a singu-
lar hermitian metric on X . Furthermore this metric is known to have
logarithmic singularities along the boundary X \U (cf. [12, Théorèm 3.2
in Exposé I]) and in particular a locally integrable hermitian metric.

Lemma 1.6.1. Let X be a smooth variety over C and X0 a non-
empty Zariski open set of X. Let A0 → X0 be an abelian scheme over
X0. Let λ be a line bundle on X such that λ|X0

coincides with the Hodge
line bundle λA0/X0 of A0 → X0. Then Faltings’ metric ‖ ·‖Fal of λA0/X0

over X0 extends to a locally integrable metric of λ over X.

Proof. By virtue of Lemma 1.2.2 (Gabber’s lemma), there is a
proper, surjective and generically finite morphism π : X ′ → X of smooth
varieties over C such that the abelian scheme A0 ×X0 π−1(X0) over
π−1(X0) extends to a semiabelian scheme f ′ : A′ → X ′. Let λA′/X′

be the Hodge line bundle of A′ → X ′ and ‖ · ‖′Fal Faltings’ metric of
λA′/X′ . Then (λA′/X′ , ‖ · ‖′Fal)

∣∣
X′

0
is isometric to π∗

0(λA0/X0 , ‖ · ‖Fal),

where X ′
0 = π−1(X0) and π0 = π|X′

0
. Therefore, by Lemma 1.4.2,

‖ · ‖Fal extends to a locally integrable metric of λ over X . �

1.7. The moduli of abelian varieties
In order to deal with the bounding property of the modular height,

we need a reasonable compactification of the moduli space of polarized
abelian varieties. For simplicity, an abelian variety with a polarization
of degree l2 is called an l-polarized abelian variety.

Theorem 1.7.1. Let g, l and m be positive integers with m ≥ 3.
Let Ag,l,m,Q be the moduli space of g-dimensional and l-polarized abelian
varieties over Q with level m structure. Then there exist

(a) normal and projective arithmetic varieties A∗
g,l,m and Y ∗ (i.e.,

A∗
g,l,m and Y ∗ are normal and integral schemes flat and pro-

jective over Z),
(b) a surjective and generically finite morphism f : Y ∗ → A∗

g,l,m,
(c) a positive integer n,
(d) a line bundle L on A∗

g,l,m, and
(e) a semiabelian scheme G → Y ∗
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with the following properties:
(1) Ag,l,m,Q is a Zariski open set of A∗

g,l,m,Q = A∗
g,l,m ×Z Spec(Q)

and L is very ample on A∗
g,l,m.

(2) Let λG/Y ∗ be the Hodge line bundle of the semiabelian scheme
G → Y ∗. Then f∗(L) = λ⊗n

G/Y ∗ on Y ∗
Q = Y ∗ ×Z Spec(Q).

(3) Let UQ → Ag,l,m,Q be the universal g-dimensional and l-polarized
abelian scheme with level m structure. Let YQ be the pull-back
of Ag,l,m,Q by fQ : Y ∗

Q → A∗
g,l,m,Q, i.e., YQ = (fQ)−1(Ag,l,m,Q).

Then GQ → Y ∗
Q is an extension of the abelian scheme UQ×Ag,l,m,Q

YQ → YQ. (Note that G|YQ
→ YQ is naturally a g-dimensional

and l-polarized abelian scheme with level m structure.)
(4) L has a metric ‖ · ‖ over Ag,l,m,Q(C) such that f∗((L, ‖ · ‖))

is isometric to
(
λG/Y ∗ , ‖ · ‖Fal

)⊗n over YQ(C). Moreover, ‖ · ‖
has logarithmic singularities along A∗

g,l,m,Q(C) \ Ag,l,m,Q(C).

Proof. Let UQ → Ag,l,m,Q be the universal l-polarized abelian
scheme with level m structure. By [12, Théorème 2.2 in Exposé IV],
there are a normal and projective variety A∗

g,l,m,Q, a positive integer n
and a very ample line bundle LQ on A∗

g,l,m,Q with the following proper-
ties:

(i) Ag,l,m,Q is an Zariski open set of A∗
g,l,m,Q.

(ii) By Gabber’s lemma (cf. Lemma 1.2.2), there is a surjective
and generically finite morphism hQ : S′

Q → A∗
g,l,m,Q of normal

and projective varieties over Q such that the abelian scheme
UQ ×Ag,l,m,Q

h−1
Q (Ag,l,m,Q) → h−1

Q (Ag,l,m,Q) extends to a semi-
abelian scheme G′

Q → S′
Q. Then h∗

Q(LQ) = λ⊗n
G′

Q
/S′

Q

.

Since LQ is very ample, there is an embedding A∗
g,l,m,Q ↪→ PN

Q in terms
of LQ. Let A∗

g,l,m be the closure of the image of

A∗
g,l,m,Q ↪→ PN

Q → PN
Z .

Let L be the pull-back of OPN
Z

(1) by the embedding A∗
g,l,m ↪→ PN

Z . We
have obvious isomorphisms A∗

g,l,m,Q � A∗
g,l,m ×Z Spec(Q) and LQ �

L|A∗
g,l,m,Q

. Let S′ denote the normalization of A∗
g,l,m in the function

field of S′
Q. There exists an open subset S′

0 of S′ such that G′ is an
abelian scheme over S′

0 and G′ ×S′ S′
0 → S′

0 coincides with the abelian
scheme UQ ×Ag,l,m,Q

h−1
Q (Ag,l,m,Q) → h−1

Q (Ag,l,m,Q) over Q. Thus, us-
ing Gabber’s lemma again, there are a surjective and generically finite
morphism of normal and projective arithmetic varieties h2 : Y ∗ → S′

and a semiabelian scheme G → Y ∗ such that G → Y ∗ is an extension
of G′ ×S′ h−1

2 (S′
0) → h−1

2 (S′
0). Thus, over Y ∗

Q = Y ∗ ×Z Spec(Q), the
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semiabelian variety G is equal to G′
Q ×S′

Q
Y ∗

Q → Y ∗
Q by the uniqueness of

semiabelian extensions. Thus, if we set f = h · h1, then f∗(L) = λ⊗n
G/Y ∗

over Y ∗
Q .

Finally, since LQ|Ag,l,m,Q
= λ⊗n

UQ/Ag,l,m,Q
, if we give LQ a metric arising

from Faltings’ metric of λUQ/Ag,l,m,Q
, then assertion of (4) follows from

Lemma 1.5.1 and [12, Théorèm 3.2 in Exposé I]. �

1.8. Arakelov geometry
In this paper, an arithmetic variety means an integral scheme flat

and quasi-projective over Z. If it is smooth over Q, then it is said to be
generically smooth.

Let X be a generically smooth arithmetic variety. A pair (Z, g) is
called an arithmetic cycle of codimension p if Z is a cycle of codimension
p and g is a current of type (p−1, p−1) on X(C). We denote by Ẑp(X)
the set of all arithmetic cycles on X . We set

ĈH
p
(X) = Ẑp(X)/∼,

where ∼ is the arithmetic linear equivalence.
Let L = (L, ‖ · ‖) be a C∞-hermitian line bundle on X . Then a

homomorphism

ĉ1(L)· : ĈH
p
(X) → ĈH

p+1
(X)

is define by

ĉ1(L) · (Z, g) =
(
div(s) on Z, [− log(‖s‖2

Z)] + c1(L) ∧ g
)
,

where s is a rational section of L|Z and [− log(‖s‖2
Z)] is a current given

by φ �→ −
∫

Z(C)
log(‖s‖2

Z)φ.
When X is projective, we can define the canonical arithmetic degree

map

d̂eg : ĈH
dim X

(X) → R

given by

d̂eg

(∑
P

nP P, g

)
=
∑
P

nP log(#(κ(P ))) +
1
2

∫
X(C)

g.

Thus, if C∞-hermitian line bundles L1, . . . , Ldim X are given, then we
can get the number

d̂eg
(
ĉ1(L1) · · · ĉ1(Ldim X)

)
,
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which is called the arithmetic intersection number of L1, . . . , Ldim X .

Let X be a projective arithmetic variety. Note that X is not nec-
essarily generically smooth. Let L1, . . . , Ldim X be C∞-hermitian line
bundles on X . By [6], we can find a generic resolution of singularities
µ : Y → X , i.e., µ : Y → X is a projective and birational morphism
such that Y is a generically smooth projective arithmetic variety. Then
we can see that the arithmetic intersection number

d̂eg
(
ĉ1(µ∗(L1)) · · · ĉ1(µ∗(Ldim X))

)
does not depend on the choice of the generic resolution of singularities
µ : Y → X . Thus we denote this number by

d̂eg
(
ĉ1(L1) · · · ĉ1(Ldim X)

)
.

Let L1, . . . , Ll be C∞-hermitian line bundles on a projective arith-
metic variety X . Let V be an l-dimensional integral closed subscheme
on X . Then d̂eg

(
ĉ1(L1) · · · ĉ1(Ll) |V

)
is defined by

d̂eg
(
ĉ1(L1

∣∣
V

) · · · ĉ1(Ll

∣∣
V

)
)
.

Moreover, for an l-dimensional cycle Z =
∑

i niVi on X ,

d̂eg
(
ĉ1(L1) · · · ĉ1(Ll) |Z

)
is defined by ∑

i

nid̂eg
(
ĉ1(L1) · · · ĉ1(Ll) |Vi

)
.

1.9. Notions concerning the positivity of Q-line bundles
on an arithmetic variety

Let X be a projective arithmetic variety and L a C∞-hermitian Q-
line bundle on X . Let us introduce several kinds of the positivity of
C∞-hermitian Q-line bundles.

• ample: L is ample if L is ample on X , c1(L) is positive form on
X(C), and there is a positive number n such that L⊗n is generated by
the set {s ∈ H0(X, L⊗n) | ‖s‖sup < 1}.

• nef: L is nef if c1(L) is a semipositive form on X(C) and, for all
one-dimensional integral closed subschemes Γ of X , d̂eg

(
ĉ1(L) |Γ

)
≥ 0.

• big: L is big if rkZ H0(X, L⊗m) = O(mdim XQ) and there is a non-
zero section s of H0(X, L⊗n) with ‖s‖sup < 1 for some positive integer
n.



168 A. Moriwaki

• QQQ-effective: L is Q-effective if there is a positive integer n and a
non-zero s ∈ H0(X, L⊗n) with ‖s‖sup ≤ 1.

• pseudo-effective: L is pseudo-effective if there are (1) a sequence
{Ln}∞n=1 of Q-effective C∞-hermitian Q-line bundles, (2) C∞-hermitian
Q-line bundles E1, . . . , Er and (3) sequences

{a1,n}∞n=1, . . . , {ar,n}∞n=1

of rational numbers such that

ĉ1(L) = ĉ1(Ln) +
r∑

i=1

ai,nĉ1(Ei)

in ĈH
1
(X) ⊗ Q and limn→∞ ai,n = 0 for all i. If L1 ⊗ L

⊗−1

2 is pseudo-
effective for C∞-hermitian Q-line bundles L1, L2 on X , then we denote
this by L1 � L2.

1.10. Polarization of a finitely generated field over Q

Let K be a field of finite type over the rational number field Q

with d = tr. degQ(K). A polarization B of K is a collection of data
B = (B; H1, . . . , Hd), where

(1) B is a normal and projective arithmetic variety whose function
field is isomorphic to K;

(2) H1, . . . , Hd are nef C∞-hermitian line bundles on B.
Here deg(B) is given by∫

B(C)

c1(H1) ∧ · · · ∧ c1(Hd).

Namely,

deg(B) =

{
[K : Q] if d = 0,

deg((H1)Q · · · (Hd)Q) on B ×Z Spec(Q) if d > 0.

If B is generically smooth, then the polarization B is said to be gener-
ically smooth. Moreover, we say the polarization B = (B; H1, . . . , Hd)
is fine (resp. strictly fine) if there are (a) a generically finite morphism
π : B′ → B of normal projective arithmetic varieties, (b) a generically
finite morphism µ : B′ → (P1

Z)d and (c) ample C∞-hermitian Q-line
bundles L1, . . . , Ld on P1

Z such that π∗(Hi) ⊗ µ∗(p∗i (Li))⊗−1 is pseudo-
effective (resp. Q-effective) for every i, where pi : (P1

Z)d → P1
Z is the

projection to the i-th factor. Note that if H1, . . . , Hd are big, then the
polarization (B; H1, . . . , Hd) is strictly fine. Moreover, if B is fine, then
deg(B) > 0.



Abelian varieties with bounded modular height 169

Proposition 1.10.1. Let B = (B; H1, . . . , Hd) be a strictly fine
polarization of K. Then, for all h, the number of prime divisors Γ on
B with

d̂eg(ĉ1(H1) · · · ĉ1(Hd) |Γ) ≤ h

is finite.

Proof. Let us begin with the following lemma.

Lemma 1.10.2. Let π : X ′ → X be a generically finite morphism of
normal and projective arithmetic varieties. Let H1, . . . , Hd be nef C∞-
hermitian line bundles on X, where d = dimXQ. Then the following
two statements are equivalent:

(1) For all h, the number of prime divisors Γ on X with

d̂eg(ĉ1(H1) · · · ĉ1(Hd) |Γ) ≤ h

is finite
(2) For all h′, the number of prime divisors Γ′ on X ′ with

d̂eg(ĉ1(π∗(H1)) · · · ĉ1(π∗(Hd)) |Γ′) ≤ h′

is finite.

Proof. Let X0 be the maximal Zariski open set of X such that X0

is regular and π is finite over X0. Then codim(X \ X0) ≥ 2. We set
X ′

0 = π−1(X0) and π0 = π|X′
0
. Let Div(X) and Div(X ′) be the groups

of Weil divisors on X and X ′ respectively. Define the homomorphism
π� : Div(X) → Div(X ′) as the composition of natural homomorphisms:

Div(X) → Div(X0)
π∗
0−→ Div(X ′

0) → Div(X ′),

where Div(X) → Div(X0) is the restriction map and Div(X ′
0) → Div(X ′)

is defined by taking the Zariski closure of divisors. Note that π∗π
�(D) =

deg(π)D for all D ∈ Div(X).

First we assume (1). Note that the number of prime divisors in
X ′ \X ′

0 is finite, so that it is sufficient to show that the number of prime
divisors Γ′ on X ′ with Γ′ �⊆ X ′ \ X ′

0 and

d̂eg(ĉ1(π∗(H1)) · · · ĉ1(π∗(Hd)) |Γ′) ≤ h′

is finite. By the projection formula,

d̂eg(ĉ1(π∗(H1)) · · · ĉ1(π∗(Hd)) |Γ′) = d̂eg(ĉ1(H1) · · · ĉ1(Hd) |π∗(Γ′)).
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Thus, by (1), the number of (π∗(Γ′))red is finite. On the other hand, the
number of prime divisors in π−1(π∗(Γ)red) is finite. Hence we get (2).

Next we assume (2). Let Γ be a prime divisor on X with

d̂eg(ĉ1(H1) · · · ĉ1(Hd) |Γ) ≤ h.

Then

d̂eg(ĉ1(π∗(H1)) · · · ĉ1(π∗(Hd)) |π�(Γ))

= deg(π)d̂eg(ĉ1(H1) · · · ĉ1(Hd) |Γ) ≤ deg(π)h.

Thus, by (2), the number of π�(Γ)’s is finite. Therefore we get (1). �

Let us go back to the proof of Proposition 1.10.1. We use the nota-
tion in the above definition of strict finiteness. By Lemma 1.10.2, it is
sufficient to show that the number of prime divisors Γ′ on B′ with

d̂eg(ĉ1(π∗(H1)) · · · ĉ1(π∗(Hd)) |Γ′) ≤ h

is finite for all h.
There are Q-effective C∞-hermitian line bundles Q1, . . . , Qd on B′

with
π∗(Hi) = µ∗(p∗i (Li)) ⊗ Qi

for all i. Note that

d̂eg(ĉ1(π∗(H1)) · · · ĉ1(π∗(Hd)) |Γ′)

= d̂eg(ĉ1(µ∗(p∗1(L1))) · · · ĉ1(µ∗(p∗d(Ld))) |Γ′)+
d∑

i=1

d̂eg(ĉ1(µ∗(p∗1(L1))) · · · ĉ1(µ∗(p∗i−1(Li−1))) · ĉ1(Qi)·

ĉ1(π∗(Hi+1)) · · · ĉ1(π∗(Hd)) |Γ′).

Moreover, since Qi is Q-effective, the number of prime divisors Γ′ with

d̂eg(ĉ1(µ∗(p∗1(L1))) · · · ĉ1(µ∗(p∗i−1(Li−1))) · ĉ1(Qi)·
ĉ1(π∗(Hi+1)) · · · ĉ1(π∗(Hd)) |Γ′) < 0

is finite for every i. Thus we have

d̂eg(ĉ1(π∗(H1)) · · · ĉ1(π∗(Hd)) |Γ′)

≥ d̂eg(ĉ1(µ∗(p∗1(L1))) · · · ĉ1(µ∗(p∗d(Ld))) |Γ′)
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except finitely many Γ′. On the other hand, by [10, Proposition 5.1.1],
the number of prime divisors Γ′′ on (P1

Z)d with

d̂eg(ĉ1(p∗1(L1)) · · · ĉ1(p∗d(Ld)) |Γ′′) ≤ h

is finite. This completes the proof. �

Remark 1.10.3. Let X be a normal and projective arithmetic vari-
ety of dimension n. Let H1, . . . , Hn−2 be nef C∞-hermitian line bundles
on X and L a C∞-hermitian line bundle on X . If L is pseudo-effective,
then we can expect the number of prime divisors Γ on X with

d̂eg(ĉ1(H1) · · · ĉ1(Hn−2) · ĉ1(L) |Γ) < 0

to be finite. If it is true, then Proposition 1.10.1 holds under the weaker
assumption that the polarization is fine.

§2. Height functions in terms of hermitian line bundles
with logarithmic singularities

Let K be a finitely generated field over Q with d = tr. degQ(K). Let
B = (B; H1, . . . , Hd) be a fine polarization of K. Let X be a projective
variety over K and L an ample line bundle on X . Moreover, let Y be
a proper closed subset of X . Let (X ,L) be a pair of a projective arith-
metic variety X and a hermitian line bundle L on X with the following
properties:

(1) There is a morphism f : X → B whose generic fiber is X .
(2) The restriction of L to the generic fiber of f coincides with L.
(3) L is ample with respect to the morphism f : X → B.
(4) Let Y be a closed set of X such that Y gives rise to Y on the

generic fiber of X → B. Then the hermitian metric of L has
logarithmic singularities along Y(C).

For x ∈ X(K)\Y (K), we denote by ∆x the Zariski closure of the image
of Spec(K) → X → X . The height of x with respect to B and L is
defined by

hB
L (x) =

d̂eg(ĉ1(f∗(H1)
∣∣
∆x

) · · · ĉ1(f∗(Hd)
∣∣
∆x

) · ĉ1(L
∣∣
∆x

))

[K(x) : K]
.

Note that since L
∣∣
∆x

has logarithmic singularities along Y(C)∩∆x(C),
the number

d̂eg(ĉ1(f∗(H1)
∣∣
∆x

) · · · ĉ1(f∗(Hd)
∣∣
∆x

) · ĉ1(L
∣∣
∆x

))
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is well defined. Then we have the following proposition.

Proposition 2.1. (1) Given a positive integer e, there exists
a constant C such that

#{x ∈ X(K) \ Y (K) | hB
L (x) ≤ h, [K(x) : K] ≤ e} ≤ C · hd+1

for h � 0.
(2) There is a constant C′ such that hB

L
(x) ≥ C′ for all x ∈ X(K)\

Y (K).

Proof. We denote by ‖ · ‖ the hermitian metric of L. Let Q be an
ample C∞-hermitian line bundle on B. Then

hB

L⊗f∗(Q
⊗n

)
(x) = hB

L (x) + nd̂eg(ĉ1(Q) · ĉ1(H1) · · · ĉ1(Hd)).

and we may assume that L is ample on X without loss of generality.
Replacing L by a suitable L⊗n

, we may furthermore assume that IY ⊗L
is generated by global sections, where IY is the defining ideal sheaf of Y.
Let s1, . . . , sr be generators of H0(X , IY ⊗ L). We may view s1, . . . , sr

as global sections of H0(X ,L). Then Y = {x ∈ X | s1(x) = · · · =
sr(x) = 0}. Here we choose a C∞-hermitian metric ‖ · ‖0 of L such that
‖si‖0 < 1 for all i = 1, . . . , r. We denote (L, ‖ · ‖0) by L0

.
We claim

[K(x) : K]hB

L0(x)

≥ −
∫

∆x(C)

log
(
max

i
{‖si‖0}

)
c1(f∗(H1)) ∧ · · · ∧ c1(f∗(Hd)).

Indeed we can find sj with sj |∆x
�= 0, so that

[K(x) : K]hB

L0(x) = d̂eg(ĉ1(f∗(H1)) · · · ĉ1(f∗(Hd)) | div(sj |∆x
))

−
∫

∆x(C)

log (‖sj‖0) c1(f∗(H1)) ∧ · · · ∧ c1(f∗(Hd)).

Then our claim follows from the following two inequalities:

d̂eg(ĉ1(f∗(H1)) · · · ĉ1(f∗(Hd)) | div(sj |∆x
)) ≥ 0

and
‖sj‖0 ≤ max

i
{‖si‖0} < 1.
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Set g = ‖ · ‖/‖ · ‖0. Since ‖ · ‖ has logarithmic singularities, there are
positive constants a, b such that

| log(g)| ≤ a + b log
(
− log(max

i
{‖si‖0})

)
.

Moreover∣∣∣hB
L (x) − hB

L0(x)
∣∣∣

≤ 1
[K(x) : K]

∫
∆x(C)

| log(g)|c1(f∗(H1)) ∧ · · · ∧ c1(f∗(Hd)).

Note that∫
∆x(C)

c1(f∗(H1)) ∧ · · · ∧ c1(f∗(Hd)) = [K(x) : K] deg(B),

where deg(B) =
∫

B(C)

c1(H1) ∧ · · · ∧ c1(Hd) as in Section 1.10. Thus

∣∣∣hB
L (x) − hB

L0(x)
∣∣∣

deg(B)
≤ a+

b

∫
∆x(C)

log
(
− log(max

i
{‖si‖0})

) c1(f∗(H1)) ∧ · · · ∧ c1(f∗(Hd))
[K(x) : K] deg(B)

.

On the other hand,∫
∆x(C)

log
(
− log(max

i
{‖si‖0})

) c1(f∗(H1)) ∧ · · · ∧ c1(f∗(Hd))
[K(x) : K] deg(B)

≤ log

(∫
∆x(C)

− log(max
i

{‖si‖0})
c1(f∗(H1)) ∧ · · · ∧ c1(f∗(Hd))

[K(x) : K] deg(B)

)
.

Hence we obtain∣∣∣hB
L (x) − hB

L0(x)
∣∣∣

deg(B)
≤ a + b log

⎛⎝ hB

L0(x)

deg(B)

⎞⎠ .

Note that there is a real number t0 such that a + b log(t) ≤ t/2 for all
t ≥ t0. Thus

hB

L0(x) ≤ max
{

deg(B)t0, 2hB
L (x)

}
.
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Therefore, if h ≥ deg(B)t0/2, then hB
L (x) ≤ h implies hB

L0(x) ≤ 2h.
Hence we get the first assertion by virtue of [10, Theorem 6.4.1].

Next let us check the second assertion. Since

‖si‖ = g‖si‖0 ≤ exp(a)‖si‖0

(
− log(max

j
{‖sj‖0})

)b

≤ exp(a)‖si‖0 (− log(‖si‖0))
b

and the function t(− log(t))b is bounded from above for 0 < t ≤ 1, there
is a constant C such that ‖si‖ ≤ C for all i. Thus, if we choose si with
si|∆x

�= 0, then

[K(x) : K]hB
L (x) = d̂eg(ĉ1(f∗(H1)) · · · ĉ1(f∗(Hd)) | div(si|∆x

))

−
∫

∆x(C)

log (‖sj‖) c1(f∗(H1)) ∧ · · · ∧ c1(f∗(Hd))

≥ − log(C)
∫

∆x(C)

c1(f∗(H1)) ∧ · · · ∧ c1(f∗(Hd))

= − log(C) deg(B)[K(x) : K].

Thus we get (2). �

§3. The Faltings modular height

Let K be a field of finite type over Q with d = tr. degQ(K) and let
B = (B; H1, . . . , Hd) be a generically smooth polarization of K. Let A
be a g-dimensional abelian variety over K. Let λ(A/K; B) be the Hodge
sheaf of A with respect to B (cf. Section 1.3). Note that λ(A/K; B) is
invertible over BQ because BQ is smooth over Q. Let ‖ ·‖Fal be Faltings’
metric of λ(A/K; B) over B(C). Here we set

λ
Fal

(A/K; B) = (λ(A/K; B), ‖ · ‖Fal),

which is called the metrized Hodge sheaf of A with respect to B. In
the case where a Néron model A → U over B in codimension one is
specified, λ

Fal
(A/K; B) is often denoted by λ

Fal
(A/U). By Lemma 1.6.1,

the metric of λ
Fal

(A/K; B) is locally integrable. The Faltings modular
height of A with respect to the polarization B is defined by

hB
Fal(A) = d̂eg

(
ĉ1(H1) · · · ĉ1(Hd) · ĉ1(λ

Fal
(A/K; B)

)
.
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Even if we do not assume that B is generically smooth, we can de-
fine the Faltings modular height with respect to B as follows: Let
µ : B′ → B be a generic resolution of singularities of B. We set
B

′
= (B′; µ∗(H1), . . . , µ∗(Hd)). Then, by (1) of the following Proposi-

tion 3.1, hB
′

Fal(A) does not depend on the choice of the generic resolution
µ : B′ → B, so that hB

Fal(A) is defined to be hB
′

Fal(A). In the following,
B is always assumed to be generically smooth.

Proposition 3.1. Let π : X ′ → X be a generically finite morphism
of normal and projective generically smooth arithmetic varieties. Let
K and K ′ be the function field of X and X ′ respectively. Let A be an
abelian variety over K. Then there is an effective divisor E on X which
has the following two properties:

(1) π∗ĉ1(λ
Fal

(A ×K Spec(K ′)/K ′; X ′)) + (E, 0)
= deg(π)ĉ1(λ

Fal
(A/K; X)).

Further, if π is birational, then E = 0.
(2) For a scheme S, we denote by S(1) the set of points of codi-

mension one in S. Then
{x ∈ X(1) | A has semiabelian reduction at x}

⊆ (X \ Supp(E))(1).
Moreover, if A×K Spec(K ′) has semiabelian reduction over X ′

in codimension one, then
{x ∈ X(1) | A has semiabelian reduction at x}

= (X \ Supp(E))(1).

Proof. (1) Let X0 be the maximal Zariski open set of X such that
X0 is regular and π is finite over X0. Then codim(X \ X0) ≥ 2. We
set X ′

0 = π−1(X0) and π0 = π|X′
0
. Let Div(X) and Div(X ′) be the

groups of Weil divisors on X and X ′ respectively. A homomorphism
π� : Div(X) → Div(X ′) is defined as the composition of the natural
homomorphisms:

Div(X) → Div(X0)
π∗
0−→ Div(X ′

0) → Div(X ′),

where Div(X) → Div(X0) is the restriction map and Div(X ′
0) → Div(X ′)

is defined by taking the Zariski closure of divisors. Note that π∗π
�(D) =

deg(π)D for all D ∈ Div(X).
Let X1 (resp. X ′

1) be a Zariski open set of X (resp. X ′) such
that codim(X \ X1) ≥ 2 (resp. codim(X ′ \ X ′

1) ≥ 2) and that the
Néron model G (resp. G′) exists over X1 (resp. X ′

1). Clearly we may
assume that X1 ⊆ X0 and π−1(X1) ⊆ X ′

1. We set U ′ = π−1(X1) and
G′

U ′ = G′|U ′ . Since G′
U ′ is the Néron model of A ×K Spec(K ′) over
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U ′, there is a homomorphism G ×X1 U ′ → G′
U ′ over U ′. Thus we get a

homomorphism

(3.1.1) α : ε′
∗
(

g∧
ΩG′

U′/U ′

)
→ π∗ε∗

(
g∧

ΩG/X1

)∣∣∣∣∣
U ′

,

where ε and ε′ are the zero sections of G and G′ respectively.
Let s be a non-zero rational section of λ(A/K; X). Then

ĉ1(λ
Fal

(A/K; X)) = (div(s),− log ‖s‖Fal).

Moreover, since π∗(s) gives rise to a non-zero rational section of λ(A×K

Spec(K ′)/K ′; X ′),

ĉ1(λ
Fal

(A ×K Spec(K ′)/K ′; X ′)) = (div(π∗(s)),−π∗(log ‖s‖Fal)),

where π∗(log ‖s‖Fal) is the pull-back of log ‖s‖Fal by π as a function on a
dense open set of X(C). Let Γ1, . . . , Γr be all prime divisors in X ′ \U ′.
Note that π∗(Γi) = 0 for all i. Then, since (3.1.1) is injective, there is
an effective divisor E′ and integers a1, . . . , ar such that

div(π∗(s)) + E′ = π�(div(s)) +
r∑

i=1

aiΓi.

Note that E′ =
∑

x′ lengthOX′,x′ (Coker(α)x′){x′}, where x′’s run over
all points of codimension one in U ′. Thus, since

π∗(π�(div(s)),−π∗(log ‖s‖Fal)) = deg(π)(div(s),− log ‖s‖Fal),

we have

π∗ĉ1(λ
Fal

(A ×K Spec(K ′)/K ′; X ′)) + (π∗(E′), 0)

= deg(π)ĉ1(λ
Fal

(A/K; X)),

yielding the first assertion of (1). If π is birational, then U ′ → X1 is an
isomorphism, so that E′ = 0.

(2) Assume that there is an open neighborhood U of x such that
Go|U is semiabelian. Then Go|U ×U π−1(U) is semiabelian so that it is

isomorphic to
(

G′|π−1(U)

)o

. This shows that x �∈ Ered. Conversely, if
x �∈ Ered and A ×K Spec(K ′) has semiabelian reduction in codimension
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one, then there exists an open neighborhood U ⊂ X1 of x such that the
homomorphism

α : ε′
∗
(

g∧
ΩG′

U′/U ′

)
→ π∗ε∗

(
g∧

ΩG/X1

)∣∣∣∣∣
U ′

is an isomorphism over π−1(U). Thus the natural homomorphism

ε′
∗
(
ΩG′

U′/U ′

)
→ π∗ε∗

(
ΩG/X1

)∣∣
U ′

must be an isomorphism over π−1(U) and so is the morphism

Go ×X1 U ′ → (G′
U ′ )o

over π−1(U), which means that Go is semiabelian over U . �

Proposition 3.2. Let φ : A → A′ be an isogeny of abelian varieties
over K. Then

d̂eg
(
ĉ1(H1) · · · ĉ1(Hd) · ĉ1(λ

Fal
(A′/K; B)

)
− d̂eg

(
ĉ1(H1) · · · ĉ1(Hd) · ĉ1(λ

Fal
(A/K; B)

)
=

1
2

log(deg(φ)) deg(B) − d̂eg
(
ĉ1(H1) · · · ĉ1(Hd) |Dφ

)
,

where Dφ is an effective divisor given in Section 1.3 and

deg(B) =
∫

B(C)

c1(H1) ∧ · · · ∧ c1(Hd)

as in Section 1.10.

Proof. This follows from the fact that

λ
Fal

(A′/K; B)⊗ (OB(Dφ), deg(φ)| · |can)

is isometric to λ
Fal

(A/K; B). �

Proposition 3.3. If an abelian variety A over K has semiabelian
reduction in codimension one over B. Then

d̂eg
(
ĉ1(H1) · · · ĉ1(Hd) · ĉ1(λ

Fal
(A/K; B)

)
= d̂eg

(
ĉ1(H1) · · · ĉ1(Hd) · ĉ1(λ

Fal
(A∨/K; B)

)
,

where A∨ is the dual abelian variety of A.
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Proof. Let φ : A → A∨ be an isogeny over K in terms of ample
line bundle on A. Let φ∨ : A → A∨ be the dual of φ. Then, by
Proposition 3.2,

2d̂eg
(
ĉ1(H1) · · · ĉ1(Hd) · ĉ1(λ

Fal
(A∨/K; B)

)
− 2d̂eg

(
ĉ1(H1) · · · ĉ1(Hd) · ĉ1(λ

Fal
(A/K; B)

)
= log(deg(φ)) deg(B) − d̂eg

(
ĉ1(H1) · · · ĉ1(Hd) |Dφ + Dφ∨

)
.

On the other hand, by Lemma 1.3.3, Iφ · Iφ∨ = deg(φ)OB . (OB(Dφ +
Dφ∨), | · |can) is thus isometric to (OB , deg(φ)−2| · |can), proving the as-
sertion. �

Let A be an abelian variety over a finite extension field K ′ of K. Let
m be a positive integer such that m has a decomposition m = m1m2 with
(m1, m2) = 1 and m1, m2 ≥ 3. Let us consider a natural homomorphism

ρ(A, m) : Gal(K/K) → Aut(A[m](K)) � Aut((Z/mZ)2g).

Then there is a Galois extension K(A, m) of K ′ with Ker ρ(A, m) =
Gal(K/K(A, m)). Note that

Gal(K(A, m)/K ′) = Gal(K/K)/ Kerρ(A, m) ↪→ Aut((Z/mZ)2g).

Let B′′ be a generically smooth, normal and projective arithmetic variety
with the following properties:

(i) The function field K ′′ of B′′ is an extension of K(A, m).
(ii) The natural rational map f : B′′ → B induced by K ↪→ K ′′ is

actually a morphism.
Then we have the following.

Proposition 3.4. (1) The number

d̂eg
(
ĉ1(λ(A ×K′ Spec(K ′′)/K ′′; B′′) · ĉ1(f∗(H1)) · · · ĉ1(f∗(H1))

)
[K ′′ : K]

does not depend on the choice of m and B′′, so that we denote
it by hB

mod(A).
(2) hB

mod(A) ≤ hB
Fal(A).

Proof. These are consequences of Proposition 1.2.1, Proposition 3.1
and the projection formula. �
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Proposition 3.5 (Additivity of heights). For abelian varieties A, A′

over K, we have

hB
Fal(A ×K A′) = hB

Fal(A) + hB
Fal(A

′),

hB
mod(A ×K A′) = hB

mod(A) + hB
mod(A′).

Proof. Let A and A′ be the Néron models of A and A′ over B0,
where B0 is a big open set of B. Then A×B0 A′ is the Néron model of
A ×K A′ over B0. Thus

ĉ1(λ
Fal

A×B0A′/B0
) = ĉ1(λ

Fal

A/B0
) + ĉ1(λ

Fal

A′/B0
).

Hence we get our lemma. �

§4. Weak finiteness

Let us fix positive integers g, l and m such that m has a decom-
position m = m1m2 with (m1, m2) = 1 and m1, m2 ≥ 3. Let Ag,l,m,Q,
f : Y → A∗

g,l,m, L, n and G → Y be as in Theorem 1.7.1.
Let K be a field of finite type over Q with d = tr. degQ(K) and let

B = (B; H1, . . . , Hd) be a generically smooth polarization of K.
Let A be a g-dimensional and l-polarized abelian variety over a

finite extension K ′ of K with level m structure. The abelian variety A
naturally induces a morphism xA : Spec(K ′) → A∗

g,l,m, which in turn
induces yA : Spec(K ′) → A∗

g,l,m ×Z Spec(K). Let ∆A be the closure
of the image of yA in A∗

g,l,m ×Z B. Let p : A∗
g,l,m ×Z B → A∗

g,l,m and
q : A∗

g,l,m×Z B → B be the projections to the first factor and the second
factor respectively. The number

hB
L

(A) =
d̂eg
(
ĉ1(q∗(H1)

∣∣
∆A

) · · · ĉ1(q∗(Hd)
∣∣
∆A

) · ĉ1(p∗(L)
∣∣
∆A

)
)

deg(∆A → B)

is the height of yA ∈ (A∗
g,l,m ×Z Spec(K))(K) with respect to L and B,

of which the behavior is controlled by the following proposition.

Proposition 4.1. There is a constant N(g, l, m) depending only on
g, l, m such that

|hB
L

(A) − nhB
mod(A)| ≤ log(N(g, l, m)) deg(B).

for every g-dimensional and l-polarized abelian variety A over K with
level m structure, where

deg(B) =
∫

B(C)

c1(H1) ∧ · · · c1(Hd).
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Proof. Let A be a g-dimensional and l-polarized abelian variety
over K with level m structure. Let K ′ be the minimal finite extension
of K such that A, the polarization of A, the level m structure of A
are defined over K ′. Let xA : Spec(K ′) → A∗

g,l,m be the morphism
induced by A. Moreover let yA : Spec(K ′) → A∗

g,l,m×ZB be the induced
morphism by xA.

Let Spec(K1) be a closed point of Y ×A∗
g,l,m

Spec(K ′). Then we have
the following commutative diagram:

Y

f

��

Spec(K1)��

��
A∗

g,l,m Spec(K ′)
xA��

Here, two l-polarized abelian varieties A×K′Spec(K1) and G×Y Spec(K1)
with level m structures gives rise to the same K1-valued point of A∗

g,l,m.
Thus A ×K′ Spec(K1) is isomorphic to G ×Y Spec(K1) over K1 as l-
polarized abelian varieties with level m structures because m ≥ 3. The
above commutative diagram induces to the commutative diagram:

Y ×Z B

��

Spec(K1)��

��
A∗

g,l,m ×Z B Spec(K ′)
yA��

Let B1 be a generic resolution of singularities of the normalization of
B in K1. Note that a generic resolution of singularities (a resolution
of singularities over Q) exists by Hironaka’s theorem [6]. Then we have
rational maps B1 ��� Y ×Z B and B1 ��� ∆A such that a composition
B1 ��� ∆A → A∗

g,l,m×Z B of rational maps is equal to B1 ��� Y ×Z B →
A∗

g,m×Z B. Thus there are a birational morphism B2 → B1 of projective
and generically smooth arithmetic varieties, a morphism B2 → ∆A and
a morphism B2 → Y ×Z B with the following commutative diagram:

B1

π1

��

B2
γ�� β ��

α

��

Y ×Z B

f×id

��
B ∆A

�� ι �� A∗
g,l,m ×Z B
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Then

hB
L

(A) =
d̂eg
(
ĉ1(ι∗(p∗(L))) · ĉ1(ι∗(q∗(H1))) · · · ĉ1(ι∗(q∗(H1)))

)
deg(∆A → B)

=
d̂eg
(
ĉ1(α∗(ι∗(p∗(L)))) · ĉ1(α∗(ι∗(q∗(H1)))) · · · ĉ1(α∗(ι∗(q∗(H1))))

)
deg(B2 → B)

=
d̂eg
(
ĉ1(β∗((f × id)∗(p∗(L)))) · ĉ1(γ∗(π∗

1(H1))) · · · ĉ1(γ∗(π∗
1(H1)))

)
deg(B2 → B)

.

On the other hand, since f∗(L) = λ⊗n
G/Y over Y ×Z Spec(Q), there is an

integer N depending only on g, l and m such that

Nf∗(L) ⊆ λ⊗n
G/Y ⊆ (1/N)f∗(L)

on Y . Thus

Nβ∗(f × id)∗(L) ⊆ (λG×ZB/Y ×ZB)⊗n ⊆ (1/N)β∗(f × id)∗(L).

Therefore

− d̂eg(ĉ1(γ∗(π∗
1(H1))) · · · ĉ1(γ∗(π∗

1(H1))) | (N))
deg(B2 → B)

+ hB
L

(A)

≤
nd̂eg

(
ĉ1(λ

Fal

G×Y B2/B2
)) · ĉ1(γ∗(π1

∗(H1))) · · · ĉ1(γ∗(π1
∗(H1)))

)
deg(B2 → B)

≤ d̂eg(ĉ1(γ∗(π∗
1(H1))) · · · ĉ1(γ∗(π∗

1(H1))) | (N))
deg(B2 → B)

+ hB
L

(A).

Note that

d̂eg(ĉ1(γ∗(π∗
1(H1))) · · · ĉ1(γ∗(π∗

1(H1))) | (N))

= log(N) deg(B2 → B) deg(B).

By Proposition 1.2.1, we can see that A ×K′ Spec(K1) has semiabelian
reduction in codimension one over B1. On the other hand, by Proposi-
tion 3.1,

γ∗(ĉ1(λ
Fal

G×Y B2/B2
)) = ĉ1(λ

Fal
(A ×K′ Spec(K1)/K1; B1)).

Therefore we get

|hB
L

(A) − nhB
mod(A)| ≤ log(N) deg(B).

�
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Corollary 4.2. Let l and e be positive integers and let K be a field
finitely generated over Q. Put d = tr. degQ(K) and fix a generically
smooth and fine polarization B = (B; H1, . . . , Hd) of K. Then

(1) There exists a constant C = C(B, l, g) such that hB
mod(A) ≥ C

for an arbitrary l-polarized abelian variety A of dimension g
over K.

(2) There exists a constant C′ = C′(B, l, e, g) such that the set⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩A ×K′ Spec(K)

∣∣∣∣∣∣∣∣∣∣
A is a g-dimensional and
l-polarized abelian variety
over a finite extension
K ′ of K with [K ′ : K] ≤ e

and hB
mod(A) ≤ h.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
/

�K

has cardinality ≤ C′ · hd+1 for h � 0.

Proof. Let us fix a positive number m such that m has a decom-
position m = m1m2 with (m1, m2) = 1 and m1, m2 ≥ 3. Then any
l-polarized abelian variety over K has a level m structure. Thus (1) is
a consequence of Proposition 2.1 and Proposition 4.1.

Let A be an l-polarized abelian variety over a finite extension K ′ of
K. Let K ′′ be the minimal extension of K ′ such that A[m](K) ⊆ A(K ′′).
Then [K ′′ : K ′] ≤ #(Aut(Z/mZ)2g). Thus, by using Proposition 2.1 and
Proposition 4.1, we get (2). �

§5. Galois descent

Let A be a g-dimensional abelian variety over a field k. Let m be
a positive integer prime to the characteristic of k. Note that a level
m structure α of A over a finite extension k′ of k is an isomorphism
α : (Z/mZ)2g → A[m](k′). If k′ is a finite Galois extension over k, then
we have a homomorphism

ε(k′/k, A, α) : Gal(k′/k) → Aut((Z/mZ)2g)

given by ε(k′/k, A, α)(σ) = α−1 · σA · α, where

σA : A ×k Spec(k′)
idA ×(σ−1)a

−−−−−−−−→ A ×k Spec(k′)

is the natural morphism arising from σ. Note that (σ · τ)A = σA · τA.

Lemma 5.1. Let k be a field, k′ a finite Galois extension of k and
m ≥ 3 an integer prime to the characteristic of k. Let (A, ξ) and (A′, ξ′)
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be two polarized abelian varieties over k and let α, α′ be level m structures
of A, A′ defined over k′. If a k′-isomorphism

φ : (A, ξ) ×k Spec(k′) → (A′, ξ′) ×k Spec(k′)

as polarized abelian varieties over k′ satisfies
(a) φ · α = α′ and
(b) ε(k′/k, A, α) = ε(k′/k, A′, α′),

then φ descends to an isomorphism (A, ξ) → (A′, ξ′) over k.

Proof. For σ ∈ Gal(k′/k), let us consider a morphism

φσ = σ−1
A′ · φ · σA : A ×k Spec(k′) → A′ ×k Spec(k′).

First of all, φσ is a morphism over k′. We claim that φσ ·α = α′. Indeed,
since α−1 · σAα = α′−1 · σA′ · α′, we have

φσ · α = σ−1
A′ · φ · α · α−1 · σA · α = σ−1

A′ · α′ · α′−1 · σA′ · α′ = α′.

Thus φσ preserves the level structures of A ×k Spec(k′) and A′ ×k

Spec(k′). Hence, since m ≥ 3 and φσ · φ−1 preserve the polarization
ξ of A over k′ (hence (φσ · φ−1)N = id for N � 1), by virtue of Serre’s
theorem, we have φσ = φ, that is,

φ · σA = σA′ · φ

for all σ ∈ Gal(k′/k). Therefore φ descends to an isomorphism (A, ξ) →
(A′, ξ′) over k. �

Proposition 5.2. Let B be an irreducible normal scheme of finite
type over Z and let K denote its function field. Fix a polarized abelian
variety (C, ξC) of dimension g defined over K. Then the set

S =

⎧⎨⎩(A, ξ)

∣∣∣∣∣∣
(A, ξ) is a polarized abelian variety over K with
(A, ξ) ×K Spec(K) � (C, ξC) and A has semiabelian
reduction over B in codimension one.

⎫⎬⎭
modulo K-isomorphisms is finite.

Proof. For (A, ξ) ∈ S, let BA be a big open set of B over which
we have a semiabelian extension XA → BA of A. Let BR(A) denote the
set of points x of codimension one in BA such that the fiber of XA over
x is not an abelian variety.

Claim 5.2.1. For any (A, ξ), (A′, ξ′) ∈ S, BR(A) = BR(A′).
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Since A ×K Spec(K) � A′ ×K Spec(K), there is a finite extension
K ′ of K with A ×K Spec(K ′) � A′ ×K Spec(K ′). Let π : B′ → B be
the normalization of B in K ′. Then XA ×BA π−1(BA) is isomorphic
to XA′ ×BA′ π−1(BA′) over π−1(BA ∩ BA′), so that π−1(BR(A)) =
π−1(BR(A′)), yielding the claim.

Let us fix a positive integer m ≥ 3 and (A0, ξ0) ∈ S. We set

U = B \

⎛⎝(B ×Z Spec(Z/mZ)) ∪ Sing(B) ∪
⋃

x∈BR(A0)

{x}

⎞⎠ .

Then U is regular and of finite type over Z. The characteristic of the
residue field of any point of U is prime to m. For (A, ξ) ∈ S, let UA be
the maximal Zariski open set of U over which XA is an abelian scheme.
By the above claim, codim(U \ UA) ≥ 2.

Claim 5.2.2. There exists a finite Galois extension K ′ of K such
that every m-torsion point of A is defined over K ′ whenever (A, ξ) ∈ S.

For (A, ξ) ∈ S, let KA be the finite extension of K obtaining by
adding all m-torsion points of A to K. Let VA be the normalization of
U in KA. It is well-known that VA is étale over UA. Moreover, by virtue
of the purity of branch loci (cf. SGA 1, Exposé X, Thérème 3.1), VA is
étale over U because codim(U \ UA) ≥ 2. Let M be the union of the
finite extensions K ′ of K such that the normalization of U in K ′ is étale
over U . By construction, M is a Galois extension of K. Since KA ⊆ M ,
we have a continuous homomorphism

ρA : Gal(M/K) → Aut(A[m](K)) � Aut((Z/mZ)2g)

such that ker(ρA) = Gal(M/KA). Since Gal(M/K) = π1(U), by [3,
Hermite-Minkowski theorem in Chapter VI], we have only finitely many
continuous homomorphisms

ρ : Gal(M/K) → Aut((Z/mZ)2g).

Thus there are only finitely many choices of Galois subgroups Gal(M/KA) ⊆
Gal(M/K) and of subfields KA ⊆ M . This shows our claim.

Claim 5.2.3. For any (A, ξ), (A′, ξ′) ∈ S, (A, ξ) ×K Spec(K ′) �
(A′, ξ′) ×K Spec(K ′).

There is a finite Galois extension K ′′ of K ′ such that an isomorphism

φ : (A, ξ) ×K Spec(K ′′) → (A′, ξ′) ×K Spec(K ′′)
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is given over K ′′. Let α be a level m structure of A over K ′′ and α′ = φ·α.
Then ε(K ′′/K ′, A×K Spec(K ′), α) = ε(K ′′/K ′, A′×K Spec(K ′), α′) = 1
because all m-torsion points of A and A′ are defined over K ′. Thus A×K

Spec(K ′′) → A′ ×K Spec(K ′′) descends to an isomorphism (A, ξ) ×K

Spec(K ′) → (A′, ξ′) ×K Spec(K ′) by Lemma 5.1.

Finally, let us see the number of isomorphism classes in S is finite.
Fix (A0, ξ0) ∈ S and a level m structure α0 of A0 over K ′. Let φA :
(A0, ξ0) ×K Spec(K ′) → (A, ξ) ×K Spec(K ′) be an isomorphism over
K ′. We set αA = φA · α0 and φA

A′ = φA′ · φ−1
A : A ×K Spec(K ′) →

A′ ×K Spec(K ′) for (A, ξ), (A′, ξ′) ∈ S. Then αA′ = φA
A′ · αA. Here let

us consider a map

γ : S → Hom(Gal(K ′/K), Aut((Z/mZ)2g))

given by γ(A) = ε(K ′/K, A, αA). By Lemma 5.1, if γ(A) = γ(A′), then
(A, ξ) � (A′, ξ′) over K, while Hom(Gal(K ′/K), Aut((Z/mZ)2g)) is a
finite group. This completes the proof. �

§6. Strong finiteness

In this section, we give the proof of the main result of this paper.

Theorem 6.1. Let K be a finitely generated field over Q with d =
tr. degQ(K). Let B = (B; H1, . . . , Hd) be a strictly fine polarization of
K. Then, for any numbers c, the number of isomorphism classes of
abelian varieties defined over K with hB

Fal(A) ≤ c is finite.

Proof. Considering a generic resolution of singularities µ : B′ → B,
we may assume that B is generically smooth.

Let us consider the following two sets:

S0(c) =
{

(A, ξ)
∣∣∣∣ (A, ξ) is a principally polarized abelian variety

over K with hB
mod(A) ≤ 8c

}
S(c) =

{
A | A is an abelian variety over K with hB

Fal(A) ≤ c
}

By Corollary 4.2,
{
(A, ξ) × Spec(K) | (A, ξ) ∈ S0(c)

}
/�K is finite. If A

is an abelian variety over K, then (A × A∨)4 is a principally polarized
abelian variety over K (Zarhin’s trick; see [12, Exposé VIII, Proposi-
tion 1]). By Proposition 3.3 and Proposition 3.5,

hB
mod((A × A∨)4) = 8hB

mod(A).
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Thus, if A ∈ S(c), then (A× A∨)4 ∈ S0(c). Here the number of isomor-
phism classes of direct factors of (A×A∨)4×K Spec(K) is finite (cf. [12,
Exposé VIII, Proposition 2]). Thus {A ×K Spec(K) | A ∈ S(c)}/�K is
finite. In particular, there is a constant C such that C ≤ hB

mod(A) for
all A ∈ S(c).

Let KA be the minimal finite extension of K such that A[12](K) ⊆
A(KA). Then [KA : K] ≤ # Aut((Z/12Z)2g). Let BA be a generic
resolution of singularities of the normalization of B in KA. By Proposi-
tion 1.2.1, A ×K Spec(KA) has semiabelian reduction over BA in codi-
mension one. Thus, by Proposition 3.1, there is an effective divisor EA

on B with

hB
Fal(A) − hB

mod(A) =
d̂eg(ĉ1(H1) · · · ĉ1(Hd) |EA)

[KA : K]
.

Here hB
mod(A) ≥ C for all A ∈ S(c). Thus we can find a constant C′

such that
d̂eg(ĉ1(H1) · · · ĉ1(Hd) |EA) ≤ C′

for all A ∈ S(c). Therefore, by virtue of Proposition 1.10.1, there is
a reduced effective divisor D on B such that, for all A ∈ S(c), A has
semiabelian reduction over B \D in codimension one. Hence, by Propo-
sition 5.2, we have our assertion. �

Remark 6.2. If the problem in Remark 1.10.3 is true, then Theo-
rem 6.1 holds even if the polarization B is fine.
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[12] L. Szpiro, Séminaire sur les pinceaux arithmétiques: La conjecture de

Mordell, astérisque 127.
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with natural parabolic stability
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Abstract.

In this paper we re-visit the moduli problem for regular holonomic D-modules
with normal crossing singularities, and give a new definition of semistability,
more general than the older notion, construct the moduli scheme, and describe
its points. Independently of this, we introduce another natural parabolic no-
tion of stability for such D-modules, and construct the moduli in a special
case.

§1. Introduction

Let X be a smooth complex projective variety. In his path-breaking
paper [13], Simpson constructed a moduli scheme for pairs (E,∇) con-
sisting of an algebraic vector bundle E on X with an algebraic integrable
connection ∇. These objects (E,∇) are exactly the OX -coherent regular
holonomic DX -modules, where DX is the sheaf of linear partial differ-
ential operators on X in the algebraic category. Using the methods
introduced by Simpson, the present author embarked on a program to
solve the moduli problem for general regular holonomic DX -modules on
X . To begin with, the general case differs from the case considered by
Simpson in the following two important respects.

(1) Firstly, such a DX -module need not be OX -coherent, so we have to
replace it by an OX -coherent description in order to apply the usual
Hilbert schemes and GIT-based machinery of moduli theory.

(2) Secondly, the resulting OX -coherent objects (which now replace the
original DX -modules) need to have a reasonable intrinsic notion of sta-
bility (or semi-stability) defined on them, which will correspond to GIT

Received March 24, 2005.
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stability (or semi-stability) in the course of moduli construction. Simp-
son could do without explicitly introducing any notion of semi-stability
in the case of an integrable connection (E,∇), as the Hilbert polynomial
of the underlying vector bundle E automatically equals that of a trivial
vector bundle of the same rank.

In a sequence of three papers [10], [12] (jointly with Claude Sabbah) and
[11], the above programme was carried out for regular holonomic DX -
modules with singularities over a normal crossing divisor Y in X . We fix
the normal-crossing divisor Y in X , and take the resulting stratification
of X by locally closed smooth subvarieties Zi ⊂ X defined as the locus
where exactly d − i branches of Y intersect for i < d, and with Zd =
X − Y . This gives rise to a conical Lagrangian subvariety CY,X of
T ∗X which is the union of the co-normal bundles N∗

Zi,X
⊂ T ∗X over

i ≤ d. We require that the characteristic variety car(M) of our regular
holonomic DX -modules M should be contained in CY,X . A moduli for
the corresponding perverse sheaves (which are exactly those perverse
sheaves on X which are cohomologically constructible with respect to
the stratification Zi) was also constructed in the above papers, and
the Riemann-Hilbert correspondence was shown to define an analytic
morphism at the level of moduli.

However, the results so far had the following drawbacks.

(A) Instead of a moduli for the DX -modules themselves, the above con-
structions give a moduli for so-called ‘pre-D-modules’ which are OX -
coherent avatars of DX -modules (can be thought of as DX -modules with
level structures). For example, instead of meromorphic connections we
make a moduli for logarithmic connections. There is more than one
pre-D-module structure on any D-module.

(B) The semistability condition on the pre-D-modules in [12] and [11]
is too restrictive, which though an open condition, leaves out a large
class of D-modules (which should ideally form some other irreducible
components in a larger moduli).

(C) The link between meromorphic connections and Higgs bundles, es-
tablished by Biquard [2] as a generalisation of the Narasimhan-Seshadri-
Donaldson-Hitchin-Corlette-Simpson correspondence is neglected in the
earlier moduli construction. Recall that the theorem of Biquard [2]
makes a correspondence between parabolic stable logarithmic connec-
tions and parabolic stable Higgs bundles, when singular set Y is a smooth
divisor.
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The present article presents an improved moduli construction, to take
care of the above points. We succeed in fully overcoming drawbacks (A)
and (B) of the earlier constructions, and partly overcome (C).

The improvement in points (A) and (B) is made by paying attention to
the relationship between the topology of the normal bundles of the com-
ponents of the divisor on one hand and residual eigenvalues on the other
hand. This has nothing to do with parabolic stability. Independently
of this, to take care of point (C) we present another variation on the
moduli construction for regular meromorphic connections via a natural
parabolic definition of semi-stability for Deligne lattices (which explains
the title of this article).

This article is arranged as follows. In Section 2, we set up preliminaries
involving D-modules and some topological properties.

In Section 3, we define the natural parabolic structure on a Deligne con-
nection (which is the logarithmic connection corresponding to a regular
meromorphic connection with real parts of residual eigenvalues in [0, 1),
which was constructed by Deligne in early 1970’s), and in section 4 we
give the construction of a moduli for parabolic stable Deligne connec-
tions. Our construction presently works only under an extra assumption
on the logarithmic tangent bundle of (X,Y ), which we expect to remove
in the future.

In Section 5, we treat the case of regular holonomic D-modules whose
singularity locus Y is a smooth divisor. We show how to improve our
earlier constructions so as to overcome the limitations (A) and (B) dis-
cussed above. In Section 6, this is done in the general case where Y is
normal crossing.

§2. Preliminaries

D-modules

Let X be a nonsingular complex projective variety, with DX the sheaf
of linear partial differential operators acting on OX (in the algebraic
category).

Recall that DX is generated as a sheaf of C-algebras by OX and TX

where OX are the scalar operators on OX while the tangent sheaf TX

acts on OX by differentiation. We have the relations ξf − fξ = ξ(f)
and ξη− ηξ = [ξ, η] for f ∈ OX and ξ, η ∈ TX . The inclusion OX ⊂ DX

makes DX a left-right OX -bimodule. For any i ≥ 0, let F iDX ⊂ DX
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be the left OX -submodule generated by the image of ⊗i
C
TX → DX .

Then each F iDX a left-right sub-OX -bimodule, which is bi-coherent as
an OX -module. We have F 0DX = OX , F 1DX = OX ⊕ TX as left-OX -
module, F iDX · F jDX = F i+jDX , and

⋃
i≥0 F

jDX = DX . Moreover,
[F iDX , F

jDX ] ⊂ F i+j−1DX , and the associated graded object is the
graded OX -algebra Sym•

OX
TX .

By the phrase ‘DX -module’ we will mean a left-DX -module which is
OX -quasi-coherent, unless otherwise indicated.

A DX -module M is DX -coherent if and only if locally there exists a
filtration F iM by OX -coherent OX -submodules which is F iDX-good:
F iDXF

jM ⊂ F i+jM , F iM = 0 for i << 0 and locally ∃ k such that
F iDXF

kM = F k+iM for all i ≥ 0.

The characteristic variety car(M) ⊂ T ∗X is the set-theoretic support
of gr(M) as a SymOXTX-module. This is well-defined.

A DX -coherent module M is said to be holonomic if dim(car(M)) =
dim(X) or if M = 0, and regular holonomic if moreover local filtra-
tions can be so chosen that car(M) is a reduced subscheme.

Universal degree of line bundles

Definition 2.1. Let X be a path-connected topological space, and
L a complex line bundle on X , with first Chern class c1(L) ∈ H2(X ; Z).
Then we will call the non-negative integer d which generates the image
of the group homomorphism c1(L) ∩ − : H2(X ; Z) → H0(X ; Z) = Z as
the universal topological degree of L.

The following lemma explains the above terminology.

Lemma 2.2. The universal topological degree of L as defined above
is the greatest common divisor of the degrees of all pull-backs of L to
connected oriented compact hausdorff topological 2-manifolds under con-
tinuous maps.

The above follows immediately from the following elementary lemma.

Lemma 2.3. Let X be a topological space, and let c ∈ H2(X) be
a singular cohomology element with coefficients Z. Then there exist
oriented connected compact hausdorff topological manifolds Y1, . . . , Yn

and continuous maps fi : Yi → X such that c =
∑

i fi∗[Yi] where
[Yi] ∈ H2(Yi) denotes the fundamental class of Yi. �

Lemma 2.4. (1) Let S be a hausdorff, path connected topological
space, and let N be a complex line bundle on S. Let x ∈ S, and let
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x̂ ∈ Nx − 0 where Nx is the fiber of N over x. Let N − S denote the
complement of the zero section of N . Let τ ∈ π1(N − S, x̂) denote the
image of the positive generator of π1(Nx−0, x̂) under the homomorphism
induced by inclusion Nx − 0 ↪→ N − S. Then τ lies in the center of the
group π1(N − S, x̂).

(2) Let C be a compact real oriented surface of genus g ≥ 0, and let N
be a complex line bundle on C of degree d. Let x0 ∈ C, and let x̂0 be a
non-zero point in the fiber of N over x0. If d = 0 then N is topologically
trivial, and so π1(N − C, x̂0) ∼= π1(C, x0) × π1(C×). More generally
for arbitrary d, the fundamental group π1(N − C, x̂0) has the following
description in terms of generators and relations. Let τ ∈ π1(N −C, x̂0)
denote the positive loop in Nx0 − 0 with base point x̂0. Let x1 �= x0 be
another point on C, so that the fundamental group π1(C − x1, x0) is the
free group F 〈ai, bi〉 on certain generators ai, bi with 1 ≤ i ≤ g where
g ≥ 0 is the genus of C, and π1(C, x0) is the quotient of F 〈ai, bi〉 by the
relation

∏
i aibia

−1
i b−1

i = 1. Then π1(N − C, x̂0) is the quotient of the
free group F 〈ai, bi, τ〉 by the relation

τd =
∏

i

aibia
−1
i b−1

i

(3) Let µd(C) denote the group of d th roots of 1 in C (in particular
we take µ0(C) = C×). Then under any multiplicative character ρ :
π1(N −C) → C

×, the image ρ(τ) lies in µd(C), moreover, the following
sequence of abelian groups is short exact

1 → Hom(π1(C),C×) → Hom(π1(N − C),C×) → µd(C) → 1

where the first map is induced by the projection N − C → C and the
second map is given by ρ �→ ρ(τ).

The above sequence admits a splitting, hence for all d there is an iso-
morphism

Hom(π1(N − C),C×) ∼= Hom(π1(C),C×) ⊕ µd(C)

Proof. (1) See Lemma 2.2.(1) in [11].

(2) This follows by considering the projection p : N − C → C and
applying the Van Kampen theorem to the union N − C = p−1(U) ∪
p−1(C−x1) where U is an open disc around x1 which contains x0. Note
that N is trivial over U and over V = C − x1, and with respect to any
choice of trivializations, the transition function gU,V : U − x1 → C×

has winding number equal to d. This fact gives rise to the relation
τd =

∏
i aibia

−1
i b−1

i .
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(3) This follows by the description of π1(N − C) given in (2). Another
proof can be given by a combination of the Mayer-Vietoris sequence and
the universal coefficient theorem for coefficients C×. Yet another proof
follows from the Gysin sequence. �

§3. Parabolic connections

Seshadri’s original introduction of parabolic structures on vector bundles
on curves, starting from a unitary monodromy representation of the fun-
damental group of the complement of a finite set of points, should rightly
be viewed as a precursor of the general construction of a Deligne lattice.
Following this, it has been a common observation (independently due to
many mathematicians) that there is a natural parabolic structure
on any Deligne construction where parabolic weights are real parts of
residual eigenvalues, and for this parabolic structure the parabolic de-
gree is zero. In particular, any such parabolic logarithmic connection is
automatically par-µ-semistable.

Drawing inspiration from this, we take parabolic Gieseker semi-stability
as the condition for moduli construction. This is somewhat more re-
strictive than par-µ-semistability, but better suited for GIT methods.
We combine the moduli construction methods invented by Simpson [13]
and Maruyama-Yokogawa [9] to construct a moduli space.

Price to pay

In comparison with the moduli construction of [10], the parabolic con-
struction given here has the restriction that now we have to fix eigen-
values of residue. However, this is not so severe a restriction, for this is
automatic along all those components Ya for which the universal topolog-
ical degree (see Definition 2.1) δ(Na) of the normal bundle Na = NYa,X

is non-zero, as the local loop τa around Ya maps to δ(Na) th roots of 1
under any π1(X − Y ) → C× as a consequence of Lemmas 2.4 and 2.2.

Next, note that the moduli construction is for connections that are para-
bolic Gieseker semistable, which need not coincide with par-µ-semistable
connections. However, in case all components of the divisor have self-
intersection zero (for example, when X is a curve) or if the residue is
nilpotent, then par-Gieseker semistability coincides with par-µ semista-
bility.
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So far, our construction works only for parabolic stable bundles in the
special case where the vector bundle TX〈logY 〉 is generated by global
sections. We would like to see this restriction removed in the future.1

Parabolic sheaves and parabolic bundles on (X,Y )

Let X be a non-singular variety and let Y ⊂ X be a normal crossing
divisors, whose irreducible components Ya are smooth. Our notion of
a parabolic bundles on (X,Y ) and parabolic Hilbert polynomials is a
slight generalisation of the notions introduced by Maruyama and Yoko-
gawa. The difference is that for us the parabolic structure lives on the
normalisation of Y , rather than on Y itself as originally in [9].

Definition 3.1. Let X and Y be as above. A parabolic sheaf on
(X,Y ) consists of the following data.

(1) A coherent sheaf of OX -modules E on X , called the underlying OX -
module of the parabolic sheaf.

(2) For each irreducible component Ya a strictly decreasing filtration
(of length p(a) which depends on a) of the restriction E|Ya by coherent
subsheaves

E|Ya = Fa,1(E) ⊃ . . . ⊃ Fa,p(a)(E) ⊃ 0

These filtrations are called the quasi-parabolic structure on E .

(3) For each component Ya a sequence of real numbers 0 ≤ αa,1 < . . . <
αa,p(a) < 1, called the parabolic weights.

For simplicity of notation, a parabolic sheaf will be denoted just by E .

If the underlying OX -module E is locally free and moreover if each
Fa,i(E) is a vector subbundle of E|Ya , then E is called a parabolic bun-
dle on (X,Y ).

Remark 3.2. It is usual to combine (2) and (3) and define a de-
creasing filtration of E|Ya by subsheaves Fa,α(E) indexed by α ∈ [0, 1)
which is left-continuous and has finitely many jumps which take place
at the αa,i.

Definition 3.3. Let E be a parabolic sheaf and let E ′ ⊂ E be a
coherent subsheaf. The induced parabolic structure on E ′ is defined
as follows. For any Ya and α ∈ [0, 1) we define Fa,α(E′) to be the
inverse image of Fa,α(E) under the map E ′|Ya → E|Ya which is induced

1In their preprint [6], Inaba, Iwasaki and Saito have independently given
a moduli construction for parabolic connections when X a curve, without any
such restriction.
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by E ′ ↪→ E . By Remark 3.2, this indeed defines a parabolic structure on
E ′.

Parabolic Hilbert polynomial

Let H be a very ample divisor on X , and OX(H) the corresponding
line bundle. For any coherent sheaf F on X , by χ(F ,m) we mean the
Euler characteristic of F(mH) on X . Inspired by Maruyama-Yokogawa
(but with the difference that our formulation requires Y to be normal
crossing, and pays attention to individual components Ya), we define the
parabolic Hilbert polynomial of a parabolic sheaf as follows.

Definition 3.4. Let E be a parabolic sheaf. The parabolic Hilbert
polynomial of E is defined by the formula

par χ(E ,m) = χ(E(−Y ),m) +
∑

a

∑
i

αa,i χ(Fa,i(E)/Fa,i+1(E),m)

When there is only one parabolic weight equal to 0, then note that
par χ(E ,m) = χ(E(−Y ),m).

Remark 3.5. If we index the filtration by α varying over [0, 1) and
define the graded object gra,α(E) as

gra,α(E) = Fa,α(E)/Fa,α+ε(E)

where ε > 0 is sufficiently small, then the above formula becomes

par χ(E ,m) = χ(E(−Y ),m) +
∑

a

∫ 1

0

χ(gra,α(E),m)α dα

where χ(gra,α(E),m) is regarded as a distribution based at the point α.

Residues and Chern classes for logarithmic connection

Let (x1, . . . , xd) be local coordinates on X , with Y locally defined by
x1x2 · · ·xm = 0. Then Ω1

X〈logY 〉 is locally free with basis dx1/x1, . . .,

dxm/xm, dxm+1, . . . , dxd. Let
∼
Y→ Y denote the normalisation of Y .

The Poincaré residue map

res : Ω1
X〈logY 〉|Y → O∼

Y

is defined by dxa/xa �→ 1 for a ≤ m and dxb �→ 0.

The link between residues and Chern classes originates from the follow-
ing basic fact.
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Lemma 3.6. The Poincare residue map fits in a short exact se-
quence

0 → Ω1
X ↪→ Ω1

X〈logY 〉 res→ O∼
Y
→ 0

Under the connecting map H0(
∼
Y ,O∼

Y
) → H1(X,Ω1

X) we have 1 �→ −[Y ].

The composite map E ∇→ Ω1
X〈logY 〉⊗E|Y res→ E|∼

Y
, is OX -linear for any

a logarithmic connection (E,∇) (even though ∇ is not so). Pullback to
∼
Y defines a section res(∇) ∈ End(E|∼

Y
), called the residue of (E,∇).

This has the following description in terms of local coordinates. Let ei

be a local basis for E, and Y locally defined by x1x2 · · ·xm = 0 as above.
Then we can write

∇(ei) =
∑

j

⎛
⎝∑

a≤m

Rj
i,a

dxa

xa
+

∑
b>m

Γj
i,bdxb

⎞
⎠ ⊗ ej

where Rj
i,a and Γj

i,b are local sections of OX . The matrices (Rj
i,a|Ya)

define res(∇) on E|Ya , where Ya is locally defined by xa = 0.

Lemma 3.7. Let X be a non-singular variety (not necessarily com-
pact), and let Y ⊂ X be a normal-crossing divisor on X whose irre-
ducible components Ya are smooth. (E,∇) a vector bundle with a loga-
rithmic connection on (X,Y ). Then the following holds:

(1) For each component Ya, the corresponding residue Ra ∈ End(E|Ya)
has a constant conjugacy class, in particular, the characteristic polyno-
mial of Ra has constant coefficients.

(2) Around any point x ∈ X which lies on a k-fold intersection Y1

⋂
. . .⋂

Yk of components of Y , there exists a holomorphic trivialization of E
with respect to which the all corresponding residues R1, . . . Rk have con-
stant matrices, and these commute. In particular, for any non-negative
integers q1, . . . , qk, the function Tr(Rq1

1 · · ·Rqk

k ) is locally constant on
Y1

⋂
. . .

⋂
Yk.

Proof. (1) Let Y ′
a be the open subscheme of Ya defined as Ya −⋃

b�=a Yb. Let (x1, . . . , xd) be étale local coordinates on a neighbourhood
V in X , with Ya locally defined by x1 = 0, and Y locally defined by
x1 · · ·xm = 0, so TX〈log Y 〉 has local basis x1∂1, . . . , xm∂m, ∂m+1 . . . , ∂d

where ∂i = ∂/∂xi. The restriction E|Y ′
a∩V has an integrable connection

D defined by D∂iu = ∇∂iu for all i ≥ 2. It follows from the facts that
∇ is integrable and [x1∂1, ∂i] = 0, that [∇x1∂1 ,∇∂i ] = 0 for all i ≥ 2.
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Hence with respect to the connection on End(E)|Y ′
a∩V induced by the

connection D on E|Y ′
a∩V , the residue is a flat section of End(E)|Y ′

a∩V .
The result follows as Y ′

a is dense in Ya.

(2) This follows by an argument similar to the above by considering
a flat holomorphic basis for the integrable connection induced on the
restriction of E to Y1

⋂
. . .

⋂
Yk ∩ V . Q.E.D.

Connection with Newton classes Np(E)

It is a well-known fact (see [Esnault-Viehweg 1986]) that for any loga-
rithmic connection, Residue �→ Atiyah obstruction �→ Newton classes.

For p ≥ 0, by definition the p th complexified Newton class of a vector
bundle E is the element of H2p(Xan; C) given by Np(E) =

∑
1≤i≤r(γi)p

where r = rank(E) and γi are the complexified Chern roots of E.

Let Y = Y1 ∪ . . .∪ Ym with irreducible components Ya smooth, crossing
normally. Let

Ra = res(∇)|Ya ∈ H0(Ya, End(E|Ya))

Then as a consequence of Lemma 3.6, we have

Np(E) = (−1)p
∑

q1+...+qm=p

Tr(Rq1
1 · · ·Rqm

m )[Y1]q1 · · · [Ym]qm

where [Ya] = c1(OX(Ya)) ∈ H2(Xan; C). Consequently the Chern char-
acter ch(E) = r+N1 +N2/2+N3/3!+ . . . is determined by the residue.

Natural parabolic structure on logarithmic connections

Definition 3.8. We will say that a logarithmic connection (E,∇)
on (X,Y ) is a Deligne connection if the real parts of all eigenvalues
of the residue Ra ∈ End(E|Ya) over each irreducible component Ya of Y
all lie in the interval [0, 1). Let 0 ≤ αa,1 < . . . < αa,p < 1 be the distinct
real parts of the residual eigenvalues along Ya (it is possible that two
distinct eigenvalues have the same real part). Then E|Ya gets a direct
sum decomposition

E|Ya = Ea,1 ⊕ . . .⊕ Ea,p

where Ea,i is the direct sum of all generalised eigensubbundles Vλ ⊂ E|Ya

of Ra corresponding to all eigenvalues λ with real part Re(λ) = αa,i.
This in particular allows us to define a decreasing filtration

E|Ya = Fa,1 ⊃ . . . ⊃ Fa,p ⊃ 0
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where Fa,i = ⊕j≥iEa,j which is a vector subbundle of E|Ya . The filtra-
tion Fa,i with weights αa,i is the natural parabolic structure on a
Deligne connection E.

Parabolic Hilbert polynomial of a Deligne connection

Let H be a very ample divisor on X , and OX(H) the corresponding line
bundle. For any coherent sheaf F on X , by χ(F ,m) we mean the Eu-
ler characteristic of F(mH) on X . Generalising Maruyama-Yokogawa,
we define the parabolic Hilbert polynomial of a Deligne connection as
follows.

Proposition 3.9. Let E be a Deligne connection and let E|Ya =
Ea,1 ⊕ . . . ⊕ Ea,p be the direct sum decomposition as in Definition 3.8
indexed by the real parts of eigenvalues of residues. Then the parabolic
Hilbert polynomial of E satisfies the following equality.

par χ(E,m) = χ(E(−Y ),m) +
∑

αa,iχ(Ea,i,m)

Proposition 3.10. The parabolic Hilbert polynomial of a Deligne
connection has the form

par χ(E,m) =
r(E)[H ]d

d!
md +

r(E)(c1(X)/2 − [Y ])[H ]d−1

(d− 1)!
md−1 + . . .

where the remaining terms are of degrees ≤ d− 2 in m.

In particular, the parabolic degree of any such E is zero and so any such
E is necessarily parabolic µ-semistable.

Proof. By Riemann-Roch theorem, we get χ(E(−Y ),m) =

r(E)[H ]d

d!
md +

(r(E)c1(X)/2 + c1(E(−Y )))[H ]d−1

(d− 1)!
md−1 + . . .

(lower order terms in m), and∑
αa,iχ(Ea,i,m) =

∑
αa,i

r(Ea,i)[Ya][H ]d−1

(d− 1)!
md−1 + . . .

By the relationship between residue and Chern classes described earlier,∑
αa,ir(Ea,i)[Ya] =

∑
tr(Ra)[Ya] = −c1(E)

Substituting in the above equation gives∑
αa,iχ(Ea,i,m) = −c1(E)[H ]d−1

(d− 1)!
md−1 + . . .

Hence we get the desired equality for par χ(E,m). Q.E.D.
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Remark 3.11. In contrast to the coefficients of degrees d and d−1,
the coefficients of par χ(E,m) in degrees ≤ d − 2 can depend on data
involving residual eigenvalues and their intersection multiplicities. So
parabolic Gieseker semistability is not automatic except in special cases
– say when each [Ya][Yb] = 0 or when along each Ya there is exactly one
parabolic weight Re(λa,i). In particular if all residues Ra are nilpotent,
then par χ(E,m) = r(E) · χ(OX(−Y ),m) and so parabolic Gieseker
semistability is automatic when all local monodromies are unipotent.

Definition 3.12. We say that a Deligne connection E is parabolic
semistable if for each nonzero ∇-invariant vector subbundle F with
0 �= F �= E, we have

par χ(F,m)/r(F ) ≤ par χ(E,m)/r(E)

where r(F ) and r(E) are the ranks of the respective vector bundles, and
F is given the induced parabolic structure. If strict inequality always
holds, we say that E is parabolic stable.

Strong local freeness

Lemma 3.13. Let E be a Deligne connection on (X,Y ), and let
F ⊂ E be an OX-coherent sub-DX〈logY 〉-module. If E/F is torsion-
free then E/F is locally free, that is, F is a vector subbundle of E.

Proof. Let M be the local system on X − Y defined by E|X−Y .
As F|X−Y is an OX−Y -coherent DX−Y -module, it is locally free, and
its local integrable sections define a sub local system L ⊂ M. The
Deligne construction applied to this inclusion of local systems gives a
vector subbundle V ⊂ E, with V |X−Y = F|X−Y . The composite F →
E → E/V is zero on X − Y hence identically zero, as E/V is locally
free hence torsion-free. So F ⊂ V . As V |X−Y = F|X−Y , it follows
that V/F is a torsion sheaf, while the inclusion V/F ⊂ E/F into E/F
together with the hypothesis that E/F is torsion-free, shows that V/F
is torsion-free. It follows that V/F = 0, and so F = V . Q.E.D.

Because of the following lemma, we do not need to impose any condition
on ∇-invariant O-coherent subsheaves other than vector subbundles.

Lemma 3.14. Let E be a Deligne connection on (X,Y ), and let
F ⊂ E be a non-zero OX-coherent sub-DX〈log Y 〉-module. Let F ⊂ E
be the inverse image of the torsion subsheaf (E/F)tors of E/F under
the quotient map E → E/F . Then F is a vector subbundle of E which
is invariant under ∇, and given the induced parabolic structures on F
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and F , the normalised parabolic Hilbert polynomials satisfy

par χ(F ,m)/r(F) ≤ par χ(F ,m)/r(F)

Equality holds (if and) only if F = F , that is, (if and) only if F ⊂ E is
a vector subbundle.

Proof. By Lemma 3.13, F is a vector subbundle of E which is
invariant under ∇. Moreover, F|X−Y = F|X−Y which in particular
means r(F) = r(F). The parabolic filtration on F|Ya is induced from
that on F|Ya , which implies that we have inclusion of corresponding
graded pieces gra,α(F) ⊂ gra,α(F). These inclusions, along with the
inclusion F ⊂ F give the inequality between parabolic Hilbert polyno-
mials par χ(F ,m) ≤ par χ(F ,m). Now the result follows by dividing by
r(F) = r(F). �

Remark 3.15. Sub-connections of E have only finitely many pos-
sible Hilbert polynomials and parabolic Hilbert polynomials. This is be-
cause the residual eigenvalues (with multiplicities) of a sub-connections
of E come from that of E, and these determine the Hilbert polynomials
and parabolic Hilbert polynomials.

Lemma 3.16. In any family E of Deligne connections parametrised
by a scheme S, the conditions of parabolic semistability and parabolic
stability define open subschemes of S.

Proof. Let π : Q → S be the relative quot scheme of O-coherent
quotients of E having any one of the possible Hilbert polynomials for
quotients modulo sub-connections. There are only finitely many such
polynomials by Remark 3.15, so Q is proper over S. The condition that
the kernel of the quotient is ∇-invariant is a closed condition, defining
a closed subscheme Q′ ⊂ Q. Note that Q′ has a closed subschemes
Q1 ⊂ Q2 ⊂ Q′ such that S − π(Q2) is the stable locus and S − π(Q1) is
the semi-stable locus in S, hence these are open in S. Q.E.D.

Lemma 3.17. Let Y ⊂ X be a smooth divisor such that [Y ]2 =
0 ∈ H4(Xan; C). Then for any logarithmic connection E which is a
Deligne extension with natural parabolic structure, the parabolic Hilbert
polynomial equals r(E)χ(OX (−Y ),m).

Proof. Note that [Y ] =
∑

a[Ya] and by assumption, [Ya][Yb] = 0
for all a, b. Hence we have ch(OX(−Ya)) = 1 − [Ya], and so

ch(OYa) = ch(OX) − ch(OX(−Ya)) = 1 − ch(OX(−Ya)) = [Ya]
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Note that c1(E) = −∑
a trace(Ra)[Ya] where Ra = trace(resYa(E)). As

[Y ]2 = 0, the complex Newton classes Np(E) vanish for p ≥ 2. Hence
the Chern character of E(−Y ) is given by

ch(E(−Y )) = r(E) −
∑

a

(r(E) + trace(Ra))[Ya]

Consider any piece Ea,i in the direct sum decomposition E|Ya = Ea,1 ⊕
. . . ⊕ Ea,p. Again by [Ya]2 = 0, the Newton classes Np(Ea,i) vanish for
p ≥ 1, so Ea,i has Chern character

ch(Ea,i) = r(Ea,i)ch(OYa) = r(Ea,i)[Ya]

Moreover, note that trace(Ra) =
∑

i r(Ea,i)αa,i. As
∑

i r(Ea,i) = r(E),
this gives

ch(E(−Y )) +
∑
a,i

αa,ich(Ea,i) = r(E)(1 − [Y ]) = r(E)ch(OX (−Y ))

Multiplying both sides of the above equation by ch(OX(mH))td(X)
(where td(X) denotes the Todd class of X) and integrating over X ,
the result follows by the Hirzebruch-Riemann-Roch theorem. Q.E.D.

§4. Moduli of parabolic stable connections

Given (X,Y ) with Y = ∪a Ya, and rank n, we fix

(1) along each Ya, eigenvalues (with multiplicities) for residues Ra with
real parts in [0, 1) (these are constant by Lemma 3.7),

(2) along each connected component of intersection Ya1 ∩ . . . ∩ Yar , fix
ranks of intersections of the generalised eigen-subbundles of residues Rai

(these ranks are constant by Lemma 3.7).

As explained earlier, this fixes all the Newton classes of any E with the
above data. Let P (m) denote the resulting Hilbert polynomial.

Proposition 4.1. Let the rank r and residue data be fixed. There
exists an integer N0 such that for any Deligne connection of rank r with
the above data, the following holds for any N ≥ N0:

(1) The bundle E(N) is generated by global sections, all its higher co-
homologies vanish, and all the higher cohomologies of the line bundle
det(E(N)) vanish.

(2) The higher cohomologies of the restrictions E|Ya also vanish.
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Combining Simpson’s method for Λ-modules with that of Bhosle, Maru-
yama, Yokogawa for parabolic bundles converts the moduli problem into
a quotient problem and into a GIT problem.

By boundedness there exists N such that E(m) has all higher cohomolo-
gies zero for m ≥ N , and is generated by global sections.

Locally universal family

Fix the rank r and the residual eigenvalues with multiplicities, together
with ranks of intersections of generalised eigen-subbundles of the Deligne
connection, as explained above. Let DX〈logY 〉 ⊂ DX consists of oper-
ators which preserve IY ⊂ OX . By intersection with the filtration on
DX , this acquires an exhaustive filtration

0 ⊂ OX = F 0DX〈logY 〉 ⊂ F 1DX〈log Y 〉 ⊂ . . .

where each F iDX〈log Y 〉 is an OX -bimodule (with commutating left and
right structures), which is OX -bi-coherent. A logarithmic connections is
the same as a left DX〈log Y 〉-module which is coherent and locally free
over OX . For any integer i, we denote F iDX〈log Y 〉 simply by F i. To
keep clear whether the left or the right OX -module structure is used for
the tensor product, we will use the notation

F i(m,n) = OX(m) ⊗OX F iDX〈log Y 〉 ⊗OX OX(n)

Following ideas of Simpson, we construct a locally universal family for
Deligne connections of rank r with given residual data, parametrised
by a scheme C, defined as a locally closed subscheme of a certain Quot
scheme Q. We define Q as the Quot scheme which parametrises left-
OX -linear epimorphisms

q : F r+1(0,−N)⊕P (N) = F r+1DX〈logY 〉 ⊗OX OX(−N)⊕P (N) → F

such that F is OX -coherent with Hilbert polynomial P (m), and where
N is so chosen (using Proposition 4.1) that for m ≥ N , the sheaves
E(m) and Ea,α(m) are generated by global sections and their higher
Hi’s vanish, and also the same holds for IY times or Ix times the sheaves
for x ∈ X and the same holds for the DX〈log Y 〉-subquotient bundles of
E and Ea,α.

Let C ⊂ Q = Quot
P (m)
F r+1(0,−N)⊕n/X be the locally closed subscheme,

defined by the following conditions (where n = P (N)):
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(i) F is locally free (this is an open condition on Q).

(ii) Consider the bi-OX -module homomorphism

OX(−N)⊕n → F r+1(0,−N)⊕n : a �→ 1 ⊗ a.

We impose the condition that the composite map

p : OX(−N)⊕n → F r+1(0,−N)⊕n → F

is surjective, and on applying OX(N) ⊗OX − followed by H0(X,−) it
induces an isomorphism Cn → H0(F(N)) (this is an open condition).

(iii) F r+1⊗OX(−N)n → F factors via the surjection 1F r+1 ⊗p : F r+1⊗
OX(−N)n → F r+1⊗F , giving a (uniquely determined) map µ : F r+1⊗
F → F , and the product F i ⊗ F j → F i+j for i+ j ≤ r + 1 is respected
(closed condition, makes F a DX〈log Y 〉-module.)

(iv) Residual eigenvalues are correct (closed condition).

The scheme C in invariant under the action of SLn and a good quotient
C//SLn, if it exists, is the coarse moduli for Deligne connections with
given rank and residual eigenvalues. Let Cpar ss ⊂ C be the open sub-
scheme consisting of parabolic semistable bundles. Then we show that
a good quotient Cpar ss//SLn exists.

Parabolic polarisation and GIT quotient

We have a natural embedding of C into a product of Quot schemes
Q0 × ∏

a,iQa,i for quotients of the type F r+1(0,−N)⊕n → E and of
the type F r+1(0,−N)⊕n → E|Y /Fa,i+1 where Fa,i = ⊕j≥iEa,i is the
parabolic filtration.

We now construct an analog of the Gieseker space (originally due to
Gieseker, defined in [Ge]), for our extra requirement that we need to
encode not just a vector bundle E but the logarithmic connection on it.

The space Z we construct will be the total space of a projective fibration
Z → A, where A is a union of certain finitely many components of the
Picard scheme of X , to define which we first need the following lemma.

Lemma 4.2. There exists an integer c ≥ 0 such that for each 0 ≤
i ≤ r + 1 and for each N , the sheaf F i(N + c,−N) is generated by its
global sections.

Proof. The graded pieces of of the filtration

0 ⊂ OX = F 0(N + c,−N) ⊂ F 1(N + c,−N) ⊂ . . . ⊂ F r+1(N + c,−N)
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are Symi(TX〈log Y 〉)(c), which are independent ofN . The result follows.
Q.E.D.

Note that any quotient F r+1(0,−N)⊕P (N) → E, which represents a
C-valued point of Q0, gives a quotient

F r+1(N + c,−N)⊕P (N) → E(N + c)

Let A ⊂ PicX/S be the open and closed subscheme which parametrises
all line bundles on X whose first Chern class is equal to that of det(V )
where V is any vector bundle on X with Hilbert polynomial P (N + c).
By choosing a C-rational point x ∈ X as base point, we get a unique
Poincaré line bundle L on X × A, trivialised on x × A. Let (pA)∗(L)
denote its direct image on A under the projection pA : X × A → A.
The sheaf (pA)∗(L) will be a vector bundle by our choice of A, because
all the higher cohomologies Hi(X,L) for i ≥ 1 vanish for line bundles
L represented by points of A. Let Z be the projective scheme over A
defined as

Z = P
[
hom(H0

(
X, ∧r[F r+1(N + c,−N)⊕P (N)]

)
⊗C OA, (pA)∗L)∨

]
= Proj SymOA

[
H0

(
X, ∧r[F r+1(N + c,−N)⊕P (N)]

)
⊗C (pA∗L)∨

]
.

The C-valued points of Z over a point a ∈ A are represented by equiva-
lence classes of pairs(

L, φ : H0(X,∧r[F r+1(N + c,−N)⊕P (N)]) → H0(X,L)
)

where L is a line bundle representing the point a, and φ is a non-zero
linear map.

There is a natural linear representation of SLn, where n = P (N), on
the vector space H0(X,∧r[F r+1(N + c,−N)⊕P (N)]), which induces an
action of SLn on the pair (Z,OZ(1)).

Recall that if F is a coherent torsion-free sheaf of rank 1 on a non-
singular variety X , then there exists (up to isomorphism) a unique pair
(L, i) consisting of an invertible sheaf L on X and a homomorphism i :
F → L which is an isomorphism outside a closed subset of codimension
≥ 2. The first Chern class of L is equal to that of F .

We define a morphism ψ : Q0 → Z, by defining a natural transformation
on functors of points as follows. For any C-scheme S, we have a set map
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Q0(S) → Z(S) sending an S-valued point F r+1(0,−N)⊕P (N)�×OS → E
of Q0 to the S-valued point of Z represented by a pair (L, φ) where
L is the line bundle det(E(N + c)) corresponding to the torsion free
sheaf ∧r(E(N + c)) of generic rank 1, and φ is the composite map
H0(X,∧r[F r+1(N + c,−N)⊕P (N)]) ⊗C OS → πS∗ ∧r (E(N + c))
→ πS∗ det(E(N + c)).

This map is clearly SLn-equivariant, where n = P (N).

Proposition 4.3. For all N sufficiently large, the morphism ψ :
C → Z is an isomorphism of C with a locally closed subscheme of Z.

Proof (Sketch) The scheme C represents the functor which asso-
ciates to each S a pair (E, u) where E is a family of Deligne connection on
X×S with prescribed residual eigenvalues data, and u : OP (N)

S → pX ∗E
is an isomorphism of vector bundles on S. By the use of flattening strat-
ification, it can be seen that Z has a locally closed subscheme C′ which
represents this same functor, such that ψ induces natural isomorphism
of hC with hC′ . (Such a use of the flattening stratification was originally
made by Grothendieck to construct Hilbert and Quot schemes as locally
closed subschemes of Grassmannians. Also, Maruyama-Yokogawa use it
to prove the analogous proposition in [9]). Now the result follows by
Yoneda lemma. Q.E.D.

We now define certain Grassmannians Gra,i as follows. Let Pa,i(m)
denote the Hilbert polynomial of E|Y /Fa,i(E). Let Gra,i be the Grass-
mannian of quotients of H0(X,F r+1(N + c,−N)⊕P (N)) of dimension
Pa,i(N + c). We have morphisms ψa,i : C → Gra,i which at the level of
functors of points sends a quotients qS : F r+1(0,−N)⊕P (N)�×OS → E
to the quotient

ψa,i(qS) : H0(X,F r+1(N + c,−N)⊕P (N))⊗C OS → πS∗(E|Y /Fa,i(E))(N + c)

Together, these define a morphism

θ = (ψ, ψa,i) : C → Z ×
∏
a,i

Gra,i

which is a locally closed embedding, as its composition with the pro-
jection on Z is ψ which is a locally closed embedding by Proposition
4.3. (Even though the morphism ψ : C → Z by itself is a locally closed
embedding, we need the other factors Gra,i to get the polarisation right
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in order that parabolic semi-stability of a Deligne connection will corre-
spond to GIT semistability of points of Z × ∏

a,i Gra,i).

Remark 4.4. Unlike in the moduli construction of [1] or [9], we do
not have properness of the morphism Cpar ss → (Z × ∏

a,iGra,i)ss.

Linearisation of action

For simplicity, we assume each αa,i is rational. This entails no loss of
generality, as originally shown in the paper of Mehta-Seshadri [M-S]. Let
La,i denote the positive generator of Pic(Gra,i). With respect to these
line bundles on the factors, give Z × ∏

a,iGra,i the polarisation

(P (N + c)/r, εa,i/δ)

where εa,i = αa,i+1 − αa,i for i = 1, . . . �(a)− 1 and εa,�(a) = 1 − αa,�(a),
and δ = dimH0(X,D). (Except for the presence of the constants c and
δ, the above is the same as the corresponding polarisation in Maruyama-
Yokogawa [9] page 94.) In terms of line bundles, our choice of a very
ample line bundle L on Z × ∏

a,iGra,i is any line bundle of the form

L = π∗
ZOZ(m · P (N + c)/r) ⊗

(
⊗a,iπ

∗
a,iL

m·εa,i/δ
a,i

)
where m ≥ 1 is any positive integer which clears all the denominators
in the above formula.

The natural action of SLn (where n = P (N)) on Z × ∏
a,iGra,i lifts to

the very ample line bundle L. Hence we get open subschemes

(Z ×
∏
a,i

Gra,i)s ⊂ (Z ×
∏
a,i

Gra,i)ss ⊂ Z ×
∏
a,i

Gra,i

of GIT-stable and GIT-semistable points.

At this point, we would ideally like to prove the following:

4.5. When N is sufficiently large, a Deligne connection E is par-
abolic stable (or parabolic semistable) if and only if for any point q :
F r+1(0,−N)⊕n → E of C, the image θ(q) in Z×∏

a,iGra,i is GIT-stable
(or GIT-semistable) with respect to the polarisation (P (N+c)/r, εa,i/δ).

However, so far we can not prove this in general, but only under the
additional assumption that we can choose c to be 0, which is the case
when TX〈log Y 〉 is itself generated by global sections. (We expect to be
able to eventually remove this assumption. One possible method may
be via the ‘triples’ introduced by Inaba, Iwasaki and Saito [6].)
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To prove the above, we calculate the Mumford weights µ(ψ(q), λ,L)
corresponding to limits of orbits under 1-parameter subgroups λ of SLn.

Calculation of Mumford weights

Lemma 4.6. Let E be a logarithmic connection on (X,Y ) of rank
r, and let F ⊂ E be a coherent sub-OX-module. Let E′ ⊂ E be the OX-
saturation of the image of F r+1⊗F → E. Then E′ is a sub DX〈log Y 〉-
module of E.

Proof. This is just Simpson [13] Lemma 3.2. Q.E.D.

Remark 4.7. Let V be a finite dimensional vector space over C

together with a given linear action of SL(V ) on a projective variety
(Y,OY (1)). Consider any subspace V ′ ⊂ V . and let dim(V ′) = n′.
Choose a direct sum decomposition V = V ′ ⊕ V ′′. Let dim(V ) = n
and dim(V ′) = n′ so dim(V ′′) = n − n′. Let λ : Gm → SL(V ) be the
1-parameter sub group, defined by λ(t) = (tn

′−n1V ′ , tn
′
1V ′′). Then any

point y ∈ Y the limit y0 = limt→0 λ(t)y is independent of the choice
of the supplement V ′′. Moreover, the Mumford weight µ(y, λ,OY (1))
(which is by definition the weight of the character by which λ acts on the
fiber of OY (1) at y0) is also independent of the choice of the supplement
V ′′.

Let q : F r+1(0,−N) ⊗ V → E be a point of C, where V = Cn with
n = P (N). Let ψ(q) ∈ Z(C) be its image, which is represented by the
linear map H0(X,∧r(D⊗V )) → H0(X,L) where D = F r+1(N+c,−N)
and L = det(E(N + c)). Let M ′ ⊂ E be the OX -submodule which is
the image of F r+1(0,−N) ⊗ V ′ → E under q, and let E′ ⊂ E be the
OX -saturation ofM ′. By Lemmas 4.6 and 3.13, E′ is a vector subbundle
which is a sub-Deligne connection of E. Let r′ = rank(E′).

The decomposition V = V ′ ⊕ V ′′ gives a decomposition

∧r(D ⊗ V ) = ⊕i+j=n ∧i (D ⊗ V ′) ⊗ ∧j(D ⊗ V ′′)

Then as in the theory of Gieseker, the limit limt→0 λ(t)ψ(q) is repre-
sented by the point of Z given by the composite C-linear map

H0(X,∧r(D ⊗ V )) → H0(X,∧r′
(D ⊗ V ′) ⊗ ∧r−r′

(D ⊗ V ′′))
→ H0(X, det(E′(N + c)) ⊗ det((E/E′)(N + c)))

As λ(t) acts by tn
′−n on V ′ and tn

′
on V ′′, it acts by the characters

t−r′(n−n′) and t(r−r′)n′
respectively on ∧r′

(D ⊗ V ′) and ∧r′
(D ⊗ V ′′),
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and hence it acts by the character tr
′(n−n′)−(r−r′)n′

on the vector space
H0(X,∧r′

(D ⊗ V ′) ⊗ ∧r−r′
(D ⊗ V ′′)). This implies the following:

4.8. Under the action of λ, the point ψ(q) of Z has the Mumford
weight

µ(ψ(q), λ, OZ(1)) = r′n− rn′

Next, we consider the point θ(q) ∈ Z × ∏
a,i Gra,i. For any ψa,i : C →

Gra,i, recall that ψa,i(q) is represented by the quotient

ψa,i(q) : H0(X,F r+1(N + c,−N)⊗V ) → H0(X, (E|Y /Fa,i(E))(N + c))

where V = Cn where n = P (N). Let V = V ′⊕V ′′ and λ the correspond-
ing 1-parameter subgroup as above. Then we get limt→0 λ(t)ψa,i(q) to
be represented by the quotient which is the composite

H0(X,D ⊗ V ) ∼→ H0(X,D ⊗ V ′) ⊕H0(X,D ⊗ V ′′)

→ ψa,iH
0(X,D ⊗ V ′) ⊕ H0(X, (E|Y /Fa,i(E))(N + c))

ψa,iH0(X,D ⊗ V ′)

This implies the following:

4.9. If m′
a,i = dim(ψa,iH

0(X,D ⊗ V ′)), this gives the value for the
Mumford weight

µ(ψa,i(q), λ, La,i) = δ · (m′
a,iP (N) − Pa,i(N + c)n′)

where δ = h0(X,D) and Pa,i is the Hilbert polynomial of E|Y /Fa,i(E).

Remark 4.10. In particular, if E′ ⊂ E is a sub-connection of E,
and V ′ = H0(X,E′(N)), then for any 1-parameter subgroup λ of SLn

defined by choosing a splitting V = V ′ ⊕ V ′′ (where the choice of V ′′ is
arbitrary), the corresponding Mumford weight is P (N) times

r(E′)
r(E)

par χ(E,N)−par χ(E′, N)−h0(E′(N))
P (N + c)
P (N)

+h0(E′(N+c))

In particular, when c = 0, the value of the Mumford weight takes the
simple form

P (N)
(
r(E′)
r(E)

par χ(E,N) − par χ(E′, N)
)

Armed with the above calculations 4.8 and 4.9 of Mumford weights, in
the case where we can take c = 0, the rest of the proof of the state-
ment 4.5 is the same as that of the corresponding Proposition 3.4 of
Maruyama-Yokogawa [9].
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The open subscheme (Z×∏
a,iGra,i)s ⊂ Z×∏

a,iGra,i has a geometric
quotient M = (Z × ∏

a,iGra,i)s/SLn. This is the moduli space for
parabolic stable Deligne connections.

§5. Regular holonomic modules when Y is smooth

In this section we consider regular holonomic D-modules whose char-
acteristic variety is contained in (X − Y )

⋃
N∗

Y,X where Y is a smooth
divisor. These are not OX -coherent in general, so the concept of a
pre-D-module was introduced in the paper [12] to give an OX -coherent
description of these D-modules, much as logarithmic connections give
an OX -coherent description of meromorphic connections. We now show
how to re-define the concept of a pre-D-module and its semi-stability,
so as to take care of the relationship with the topology of NY,X , which
makes the resulting notion of semi-stability (whether ordinary or para-
bolic) much more inclusive.

In this new construction, we have to fix the residual eigenvalues with
their intersection multiplicities. However, by Lemmas 2.2 and 2.4, this
is automatic whenever the universal topological degrees of the various
normal bundles are non-zero, which is generally the case in higher di-
mensions. Hence this is a very mild restriction.

The sheaf of rings DX〈log Y 〉|Y
As DX〈log Y 〉 preserves IY , we have IY DX〈logY 〉 = DX〈logY 〉IY ,
which is therefore a 2-sided ideal. The quotient ring is the restriction
DX〈log Y 〉|Y , which can be regarded as O-module restriction of both the
left and the right OX -module DX〈logY 〉 to Y .

Over Y , we have a short-exact sequence

0 → OY → TX〈log Y 〉|Y → TY → 0

The image of 1 ∈ H0(Y,OY ) defines a section e ∈ H0(Y, TX〈log Y 〉|Y ),
which has the following description in local coordinates: if (x1, . . . , xd)
are (analytic or étale) local coordinates on X , with Y locally defined by
x1 = 0, then e is locally defined as the restriction to Y of the logarithmic
vector field x1(∂/∂x1).

Definition 5.1. The Euler operator is the section of DX〈logY 〉|Y
over Y which is the image of the above section e ∈ H0(Y, TX〈log Y 〉|Y )
under the map induced by the inclusion TX〈logY 〉 ↪→ DX〈logY 〉. We
denote the Euler operator again by e.
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Remark 5.2. The Euler operator e is central in DX〈logY 〉|Y . This
fact is easy to verify, and it has the following topological analog: in the
space NY,X − Y (or more generally, in the open subset L − Y of the
total space any complex line bundle L on a base Y (complement of the
zero section) the fundamental loop in a fiber defines a central element
of π1(L− Y ).

Modules over DX〈logY 〉|Y
For any DX〈log Y 〉|Y -module F , the induced endomorphism e : F → F
will be called the residue endomorphism and it will be denoted by
res(F ).

Remark 5.3. (1) As e is central, res(F ) is DX〈log Y 〉|Y -linear, so
its eigenvalues are constants (even without compactness of Y ). (2) If
E is a logarithmic connection on (X,Y ), then the restriction F = E|Y
is naturally a DX〈log Y 〉|Y -module, and the corresponding residues are
the same.

Lemma 5.4. Suppose that Y is smooth, with connected components
Ya. Let F be an OY -coherent DX〈logY 〉|Y -module. Then the following
holds.

(1) F is locally free as an OY -module (but the rank ra of F |Ya could vary
from component to component).

(2) Let αa,i be the eigenvalues of res(F ), and let F = ⊕Fa,i be the
decomposition into generalised eigensubbundles, with ranks ra,i. Then
the Chern character of Fa,i is given by

ch(Fa,i) = ra,i exp(−αa,ic1(NY ))

In particular, the Hilbert polynomial of Fa,i is of the form χ(Fa,i,m) =
ra,ifa,i(m) where the polynomial fa,i(m) is independent of Fa,i.

(3) Each Fa,i is a semi-stable DX〈log Y 〉-module (in both Gieseker and
µ sense).

Proof. (1) Choose a local trivialization for NY . Then locally we
get a flat connection on F |Y , showing it is locally free since it is given
to be OY -coherent.

(2) The pull-back of F to the total space of NY becomes a logarithmic
connection on (NY , Y ). Now the earlier result about logarithmic con-
nections applies to give the Chern character of the pull-back of F on
the total space of NY , and the result follows by restricting to the zero
section of NY .
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(3) Any OYa-coherent DX〈log Y 〉-submodule of Fa,i will be a vector sub-
bundle, with the same residual eigenvalue. Hence the result follows from
the description of its Hilbert polynomial given by (2). Q.E.D.

Pre-D-modules on (X,Y ), semistability

The following is our modified definition of a pre-D-module. Here the
modification is minor, the main modification is in the definition of semi-
stability (Definition 5.7).

Definition 5.5. Let Y be a smooth divisor on the A pre-D-
module on (X,Y ) is a tuple (E,F, s, t) where

(i) E is a Deligne connection on (X,Y ),

(ii) F is an OY -coherent DX〈log Y 〉|Y -module on Y such that any eigen-
value of res(F ) has real part in [0, 1).

(iii) s : F → E|Y and t : E|Y → F are DX〈logY 〉-linear with st = res(E)
and ts = res(F ).

Remark 5.6. It follows from the above that the DX〈log Y 〉-linear
homomorphisms s and t are isomorphisms on generalised eigensubbun-
dles of res for all eigenvalues λ �= 0.

Definition 5.7. We call pre-D-module (E,F, s, t) semistable (re-
spectively, parabolic semistable) if the Deligne connection E is semi-
stable (respectively, parabolic semistable) as a DX〈logY 〉-module as de-
fined in [10] (respectively, with its natural parabolic structure as defined
earlier).

Remark 5.8. The difference in this new definition and the old one
of [12] is that now we do not put any semistability condition on the
DX〈log Y 〉|Y -module F , while earlier we had demanded that F should
be semistable as a DX〈log Y 〉|Y -module.

Relation with D-modules

We now describe how a pre-D-module gives rise to a D-module. Let
(E,F, s, t) be a pre-D-module on (X,Y ). Then we get a DX〈log Y 〉-
submodule

E ⊕s F ⊂ E ⊕ F

which by definition consists of all local sections (u, v) with u|Y = s(v).
As s is DX〈log Y 〉|Y -linear, this condition indeed defines a DX〈log Y 〉-
submodule of E ⊕ F .
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Now let M0 = E andM1 = OX(Y )⊗OX (E⊕sF ). As OX(Y ) is naturally
a left DX〈log Y 〉-module, the tensor productM1 = OX(Y )⊗OX (E⊕sF )
has a left DX〈log Y 〉-module structure given by putting

ξ(p⊗ q) = ξ(p) ⊗ q + p⊗ ξ(q)

where ξ, p, and q are local sections respectively of TX〈log Y 〉, OX(Y )
and E ⊕s F . We have a DX〈log Y 〉-linear inclusion M0 ↪→ M1 defined
by

u �→ x−1 ⊗ (xu, 0)

We now define a C-linear sheaf homomorphism ∇ : M0 → Ω1
X ⊗M1 by

putting
∇η(u) = x−1 ⊗ ( (xη)(u), η(x)t(u|Y ) )

for any local section η of the tangent sheaf TX . This is compatible
with given DX〈log Y 〉-structures, in the sense that if η is a section of
TX〈log Y 〉 ⊂ TX , then ∇η(u) equals the image of η(u) ∈ M0 under the
inclusion M0 ↪→ M1.

Finally, we define M to be the left DX module which is the quotient
of DX ⊗DX〈log Y 〉 M1 by its submodule generated by all elements of the
type η ⊗ u− 1 ⊗ η(u).

Proposition 5.9. Given any pre-D-module (E,F, s, t), the asso-
ciated DX-module M is regular holonomic, with characteristic variety
contained in CX,Y . The following properties hold.

(i) The module M is a non-singular connection if and only if F = 0.

(ii) The module M is a meromorphic connection if and only if E �= 0
and s : F → E|Y is an isomorphism.

(iii) The module M is set-theoretically supported on Y if and only if
E = 0.

Moreover, given any regular holonomic DX-module N with characteristic
variety contained in CX,Y , there exists (up to unique isomorphism) a
unique pre-D-module (E,F, s, t) such that the associated DX -module M
is isomorphic to N .

Proof (Sketch, also see [11]) The module M has a filtration F iM
which is ‘good’ with respect to the filtration F iDX of DX , defined
by F 0M = M0, F 1M = M1, and F iM = (F i−1DX)M1 for i ≥ 2.
The associated graded module over Sym∗(TX) shows that M is regu-
lar holonomic with the characteristic variety contained in CX,Y . The
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statements (i), (ii), (iii) are clear from the construction of M . The
backward passage from a DX -module to a pre-D-module is via the ex-
istence of a V-filtration (which due to Malgrange [7] and Verdier [V])
. . . V i(M) ⊂ V i+1(M) . . . on M , which is a certain filtration by OX -
coherent DX〈log Y 〉-modules. In terms of V -filtration, we put E =
V 0(M), F = V 1(M)/V 0(M), and define s and t as the maps locally
induced by x and ∂/∂x, where x is a local defining equation for Y .
The construction of a V -filtration depends on the choice of a funda-
mental domain in C for the exponential map z �→ exp(2πiz). If we
define the fundamental domain by the condition that 0 ≤ Re(z) < 1,
then both E = V 0(M) and F = V 1(M)/V 0(M) will have all real parts
of residual eigenvalues in [0, 1) as desired, showing that (E,F, s, t) is a
pre-D-module as in Definition 5.5. Q.E.D.

Remark 5.10 Infinitesimal rigidity As a consequence of infin-
itesimal rigidity for Deligne construction (see [10]), a pre-D-module
(E,F, s, t) does not admit any nontrivial infinitesimal deformation such
that the associated DX -module is constant.

Moduli construction

A family (E,F, s, t)S of pre-D-modules parametrised by a complex
scheme S will consist of a family of Deligne connections E parametrised
by S, a vector bundle F on Y × S equipped with a structure of a
DX×S/S〈Y ×S〉|Y ×S-module with all real parts of residual eigenvalues in
[0, 1), and DX×S/S〈Y × S〉|Y ×S-linear homomorphisms s : F → E|Y ×S

and t : E|Y ×S → F with st = res(E) and ts = res(F ).

We now fix the ranks of E and F , and the residual eigenvalues of E
with their multiplicities (in other words, the characteristic polynomial
of res(E) is fixed). This automatically fixes the characteristic polyno-
mial of res(F ) by Remark5.6. Note that by [10], there exists a quasi-
projective scheme S over C parametrising a locally universal family of
semistable logarithmic connections, together with the action of a reduc-
tive algebraic groupG such that a good quotient S//G exists in the sense
of GIT, and is the moduli of semistable logarithmic connections. The
scheme U has a closed subscheme R where the the characteristic poly-
nomial of res(E) is the given one, and this subscheme is invariant under
the action G. Hence a good quotient R//G exists, and it is the moduli
of Deligne connections. Similarly, by the theory of Λ-modules developed
in [13], there exists a quasi-projective scheme R′ over C parametrising a
locally universal family of semistable DX〈logY 〉|Y -modules on which the
action of the Euler operator e is nilpotent, together with the action of a
reductive algebraic group G′ such that a good quotient R′//G exists in
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the sense of GIT, and is the moduli of semistable DX〈logY 〉|Y -modules
with given residual eigenvalues. The extra data (s, t) is parametrised by
a scheme V which is affine over R×R′, such that there is a natural lift
of G × G′-action to U . By Ramanathan’s lemma, a good quotient M
exists. By its construction, M is coarse moduli for semistable pre-D-
modules (E,F, s, t) with given ranks and residues. By construction, this
is a quasi-projective scheme over C.

If a moduli for parabolic semistable Deligne constructions is obtained
as a good GIT quotient as above, then a similar construction will give
the moduli for parabolic semistable pre-D-modules (E,F, s, t) with given
ranks and residues.

Points of the moduli

Proposition 5.11. The closed points of the moduli scheme of semi-
stable pre-D-modules bijectively correspond to isomorphism classes of
DX-modules of the form

j!+(E|X−Y ) ⊕ i+(W )

where E is a polystable Deligne connection on (X,Y ), j!+(E|X−Y ) is
the minimal prolongation of the DX−Y -module E|X−Y to a DX-module,
i : Y → X is the closed embedding of Y in X, W is a semisimple non-
singular integrable connection on Y , and i+(W ) is the DX-module which
is the direct image (in the sense of D-modules) of the DY -module W .

Remark 5.12. Let E′ be kernel of E → coker(res(E)), which is
an elementary transform of E in the sense of Maruyama [8]. Then
j!+(E|X−Y ) is the DX -sub-module of j∗(E|X−Y ) generated by OX(Y )⊗
E′.

Proof of 5.11: Any Deligne connection E gives rise to a pre-D-
module

PE = (E, im(res(E)), θE , res(E))

where im(res(E)) ⊂ E|Y is naturally a sub-DX〈logY 〉|Y -module with
inclusion θE : im(res(E)) ↪→ E|Y , and res(E) : E|Y → im(res(E)) is the
map induced by res(E) : E|Y → E|Y .

Similarly, an integrable connection W on Y corresponds to a pre-D-
module

QW = (0,W, 0, 0)

In terms of the correspondence between pre-D-modules and D-modules,
to prove the above proposition we have to show that the closed points
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of M are in bijection with the isomorphism classes of pre-D-modules of
the type

PE ⊕QW

where E is a polystable Deligne connection with the given rank and
residual eigenvalues, and W is an integrable connection on Y .

Note that closed orbits in R and R′ exactly correspond to polystable
modules, which in the case of (non-singular) connections on Y means
those which are semi-simple (monodromy is completely reducible). So
the set of isomorphism classes of pre-D-modules of the type PE ⊕QW ,
where E is polystable and W semisimple, injects into the set of closed
points of the moduli. It remains to show that these are all the points.

For this, given any pre-D-module (E,F, s, t), let W ′ = ker(s) with in-
clusion α : W ′ ↪→ F and W ′′ = im(s)/ im(res(E)) with quotient map
β : im(s) → W ′′. These vector bundles on Y which are DY -modules,
and the maps α and β are DX〈logY 〉|Y -linear. We have the following
commutative diagram with short-exact columns.

0 → W ′ → 0
↓ α ↓ ↓
E|Y t→ F

t→ E|Y
‖ s ↓ ‖
E|Y res(E)→ im(s) ↪→ E|Y

This allows us to construct a family of pre-D-modules parametrised
by the affine line A1

C
, which outside the origin is the constant fam-

ily corresponding to (E,F, s, t) and at origin restricts to (0,W ′, 0, 0) ⊕
(E, im(s), ν, res(E)) where ν : im(s) ↪→ E|Y is the inclusion.

Next, we have the commutative diagram with short-exact columns

E|Y res(E)→ im(res(E)) ↪→ E|Y
‖ ↓ ↓
E|Y s→ im(s) ↪→ E|Y
↓ β ↓ ↓
0 → W ′′ → 0

Therefore there exists a family of pre-D-modules parametrised by A1
C
,

which outside the origin is the constant family (E, im(s), ν, res(E)) and
at origin restricts to (E, im(res(E)), θE , res(E))⊕ (0,W ′′, 0, 0) where by
definition θE : im(res(E)) ↪→ E|Y is the inclusion.
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Hence by the separatedness of the quasi-projective moduli scheme M,
it follows that the original semistable pre-D-module (E,F, s, t) and the
semistable pre-D-module (E, im(res(E)), θE , res(E))⊕(0,W ′⊕W ′′, 0, 0)
are represented by the same point of M.

Next, let 0 ⊂ E1 ⊂ . . . ⊂ E� = E be an S-filtration of E, that is, the
Ei are sub Deligne connections which have the same reduced Hilbert
polynomial as E. Let Gr(E) be the associated graded Deligne con-
nection. Hence there exists a 1-parameter family of logarithmic con-
nections which is generically E and restricts to Gr(E) at the origin.
This gives a 1-parameter family of pre-D-modules which is generically
(E, im(res(E)), θ, res(E)) and restricts at the origin to the object
(Gr(E),Gr(im(res(E)),Gr(θE),Gr(res(E))). In turn the latter deforms
to a pre-D-module

(Gr(E), im(res(Gr(E))), θGr(E), res(Gr(E))) ⊕ (0,W ′′′, 0, 0)

where by definition θGr(E) : im(res(Gr(E))) ↪→ Gr(E)|Y is the inclusion
(which does not equal Gr(θE) in general).

If W is the semisimplification of W ′ ⊕W ′′ ⊕W ′′′, then it follows that
(E,F, s, t) is represented by the closed point corresponding to the poly-
stable pre-D-module PGr(E) ⊕ QW . This completes the proof of the
proposition. Q.E.D.

§6. Case of a normal crossing divisor

In this last section, we consider the general case where Y is a normal
crossing divisor. To carry out the general theory, it is not necessary to
assume that the irreducible components of Y are smooth. We can in that
case set up a system of finite étale Galois covers of the normalisations
of the closures of the strata defined by Y as in [11], and carry out the
discussion below. However, just to keep the notation simple in this arti-
cle, we make the assumption that Y is the union of two smooth divisors
Y = Y1

⋃
Y2, which intersect transversely along Z = Y1

⋂
Y2 which is a

smooth connected codimension 2 subvariety of X . This simplified situa-
tion is already adequate to exhibit the changes we make in the definition
of pre-D-modules and in the definition of their semistability.

Let e1 ∈ H0(Y1,DX〈log Y 〉)|Y1 and e2 ∈ H0(Y2,DX〈logY 〉)|Y2 denote
the respective Euler operators. Any point of Z has an analytic or
étale coordinate neighbourhood in X with coordinates x1, . . . , xd (d =
dim(X)) in which Y is defined by x1x2 = 0. Then e1 is locally defined
by x1(∂/∂x1) and e2 is defined by x2(∂/∂x2).
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We are now ready to state the new definition of a pre-D-module and its
semi-stability, in the above simple set-up.

Definition 6.1. A pre-D-module on (X,Y ) consists of the fol-
lowing data, satisfying certain conditions.

(1) A DX〈log Y 〉|Y -module E on (X,Y ), DX〈logY 〉-modules F1 and F2

on Y1 and Y2, and a DX〈log Y 〉|Y -module G on (X,Y ) such that E is a
vector bundle on X , F1 and F2 are vector bundles on Y1 and Y2, and G
is a vector bundle on Z.

(2) For a = 1, 2, we are given DX〈log Y 〉)|Ya-linear maps sa : Fa → E|Ya

and ta : E|Ya → Fa.

(3) For a = 1, 2, we are given DX〈logY 〉)|Z -linear maps s′b : G → Fa|Z
and t′b : Fa|Z → G.

The above data should satisfy the following conditions:

(4) Consider the endomorphism resa(E) of E|Ya induced by ea, the en-
domorphism resa(Fa) of Fa induced by ea, the endomorphism resb(Fa)
of Fa|Z induced by eb for a �= b, and the endomorphism of resa(G) of
G induced by ea, for a = 1, 2. All the eigenvalues of these generalised
residue endomorphisms should have their real parts in [0, 1). (In partic-
ular, E is a Deligne connection.)

(5) We should have sata = resa(E), tasa = resa(Fa), s′bt
′
b = resb(Fa) for

a �= b, and t′bs
′
b = resb(G).

(6) The following commutativity conditions should hold over Z for a �= b:

(sb|Z) ◦ s′a = (sa|Z) ◦ s′b : G→ E|Z(1)
t′b ◦ (ta|Z) = t′a ◦ (tb|Z) : E|Z → G(2)

s′a ◦ t′b = (tb|Z) ◦ (sa|Z) : Fa|Z → Fb|Z(3)

We say that a pre-D-module as defined above is semi-stable if the
following two conditions hold:

(1) The logarithmic connection E is semistable.

(2) The generalised eigensubbundle Fa,0 ⊂ Fa for eigenvalue 0 of resa(Fa)
is a semistable DX〈log Y 〉|Ya -module for a = 1, 2.

Remark 6.2. The intersection G0 of the generalised eigensub-
bundles of G for eigenvalue 0 under resa(G) and resb(G) (which is in-
deed a vector subbundle by integrability) is automatically a semistable
DX〈log Y 〉|Z-module.
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Relation with D-modules

A regular holonomic D-module M on X whose characteristic variety
is contained in CX,Y corresponds uniquely to a pre-D-module as de-
fined above. Over a polydisk, this is essentially the content of the main
theorem of the paper of Galligo, Granger, Maisonobe [5]. This is best
expressed in terms of a V -filtration on M (see Section 4.3, page 16 [11]),
which actually produces a pre-D-module as defined above (only the new
definition of a pre-D-module was missing earlier!).

Again, this bijective correspondence is infinitesimally rigid as shown in
[11].

Construction of moduli

We fix the ranks of E, Fa, G and also the characteristic polynomi-
als of the various residue endomorphisms resa(E), resa(Fa), resb(Fa),
and resa(G), and the dimensions of intersections of their generalised
eigensubbundles. In particular, this fixes the Hilbert polynomials of the
bundles E, Fa, G, and those of the generalised eigensubbundles of the
various residues.

By the theory of Simpson of moduli for Λ-modules together with the
Lemma 3.13 above, there exist the following:

(1) A quasi-projective scheme R together with action of a reductive
algebraic group H and a locally universal family of OX -locally free
semistable DX〈log Y 〉-modules E with prescribed residual eigenvalues
for resa(E) over Ya and prescribed ranks for intersection of generalised
eigensubbundles of resa(E) and resb(E) over Z, with lift of H-action to
the family, such that a good quotient R//H exists, which is the moduli
of semistable Deligne connections on (X,Y ) for the prescribed residual
data.

(2) For a = 1, 2, a quasi-projective scheme R′
a with action of a reductive

algebraic group H ′
a, with a locally family of OYa -locally free semistable

DX〈log Y 〉-modules E with resa(Fa) nilpotent, and prescribed residual
eigenvalues for resb(Fa) over Z and prescribed ranks for intersection of
generalised eigensubbundles of resa(Fb,0) and resb(Fa,0) over Z, with lift
of H-action to the family, such that a good quotient R′

a//Ha exists,
which is the moduli of OYa-locally free semistable DX〈log Y 〉-modules
for the given residual data.

(3) A quasi-projective scheme R′′ together with action of reductive alge-
braic groups H ′′ and a locally universal family of OZ -locally free semi-
stable DX〈log Y 〉-modules G0 such that resa(G) is nilpotent for a = 1, 2,
with lift of H ′′-action to the family, such that a good quotient R′′//H ′′
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exists, which is the moduli of OZ -locally free semistable DX〈log Y 〉-
modules G0 for the given residual data.

Over the product U = R × R′
1 × R′

2 × R′′, we have an scheme V with
an affine morphism to U and a natural lift of the action of K = H ×
H ′

1 × H ′
2 × H ′′, such that V parametrises a locally universal family

of semistable pre-D-modules with the prescribed residual data. Then
V//K (a good quotient which exists by Ramanathan’s lemma) is the
desired moduli scheme M for semi-stable pre-D-modules. It is quasi-
projective over C by its construction.

A description of the points of M, analogous to that of Proposition 5.11
is possible also in the general case, and a description of the tangent
space to the moduli functor in terms of certain hypercohomologies can
be given.

Remark 6.3. As over any perverse sheaf we have at most one semi-
stable pre-D-module in the new sense, which moreover is infinitesimally
rigid as before, the Riemann-Hilbert morphism from M to the moduli
of perverse sheaf is an open embedding. It can fail to be surjective as
semistability is not automatic for pre-D-modules.
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in Math., 961, Springer, 1982, 241–266.



Moduli of regular holonomic modules 221

[ 9 ] M. Maruyama and K. Yokogawa, Moduli of parabolic stable sheaves,
Math. Ann., 293 (1992), 77–99.

[10] N. Nitsure, Moduli of semistable logarithmic connections, J. Amer. Math.
Soc., 6 (1993), 597–609.

[11] N. Nitsure, Moduli of regular holonomic D-modules with normal crossing
singularities, Duke Math J., 99 (1999), 1–39.

[12] N. Nitsure and C. Sabbah, Moduli of pre-D-modules, perverse sheaves,
and the Riemann-Hilbert morphism -I, Math. Annaln., 306 (1996),
47–73.

[13] C. Simpson, Moduli of representations of the fundamental group of a
smooth projective variety - I, Publ. Math. I.H.E.S., 79 (1994), 47–129.

[14] J.-L. Verdier, Prolongements de faisceaux pervers monodromiques,
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The cohomology groups
of stable quasi-abelian schemes

and degenerations associated with the E8-lattice

Iku Nakamura1 and Ken Sugawara

Abstract.

We study certain degenerate abelian schemes (Q0, L0) that are
GIT-stable in the sense that their SL-orbits are closed in the semistable
locus. We prove the vanishing of the cohomology groups Hq(Q0, L

n
0 ) =

0 for q, n > 0 for a naturally defined ample invertible sheaf L0 on Q0.
When n = 1, this implies that H0(Q0, L0), the space of global sec-
tions, is an irreducible module of the noncommutative Heisenberg
group of (Q0, L0).

§1. Introduction

In 1970’s Namikawa [Nw76] and Nakamura [Nr75] studied the prob-
lem of compactifying the moduli Ag of abelian varieties over C, and
their papers introduced a certain class of degenerate abelian varieties.
In 1990’s in their joint work [AN99] Alexeev and Nakamura again dis-
cussed the same problem of compactifying Ag over any field in an alge-
braic manner, and the objects they studied are nearly the same as those
studied by Namikawa and Nakamura in 1970’s.

After their joint work [AN99] Alexeev and Nakamura independently
constructed respectively reasonable compactifications, using almost the
same class of degenerate abelian varieties or schemes as above. Alex-
eev’s moduli Ag [A02] is a coarse moduli of a certain kind of principally
polarized reduced, possibly degenerate, abelian varieties with (contin-
uous) group action. On the other hand Nakamura’s moduli [Nr99] is
a fine moduli SQg,K of polarized, possibly nonreduced, possibly de-
generate, abelian schemes which are GIT-stable in the sense that their

Received April 11, 2005.
Revised April 24, 2006.
1 Partially supported by JSPS, Grant in Aid for Scientific Research (A)

16204001.
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SL-orbits are closed in the semistable locus, though their stabilizer sub-
groups of SL could be of infinite order. The moduli SQg,K compactifies
the moduli scheme Ag,K of abelian varieties with certain noncommu-
tative level K-structures (to be more precise, of abelian varieties, each
with a very ample invertible sheaf linearized with regards to the Heisen-
berg group G(K)) where K is a certain symplectic, sufficiently large
finite abelian group. We note that both Ag and SQg,K are projective
over Z or Z[ζN , 1

N ] respectively where N =
√
|K|. Since SQg,K is a fine

moduli, there is a universal family over SQg,K of polarized generalized
abelian schemes of dimension g so that any fibre of the family over a geo-
metric point of SQg,K represents an isomorphism class corresponding to
the geometric point. We call any fibre of the family a projectively stable
quasi-abelian scheme, or simply a PSQAS. We note that a PSQAS is
singular if and only if the PSQAS lies over the boundary SQg,K \Ag,K .

The purpose of this article is first of all to prove the vanishing of
certain cohomology groups of PSQASes. This solves a conjecture raised
by [Nr99, section 9] in the affirmative. The second purpose of this arti-
cle is to study PSQASes associated with the E8 lattice. The structures
of some of PSQASes over the boundary of SQg,K are very complicated
when they are nonreduced. Any even unimodular definite lattice pro-
vides us with a nonreduced PSQAS. Since there are at least 8 · 107

inequivalent even unimodular definite lattice for g = 32, there could be
a lot of nonreduced PSQASes. The first nontrivial example of a nonre-
duced PSQAS is provided by E8 [AN99], which we will study in detail
in the second half of the article. As a matter of fact, this detailed study
of the E8-case removes the last psychological obstacle for our complete
computation of the cohomology groups of PSQASes in the general case.

The article is organized as follows. The first two sections 2 and 3
recall the basic facts about Delaunay decompositions and degenerating
families of abelian varieties. We construct a particular class of degen-
erating families (Q, L) of polarized abelian varieties over complete dis-
crete valuation rings, whose closed fibres (Q0, L0) are nothing but the
PSQASes mentioned above. The sections 4, 5 and 6 are devoted to
studying closed fibres (Q0, L0) of the families (Q, L), in particular, their
cohomology groups Hq(Q0, L

n
0 ) in the general case including the case

where Q0 is nonreduced. In the section 5, the following Theorem 1 is
proved, while in the section 4 an outline of the proof is explained. A key
result for proving Theorem 1 is proved in the section 6.

Theorem 1. Let (Q0, L0) be a PSQAS. Then Hq(Q0, L
n
0 ) = 0 for q > 0

and n > 0.

An important corollary to it is the following
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Theorem 2. Let K be a finite symplectic abelian group of order N2.
Let k be any field over Z[ζN , 1

N ]. Let G(K) be a noncommutative fi-
nite Heisenberg group, namely a central extension of K by the group
µN of N -th roots of unity. Let (Q0, L0) be a PSQAS over k with a
level G(K)-structure in the sense of [Nr99]. Then H0(Q0, L0) is an
irreducible G(K)-module of weight one.

Let L be the natural polarization of the universal family of PSQASes
over SQg,K . By Theorem 1 the 0-th direct images of Ln (n ≥ 1) are
locally free sheaves over SQg,K , whose determinant bundles are expected
to give rise to the most natural ample invertible sheaves of SQg,K .

The second half of the article starting from the section 7 is devoted
to studying a PSQAS Q0 associated with E8. Among other things the
nilradical of O0,Q0 is calculated completely in the section 11. This cal-
culation helps us to get convinced that nilpotent elements of O0,Q0 have
large support and that therefore the cohomology groups Hq(Q0, L

n
0 ) will

behave in the same manner as those of nonsingular abelian varieties.
This was psychologically a key step to the proof of Theorem 1.

We would like to thank Professor K. Shinoda for his many advices
on E8 during the preparation of the article.

§2. Basic facts about Delaunay decompositions

Let Z be the set of integers, Z0 the set of nonnegative integers, Q
the set of rational numbers, R the set of real numbers, and R0 the set
of nonnegative real numbers. Let X be a lattice of rank g, B an integral
positive definite symmetric bilinear form on X ×X . Let XQ = X ⊗Z Q
and XR = X ⊗Z R. The bilinear form B determines a distance ‖ ‖B on
XR by ‖x‖B :=

√
B(x, x) (x ∈ XR). For an arbitrary α ∈ XR we say

that a lattice element a ∈ X is α-nearest if

‖a − α‖B = min{‖b − α‖B; b ∈ X}

We define a (closed) B-Delaunay cell σ (or simply a Delaunay cell
if B is understood) to be the closed convex hull of all lattice elements
which are α-nearest for some α ∈ XR for a fixed α. Note that for a
given Delaunay cell σ, α ∈ σ is uniquely determined by σ, which we call
the hole of σ and denote by α(σ). All the B-Delaunay cells constitute a
locally finite decomposition of XR into infinitely many bounded convex
polyhedra, which we call the Delaunay decomposition DelB.

Definition 2.1. In what follows we fix the bilinear form B, so
we denote B(x, y) simply by (x, y), B(x, x) by x2 and the norm ‖x‖B

by ‖x‖ if no confusion is possible. Let Del := DelB be the Delaunay
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decomposition on XR defined by the distance ‖x‖ :=
√

B(x, x). For any
subset T of XR let Del(T ) be the set of all Delaunay cells containing
T , and Star (T ) the union of all σ ∈ Del(T ). In particular, for any
c ∈ X , Del(c) is the set of all the Delaunay cells containing c ∈ X and
Star (c) is the union of all σ ∈ Del(c). We note Del(c) = c + Del(0),
the translate of Del(0) by c. We denote by Del(k) the set of Delaunay
cells σ ∈ Del such that dim σ = k. Let Del(k)(T ) = Del(T )∩Del(k). For
a σ ∈ Del, we define Delσ to be the set of all faces of σ and Del(k)

σ :=
Del(k) ∩Delσ. For τ ∈ Del, we define Delσ(τ) := Delσ ∩Del(τ) and
Del(k)

σ (τ) := Del(k) ∩Delσ(τ).

Definition 2.2. Let D be a subset of XR. If D contains the origin
0, we define C(0, D) to be the cone over R0 generated by D, and define
Semi(0, D) to be the cone over Z0 generated by D ∩ X . For any subset
S of D we define X(S) to be the subgroup of X generated by s − t,
(∀s, t ∈ S). We denote X(S) ⊗ R by X(S)R. We also define

C(s, D) : = s + C(0, D − s) (for s ∈ D)

C(S, D) : =
⋃

a∈X(S),s∈S∩X

(a + C(s, D))

= X(S) + C(s0, D) (∀s0 ∈ S).

If S is a one-codimensional face of a g-dimensional convex polytope
D of XR, then S spans a hyperplane of XR, which we denote by H(S),
and C(S, D) is a closed half space of XR containing D bounded by H(S).

In order to make this article as self-contained as possible. we give
proofs for basic facts about Delaunay/Voronoi decompositions. See also
[Nr99].

Definition 2.3. The Voronoi cell V (0) at 0 is defined to be

V (0) = {α ∈ XR; ‖y − α‖ ≥ ‖α‖ for any y ∈ X}.

Lemma 2.4. For any x ∈ X the following are equivalent:
(i) x ∈ 2V (0) ∩ X, namely, (y, y) ≥ (x, y) for any y ∈ X,
(ii) x ∈ Star (0) ∩ X, namely, there is σ ∈ Del(0) such that x ∈

σ ∩ X.

Proof. Assume (i). Then ‖y − (x/2)‖ ≥ ‖x/2‖ for any y ∈ X ,
where the minimum of ‖y − (x/2)‖ is attained at y = 0 and x. Hence
(ii) follows.

Conversely if there is a Delaunay cell σ ∈ Del(0) such that x ∈ σ∩X ,
then there is an α ∈ XR such that ‖y−α‖2 ≥ ‖α‖2 and ‖x−α‖2 = ‖α‖2.



Stable quasi-abelian schemes 227

Hence α ∈ V (0). By the first inequality we have ‖−y+x−α‖2 ≥ ‖α2‖ for
any y, from which it follows that ‖y‖2 ≥ 2(x−α, y), namely, x−α ∈ V (0).
Hence x = α + (x − α) ∈ 2V (0). This proves (i). This proves the
lemma. Q.E.D.

Lemma 2.5. Let ai ∈ Star (0) (1 ≤ i ≤ n). Assume that there is
z (�= 0) ∈ X such that a1 + · · ·+an = mz. Then n ≥ m, equality holding
if and only if (z, z) = (ai, z) for any i.

Proof. Since ai ∈ Star (0), we have y2 ≥ (ai, y) for any y ∈ X by
Lemma 2.4. In particular, z2 ≥ (ai, z). It follows that nz2 ≥ (a1 + · · ·+
an, z) = mz2. Hence n ≥ m. If n = m, then any inequality in the above
is equality. This proves the lemma. Q.E.D.

Definition 2.6. We say that x1, · · · , xm ∈ X (xi �= xj) are cell-
mates if there is a Delaunay cell σ ∈ Del that contains all of xi. We say
that x1, · · · , xm ∈ Star (0) are cellmates at 0 if there is a Delaunay cell
σ ∈ Del(0) that contains all of xi.

Lemma 2.7. Let σ be a Delaunay cell and z (�= 0) ∈ X. Then
(i) σ ∩ (mz + σ) = ∅ for m ≥ 2.
(ii) Star (0) ∩ (mz + Star (0)) = ∅ if m ≥ 3.

Proof. Suppose that c ∈ σ ∩ X and d = c + mz ∈ σ for some
nonzero z ∈ X . Since c and d are cellmates, we have c − d ∈ Star (0).
Hence mz ∈ Star (0). It follows from Lemma 2.5 that m = 1. This
proves (i).

Next we prove (ii). Suppose Star (0) ∩ (mz + Star (0)) �= ∅. Then
there are a, b and z ∈ X such that a− b = mz and a, b ∈ Star (0). Then
by Lemma 2.5 we have m ≤ 2. This proves the assertion. Q.E.D..

Lemma 2.8. (i) Let σ ∈ Del(0) and b ∈ C(0, σ) ∩ X. If
b /∈ σ ∩ X, then there is a ∈ σ ∩ X such that (b − a, a) > 0.

(ii) If x /∈ Star (0) ∩ X, then there exists a ∈ Star (0) ∩ X such
that ‖x‖2 > ‖x − a‖2 + ‖a‖2.

Proof. We prove (i). Let b ∈ C(0, σ) ∩ X and α(σ) the hole of σ.
We assume (b, a) ≤ (a, a) for any a ∈ σ ∩ X . Then we prove b ∈ σ ∩ X .
For this let b =

∑r
i=1 riai for ai ∈ σ ∩ X and some ri ≥ 0. We see

(b, b) =
r∑

i=1

ri(b, ai) ≤
r∑

i=1

ri(ai, ai) = 2
r∑

i=1

ri(α(σ), ai) = 2(α(σ), b)

whence (b, b) = 2(α(σ), b). It follows b ∈ σ ∩ X .
We shall prove (ii). Let x ∈ X . Since Star (0) contains an open

neighborhood of the origin in XR, there is σ ∈ Del(0) such that x ∈
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C(0, σ) ∩ X \ σ. By (i) there exists a ∈ σ ∩ X such that (x − a, a) > 0.
Hence ‖x‖2 > ‖x − a‖2 + ‖a‖2. Q.E.D.

Definition 2.9. We set

v(x) = min{1
2

m∑
i=1

(xi, xi) ; x = x1 + · · · + xm, xi ∈ X, m ≥ 1}

v(x, c) = v(x) + (x, c).

Lemma 2.10. Let σ ∈ Del(0) and α(σ) ∈ σ the hole of σ. Then
v(x) ≥ (x, α(σ)) for any x ∈ X, equality holding iff x ∈ Semi(0, σ).

Proof. Choose xi ∈ X such that x = x1 + · · · + xm and v(x) =
1
2

∑m
i=1(xi, xi). Then

m∑
i=1

(xi, xi) ≥ 2
m∑

i=1

(xi, α(σ)) = 2(x, α(σ)).

This proves v(x) ≥ (x, α(σ)). If v(x) = (x, α(σ)), then we have
(xi, xi) = 2(xi, α(σ)) for any i. The equality (xi, xi) = 2(xi, α(σ)) im-
plies that xi ∈ σ ∩ X . This proves x ∈ Semi(0, σ). Q.E.D.

§3. Degenerating families of abelian varieties — general case

Let R be a complete discrete valuation ring, q a uniformizing pa-
rameter of R, k(0) = R/qR and k(η) the fraction field of R, 0 the closed
point and η the generic point of Spec R. The purpose of this section is
to recall the (simplified) Mumford construction over R [AN99]. See also
[M72].

Let X be a free Z-module of rank g and a(x) ∈ k(η)× := k(η) \ {0}
for any x ∈ X .

Definition 3.1. Let b(x, y) := a(x + y)a(x)−1a(y)−1. If the follow-
ing conditions are satisfied, {a(x); x ∈ X} is called a (Faltings-Chai’s)
degeneration data :

(i) a(0) = 1,
(ii) b(x, y) is a (multiplicatively) bilinear form on X × X with

values in k(η)×,
(iii) B(x, y) := valq b(x, y), a positive definite symmetric bilinear

form of X × X .

Definition 3.2. Let {a(x); x ∈ X} be a degeneration data and
A(x) = valq a(x). Let ϑ be an indeterminate over R, R[ϑ][X ] the group
algebra over R[ϑ] of the additive group X (
 Zg). The algebra R[ϑ][X ]
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is regarded as a graded algebra by setting deg(ϑ) = 1 and deg(a) = 0
for any a ∈ R[X ].

We define a graded subalgebra R̃ of R[ϑ][X ] by

R̃ : = R[a(x)wxϑ; x ∈ X ] = R[ξxϑ; x ∈ X ], ξx := qA(x)wx.

Let Q̃ := Proj(R̃) Let Y be a sublattice of X of finite index. Then
Y acts on Q̃ by

S∗
y(a(x)wxϑ) = a(x + y)wx+yϑ for y ∈ Y.

The invertible sheaf O
eQ(1) is kept invariant by the action of Y .

Let Q̃for be the formal completion of Q̃ along Q̃0 := Proj(R̃/qR̃).
The induced action of Y on Q̃for, which we denote also by Sy, is free.
The invertible sheaf O

eQfor
(1) descends to an invertible sheaf Lfor on the

formal quotient Q̃for/Y . This turns out to be ample on Q̃for/Y . In fact,
it is very ample on Q̃for/nY for any n ≥ 3. See [Nr99, Theorem 6.2].

Hence by the algebrization theorem of Grothendieck we have

Theorem 3.3. There is a projective R-scheme Q with an ample
invertible sheaf L such that the formal completion of (Q, L) along the
closed fibre is isomorphic to the pair (Q̃for/Y, O

eQfor
(1)/Y ). The generic

fibre (Qη, Lη) is a polarized abelian scheme by enlarging k(η) if neces-
sary.

Proof. The last assertion about the generic fibre follows from [M72].
We omit the details because they are more or less well known. See also
[AN99, Remark 3.10]. Q.E.D.

Proposition 3.4. Let (Q̃, L̃) = (Proj R̃, OProj eR(1)). Then

(i) Q̃ is covered with open affine subschemes W (c) := Spec S(c)
where

S(c) := R[ξx,c ; x ∈ X ] (c ∈ X), ξx,c := ξx+c/ξc

(ii) The coordinate ring S(c) of W (c) is an R-algebra of finite
type generated by ξx,c (x ∈ Star (0) ∩ X). All the ring S(c)
are isomorphic to each other as R-algebras. The isomorphism
φc,d : S(d) → S(c) is given by φc,d(ξx+d/ξd) = ξx+c/ξc for
any x ∈ X.

Remark 3.5. For a given abelian scheme G over R with G0 a split
torus over k(0), we can construct a degeneration data {a(x); x ∈ X}
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by taking a finite base change when necessary. Let Gfor be the formal
completion of G along the closed fibre G0. Then Gfor is proved to be
isomorphic to a formal split torus Gg

m,for over R. In that case, X is
the character group of Gfor while Y is the character group of the formal
completion of the dual abelian scheme of G. Letting A(x) = valq a(x), we
see A(x+y)−A(x)−A(y) = B(x, y). Hence A(x)− 1

2B(x, x) is linear in
x, which we can write as 1

2r for some r ∈ Hom(X,Z). By furthermore
taking pull back of the family by replacing R by R[s] with s2 = q if
necessary, we may assume B(x, x) and r(x) are even-integers for any
x ∈ X . Then by choosing ux = wxsr(x) instead of wx (the coordinates
of the formal torus Gg

m,for), we may assume A(x) = 1
2B(x, x) and it

is integer-valued on X . This assumption is harmless for our study of
the closed fibres (Q0, L0) because the closed fibres are unchanged by
the pull back and we study only cohomology groups of the closed fibres.
Therefore in what follows we assume

(i) B(x, x) is even for any x ∈ X
(ii) A(x) = 1

2B(x, x), r(x) = 0.

Definition 3.6. With the notation in Definition 2.9, we define

ξ(x, c) = qv(x,c)wx = qv(x)+(x,c)wx ∈ Γ(W (c), O
eQ),

ξ̄(x, c) := ξ(x, c) ⊗ k(0), ξ(x) := ξ(x, 0) ∈ Γ(W (0), O
eQ).

We define R(c) = S(c)⊗ k(0) and U(c) = W (c)⊗ k(0) = Spec R(c).
We also set ξ̄(x) := ξ(x) ⊗ k(0). It is clear that

Γ(U(c), OU(c)) = R(c) = ⊕x∈X k(0) · ξ̄(x, c).

With the above notation, φc,d(ξ(x, d)) = ξ(x, c) for any x ∈ X .

Lemma 3.7. Let ξ̄(x) := ξ(x) ⊗ k(0) ∈ S(0) ⊗ k(0) (x ∈ X).

(i) If x /∈ Star (0) ∩ X, then ξ̄(x) = 0.
(ii) If x1, · · · , xm ∈ Star (0) are not cellmates at 0, then the prod-

uct ξ̄(x1) · · · ξ̄(xm) is either zero or nilpotent.

Proof. By Lemma 2.8 (ii) ξx is divisible by qξx−aξa in S(0), which
proves (i). Next we prove (ii). Let x = x1 + · · ·+xm. Choose σ ∈ Del(0)
such that x ∈ C(0, σ), and let α(σ) ∈ σ be the hole of σ. Then there
exist some positive integers n ∈ Z+, ni ∈ Z+ and ai ∈ σ ∩ X such that
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nx = n1a1 + · · · + nrar. We have

n
m∑

i=1

(xi, xi) ≥ 2n(α(σ),
m∑

i=1

xi) = 2(α(σ), nx)

= 2
r∑

i=1

ni(α(σ), ai) =
r∑

i=1

ni(ai, ai).

Since xi are not cellmates at 0, there is at least an xi such that
xi /∈ σ, hence (xi, xi) > 2(α(σ), xi). Therefore the above inequality is
strict. This proves (ii). Q.E.D.

Lemma 3.8. U(c0) ∩ U(c1) ∩ · · · ∩ U(cq) �= ∅ iff c0, c1, · · · , cq are
cellmates.

Proof. If c0, c1, · · · , cq are cellmates, then it is clear that U(c0) ∩
U(c1) ∩ · · · ∩ U(cq) �= ∅. We shall prove the converse. We suppose
that U(c0) ∩ U(c1) ∩ · · · ∩ U(cq) �= ∅ and that c0, c1, · · · , cq are not
cellmates to derive a contradiction. We may assume c0 = 0 without loss
of generality. We note any ξ̄ci is invertible on U(c0)∩U(c1)∩· · ·∩U(cq).
If there is some ci (i > 0) such that ci /∈ Star (0), then ξ̄ci = 0 by
Corollary 3.7, a contradiction. If ci ∈ Star (0) for any i > 0, the product
ξ̄c1 · · · ξ̄cq is zero or nilpotent by Corollary 3.7, which contradicts that
ξ̄ci is invertible on the nonempty set U(c0) ∩ U(c1) ∩ · · · ∩ U(cq). This
proves the lemma. Q.E.D.

From Lemma 2.7 (ii) and Lemma 3.8 we infer

Corollary 3.9. (i) U(c) (c ∈ X) is an affine covering of Q̃0.
(ii) If Y ⊂ mX for some m ≥ 3, then U(c) ∩ U(c + y) = ∅ for

nonzero y ∈ Y , and U(c) (c ∈ X/Y ) is an affine covering of
Q0.

Lemma 3.8 gives a direct proof of the following

Theorem 3.10. Let Gg
m := Spec k(0)[wx; x ∈ X ]. Then there is a

natural action of Gg
m on Q̃0. For any Delaunay cell σ we define

V (σ) : = Proj k(0)[ξ̄a ; a ∈ σ ∩ X ],

O(σ) : = Spec k(0)[ξ̄a/ξ̄b ; a, b ∈ σ ∩ X ].

Then
(i) O(σ) is the unique closed Gg

m-orbit in
⋂

c∈σ∩X U(c)red,
(ii) Q̃0,red =

⋃
σ∈Del O(σ) with O(σ) ∩ O(τ) = ∅ for σ �= τ and

σ, τ ∈ Del.
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(iii) V (σ) is naturally a closed reduced subscheme of Q̃0 of dim V (σ)
= dimσ, which is the closure of O(σ).

(iv) Let τ, σ ∈ Del. Then V (τ) ⊂ V (σ) iff τ ⊂ σ.

Proof. We may assume c0 = 0 ∈ σ ∩ X without loss of generality.
First we note Gg

m acts on Q̃0 by S∗
a(qAwx) = axqAwx for any T -valued

point a ∈ Gg
m(T ). By the definition

Γ(OO(σ)) = k(0)[ξ̄a/ξ̄b ; a, b ∈ σ ∩ X ].

By Lemma 3.8⋂
c∈σ∩X

U(c)red = Spec k(0)[ξ̄x/ξ̄b ; x ∈ X, b ∈ σ ∩ X ]/
√

(0)

= Spec Γ(OO(σ))[ξ̄x ; x ∈ Star (σ) ∩ X ]/
√

(0)

= Spec Γ(OO(σ))[ξ̄x ; x ∈ (Star (σ) \ σ) ∩ X ]/
√

(0).

Its unique closed orbit is given by the equations

ξ̄x = 0 (∀x ∈ (Star (σ) \ σ) ∩ X).

Thus the assertions (i) and (ii) are clear from the above description.
The assertion (iii) except its reducedness is clear from the definition of
Proj.

We prove that V (σ) is a reduced subscheme of Q̃0. Because the affine
coordinate ring Γ(OV (σ)∩U(0)) of V (σ) ∩ U(0) is k(0)[ξ̄x ; x ∈ σ ∩ X ].
Any nontrivial monomial of weight x ∈ X in it is a product of ξ̄xi

with cellmates xi ∈ σ ∩ X . By Corollary 3.7 it is q(x,α(σ))wx, whence
Γ(OV (σ)∩U(0)) has no nilpotent elements.

Next we prove (iv). Let {c0 = 0, c1, · · · , cq} = τ ∩ X . Let U(τ) :=⋂
c∈τ∩X U(c). Suppose τ ⊂ σ. First we note V (σ) ∩ U(τ) = V (σ)red ∩

U(τ) = V (σ)red ∩ U(τ)red. We also see

Γ(OU(τ)red) = Γ(OO(τ))[ξ̄x ; x ∈ (Star (τ) \ τ) ∩ X ]/
√

(0)

The closed subscheme V (σ) ∩ U(τ) of U(τ) is defined by the ideal
(ξ̄x ; x ∈ (Star (τ) \ σ) ∩ X), while O(τ) is defined by the ideal (ξ̄x ; x ∈
(Star (τ)\τ)∩X) By the assumption τ ⊂ σ, V (σ)∩U(τ) contains O(τ),
whence V (σ) ⊃ V (τ).

Next we assume τ �⊂ σ to prove V (τ) �⊂ V (σ). Then there is a ∈
τ ∩X such that a /∈ σ. Then V (τ)∩U(a) = Spec k(0)[ξ̄x/ξ̄a, x ∈ τ ∩X ].
Let pa be a closed point of U(a) defined by ξ̄x/ξ̄a = 0 for any x (�= a) ∈
X . Hence pa /∈ U(x) for any x �= a. Since V (σ) is covered with U(b)
(b ∈ σ∩X), this shows that pa /∈ V (σ). This implies V (τ) �⊂ V (σ). This
completes the proof of (iv), hence of the lemma. Q.E.D.
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§4. Outline of the proof of Theorem 1

The purpose of this section is not to give a proof of Theorem 1
(Theorem 5.17), but to explain the outline of it.

For simplicity we assume Y ⊂ mX for some m ≥ 3.
Under the assumption Sy(U(c)) ∩ U(c) = ∅ for any c ∈ X and

y ∈ Y \ {0} and U(c) (c ∈ X/Y ) is an affine covering of Q0 in view
of Corollary 3.9. Therefore the cohomology groups Hq(Q0, L

n
0 ) are

computed by using the Čech cohomology relative to the covering U(c)
(c ∈ X/Y ).

4.1. The particular case where Q0 is reduced
First we consider the particular case when k(0) ⊂ R and (Q̃, L̃) is

the pull back of a normal torus embedding locally of finite type over
k(0) by the inclusion of Spec R into Spec k(0)[q]. Then (Q, L) = (P, L)
with the notation of [Nr99]. We recall the proof of Hq(Q0, L

n
0 ) = 0 for

q, n > 0 from [Nr99].
First we have an exact sequence of OQ0 -modules

(1) 0 → OQ0 → ⊕OV (σg)
∂g→ · · · ∂2→ ⊕OV (σ1)

∂1→ ⊕OV (σ0) → 0

where σi ranges over the set of all i-dimensional Delaunay cells mod Y .
The homomorphism ∂i : ⊕OV (σi) → ⊕OV (σi−1) in the above is defined
by

∂i(
⊕

σ∈Del(i)

φσ) =
⊕

τ∈ Del(i−1)

∑
τ⊂σ

[σ : τ ]φσ ,

where the summation
∑

τ⊂σ runs over the set of all i-dimensional De-
launay cells σ containing a fixed τ as a face of codimension one, and any
Delaunay cell σ is oriented and [σ : τ ] (= ±1) is the incidence number
of σ relative to τ . Then by tensoring (1) with Ln

0 we have an exact
sequence

0 → Ln
0 ⊗ OP0 → ⊕Ln

0 ⊗ OV (σg)
∂g→ · · · ∂1→ ⊕Ln

0 ⊗ OV (σ0) → 0.

Now the proof of Hq(Q0, L
n
0 ) = 0 goes as follows.

(i) Since V (σ) is a normal torus embedding with L0 ample, we
have

Hq(V (σ), Ln
0 ) =

⎧⎨⎩
⊕

x
n∈σ∩X

n

k(0) · [x] if q = 0

0 if q > 0

where [x] is a certain monomial in R̃/qR̃ of weight x.
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(ii) By (i) H∗(P0, L
n
0 ) is the cohomology of the complex

0 → ⊕Γ(V (σg), Ln
0 )

H0(∂g)→ · · · H0(∂1)→ ⊕Γ(V (σ0), Ln
0 ) → 0.

(iii) By (i) and (ii)

Hq(Q0, L
n
0 ) 


⊕
x
n∈X

n mod Y

Hq(Star (
x

n
)0, k(0)) = 0 for q, n > 0

where Star (a) denotes the union of σ ∈ Del(a), and Star (a)0

denotes the relative interior of Star (a). The subset Star (a)0

of XR is connected and contractible.

4.2. The general case
In the case where Q0 is possibly nonreduced or (Q, L) may not

come from a torus embedding, we have no exact sequences like (1).
Nevertheless we can imitate the above proof of Hq(Q0, L

n
0 ) = 0.

We will construct a double complex (nC·, ∆·
n) for each positive in-

teger n such that

nC· =
⊕

nCp, nCp =
⊕

k+q=p

nF k,q, ∆p
n =

⊕
k+q=p

(∂k,q + (−1)qδk,q
n ),

nF k,q =
⊕

σ∈Del(g−k) mod Y

nF k,q
σ =

⊕
σ∈Del(g−k) mod Y

(⊕
x∈X

nF k,q
σ [x]

)

where nF k,q
σ [x] is the weight x-part of nF k,q

σ . We see

∆p+1
n · ∆p

n = 0, ∂k+1,q · ∂k,q = 0, δk,q+1
n · δk,q

n = 0.

Then our new proof goes as follows.
(a)

′′
Ek,q

2 =

{
Hq(Q0, L

n
0 ) if k = 0

0 if k > 0

(b)

Hq(nF k.·
σ , δk,·

n ) =

⎧⎨⎩
⊕

x
n∈σ∩X

n

k(0) · [x] if q = 0

0 if q > 0

where [x] is a certain monomial in R̃/qR̃ of weight x.
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(c) By (b)

′
Ek,q

1 = Hq(nF k,·, δk,·
n ) =

⊕
σ∈Del(g−k) mod Y

Hq(nF k.·
σ , δk,·

n )

=

⎧⎪⎨⎪⎩
⊕

σ∈Del(g−k) mod Y

( ⊕
x
n∈σ∩X

n

k(0) · [x]

)
if q = 0

0 if q > 0.

(d) By (c)

′
Ek,q

2 =

⎧⎨⎩
⊕

x
n∈X

n mod Y

Hk(Star ( x
n )0, k(0)) if q = 0

0 if q > 0.

(e) By (a) and (d)

Hq(Q0, L
n
0 ) =

′′
E0,q

2 = Hq(nC·, ∆·
n) =

′
Eq,0

2

=
⊕

x
n∈X

n mod Y

Hq(Star (
x

n
)0, k(0)) = 0 if q > 0.

The hardest in the above is the part (b), which is an alternative for
the part (i) in the first particular case. The assertion (b) is proved by
using Lemma 4.3 (or Theorem 5.15)

Hq(nF k,·
σ [x], δk,·

n ) = Hq(∆(σ), B∆(σ)(
x

n
)) =

{
k(0) if q = 0, x

n ∈ σ

0 otherwise

where nF k,q
σ [x] is the weight x-part of nF k,q

σ . See also Theorem 6.11.

Lemma 4.3. Let σ ∈ Del(g−k). Let ∆(σ) be the abstract simplex
with vertices σ∩X. Then there is a subset B∆(σ)( x

n )) of ∆(σ) such that

Hq(nF k,·
σ [x], δk,·

n ) = Hq(∆(σ), B∆(σ)(
x

n
)).

Moreover

(i) if B∆(σ)( x
n ) is nonempty, then it is connected and contractible.

(ii) B∆(σ)( x
n ) is empty iff x

n ∈ σ.

This lemma is obtained by combining Lemma 6.10 and Theorem 6.11.
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§5. Proof of Theorem 1

The purpose of this section is to prove Theorem 1 (Theorem 5.17).
For simplicity we first assume

Y ⊂ mX for some m ≥ 3.
In what follows we denote ξ̄(x, c) by ξ(x, c) if no confusion is possible.

Definition 5.1. Let c ∈ X . Let R(c) = S(c) ⊗ k(0) = Γ(OU(c)).
For a Delaunay cell σ containing c, we define k(0)-modules

Fσ(c) =
⊕

x∈C(0,σ−c)∩X

k(0) · ξ(x, c),

F k(c) =
⊕

σ∈Del(g−k)(c)

Fσ(c).

It should be mentioned that Fσ(c) is not an R(c)-module in general,
though F k(c) is an R(c)-module. Nevertheless we imitate the way of
computing Hq(P0, L

n
0 ) in [Nr99, Theorem 3.9] and construct, by replac-

ing OP0 -modules Ln
0 ⊗ OV (σ)∩U(c) [ibid.] by analogous k(0)-modules, a

double complex F k,q whose first row F k,0(c) at c is a resolution of R(c)
(c ∈ X).

Any φσ ∈ Fσ(c) is written

φσ =
∑

x∈C(0,σ−c)∩X

aσ(x, c)ξ(x, c), (aσ(x, c) ∈ k(0)).

Then we define

resσ
τ (φσ) =

∑
x∈C(0,τ−c)∩X

aσ(x, c)ξ(x, c).

We also define ∂k : F k(c) → F k+1(c) by

∂k(
⊕

σ∈Del(g−k)(c)

φσ) =
⊕

τ∈Del(g−k−1)(c)

∑
τ⊂σ

[σ : τ ] resσ
τ (φσ)

where φσ ∈ Fσ(c), and the summation in RHS ranges over the set of all
σ containing a fixed τ as a face of codimension one.

Lemma 5.2. There is an exact sequence of k(0)-modules

0 → R(c) → F 0(c) ∂0

→ F 1(c) ∂1

→ · · · ∂g−2

→ F g−1(c) ∂g−1

→ F g(c) → 0

where F g(c) = k(0) · ξ(0, c).
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Proof. Let f ∈ F 0(c). Then f is written as

f =
∑

σ∈Del(g)(c)

⎛⎝ ∑
x∈C(0,σ−c)∩X

aσ(x, c)ξ(x, c)

⎞⎠ .

Then we see that f ∈ Ker(∂0) if and only if aσ(x, c) = aσ′(x, c) for
any adjacent pair σ, σ′ ∈ Del(g)(c) and any x ∈ C(0, (σ ∩ σ′) − c) ∩ X .
It follows that R(c) = Ker(∂0). We denote R(c)x = k(0)ξ(x, c).

The exactness of the rest of the sequence is proved as follows. Now
we choose and fix any x ∈ X for all. For σ ∈ Del(g−k)(c) we define

Fσ(c)x :=

{
k(0) · ξ(x, c) if x ∈ C(0, σ − c) ∩ X

0 (otherwise)

and
F k(c)x :=

⊕
σ ∈ Del(g−k)(c)
x ∈ C(0, σ − c)

Fσ(c)x.

Note that ∂g−k(F k(c)x) ⊂ F k+1(c)x. Now we define the complex
(F ·(c)x, ∂·

|F ·(c)x
) by

F 0(c)x
∂0

→ F 1(c)x
∂1

→ · · · ∂g−2

→ F g−1(c)x
∂g−1

→ F g(c)x → 0.

It remains to prove the exactness of the complex (F ·(c)x, ∂·
|F ·(c)x

)
for each x ∈ X .

There is a Delaunay cell σ ∈ Del(c) such that the relative interior of
C(0, σ − c) contains x. The Delaunay cell σ is uniquely determined by
the given x, which we denote σmin(x, c). We note that for σ ∈ Del(c), x ∈
C(0, σ−c) if and only if σmin(x, c) ⊂ σ. Let Del(x, c) be the set of Delau-
nay cells σ ∈ Del(c) such that σmin(x) ⊂ σ, and Del(k)(x, c) = Del(x, c)∩
Del(k). Let Star (x, c) be the union of σ ∈ Del(x, c), σmin(x, c)⊥ the affine
linear subspace of XR passing through x, perpendicular to σmin(x, c).
Let Star⊥(x, c) be the intersection Star (x, c)∩σmin(x, c)⊥, ∂ Star⊥(x, c)
the boundary of Star⊥(x, c). We note Star (x, c) = Star (σmin(x, c)). Let
B be a closed ball of dimension g − dimσmin(x, c), ∂B its boundary.
Since (Star⊥(x, c), ∂ Star⊥(x, c)) is homeomorphic to (B, ∂B), we have
an isomorphism

Hq(Star⊥(x, c), ∂ Star⊥(x, c), k(0)) =

{
k(0) if q = g − dim σmin(x, c)
0 (otherwise)
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For the chosen and fixed x and c, we introduce a new complex (G·, δ·)
by

Gq :=
⊕

σ ∈ Del(q)(x, c)

k(0) · σ

δq

⎛⎝ ⊕
σ∈Del(q)(x,c)

aσσ

⎞⎠ =
⊕

τ∈Del(q−1)(x,c)

(∑
τ⊂σ

[σ : τ ]aσ

)
τ.

When σ ranges over Del(x, c), σ∩σmin(x, c)⊥ gives a cell decomposition
of Star⊥(x, c). Since (G·, δ·) is the relative chain complex of

(Star⊥(x, c), ∂ Star⊥(x, c))

with coefficients in k(0) whose degree is shifted by dimσmin(x, c), we
have an isomorphism

Hq(G·, δ·) 
 Hq−dim σmin(x,c)(Star⊥(x, c), ∂ Star⊥(x, c), k(0))

=

{
k(0) if q = g

0 (otherwise)

Suppose σ ∈ Del(q). By the definition of G·,

F g−q
σ (c)x = k(0)ξ(x, c) ⇐⇒ x ∈ C(0, σ − c) ∩ X

⇐⇒ σmin(x, c) ⊂ σ

⇐⇒ σ ∈ Del(q)(x, c) ⇐⇒ k(0) · σ ⊂ Gq

Hence (Gq , δq) = (F g−q(c)x, ∂g−q). It follows

Hq(F ·(c)x, ∂·) = Hg−q(G·, δ·) =

{
k(0) if q = 0
0 if q > 0.

This proves the exactness of (F ·(c)x, ∂·) except at q = 0, which
completes the proof of the lemma. We note H0(F ·(c)x, ∂·) = R(c)x :=
k(0)ξ(x, c). Q.E.D.

Definition 5.3. Let c = (c0, c1, · · · , cq) (ci �= cj) be an ordered set
of cellmates, and |c| = {c0, c1, · · · , cq} an unordered set of cellmates.
Then we define

U(c) = U(c0, c1, · · · , cq) := U(c0) ∩ U(c1) ∩ U(c2) ∩ · · · ∩ U(cq),

R(c) = R(c0, c1, · · · , cq) := Γ(U(c), OU(c))
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and
Cq :=

⊕
(c0, c1, · · · , cq)
cj : cellmates

R(c0, c1, · · · , cq).

We denote the set {c0, c1, · · · , cq} by |c|. Let X(c) := X(|c|) =
Z(c1 − c0) + · · · + Z(cq − c0) and we define

k(0)[X(c)] = k(0)[
(

ξ̄c1

ξ̄c0

)±1

, · · · ,

(
ξ̄cq

ξ̄c0

)±1

] (resp. 0)

if c0, c1, · · · , cq are cellmates (resp. if c0, c1, · · · , cq are not cellmates).

Remark 5.4. We denote the set {c0, c1, · · · , cq} by |c|. Lemma 3.8
shows that U(c) �= ∅ iff c0, c1, · · · , cq are cellmates. Hence if cj are cell-
mates and if |c| = σ ∩X for some σ ∈ Del, then by Theorem 3.10, O(σ)
is the unique closed Gg

m-orbit in U(c)red with Γ(OO(σ)) = k(0)[X(c)]. If
c0, c1, · · · , cq are not cellmates, then the product f :=

∏q
j=1(ξ̄cj /ξ̄c0)

is nilpotent. This contradicts that f has the inverse in k(0)[X(c)].
This is why we define k(0)[X(c)] := 0 in the case. We also note that
dimσ ≥ rankX(c) if |c| ⊂ σ ∈ Del, where equality may not be true in
general.

Lemma 5.5. Let τ be a Delaunay cell and α(τ) ∈ τ the hole of τ .
Let c = (c0, c1, · · · , cq). Assume |c| ⊂ τ . Then

k(0)[X(c)] = k(0)[q(a,α(τ))wa ; a ∈ X(c)].

Proof. By the assumption, ‖c0−α(τ)‖ = ‖cj −α(τ)‖, whence c2
j −

2(cj , α(τ)) = c2
0−2(c0, α(τ)) for any j. Hence ξ̄cj /ξ̄c0 = q(cj−c0,α(τ))wcj−c0 .

Q.E.D.

Lemma 5.6. Let c = (c0, c1, · · · , cq) with ci cellmates, Star (c) :=
Star (|c|). Let σ ∈ Del and C(c0, σ)0 the relative interior of C(c0, σ).
For any class (xmod X(c))

(i) there is x′ ∈ C(0, Star (c)− c0)0 such that x′ ≡ x mod X(c).
(ii) If x′ + c0 ∈ C(c0, Star (c))0 and x′ ≡ x mod X(c), then there

is the unique Delaunay cell σ such that |c| ⊂ σ and x′ + c0 ∈
C(c0, σ)0.

(iii) The above Delaunay cell σ is uniquely determined by the given
class xmod X(c), independent of the choice of x′ with x′ +
c0 ∈ C(c0, σ)0.

We denote by σmin(x, c) the unique Delaunay cell satisfying the con-
dition (ii).
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Proof. We recall Star (cj) is the union of all the Delaunay cells
containing cj , which is bounded convex. Hence Star (c) =

⋂q
j=0 Star (cj)

is a bounded convex subset of XR. Therefore C(c0, Star (c)) is a convex
closed subset of XR given by finitely many (affine-)linear inequalities:

C(c0, Star (c)) = {x ∈ XR; Fj(x) ≥ 0 (j = 1, · · · , N)}

where Fj(c0) = 0, Fj(ck) ≥ 0 (∀j, k). We note Fj(ck) > 0 (∃ k ≥ 1) for
each j because Star (c) is bounded with dim Star (c) = g. Since Fj(x) is
linear in x − c0, Fj(x) = (Aj , x− c0) for some Aj ∈ XR. For x ∈ X , we
set

xN = x + N(c1 − c0) + N(c2 − c0) + · · · + N(cq − c0).

If N is large enough, then

Fj(xN + c0) = (Aj , xN ) = (Aj , x) + N · (Fj(c1) + · · · + Fj(cq)) > 0

This implies that xN +c0 ∈ C(c0, Star (c))0. It suffices to choose x′ = xN

for (i).
Next we prove (ii). Suppose x′ + c0 ∈ C(c0, Star (c))0 and x′ ≡ x

mod X(c). Since Star (c) is the union of all the Delaunay cells σ with
|c| ⊂ σ and since Del is a polyhedral decomposition of XR, there is
the minimal Delaunay cell σ such that |c| ⊂ σ and x′ + c0 ∈ C(c0, σ).
If x′ + c0 /∈ C(c0, σ)0, then x′ + c0 ∈ C(c0, τ) for a face τ of σ. Since
x′+c0 ∈ C(c0, Star (c))0, τ intersects Star (c)0, hence the relative interior
τ0 of τ intersects the interior of Star (c). Hence τ ⊂ Star (c), whence
|c| ⊂ τ . This contradicts that σ is minimal. This proves (ii).

Finally we prove (iii). Suppose x′ + c0 ∈ C(c0, σ
′)0 and x′′ +

c0 ∈ C(c0, σ
′′)0 and that x′ ≡ x′′ ≡ x mod X(c). Then x′ = x′′ +∑q

j=1 aj(cj −c0) for some aj ∈ Z. Since x′+c0+
∑q

j=1 N ′
j(cj −c0) (resp.

x′′ + c0 +
∑q

j=1 N ′′
j (cj − c0)) stays inside C(c0, σ

′)0 (resp. C(c0, σ
′′)0)

for any large N ′
j > 0 and N ′′

j > 0, C(c0, σ
′)0 and C(c0, σ

′′)0, two cones
at c0 of Delaunay cells, have common relative interior points. It follows
C(c0, σ

′) = C(c0, σ
′′) and dimσ′ = dimσ′′. Since c0 ∈ σ′ ⊂ C(c0, σ

′),
c0 ∈ σ′′ ⊂ C(c0, σ

′′), two Delaunay cells σ′ and σ′′ have common relative
interiors. Therefore σ′ = σ′′. It is clear that σ′ depends only on the class
(xmod X(c)), and is independent of the choice of x ∈ X . Q.E.D.

Definition 5.7. Let c = (c0, · · · , cq) with cj ∈ X cellmates. We re-
call |c| = {c0, · · · , cq}. We define Del(c) to be Del(|c|). Let Del(g−k)(c) =
Del(c) ∩ Del(g−k). We define C(c, σ) := C(|c|, σ), which is the union of
all the translates C(c0, σ) by a ∈ X(c). See Definition 2.2. This depends
only on the unordered set c, independent of the order of cj .
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Lemma 5.8. Let c0, c1, · · · , cq be cellmates, c = (c0, · · · , cq) ordered
cellmates, and |c| unordered cellmates. Let

R(c) :=
⊕
x∈X

k(0) · ξ(x, c)

for some nonzero monomials ξ(x, c). Then
(i) If there is some σ ∈ Del(c) such that x ∈ C(0, σ − c0) ∩ X,

then
ξ(x, c) = ξ(x, c0).

(ii) If there are a ∈ X(c) and σ ∈ Del(c) such that x − a ∈
C(0, σ − c0) ∩ X,

ξ(x, c) = q(a,α(σ))wa · ξ(x − a, c0).

(iii)

R(c) =
⊕

σ ∈ Del(c), x ∈ X/X(c)
x + c0 ∈ C(c, σ) ∩ X

k(0)[X(c)] · ξ(x, c0)

Proof. Suppose that some σ ∈ Del(c) such that x ∈ C(0, σ−c0)∩X .
The element ξ(x, c) is nonzero on U(c), hence it is nonzero on U(c0)
because U(c) ⊂ U(c0). Thus it restricts to a nonzero element of R(c0)
of weight x, which is ξ(x, c0). Hence ξ(x, c) = ξ(x, c0). This proves (i).

Next we prove (ii). We choose τ ∈ Del such that |c| ⊂ τ . It is clear
that

R(c) :=
⊕
x∈X

k(0) · ξ(x, c) =
⊕

x∈X/X(c)

k(0)[X(c)] · ξ(x, c)

for some nonzero element ξ(x, c) of weight x ∈ X . Suppose that a ∈
X(c), σ ∈ Del(c) and x − a ∈ C(0, σ − c0) ∩ X . Let ζ = q(a,α(σ))wa ∈
k(0)[X(c)]. Since ζ is a unit in k(0)[X(c)] by Lemma 5.5, we have
ξ(x, c) = ξ(x − a, c)ζ for any x ∈ X . It is equal to ξ(x − a, c0)ζ =
ξ(x − a, c0)q(a,α(σ))wa by (i). This proves (ii).

Next we prove (iii). We choose τ ∈ Del(c). We choose and fix any
x ∈ X and let x̄ ∈ X/X(c) be the class of x. We define

R(c)x̄ :=
⊕

z∈x+X(c)

k(0) · ξ(z, c) = k(0)[X(c)] · ξ(x, c).

If necessary, by multiplying ξ(x, c) by a product of ξcj /ξc0 , which
is of the form q(a,α(τ))wa for some a ∈ X(c), we can choose ξ(x, c) ·
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q(a,α(τ))wa ∈ R(c0) as a generator of k(0)[X(c)]-module k(0)[X(c)]ξ(x, c).
Hence we may assume ξ(x, c) ∈ R(c0) from the start. The element
ξ(x, c) is nonzero on U(c), hence ξ(x, c) = ξ(x, c0) by (i). Next for N
large enough we choose xN instead of x with the notation of Lemma 5.6.
Then by Lemma 5.6 there is σ ∈ Del such that xN ∈ C(0, σ − c0)0 ∩X ,
|c| ⊂ σ and

R(c)x̄ = k(0)[X(c)] · ξ(x, c0) = k(0)[X(c)] · ξ(xN , c0)

where

ξ(xN , c0) = ξ(x, c0) ·
q∏

j=1

(
ξcj

ξc0

)N .

Hence x + c0 = xN + c0 − N
∑q

j=1(cj − c0) ∈ C(c, σ) ∩ X . This proves
(iii). Q.E.D.

Definition 5.9. Let c = (c0, · · · , cq) with cj ∈ X cellmates. We
define �(c) = q. For a Delaunay cell σ ∈ Del(g−k)(c), we define

F k,q
σ (c) =

⊕
x + c0 ∈ C(c, σ) ∩ X

�(c) = q

k(0) · ξ(x, c),

F k,q(c) =
⊕

|c| ⊂ σ ∈ Del(g−k)

�(c) = q

F k,q
σ (c) =

⊕
σ ∈ Del(g−k)(c)

�(c) = q

F k,q
σ (c),

F k,q =
⊕

c : cellmates
�(c) = q

F k,q(c) =
⊕

c : cellmates
�(c) = q

⎛⎝ ⊕
σ ∈ Del(g−k)(c)

F k,q
σ (c)

⎞⎠ .

where F k,0(c) = F k(c) for c ∈ X .
The definition of F k,q

σ (c) is independent of the choice of c0 ∈ |c|. We
note that if c = (c0, c1, · · · , cq) are not cellmates or if c = (c0, c1, · · · , cq)
are cellmates but |c| �⊂ σ, then F k,q(c) = 0. For σ ∈ Del(g−k) we also
define

F k
σ =

⊕∞

q=0
F k,q

σ , F k,q
σ =

⊕
|c| ⊂ σ, �(c) = q

F k,q
σ (c)

Finally we define ∂k,q : F k,q(c) → F k+1,q(c) by

∂k,q(
⊕

σ∈Del(g−k)(c)

φσ) =
⊕

τ∈Del(g−k−1)(c)

∑
|c|⊂τ⊂σ

[σ : τ ] resσ
τ (φσ)
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where φσ ∈ F k,q
σ (c), and the summation in RHS ranges over the set

of all σ containing a fixed τ as a face of codimension one. We note
∂k+1,q · ∂k,q = 0.

Lemma 5.10. Suppose q ≥ 1 and that c0, · · · , cq−1, cq are cellmates.
Let c′ = (c0, · · · , cq−1), c = (c0, · · · , cq) and σ ∈ Del(g−k)(c). Let

F k,q−1
σ (c′) =

⊕
x + c0 ∈ C(c′, σ) ∩ X

k(0) · ξ(x, c′)

F k,q
σ (c) =

⊕
x + c0 ∈ C(c, σ) ∩ X

k(0) · ξ(x, c).

Then ξ(x, c′) = ξ(x, c).

Proof. It is clear from σ ∈ Del(c) that σ ∈ Del(c′). If x ∈ C(0, σ−
c0) ∩ X , then ξ(x, c′) = ξ(x, c) = ξ(x, c0) by Lemma 5.8. Otherwise we
choose a ∈ X(c′) such that x−a ∈ C(0, σ− c0)∩X . Then ξ(x−a, c′) =
ξ(x−a, c) = ξ(x−a, c0). Let ζ = q(a,α(σ))wa for the hole α(σ) ∈ σ. Since
ζ is a unit in both R(c′) and R(c), by the definition of generators ξ(x, c′)
and ξ(x, c) we have ξ(x, c′) = ξ(x− a, c′)ζ and ξ(x, c) = ξ(x− a, c)ζ. It
follows ξ(x, c′) = ξ(x, c). Q.E.D.

Lemma 5.11. Let c = (c0, · · · , cq) be cellmates with �(c) = q. Then
the following sequence of k(0)[X(c)]-modules is exact,

0 → R(c) → F 0,q(c) ∂0,q

→ F 1,q(c) → · · · → F g−1,q(c) ∂g−1,q

→ F g,q(c) → 0.

Proof. The proof is similar to that of Lemma 5.2. Imitating the
proof of Lemma 5.2, for each class x̄ ∈ X/X(c), we choose by Lemma 5.2
a Delaunay cell σmin(x, c) ∈ Del(c) such that x+ c0 ∈ C(c0, σmin(x, c))0

and x ∈ x̄ + X(c), which is uniquely determined by x̄. In what follows,
for each x̄ we choose and fix the pair (x, σmin(x, c)) such that x + c0 ∈
C(c0, σmin(x, c))0 and x ∈ x̄ + X(c). Let g − k = dim σmin(x, c). We
note σ ∈ Del(c) iff σmin(x, c) ⊂ σ. For any σ ∈ Del(c), we have x ∈
C(0, σ−c0) because x ∈ C(0, σmin(x, c)−c0). In what follow, for any σ ∈
Del(c) we choose the same ξ(x, c0) as a common generator of k(0)[X(c)]-
modules F k

σ (c)x and R(c).
For a fixed x ∈ X (or a fixed class x ∈ X/X(c)) we define

F k
σ (c)x :=

{
k(0)[X(c)] · ξ(x, c0) if x ∈ C(0, σ − c0) ∩ X

0 (otherwise)
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and
F k,q(c)x :=

⊕
σ ∈ Del(g−k)(c)

x + c0 ∈ C(c, σ) ∩ X

F k
σ (c)x.

We also denote R(c)x̄ by R(c)x. We define ∂k,q : F k,q(c)x →
F k+1,q(c)x by restriction of ∂k,q in Definition 5.9. Thus we have a
complex of k(0)[X(c)]-modules with coboundary operators ∂k,q

F 0,q(c)x
∂0,q

→ F 1,q(c)x
∂1,q

→ · · · ∂g−2,q

→ F g−1,q(c)x
∂g−1,q

→ F g,q(c)x → 0.

The exactness of the sequence as well as R(c) 
 Ker(∂0,q) is proved
in a manner entirely analogous to Lemma 5.2. Q.E.D.

Definition 5.12. Let θcd be the one cocycle associated with L0:

θcd = ξd/ξc

In order to compute Hq(Q0, L
n
0 ) we define a complex nR· by

nRq =
⊕

�(c) = q

R(c)

where f(c0, · · · , cq) ∈ R(c) and g(d0, · · · , dq) ∈ R(d) are identified iff

|c| = |d|, ξn
c0

f(c0, · · · , cq) = ξn
d0

g(d0, · · · , dq).

We define the twisted coboundary operator δq
n : nRq → nRq+1 by

ξn
c0

g(c0, c1, · · · , cq+1) = ξn
c1

f(c1, c2, · · · , cq+1)

+
q+1∑
j=1

(−1)jξn
c0

f(c0, · · · ,
∧
cj , · · · , cq+1).

where f =
∑

f(c0, c1, · · · , cq) ∈ nRq, g = δq
nf ∈ nRq+1.

Definition 5.13. Now we define nF k,q and the twisted coboundary
operator δk,q

n : nF k,q → nF k,q+1 so that the definitions of δk,q
n for nRq

and nF k,q are compatible. Let c = (c0, . . . , cq) be ordered cellmates,
nF k,q(c) = F k,q(c). We define

nF k,q =
⊕

�(c) = q

nF k,q(c)

where f(c0, · · · , cq) ∈ nF k,q(c) and g(d0, · · · , dq) ∈ nF k,q(d) are identi-
fied iff

|c| = |d|, ξn
c0

f(c0, · · · , cq) = ξn
d0

g(d0, · · · , dq).
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For f ∈ nF k,q, we define δk,q
n : nF k,q → nF k,q+1 as follows.

Let f =
⊕

f(c0, c1, · · · , cq) ∈ nF k,q and g = δk,q
n f ∈ nF k,q+1. Then

ξn
c0

g(c0, c1, · · · , cq+1) = ξn
c1

f(c1, c2, · · · , cq+1)

+
q+1∑
j=1

(−1)jξn
c0

f(c0, · · · ,
∧
cj , · · · , cq+1).

If c = (c0, c1, · · · , cq) are not cellmates, then we have nF k,q(c) = 0
and f(c0, c1, · · · , cq) = 0 by definition. We note δk,q

n · δk,q−1
n = 0. Since

we have δk,q
n (nF k,q

σ ) ⊂ nF k,q+1
σ , we have a complex

nF k,0
σ

δk,0
n→ nF k,1

σ

δk,1
n→ · · · δk,q−1

n→ nF k,q
σ

δk,q
n→ nF k,q+1

σ → · · · .

Definition 5.14. For each positive integer n, we define a double
complex (nC·, ∆·

n) by

nC· =
⊕

nCp, nCp =
⊕

k+q=p

nF k,q, ∆p
n =

⊕
k+q=p

(∂k,q + (−1)qδk,q
n ),

nF k,q =
⊕

σ∈Del(g−k) mod Y

nF k,q
σ =

⊕
σ∈Del(g−k) mod Y

(⊕
x∈X

nF k,q
σ [x]

)
,

nF k,q
σ [x] =

⊕
|c| ⊂ σ
�(c) = q

nF k,q
σ (c)[x]

where nF k,q
σ [x] is the weight x-part of nF k,q

σ , and ∂k,q on nF k,q
σ is defined

to be ∂k,q on F k,q
σ . We easily check

∆p+1
n · ∆p

n = 0,

∂k+1,q · ∂k,q = 0, δk,q+1
n · δk,q

n = 0,

δk+1,q
n · ∂k,q = ∂k,q+1 · δk,q

n ,

∂k,q(nF k,q) ⊂ nF k+1,q, δk,q
n (nF k,q) ⊂ nF k,q+1.

We also check that δk+1,q
n · resσ

τ = resσ
τ ·δk,q

n .
The following theorem will be proved in the section 6.

Theorem 5.15. For any σ ∈ Del(g−k), there is a natural isomor-
phism

Hq(nF k,·
σ , δk,·

n ) =

⎧⎨⎩
⊕

x
n∈σ∩X

n mod Y

k(0) · [x] if q = 0

0 if q > 0
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where [x] denotes the monomial generator ξn
c ξ(x − nc, c) of weight x,

which is independent of the choice of c ∈ σ ∩ X.

Remark 5.16. When Q0 is reduced, the cohomology group in The-
orem 5.15 coincides with Hq(V (σ), Ln

0 ⊗ OV (σ)). However there might
be no subscheme of Q0 which properly corresponds to σ when Q0 is
nonreduced.

Theorem 5.17. Let (Q0, L0) be a PSQAS with a level G(K)-structure,
the closed fibre of (Q, L). Then

(i) Hq(Q0, L
n
0 ) = 0 for q ≥ 1 and n ≥ 1.

(ii) dimH0(Q0, L
n
0 ) = ng

√
|K| for n ≥ 1.

Proof. We note that the assertion (i) is always true for any PSQASes.
We prove (i). First we consider the case where (Q0, L0) is to-

tally degenerate, in which case
√
|K| = |X/Y | by [Nr99, Lemma 5.12,

Lemma 7.11]. We use the complex (nC·, ∆·
n) to prove Hq(Q0, L

n
0 ) = 0.

First we compute the spectral sequences for the above complex. By
Theorem 5.15

′
Ek,q

1 =

⎧⎪⎨⎪⎩
⊕

σ∈Del(g−k) mod Y

( ⊕
x
n∈σ∩X

n

k(0) · [x]

)
if q = 0

0 if q > 0.

It follows
′
Ek,q

2 = 0 for q > 0.
In view of Lemma 5.2 and Lemma 5.11

′′
Ek,q

1 =

{
nRq if k = 0
0 if k > 0

Therefore we have

′′
Ek,q

2 =

{
Hq(nR·, δ·n) if k = 0

0 if k > 0

=

{
Hq(Q0, L

n
0 ) if k = 0

0 if k > 0

because U(c) is affine for any cellmates c.
Since the spectral sequences degenerate at E2-terms, we see

Hq(Q0, L
n
0 ) =

′′
E0,q

2 = Hq(nC·, ∆·
n) =

′
Eq,0

2 .

Since the coboundary operator of the complex (
′
E·,0

1 , δ·,0n ) is (re-
garded as) homogeneous (see the proof of Theorem 6.11), it suffices to
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compute the weight x-part of the cohomology
′
Eq,0

2 [x] of the complex.
Let Star ( x

n ) be the union of σ ∈ Del such that x
n ∈ σ and Star ( x

n )0

the relative interior of Star ( x
n ). We see H0(Star ( x

n )0, k(0)) = k(0) and
Hq(Star ( x

n )0, k(0)) = 0 for q > 0. It is also easy to see that the weight
x-part of the complex (

′
E·,0

1 , δ·,0n ) is isomorphic to the cochain complex
of Star ( x

n )0 indexed by Delaunay cells. Hence for q > 0

′
Eq,0

2 [x] = Hq(Star (
x

n
)0, k(0)) = 0 (∀x),

Hq(Q0, L
n
0 ) =

′′
E0,q

2 =
′
Eq,0

2 =
⊕

x
n∈X

n mod Y

′
Eq,0

2 [x] = 0.

Since Q is flat over R, we have dim H0(Q0, L
n
0 ) = dim H0(Qη, Ln

η ) =
ng|X/Y | where (Qη, Ln

η ) is the generic fibre of (Q, Ln). This completes
the proof in the totally-degenerate case when Y ⊂ mX for some m ≥ 3.

Next we consider the case where Y is not a subgroup of mX for
any m ≥ 3. We note that (Q0, L0) has an étale covering (Q′

0, L
′
0) =

(Q̃0, L̃0)/Y ′ where we choose Y ′ = 3Y . The second PSQAS (Q′
0, L

′
0)

satisfies the assumption Y ′ = 3Y ⊂ 3X , from which we infer that
dimHq(Q′

0, (L
′
0)

n) = 0 for any q > 0. Since Hq(Q0, L
n
0 ) is a direct

summand of Hq(Q′
0, (L

′
0)

n) = 0, we have Hq(Q0, L
n
0 ) = 0 for q > 0.

Once we prove Hq(Q0, L
n
0 ) = 0 for q > 0, then since Q is flat over R, we

have dim H0(Q0, L
n
0 ) = dimH0(Qη, Ln

η ) = ng|X/Y | = ng
√

|K|. Thus
we complete the proof of the theorem in the totally degenerate case.
The vanishing in the partially degenerate case follows easily from it by
the standard argument. See [Nr99, Theorem 4.10]. Q.E.D.

The following is a corollary to Theorem 5.17.

Theorem 5.18. Let k(0) be a field of characteristic prime to |K|,
and (Q0, L0) be a PSQAS over k(0) with a level G(K)-structure. Then

(i) dimH0(Q0, L0) =
√
|K|

(ii) H0(Q0, L0) is an irreducible G(K)-module of weight one.

Proof. Since Hq(Q0, L0) = 0 for q > 0 by Theorem 5.17, we see
H0(Q0, L0) = Γ(Q, L)⊗ k(0). Therefore Γ(Q, L)⊗ k(0) is an irreducible
G(K)-module of weight one in view of [Nr99, Lemma 5.12]. This proves
the theorem. Q.E.D.

Corollary 5.19. Let K be a finite symplectic abelian group and
π : (Q, L) → SQg,K the universal family of PSQASes over SQg,K .
Then π∗(Ln) is locally free for any n > 0.
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Proof. Since SQg,K is reduced by the definition of [Nr99, § 12],
π∗(Ln) is locally free by Theorem 5.17 and [M74, Corollary 2, p. 51].

Q.E.D.

§6. Proof of Theorem 5.15

Lemma 6.1. Let σ ∈ Del(g) and c = (c0, · · · , cq) cellmates such
that |c| ⊂ σ. Suppose 0 ∈ |c|. Let fj (1 ≤ j ≤ N) be linear functions
on XR such that C(0, σ) = {x ∈ XR; fj(x) ≥ 0 (1 ≤ j ≤ N)}, fj(ck) =
0 (∀j ≤ n, ∀k) and fj(ckj ) > 0 (∀j > n, ∃kj). Then we have

C(c, σ) = {x ∈ XR; fj(x) ≥ 0 (∀j ≤ n)}.

Proof. First we note that fj (1 ≤ j ≤ n) is the set of all fj whose
restriction to |c| is identically zero. Let S = {x ∈ XR; fj(x) ≥ 0 (∀j ≤
n)}. Let a ∈ X(c)R and x ∈ C(0, σ). Then since fj is linear, fj(x+a) =
fj(x) + fj(a) = fj(x) ≥ 0 for j ≤ n. Therefore C(c, σ) ⊂ S. We shall
prove the converse. Let 〈c〉 be the convex closure of |c|. By the choice of
fk (1 ≤ k ≤ N) there is an a ∈ 〈c〉 such that fj(a) > 0 for any j ≥ n+1.
Hence if x ∈ S, then fj(x+ Aa) = fj(x) +Afj(a) > 0 for a large A > 0.
Hence x + Aa ∈ C(0, σ). Since Aa = A(a − 0), a ∈ 〈c〉 and 0 ∈ |c|, we
see Aa ∈ X(c)R. This proves x ∈ X(c)R + C(0, σ) = C(c, σ). Q.E.D.

Lemma 6.2. Let σ ∈ Del(g), c = (c0, · · · , cq) cellmates such that
|c| ⊂ σ, and τ(c) the minimal Delaunay cell containing |c|. Then
C(c, σ) = C(τ(c), σ).

Proof. It should be cautioned that X(c) �= X(τ(c)) in general. We
may assume c0 = 0 without loss of generality. Then by Lemma 6.1
C(c, σ) = {x ∈ XR; fj(x) ≥ 0 (∀j ≤ n)}. Let H be a hyperplane of XR

defined by fj = 0 for some j (1 ≤ j ≤ n). Then H ∩ σ is a face of σ.
Since |c| ⊂ H ∩ σ, τ(c) ⊂ H ∩ σ by the definition of τ(c). Hence fj = 0
on τ(c), hence fj = 0 on X(τ(c)). It follows that X(τ(c)) ⊂ C(c, σ).
This proves the lemma. Q.E.D.

Lemma 6.3. Let σ ∈ Del(g) and τ and τ ′ faces of σ with τ ∩τ ′ �= ∅.
Then C(τ, σ) ∩ C(τ ′, σ) = C(τ ∩ τ ′, σ).

Proof. We may assume 0 ∈ τ ∩ τ ′ without loss of generality. It
suffices to prove C(τ, σ) ∩ C(τ ′, σ) ⊂ C(τ ∩ τ ′, σ). By the proof of
Lemma 6.1 we have linear functions fj (1 ≤ j ≤ N) such that

C(0, σ) = {x ∈ XR; fj(x) ≥ 0 (1 ≤ j ≤ N)},
C(0, τ) = {x ∈ C(0, σ); fj(x) = 0 (1 ≤ j ≤ n)},
C(0, τ ′) = {x ∈ C(0, σ); fj(x) = 0 (1 ≤ j ≤ k and n + 1 ≤ j ≤ m)}.
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It follows C(0, τ ∩ τ ′) = {x ∈ C(0, σ); fj(x) = 0 (∀j ≤ m)}. Hence

C(τ ∩ τ ′, σ) = {x ∈ XR; fj(x) ≥ 0 (∀j ≤ m)}.

By Lemma 6.1 we see

C(τ, σ) = {x ∈ XR; fj(x) ≥ 0 (1 ≤ j ≤ n)},
C(τ ′, σ) = {x ∈ XR; fj(x) ≥ 0 (1 ≤ j ≤ k and n + 1 ≤ j ≤ m)}.

It follows that

C(τ, σ) ∩ C(τ ′, σ) = {x ∈ XR; fj(x) ≥ 0 (1 ≤ j ≤ m)}.

This completes the proof. Q.E.D.

Example 6.4. Let g = 2 and B(x, x) = x2
1+x2

2 for x = x1e1+x2e2 ∈
X . Let σ = 〈0, e1, e1 + e2, e2〉, τ = {0} and τ ′ = {e1 + e2}. In this case,

C(τ, σ) = {x1e1 + x2e2 ; x1, x2 ≥ 0},
C(τ ′, σ) = {x1e1 + x2e2 ; x1, x2 ≤ 1}.

Hence C(τ, σ) ∩ C(τ ′, σ) = σ �= ∅, while τ ∩ τ ′ = ∅.
Next let ρ = 〈0, e1〉 and ρ′ = 〈e2, e1 + e2〉. We note ρ∩ρ′ = ∅. Then

C(ρ, σ) = {x1e1 + x2e2 ; x2 ≥ 0}, C(ρ′, σ) = {x1e1 + x2e2 ; x2 ≤ 1},
C(ρ, σ) ∩ C(ρ′, σ) = {x1e1 + x2e2 ; 0 ≤ x2 ≤ 1}.

Thus Lemma 6.3 is true only when τ ∩ τ ′ is nonempty.

Definition 6.5. We choose and fix σ ∈ Del(g). For each ρ ∈
Del(g−1)

σ , C(ρ, σ) is a closed half-space of XR. Let C(ρ, σ)c be the com-
plement of C(ρ, σ) in XR. Let H := H(σ) be the set of all hyperplanes
of XR of the form H(ρ) := ρ + X(ρ)R for some ρ ∈ Del(g−1)

σ . For any
subset H′ of H(σ) we define

D(H′) =

⎛⎝ ⋂
H(ρ)∈H\H′

C(ρ, σ)

⎞⎠ ⋂ ⎛⎝ ⋂
H(ρ)∈H′

C(ρ, σ)c

⎞⎠ .

We note that the expression in RHS could be redundant because the in-
tersection of some C(ρ, σ)’s could be a proper subset of another C(ρ′, σ).
Let D(H′) be the closure of D(H′) in XR and D(H′)0 the relative in-
terior of D(H′). Each D(H′)0 is an open connected domain of XR. If
H′ = ∅, then D(H′) = σ, while if H′ = H(σ), then D(H′) = ∅.

Let |H(σ)| be the union of all H(ρ) ∈ H(σ). The complement of
|H(σ)| in XR is the disjoint union of D(H′)0, while XR is the disjoint
union of D(H′).
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Lemma 6.6. Let σ ∈ Del(g) and x ∈ XR. Let Bσ(x) be the union
of all faces τ of σ such that x ∈ C(τ, σ)c. Then Bσ(x) is the union of
all (g − 1)-dimensional faces ρ of σ such that x ∈ C(ρ, σ)c.

Proof. Let τ∗ be a face of σ. Then we remark that by the definition
of Bσ(x), x ∈ C(τ∗, σ)c iff τ∗ ⊂ Bσ(x). Let τ be a face of σ. Then τ
is the intersection of all (g − 1)-dimensional faces of σ containing τ . By
Lemma 6.3

C(τ, σ) = ∩
ρ∈Del

(g−1)
σ (τ)

C(ρ, σ).

Hence x ∈ C(τ, σ)c iff x ∈ C(ρ, σ)c (∃ρ ∈ Del(g−1)
σ (τ)), and by the

above remark, iff τ ⊂ ρ ⊂ Bσ(x) (∃ρ ∈ Del(g−1)
σ ). This proves the

lemma. Q.E.D.

Lemma 6.7. Let σ ∈ Del(g). If x ∈ σ, then Bσ(x) = ∅.

Proof. If x ∈ σ, then x ∈ C(τ, σ) for any τ ∈ Delσ. It follows that
Bσ(x) = ∅. Q.E.D.

Lemma 6.8. Let σ ∈ Del(g) and x ∈ XR \ σ. Then Bσ(x) is
nonempty, connected and contractible.

This is a corollary to the following more general lemma.

Lemma 6.9. Let ∆ be a bounded convex polytope in XR = Rg, H
the set of one-codimensional faces of ∆. For a one-codimensional face
ρ of ∆ we define H(ρ) a hyperplane of XR spanned by ρ, C(ρ, ∆) the
closed half space of XR bounded by H(ρ) containing ∆, C(ρ, ∆)c the
complement of C(ρ, ∆) in XR. For any point x of XR \ ∆. Let B∆(x)
be the union of one-codimensional faces of ∆ with x ∈ C(ρ, ∆)c. Then
B∆(x) is connected and contractible.

Proof. To explain our idea let us first suppose that ∆ is a closed
ball of dimension g. Let ∂∆ be the boundary of ∆, and x a point outside
of ∆. Set a source of light at x and light the ball up from x. Let B∆(x)
be the part of ∂∆ illuminated by the light. It is clear that B∆(x) is
homeomorphic to a hemisphere, hence homeomorphic to a closed ball of
dimension g − 1.

Now we turn to the proof of our lemma. Let ∆ be a convex polytope
of dimension g, ∂∆ the boundary of it and x a point outside of ∆. Set
a source of light at x and light the polytope ∆ up from x. Then for
a one-codimensional face ρ of ∆, x ∈ C(ρ, ∆)c iff ρ is illuminated by
the light whose source is set at the point x. Here we regard that ρ is
not illuminated by the light if the source of the light is set at a point x
on the hyperplane H(ρ) spanned by ρ. Since ∆ is convex, the part of
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∂∆ illuminated by the light is the union of ρ with x ∈ C(ρ, ∆)c, that
is, B∆(x). This proves that B∆(x) is homeomorphic to a hemisphere,
hence it is a nonempty connected contractible subset of ∂∆. Q.E.D.

Lemma 6.10. Let σ ∈ Del(g) and x ∈ XR. Let �(σ∩X) = N+1 and
∆(σ) an abstract N -dimensional simplex with vertices σ ∩ X. For any
subset S of σ∩X, we define ∆(S) to be the subsimplex of ∆(σ) spanned
by S, and B∆(σ)(x) be the union of all ∆(S) such that x ∈ C(S, σ)c and
S ⊂ σ ∩ X. Then

(i) B∆(σ)(x) is the union of ∆(ρ∩X) for all (g−1)-dimensional
faces ρ of σ such that x ∈ C(ρ, σ)c.

(ii) B∆(σ)(x) is nonempty, connected and contractible.

Proof. Let c be cellmates and τ(c) the minimal face of σ such that
|c| ⊂ τ(c). Let S = |c|. By Lemma 6.2, C(S, σ) = C(c, σ) = C(τ(c), σ).
Hence by Lemma 6.6

∆(S) ⊂ B∆(σ)(x) ⇐⇒ x ∈ C(S, σ)c

⇐⇒ x ∈ C(τ(c), σ)c

⇐⇒ τ(c) ⊂ Bσ(x)

⇐⇒ τ(c) ⊂ ρ ⊂ Bσ(x) (∃ρ ∈ Del(g−1)
σ )

⇐⇒ S ⊂ ρ ⊂ Bσ(x) (∃ρ ∈ Del(g−1)
σ )

⇐⇒ ∆(S) ⊂ ∆(ρ ∩ X) ⊂ B∆(σ)(x) (∃ρ ∈ Del(g−1)
σ ).

This proves (i). Next we prove (ii). By (i) B∆(σ)(x) is the union of
∆(ρ ∩ X) such that ρ ⊂ Bσ(x). For simplicity we denote ∆(ρ ∩ X) by
∆(ρ).

Let ρ ∈ Del(g−1)
σ such that ρ ⊂ Bσ(x). Since ∆(ρ) is an abstract

simplex with vertices ρ ∩ X , we have a natural map πρ from ∆(ρ) onto
ρ. Thus for any vertex P of ρ, we have a vertex of ∆(ρ) mapped to P ,
which we denote by ∆(P ). Let ρ∩X = {P0, · · · , Pr}. Then the natural
map πρ from ∆(ρ) onto ρ is given by

∆(ρ) � t0∆(P0) + · · · + tr∆(Pr) �→ t0P0 + · · · + trPr ∈ σ

where t0+ · · ·+tr = 1. When ρ ranges over the set of the faces contained
in Bσ(x), the natural maps πρ glue together to give rise to a natural
surjective continuous polytope map π : B∆(σ)(x) → Bσ(x). We prove
that any fibre of π is connected and contractible. Let ρ be the above
Delaunay cell and P any point of ρ. Then the inverse image π−1(P ) is
the intersection of ∆(ρ) with an affine linear subspace HP : t0P0+t1P1+
· · · + trPr = P , (t0 + · · · + tr = 1) in the (t0, · · · , tr)-space Rr+1. The
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simplex ∆(ρ) is just the subset of Rr+1 defined by t0 + · · ·+ tr = 1 and
0 ≤ tj ≤ 1 for any j = 0, 1, · · · , r. Since ∆(ρ) is convex, the intersection
HP ∩ ∆(ρ) = π−1(P ) is connected and contractible. Since Bσ(x) is
connected and contractible, so is B∆(σ)(x). This proves (ii). Q.E.D.

Theorem 6.11. Let x ∈ X, σ ∈ Del(g−k) and let nF k,·
σ be the

complex defined in Definition 5.13. Let ∆(σ) be the abstract simplex
with vertices σ ∩ X. Then

Hq(nF k,·
σ [x], δk,·

n ) 
 Hq(C·(∆(σ), B∆(σ)(
x

n
)))

=

{
k(0) if q = 0 and x

n ∈ σ

0 otherwise

Proof. Since the coboundary operator δk,q
n of the complex nF k,·

is (regarded as) homogeneous in the sense we are going to explain, it
suffices to compute the cohomology of the complex for a fixed weight
x ∈ X .

Let f ∈ nF k,q and g = δk,q
n (f). Then by the definition of the

coboundary operator δk,q
n we have the equality as

ξn
c0

g(c0, c1, · · · , cq+1) = ξn
c1

f(c1, c2, · · · , cq+1)

+
q+1∑
j=1

(−1)jξn
c0

f(c0, · · · ,
∧
cj , · · · , cq+1),

which is homogeneous with regard to the weights X .
Let σ ∈ Del(g−k). Let nF k,q

σ (c)[x] be the weight x-part of nF k,q
σ (c)

in the above sense. For brevity we first consider the case x
n ∈ σ ∩ X

n .
Let c = (c0, · · · , cq) be cellmates with |c| ⊂ σ. Then ξ(x−nc0, c) =

ξ(x − nc0, c0) by Lemma 5.10. We see that

x

n
∈ σ ∩ X

n
⇐⇒ x

n
∈ C(c, σ) ∩ X

n
(∀c ∈ σ ∩ X)

⇐⇒ x

n
− c ∈ C(0, σ − c) ∩ X

n
(∀c ∈ σ ∩ X)

⇐⇒ x − nc ∈ C(0, σ − c) ∩ X (∀c ∈ σ ∩ X)

⇐⇒ (x − nc) + c ∈ C(c, σ) ∩ X (∀c ∈ σ ∩ X).

If x
n ∈ σ ∩ X

n , then (x−nc) + c ∈ C(c, σ)∩X ⊂ C(c, σ)∩X . Hence

nF k,q
σ (c)[x] = k(0) · ξ(x − nc0, c) = k(0) · ξ(x − nc0, c0)
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by Definition 5.9. Hence we have

nF k,q
σ [x] =

⊕
|c| ⊂ σ
�(c) = q

nF k,q
σ (c)[x] =

⊕
|c| ⊂ σ
�(c) = q

k(0)∆(c)∗

where ∆(c)∗ is the dual cochain of an abstract q-simplex ∆(c) with
vertices |c| and �(c) = q. Thus we see that the complex (F k,·

σ [x], δk,·)
is isomorphic to the standard cochain complex over k(0) of an abstract
N -simplex ∆(σ) with vertices σ ∩ X .

Let N = �(σ ∩ X) − 1. We note that N could be different from the
real dimension of σ. Since the N -simplex ∆(σ) is contractible to one
point, we have

Hq(nF k,·
σ [x], δk,·) =

{
k(0) · [x] if q = 0
0 if q > 0.

where [x] denotes the (unique) monomial generator ξn
c ξ(x − nc, c) of

weight x, independent of the choice of c (c ∈ σ ∩ X). This proves the
theorem when x

n ∈ σ ∩ X
n .

Now we consider the general case. For σ ∈ Del(g−k) we define
H(σ) := σ + X(σ) ⊗R. Note that dimH(σ) = g − k = dimσ. First we
prove that for any x ∈ H(σ) ∩ X

nF k,q
σ (c)[x] =

{
k(0) · ξ(x − nc0, c) if x

n ∈ C(c, σ)
0 otherwise

where c = (c0, · · · , cq). In fact, nF k,q
σ (c)[x] = k(0) · ξ(x − nc0, c) iff

x − nc0 + c0 ∈ C(c, σ) by the definition of nF k,q
σ . We also see

x − nc0 + c0 ∈ C(c, σ) ⇐⇒ x − nc0 ∈ C(0, σ − c0) + X(c)R

⇐⇒ x

n
− c0 ∈ C(0, σ − c0) + X(c)R

⇐⇒ x

n
∈ C(c, σ).

Therefore nF k,q
σ (c)[x] 
 k(0) iff x

n ∈ C(c, σ).
We recall the modified generator ξn

c0
ξ(x−nc0, c) = ξn

c0
ξ(x−nc0, c0)

is independent of the choice of both c0 ∈ c and c, and it depends only
on σ (Lemma 5.10) because ξn

c0
ξ(x − nc0, c0) and ξn

c1
ξ(x − nc1, c1) are

identified in nF k,q by Definition 5.13.



254 I. Nakamura and K. Sugawara

Let σ ∈ Del(g−k) and cellmates c such that |c| ⊂ σ. Then by
Lemma 6.2 we see

nF k,q
σ (c)[x] = 0 ⇐⇒ x

n
∈ C(c, σ)c ⇐⇒ x

n
∈ C(τ(c), σ)c

⇐⇒ τ(c) ⊂ Bσ(
x

n
) ⇐⇒ |c| ⊂ Bσ(

x

n
)

where q = �(c), τ(c) is the minimal face of σ such that |c| ⊂ τ . It follows
that

nF k,q
σ (c)[x] 
 k(0) ⇐⇒ |c| �⊂ Bσ(

x

n
).

Thus there is an isomorphism of k(0)-modules

nF k,q
σ [x] :=

⊕
�(c) = q
|c| ⊂ σ

nF k,q
σ (c)[x] 
 Cq(∆(σ), B∆(σ)(

x

n
))

It is easy to see that this induces an isomorphism between the com-
plex nF k,·

σ [x] and the relative cochain complex C·(∆(σ), B∆(σ)( x
n )). By

Lemma 6.10 if B∆(σ)( x
n ) is nonempty, then Hq(∆(σ), B∆(σ)( x

n )) = 0 for
any q. If B∆(σ)( x

n ) is empty (⇐⇒ x
n ∈ σ), then Hq(∆(σ), B∆(σ)( x

n )) =
k(0) (resp. 0) for q = 0 (resp. q > 0). It follows that

Hq(nF k,·
σ [x]) = Hq(C·(∆(σ), B∆(σ)(

x

n
)))

=

{
k(0) if q = 0 and x

n ∈ σ

0 otherwise .

This completes the proof of Theorem 6.11, hence of Theorem 5.15.
Q.E.D.

Example 6.12. Here is an example. Let k = k(0), g = 2, X =
Ze1 + Ze2 and B(x, x) = 2(x2

1 − x1x2 + x2
2) for x = x1e1 + x2e2 ∈ X .

Let

e1 = (1, 0), e2 = (0, 1), c0 = 0, c1 = e1, c2 = e1 + e2,

c3 = e2, c4 = −e1, c5 = −e1 − e2, c6 = −e2.

Let σ (resp. σ′) be the convex closure 〈c0, c1, c2〉 (resp. 〈c0, c2, c3〉).
Any Delaunay two-cell is a translate by X of either σ or σ′. Star (0) is
the convex closure of cj (j = 1, · · · , 6), which is a hexagon with the six
vertices cj .

There are essentially different three cases
(i) x ∈ σ,
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(ii) x ∈ C(c0, σ) \ σ,
(iii) x ∈ C(c0, c1, σ) \

⋃
i=0,1 C(ci, σ).

In the case (i) Bσ(x) = ∅. In the case (ii) Bσ(x) = 〈c1, c2〉. In the
case (iii) Bσ(x) = 〈c0, c2〉 ∪ 〈c1, c2〉. In the cases (ii) and (iii) Bσ(x) is
connected and contractible.

§7. The E8 lattice

In this section we recall the notation for E8 [Bourbaki, pp. 268-
270]. Let Z8 be the lattice of rank 8 with the standard inner product, ej

(1 ≤ j ≤ 8) an orthogonal basis of it, and (1
2Z)8 the overlattice spanned

by 1
2ej (1 ≤ j ≤ 8) with inner product induced naturally from that of

Z8. Then the sublattice X of (1
2Z)8 is defined to be

{
8∑

i=1

xiei ; 2xi ∈ Z, xi + xj ∈ Z,

8∑
i=1

xi ∈ 2Z}

with bilinear form inherited from (1
2Z)8. This is the lattice E8.

Let {αj , j = 1, · · · , 8} be a positive root system

α1 =
1
2
(e1 + e8 − (e2 + · · · + e7)),

α2 = e1 + e2, αj = ej−1 − ej−2 (3 ≤ j ≤ 8)

The maximal root α0 of the root system is given by

α0 = e7 + e8 = 2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7 + 2α8 (= ω8).

We define mj (1 ≤ j ≤ 8) to be the multiplicity of αj in α0. Thus
for instance, m1 = 2, m2 = 3 and m3 = 4. The root diagram of αj

(1 ≤ j ≤ 8) is E8, while the root diagram of αj (0 ≤ j ≤ 8) is the
extended Dynkin diagram Ẽ8 given below

Ẽ8
� � �

�

� � � � ��

α1 α3

α2

α4 α5 α6 α7 α8 −α0
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We also define the dual roots ωk ∈ X by (αj , ωk) = δjk. Hence we
have

ω1 = 2e8, ω2 =
1
2
(e1 + e2 + · · · + e7 + 5e8),

ω3 =
1
2
(−e1 + e2 + · · · + e7 + 7e8), ω4 = e3 + e4 + · · · + e7 + 5e8,

ω5 = e4 + · · · + e7 + 4e8, ω6 = e5 + · · · + e7 + 3e8,

ω7 = e6 + e7 + 2e8, ω8 = e7 + e8.

For any α ∈ X (�= 0) we define a hyperplane Hα of X ⊗ R to be
Hα = {x ∈ XR; α(x) = 0} and the linear transformation rα of X ⊗ R
to be the reflection with regards to Hα:

rα(x) = x − 2(α, x)
(α, α)

α.

If α is a root of E8, then rα(x) = x − (α, x)α. We also define r0 to
be

r0(x) = x + (1 − (α0, x))α0.

Then r0 is a reflection of XR with regards to the hyperplane H0 :=
{x ∈ XR; (α0, x) = 1}. The seven reflections rαj (1 ≤ j ≤ 7) generate
the Weyl group W (E8), while the eight reflections r0 and rαj (1 ≤ j ≤ 7)
generate the affine Weyl group W (Ẽ8). The order of W (E8) equals
214 · 35 · 52 · 7, while W (Ẽ8) is of infinite order. We note that rαj keeps
ωk (k �= j) invariant because (αj , ωk) = 0.

E8
� � �

�

� � � �

α1 α3

α2

α4 α5 α6 α7 α8

D7
� �

�

� � � �

α3

α2

α4 α5 α6 α7 α8

A7
� � � � � � �

α1 α3 α4 α5 α6 α7 α8
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The diagram D7 is a subdiagram of E8 obtained by deleting α1.
Therefore W (D7) is a subgroup of W (E8) naturally. Similarly since A7

is E8 with α2 deleted, W (A7) is a subgroup of W (E8). For a group
W acting on X , let StabW (ω) (resp. StabW (ω, ω′)) be the stabilizer
subgroup of W of ω ∈ X (resp. of both ω and ω′ ∈ X). Then
StabW (E8)(ω1

2 ) = W (D7) where D7 = E8 \ {α1} because by [Bourbaki,
Ch. 5, Prop. 2. p. 75] it is generated by the reflections rα with roots
α orthogonal to ω1. Similarly we see StabW (E8)(ω2

3 ) = W (A7) where
A7 = E8 \ {α2} .

§8. Elements of the lattice E8

Let X be the lattice E8, a, b ∈ X , (a, b) the bilinear form of E8 and
a2 = (a, a). We call

√
a2 the length of a, which we denote ‖a‖. An

element a ∈ X is called a root (of E8) if a2 = 2, equivalently, the length
of a equals

√
2.

Lemma 8.1. Any element a ∈ X with a2 = 2 is one of 240 roots:
(i) ±ei ± ej (1 ≤ i < j ≤ 8),
(ii) 1

2 (
∑8

j=1(−1)ν(j)ej) with
∑

j ν(j) even.
Any of them is W (E8)-equivalent.

Proof. Any root α ∈ X with α2 = 2 is one of (i) and (ii). The
number of these elements totals 112 + 128 = 240, as is seen easily. Let
α0 = e7 + e8 be the maximal root. Then StabW (E8)(α0) = W (E7) by
[Bourbaki, p. 75], whence the number of roots is equal to |W (E8)/W (E7)|
(= 214 ·35 ·52 ·7/210 ·34 ·5 ·7 = 240). Hence the set of roots is transitive
under W (E8). Q.E.D.

Lemma 8.2. Any element a ∈ X with a2 = 4 is one of the following
(i) ±2ek (1 ≤ k ≤ 8),
(ii) ±ei ± ej ± ek ± e
 (1 ≤ i < j < k < � ≤ 8),
(iii) ± 1

2 (3ei +
∑

j 	=i(−1)ν(j)ej) with
∑

j 	=i ν(j) odd.
Any of them is W (E8)-equivalent.

Proof. Let a0 = 2e8. By [Bourbaki, p. 75] StabW (E8)(a0) = W (D7),
the subgroup of W (E8) generated by rαj (j ≥ 2) because (a0, αj) = 0
for j �= 1. Hence the orbit W (E8) · a0 consists of 2160 elements where
2160 = |W (E8)/W (D7)|. Meanwhile the number of the elements of type
(i), (ii) and (iii) are respectively 16, 1120 = 24 ·

(
8
4

)
and 1024 = 27 ·

(
8
1

)
which totals 2160. This shows that the above 2160 elements are in the
single W (E8)-orbit of a0. Q.E.D.

Lemma 8.3. Any element a ∈ X with a2 = 6 is one of the following
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(i) ±ei ± ej ± 2ek for i, j, k all distinct
(ii)

∑6
k=1 ±eik

(1 ≤ ik ≤ 8) for ik all distinct
(iii) ± 1

2 (3ei + 3ej +
∑

k 	=i,j(−1)ν(k)ek) with
∑

k 	=i,j ν(k) even.

Any of them is W (E8)-equivalent.

Proof. Let a0 = e6+e7+2e8. By [Bourbaki, p. 75] StabW (E8)(a0) =
W (A1×E6), where the subgroup of W (E6) is generated by rαj (1 ≤ j ≤
6) and W (A1) is generated by rα8 because (a0, αj) = 0 for j �= 7. Hence
the orbit W (E8) · a0 consists of |W (E8)/W (A1)||W (E6)| = 214 · 35 · 52 ·
7/28 · 34 · 5 = 6720 elements. Meanwhile the number of the elements of
type (i), (ii) and (iii) are respectively 1344 = 23 ·

(
8
1

)
·
(
7
2

)
, 1792 = 26 ·

(
8
6

)
and 3584 = 27 ·

(
8
2

)
which totals 6720. This shows that the above 6720

elements are in the single W (E8)-orbit of a. Q.E.D.

Lemma 8.4. Any pair of a, b ∈ X with a2 = b2 = 2 and (a, b) = 0
is W (E8)-equivalent.

Proof. We may assume a = e7 + e8 (= α0). Then b ∈ X satisfying
the conditions b2 = 2 and (a, b) = 0 are one of the following

(i) ±ei ± ej for i, j ∈ {1, 2, 3, 4, 5, 6} and i < j,
(ii) ±(e7 − e8),
(iii) 1

2 (
∑8

j=1(−1)νj ej) with
∑

j νj even, ν7 + ν8 = 1.

One counts the number of elements of (i), (ii) and (iii) respectively as
60, 2 and 64. These total 126. Meanwhile let β = −e7 + e8. Then β is a
root with (α0, β) = 0 and StabW (E8)(α0) = W (E7), StabW (E8)(α0, β) =
StabW (E7)(β) = W (D6) by [Bourbaki, p. 75] because the subspace of X
orthogonal to α0 and β is spanned by αj (2 ≤ j ≤ 7). Let F be the
subset of roots b of E8 with (a, b) = 0. We want to prove that there is σ ∈
W (E8) such that a = σ(α0) and b = σ(β). Since a is in the W (E8)-orbit
of α0 by Lemma 8.1, we may assume a = α0. We see | StabW (E8)(α0) ·
β| = | StabW (E8)(α0)/ StabW (E8)(α0, β)| = |W (E7)/W (D6)| = 210 · 34 ·
5 · 7/25 · 6! = 2 · 32 · 7 = 126. It follows that the orbit StabW (E8)(α0) · β
consists of 126 elements. Hence StabW (E8)(α0) acts transitively on the
set F . This completes the proof. Q.E.D.

Lemma 8.5. Any pair of a, b ∈ X with a2 = 4, b2 = 2 and (a, b) = 0
is W (E8)-equivalent to a = 2e8 and b = −e6 + e7.

Proof. We may assume a = 2e8 by Lemma 8.2. Let F be the set
of all b with b2 = 2 and (a, b) = 0. It is the set of all roots of D7,
F = {±ei ± ej ; 1 ≤ i < j ≤ 7} where D7 = E8 \ {α1}. It follows
StabW (E8)(2e8) = W (D7). Since W (D7) acts on F transitively, so acts
StabW (E8)(2e8) on F . This proves the lemma. Q.E.D.
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Lemma 8.6. Any pair of a, b ∈ X with a2 = 4, b2 = 2 and (a, b) = 1
is W (E8)-equivalent to a = 2e8 and b = 1

2 (
∑8

j=1 ej).

Proof. We may assume a = 2e8 by Lemma 8.2. Let F be the set
of all b ∈ X with b2 = 2 and (a, b) = 1. Then F = { 1

2 (
∑7

j=1(−1)νj ej +
e8) ;

∑7
j=1 νj even}. We see |F | = 64. Let b = 1

2 (e1 + e2 + · · · + e8).
Then we see StabW (E8)(a) = W (D7) and StabW (E8)(a, b) = W (A6)
where A6 = D7 \ {α2} because the subspace of X orthogonal to a and b
is spanned by αj (3 ≤ j ≤ 8). It follows that the orbit StabW (E8)(a) · b
consists of | StabW (E8)(a)/ StabW (E8)(a, b)| = |W (D7)/W (A6)| = 26 ·
7!/7! = 64 elements. This implies that the action of StabW (E8)(a) on F
is transitive. Q.E.D.

Corollary 8.7. Any pair of a, b ∈ X with a2 = 4, b2 = 2 and
(a, b) = 1 is W (E8)-equivalent to a = e5 + e6 + e7 + e8 and b = e4 + e8.

Lemma 8.8. Any pair of a, b ∈ X with a2 = 4, b2 = 2 and (a, b) = 2
is W (E8)-equivalent to a = 2e8 and b = e7 + e8.

Proof. We may assume a = 2e8 by Lemma 8.2. Let F be the set of
all b ∈ X with b2 = 2 and (a, b) = 2. Then F = {±ej + e8 ; 1 ≤ j ≤ 7}
and |F | = 14. Let b = e7 + e8. Then b ∈ F and StabW (E8)(a) =
W (D7), StabW (E8)(a, b) = W (D6) where D6 = D7\{α8}. It follows that
the orbit StabW (E8)(a) · b consists of | StabW (E8)(a)/ StabW (E8)(a, b)| =
|W (D7)/W (D6)| = 26 · 7!/25 · 6! = 14 elements. This implies that the
action of StabW (E8)(a) on F is transitive. Q.E.D.

Lemma 8.9. Let {ak, ak+1, · · · , a7} (1 ≤ k ≤ 7) be a set of roots
such that (ai, aj) = 1 for any i �= j. Up to W (E8),

(i) if k ≥ 2, it is equivalent to the set {ek +e8, ek+1 +e8, · · · , e7 +
e8}.

(ii) if k = 1, then it is equivalent to either {e1+e8, e2+e8, · · · , e7+
e8} or {−e1 + e8, e2 + e8, · · · , e7 + e8}.

Proof. We prove the lemma by the descending induction on k. The
case k = 7 follows from Lemma 8.2. Let βj = ej + e8 (1 ≤ j ≤ 7). Next
we consider the case k = 6. We may assume a7 = β7 by Lemma 8.2. Let
F be the set of all a with (a, a) = 2 and (a, a7) = 1. Then |F | = 56. Then
β6 ∈ F . Since StabW (E8)(β7) = W (E7) and StabW (E7)(β6) = W (E6)
where E6 = E8 \ {α6, α7}, we see W (E7) · β6 = |W (E7)/W (E6)| =
210 · 34 · 5 · 7/27 · 34 · 5 = 56. This shows that W (E7) acts transitively
on F . This proves the lemma for k = 6.

Next we consider the case k = 5. We may assume a6 = β6 and
a7 = β7 by the induction hypothesis. There are exactly 27 roots a
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with (a, β6) = (a, β7) = 1. Meanwhile StabW (E6)(β5) = W (D5) and
|W (E6)/W (D5)| = 27 · 34 · 5/24 · 5! = 27 where D5 = {αj ; 1 ≤ j ≤ 5}.
This proves the case k = 5.

There are exactly 16 roots a with (a, βj) = 1 (j = 5, 6, 7). Mean-
while StabW (D5)(β4) = W (A4) and |W ((D5)/W (A4)| = 24 · 5!/5! = 16
where A4 = {αj ; 1 ≤ j ≤ 4}. This proves the case k = 4. Sim-
ilarly there are exactly 10 roots a with (a, βj) = 1 for 4 ≤ j ≤ 7,
while StabW (A4)(β3) = W (A2 × A1) and |W (A4)/W (A2 × A1)| = 10
where A2 × A1 = {α1, α2, α3}. This proves the case k = 3. When
k = 2, there are exactly 6 roots a with (a, βj) = 1 for 3 ≤ j ≤ 7,
and StabW (A2×A1)(β2) = W (A1) and |W (A2 × A1)/W (A1)| = 6 where
A1 = {α1}. Hence the case of k = 2 is proved.

If k = 1, we may suppose aj = βj for 2 ≤ j ≤ 7 by the induction
hypothesis. Then there are three choices a1 = ±e1 + e8 and 1

2 (e1 + · · ·+
e8). Since A1 = {α1}, W (A1) is generated by rα1 and rα1(−e1 + e8) =
−e1 + e8, rα1(e1 + e8) = 1

2 (e1 + · · ·+ e8). This shows that there are two
W (A1)-orbits. This completes the proof of the lemma. Q.E.D.

Corollary 8.10. Any sublattice A8−k of E8 is W (E8)-equivalent
to the sublattice {αk, · · · , α8,−α0} if k ≥ 2. If k = 1 and if there
is no root orthogonal to the sublattice, then it is W (E8)-equivalent to
{α3, α4, · · · , α8,−α0}. If k = 1 and if there is a root orthogonal to the
sublattice, then it is W (E8)-equivalent to {α2, α4, · · · , α8,−α0}.

Proof. Let Xk be the sublattice of X = E8 isomorphic (as a lat-
tice) to A8−k. Hence there is a basis bj of Xk (k ≤ j ≤ 7) such
that (bj, bj+1) = −1, (bj , bj) = 2 and (bi, bj) = 0 (otherwise). Let
γ7 = −b7 and γj = −

∑7

=j b
 (k ≤ j ≤ 7). We note that b7 = −γ7 and

bj = γj+1 − γj (k ≤ j ≤ 6). Then we see (γi, γi) = 2 and (γi, γj) = 1
for any i �= j. Hence if k ≥ 2, the ordered set {γj ; k ≤ j ≤ 7} is
W (E8)-equivalent to {ek + e8, ek+1 + e8, · · · , e7 + e8} by Lemma 8.9.
It follows that the ordered set {bj ; k ≤ j ≤ 7} is W (E8)-equivalent to
{αk+2, αk+3, · · · , α8,−α0}. When k = 1, then the ordered set {γj ; k ≤
j ≤ 7} is W (E8)-equivalent to either {e1 + e8, e2 + e8, · · · , e7 + e8} or
{−e1+e8, e2+e8, · · · , e7+e8} by Lemma 8.9. It follows that the ordered
set {bj ; 1 ≤ j ≤ 7} is W (E8)-equivalent to either {α3, α4, · · · , α8,−α0}
or {α2, α4, · · · , α8,−α0}. This proves the corollary. Q.E.D.

Lemma 8.11. For a given set {a1, a2, · · · , a7} as in Lemma 8.9
there are at most two elements ω ∈ X such that ω2 = 4 and (ω, aj) = 2
for any j ≤ 7. If aj = ej+e8 (1 ≤ j ≤ 7), then ω = 2e8. If a1 = −e1+e8

and aj = ej+e8 (2 ≤ j ≤ 7), then ω = 2e8 or ω = 1
2 (−e1+e2+· · ·+3e8).
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Proof. It suffices to prove the lemma up to W (E8)-equivalence.
Hence by Lemma 8.9 we may assume a1 = ±e1 + e8 and aj = ej + e8

(j ≥ 2). In either case ω = 2e8 satisfies the conditions. If a1 = −e1 + e8

and aj = ej+e8 (j ≥ 2), then ω = 1
2 (−e1+e2+· · ·+3e8) also satisfies the

conditions. Suppose ω satisfies the conditions. Let s = ω−a1. It follows
from (ω, ω) = 4 that (s, s) = 2. Moreover (s, aj) = 1 for any j ≤ 7, which
implies s = ±e1 + e8 or s = 1

2 (e1 + · · · + e8). Hence if a1 = e1 + e8,
then s = −e1 + e8 and ω = 2e8. If a1 = −e1 + e8, then s = e1 + e8 or
s = 1

2 (e1+· · ·+e8). Therefore ω = 2e8 or 1
2 (−e1+e2+· · ·+3e8). Q.E.D.

We note that if we let sj := ω − aj (1 ≤ j ≤ 7) in Lemma 8.11,
then sj satisfies (sj , sk) = 1 + δjk and (sj , ak) = 1− δjk. We call a ∈ X
primitive if a is not an integral multiple of any element of X .

Lemma 8.12. There are 17280 primitive elements a ∈ X with
a2 = 8. Any element a ∈ X with a2 = 8 is one of the following

(i)
∑4

k=1(−1)ν(ik)eik
+ (−1)ν(m)2em (ik, m all distinct),

(ii)
∑8

i=1(−1)ν(i)ei with
∑8

i=1 ν(i) odd,
(iii) ± 1

2 (
∑

i	=k(−1)ν(i)ei + 5ek) with
∑

i	=k ν(i) even,
(iv) 1

2 (
∑

i	=j,k,
(−1)ν(i)ei) + 3
2 (

∑
i=j,k,
(−1)ν(i)ei) with

∑8
i=1 ν(i)

odd.

Any of them is W (E8)-equivalent.

Proof. Let StabW (E8)(ω2) be the stabilizer subgroup of ω2. By
[Bourbaki, p. 75] it is the subgroup of W (E8) generated by rα (α ∈ X)
with α2 = 2 and (ω2, α) = 0. The roots orthogonal to ω2 is the root
system A7 spanned by αj for j �= 2. Thus StabW (E8)(ω2) is W (A7).
Hence the orbit W (E8) · ω2 consists of |W (E8)/W (A7)| = 17280 ele-
ments. Meanwhile if a2 = 8 and a ∈ X , then either a = 2b for some root
b ∈ X or a is primitive. If b is a root and it is not in the lattice Z8, then
b equals 1

2 (
∑8

i=1(−1)ν(i)ei) with
∑8

i=1 ν(i) even. Hence if a is primitive
and a2 = 8, then it is one of the elements of type (i)-(iv). The number
of elements of type (i), (ii), (iii) and (iv) are respectively 8960, 128, 1024
and 7168, which totals 17280. This shows that the above 17280 elements
are in the single W (E8)-orbit of ω2. Q.E.D.

Lemma 8.13. Any pair of a, b ∈ X with a2 = b2 = 4 and (a, b) = 3
is W (E8)-equivalent.

Proof. We may assume a = 2e8 by Lemma 8.2. Let F be the set
of all b with b2 = 4 and (2e8, b) = 3. Then F = { 1

2 (
∑7

j=1(−1)ν(j)ej +
3e8) ;

∑7
j=1 ν(j) even} and |F | = 64. Let b0 = 1

2 (
∑7

j=1 ej + 3e8). Then
we see W (D7) = StabW (E8)(2e8) and W (A6) = StabW (E8)(2e8, b0).
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Thus the orbit W (D7) · b0 consists of |W (D7)/W (A6)| = 26 · 7!/7! = 64
elements. This proves that W (D7) acts transitively on F . Q.E.D.

Lemma 8.14. Any pair of a, b ∈ X with a2 = 4, b2 = 8 and
(a, b) = 5 is W (E8)-equivalent.

Proof. We may assume a = 2e8 by Lemma 8.2. Let F be the set
of all b with b2 = 8 and (2e8, b) = 5. Then F = { 1

2 (
∑7

j=1(−1)ν(j)ej +
35e8) ;

∑7
j=1 ν(j) even} and |F | = 64. Let b0 = 1

2 (
∑7

j=1 ej +5e8). Then
we see W (D7) = StabW (E8)(2e8) and W (A6) = StabW (E8)(2e8, b0).
Thus the orbit W (D7) · b0 consists of |W (D7)/W (A6)| = 26 · 7!/7! = 64
elements. This proves that W (D7) acts transitively on F . Q.E.D.

Table 1. The elements of E8

a2 W (E8) number

a2 = 2 (root) transitive 240

a2 = 4 transitive 2160

a2 = 6 transitive 6720

a2 = 8 (prim. ) transitive 17280

a2 = 8 (not prim. ) transitive 240

Table 2. The pairs of E8 elements

a, b W (E8)

a2 = b2 = 2, ab = 0 transitive

a2 = 4, b2 = 2, ab = k (k = 0, 1, 2) transitive

a2 = 4, b2 = 4, ab = 3 transitive

a2 = 4, b2 = 8, ab = 5 transitive

Ak ⊂ E8 (2 ≤ k ≤ 6) transitive

Example 8.15. Examples of the pairs in Table 2 are given as fol-
lows. The pair a = e1 + e2, b = e3 + e4 resp. a = e1 + e2 + e3 +
e4, b = e4−k + e5−k satisfies satisfies a2 = b2 = 2 and ab = 0, resp.
a 2 = 4, b2 = 2 and ab = k (k = 0, 1, 2).
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The pair a = e1+e2+e3+e4, b = e2+e3+e4+e5 satisfies a2 = b2 = 4
and ab = 3, while the pair a = e1+e2+e3+e4, b = 2e1+e2+e3+e4+e5

satisfies a2 = 4, b2 = 8 and ab = 5. Similarly an example of Ak for
2 ≤ k ≤ 6 is given by the sublattice of E8 spanned by αj (9−k ≤ j ≤ 8).

However we note that for k = 7 there are two W (E8)-orbits of
sublattices spanned either by (1) αj (3 ≤ j ≤ 8 and j = 0) or by (2) αj

(4 ≤ j ≤ 8 and j = 0, 2). See Lemma 10.3.

§9. Decorated diagrams and the Wythoff construction

The purpose of this section is to recall the notions of decorated
diagrams of a Dynkin diagram from [MP92], and then the Wythoff con-
struction, due to Coxeter, of Delaunay cells associated with decorated
diagrams.

Definition 9.1. A decorated diagram ∆ of Ẽ8 is by definition a
decomposition of Ẽ8 into two subdiagrams ∆Vor and ∆Del such that

(i) |Ẽ8| = |∆| = |∆Vor| ∪ |∆Del|,
(ii) ∆Vor is a subdiagram of Ẽ8 with square nodes �, crossed

unless the square node is connected to ∆Del by an edge,
(iii) ∆Del is a connected subdiagram of Ẽ8 with circle nodes con-

taining the node �
where |∆A| is the support of ∆A, that is, the set of nodes and edges.

Definition 9.2. We define the Voronoi cell V (q) by

V (q) = {α ∈ XR; ‖y − α‖ ≥ ‖q − α‖ for any y ∈ X}

for q ∈ X . A Voronoi cell V is defined to be a face of V (q) for some
q ∈ X .

Let H0 be the reflection hyperplane of r0 (see section two), that is,
the hyperplane of XR defined by H0 = {x ∈ XR ; (α0, x) = 1}. Define
F to be the closed domain

F = {x ∈ XR ; (αj , x) ≥ 0 (1 ≤ j ≤ 8), (α0, x) ≤ 1}

and define F0 to be the intersection of F and H0.

We quote a few basic facts from [MP92, pp. 5095 and section 4].

Lemma 9.3. (i) F is the convex closure of the origin 0 and
ωi

mi
(1 ≤ i ≤ 8).

(ii) F is a fundamental domain for W (Ẽ8) in the sense that
(a) XR is the union of wF (w ∈ W (Ẽ8)),
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∆1
0 = � � �

�

� � � � ��

∆2
0 = � � �

�
� � � � ��

∆1
1 = � � �

�
� � � � ��

∆2
1 = �× � �

�

� � � � ��

∆2 = �× � �

�
� � � � ��

∆3 = �× �×

�×

� � � � � ��

∆4 = �× �× �×

�×

� � � � ��

∆5 = �× �× �×

�×

�× � � � ��

∆6 = �× �× �×

�×

�× �× � � ��

∆7 = �× �× �×

�×

�× �× �× � ��

Fig. 1. Decorated diagrams

(b) if x ∈ F and w ∈ W (Ẽ8), then wx ∈ F ⇐⇒ wx = x,
(c) if x ∈ F , then StabW ( eE8)(x) is generated by the reflec-

tions with regards to the walls (=one-codimensional faces)
of F containing x.

(iii) The Voronoi cell V (0) is the union of wF (w ∈ W (E8)).
(iv) Any Voronoi cell V is the intersection of all V (q) which con-

tains V .
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The Wythoff construction of Delaunay cells due to Coxeter is de-
scribed as follows: Let ∆ be a decorated diagram of Ẽ8. Let S∆ (resp.
S∗

∆) be the set of nodes of E8 contained in ∆Vor (resp. ∆Del \ {−α0}).
Let Wa,∆ be the reflection subgroup of W (Ẽ8) generated by r0 and rα

(α ∈ S∗
∆). Then V 0

∆ is defined to be the convex closure of ωi

mi
(αi ∈ S∆)

and V∆ the minimal face of V (0) containing V 0
∆. Hence V∆ is the inter-

section of all V (q) such that V 0
∆ ⊂ V (q), while V 0

∆ = V∆ ∩F0. We define
D∆ to be the convex closure of Wa,∆(0). Since any Delaunay cell is the
convex closure of some points of X , this implies that the Delaunay cell
D∆ is the convex closure of all q with q ∈ Wa,∆(0) ∩ X .

For instance, let ∆ = ∆2. Then ∆Vor is the disjoint union of A2 and
A1 with square nodes, crossed or uncrossed, while ∆Del is A6 with the
extreme node �. Thus S∆ = {α1, α2, α3} and S∗

∆ = {α4, α5, α6, α7, α8}.

The following theorem is a summary for the Wythoff construction.
See [MP92, Lemma 3-Lemma 5 and (4.29)-(4.31), pp. 5108-5111].

Theorem 9.4. Let ∆ be a decorated diagram of Ẽ8. Then

(i) V∆ is a Voronoi cell of E8, while D∆ is a Delaunay cell of E8

dual to V∆ in the sense that D∆ is the convex closure of all
a ∈ X such that ‖a− y‖ = minb∈X ‖b − y‖ for any y ∈ V∆.

(ii) V∆ is the intersection of all V (q) with q ∈ Wa,∆(0), while D∆

is the convex closure of all q with q ∈ Wa,∆(0).
(iii) If ∆ = ∆k or ∆


k, then dim V∆ = k and dimD∆ = 8 − k.
(iv) Any Delaunay cell σ of E8 is a W (Ẽ8)-transform of D∆ for a

decorated diagram ∆ of Ẽ8. If σ contains the origin, then it
is a W (E8)-transform of D∆.

(v) For a subset A of XR, we define

StabW ( eE8)(A) = {w ∈ W (Ẽ8); wA ⊂ A},
StabW (E8)(A) = {w ∈ W (E8); wA ⊂ A}.

Let W 1
∆ (resp. W 2

∆) be the subgroup of W (Ẽ8) generated
by rαj with αj ∈ S∗

∆ (resp. by rαj with αj orthogonal to both
S∗

∆ and α0). Then

StabW ( eE8)(D∆) = Wa,∆ × W 2
∆, StabW (E8)(D∆) = W 1

∆ × W 2
∆.
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9.5. Wythoff construction for E8

In this subsection we give examples of the Wythoff construction for
E8. Let h0 = 2e8, hj = ej + e8 and h15−j = −ej + e8 (1 ≤ j ≤ 7). We
recall ω1 = 2e8 and ω2 = 1

2 (e1 + e2 + · · · + e7 + 5e8).
9.5.1. D∆1

0
= D(ω1

2 ). Let ∆ = ∆1
0. Then we see ∆Vor = � and

V∆ = {ω1
2 }. First we note r0(ω1

2 ) = ω1
2 , hence r0 ∈ StabW ( eE8)(

ω1
2 ).

The stabilizer subgroup StabW ( eE8)(
ω1
2 ) is the reflection subgroup of

W (Ẽ8) generated by r0 and rα with (α, ω1) = 0, hence it is gener-
ated by r0 and rαj (j = 2, · · · , 8). We note Wa,∆1

0
= StabW ( eE8)(

ω1
2 )

and StabW (E8)(
ω1
2 ) = W (D7) where D7 = E8 \ {α1} because it is

generated by rα with roots α orthogonal to ω1, hence it is generated
by rαj (j = 2, · · · , 8). Since (α0, hj) = 1 for any 1 ≤ j ≤ 14 and
j �= 7, 8, we have r0(hj) = hj , while r0(h7) = 0, r0(h8) = h0. Let
S = {0, h0, hj, h15−j ; 1 ≤ j ≤ 7}. Then r0(S) = S.

As is well known, W (D7) is a semi-direct product of (Z/2Z)6 and
S7. There is a natural surjection π : W (D7) → S7. Let σ ∈ W (D7).
Then π(σ) ∈ S7. Let hj = ej + e8 (1 ≤ j ≤ 7). For σ ∈ W (D7),
σ(e8) = e8, σ(ej) = (−1)ν(π(σ)(j))eπ(σ)(j) with

∑7
j=1 ν(π(σ)(j)) even.

For instance, for 3 ≤ k ≤ 8 we have rαk
(ek−1) = ek−2, rαk

(ek−2) = ek−1

and rαk
(ej) = ej (otherwise). Therefore rαk

(S) = S for any 2 ≤ k ≤ 8.
It follows that W (D7)(S) = S. Hence D(ω1

2 ) is the convex closure of
W (D7)(S) = S. This can be shown directly as we see in Lemma 10.2.

� � �

�

� � � �

D7

9.5.2. D∆2
0

= D(ω2
3 ). Let ∆ = ∆2

0. Then we see ∆Vor = � and
V∆ = {ω2

3 }. The stabilizer group StabW (E8)(
ω2
3 ) = W (A7) because

it is generated by rα with (α, ω2) = 0, hence it is generated by rαj

(j = 1, 3, · · · , 8). We also see Wa,∆ = StabW ( eE8)
(ω2

3 ) is generated by r0

and StabW (E8)(ω2
3 ). Let g0 = 1

2 (e1+e2+· · ·+e8) and S = {0, g0, hj (1 ≤
j ≤ 7)}. Then r0(g0) = rαk

(g0) = g0 (3 ≤ k ≤ 8). We also see
rα1(h1) = g0, rα1(g0) = h1 and rα1(hj) = hj (otherwise). Though
{αk (3 ≤ k ≤ 8)} = A6, W (A6) = S7 acts on the set {hj (1 ≤ j ≤ 7)}
as standard permutations. It follows that D(ω2

3 ) is the convex closure
of 0, hj (1 ≤ j ≤ 7) and g0. See Lemma 10.8.

9.5.3. D∆k
1
. For ∆ = ∆1

1, Wa,∆ is generated by r0 and rαj (3 ≤
j ≤ 8). Hence D∆ is the convex closure of 0 and hj (1 ≤ j ≤ 7). For
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∆ = ∆2
1, Wa,∆ is generated by r0 and rαj (j = 2, 4, 5, · · · , 8). Hence D∆

is the convex closure of 0, h14 and hj (2 ≤ j ≤ 7).
9.5.4. D∆k

. For a fixed k we let ∆ = ∆k (2 ≤ k ≤ 7). Then Wa,∆

is generated by r0 and rαj (j = k + 2, · · · , 8). Hence D∆ is the convex
closure of 0 and hj (k ≤ j ≤ 7).

§10. Delaunay cells

By Theorem 9.4 any 8-dimensional Delaunay cell is either D(ω1
2 ) or

D(ω2
3 ) up to W (Ẽ8) where ω1

2 = e8 and ω2
3 = 1

6 (e1 + e2 + · · ·+ e7 +5e8).
We recall

StabW (E8)(D(
ω1

2
)) = W (D7), StabW (E8)(D(

ω2

3
)) = W (A7).

10.1. The Delaunay cell D(ω1
2 )

Lemma 10.2. The Delaunay cell D(ω1
2 ) = D(e8) is the convex

closure of the origin 0, ±ej + e8 (1 ≤ j ≤ 7) and 2e8. For 0 < ε < 1,
D( εω1

2 ) consists of 0 only.

The polytope D(ω1
2 ) is called a 8-cross polytope.

Proof. The cell D(ω1
2 ) = D(e8) is the convex closure of a ∈ X

with ‖a − e8‖ = 1. If a (�= 0) ∈ X and ‖a − e8‖ = 1, then writing
a =

∑8
i=1 xiei we have

∑7
i=1 x2

i +(x8 − 1)2 = 1. If x8 /∈ Z, then x8 = 1
2 ,

or 3
2 and there are exactly three xi’s such that xi = 1

2 and otherwise
xj = 0 for j ≤ 8. But in either case there is a pair xi + xj /∈ Z, which is
absurd. If x8 ∈ Z, then x8 = 1 or 2. If x8 = 1, then xi = 1 for a unique
i and xj = 0 for the other j. The rest is clear. Q.E.D.

Lemma 10.3. Let h0 = 2e8, hj = ej + e8 and h15−j = −ej + e8

(1 ≤ j ≤ 7). Let σ0 (resp. σ1, τ0, τ1, τ2) be the convex closure

σ0 = 〈0, h1, h2, · · · , h7, h0〉, σ1 = 〈0, h1, h2, · · · , h6, h8, h0〉,
τ0 = 〈0, h1, h2, · · · , h7〉, τ1 = 〈0, h1, h2, · · · , h6, h8〉,

τ2 = 〈h0, h1, h2, · · · , h6, h7〉.

Then
(i) σ0 and σ1 are 8-dimensional. They are not Delaunay cells.

The Delaunay cell D(ω1
2 ) is the union of 26 W (D7)-transforms

of σ0 and σ1.
(ii) Let k ≤ 7. Any k-dimensional face of D(ω1

2 ) is a W (D7)-
transform of a face of σ0. No k-dimensional face of D(ω1

2 )
contains both the origin and h0. There are exactly 2k+1 ·

(
8

k+1

)
k-dimensional faces of D(ω1

2 ).
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(iii) Any k-dimensional face of D(ω1
2 ) is W (Ẽ8)-equivalent to D∆k

for 1 ≤ k ≤ 6.
(iv) Any 7-dimensional face of D(ω1

2 ) is W (Ẽ8)-equivalent to ei-
ther D∆1

1
or D∆2

1
. τ1 (resp. τ0) is a Delaunay cell and it is

a face of D(ω1
2 ), W (Ẽ8)-equivalent to D∆1

1
(resp. D∆2

1
) and

τ2 = r0(τ1).

Proof. W (D7) (= StabW (E8)(ω1
2 )) is a semi-direct product of (Z/2Z)6

and the symmetry group S7, where S7 keeps both σ0 and σ1 respectively
invariant. Let π : W (D7) → S7 be the natural surjection. If π(w) is
the identity, then w(hj) = hj or h15−j (1 ≤ j ≤ 7) according as ν(j)
even or odd. Thus if π(w) is the identity, we define w(j) := j or 15 − j
according as ν(j) even or odd. Then we have

w · 〈0, h1, · · · , h7, h0〉 = 〈0, hw(1), · · · , hw(7), h0〉.

For w ∈ W (D7), we have w(e8) = e8, w(ej) = (−1)ν(π(w)(j))eπ(w)(j)

with
∑7

j=1 ν(π(w)(j)) even. See Subsection 9.5. Then we have

w · 〈0, h1, · · · , h7, h0〉 = 〈0, hk1 , · · · , hk7 , h0〉

where kj = π(w)(j) or 15 − π(w)(j) according as ν(π(w)(j)) = 0 or 1.
Note that

∑7
j=1 ν(π(w)(j)) is even. Hence there are exactly 26 W (D7)-

transforms of σ0. Similarly there are exactly 26 W (D7)-transforms of
σ1. Thus the convex closure 〈0, hi1 , · · · , hi7 , h0〉 is a W (D7)-transform
of either σ0 or σ1 for any ik ∈ {k, 15 − k},.

Next let z ∈ D(ω1
2 ). Since D(ω1

2 ) is the convex closure of 0, h0 and
hj (1 ≤ j ≤ 14), we write z = x0h0+

∑14
j=1 xihi where x0+

∑14
j=1 xi ≤ 1

and xj ≥ 0 (0 ≤ j ≤ 14). Then we have

z =
∑

xi≥x15−i

(xi − x15−i)hi +
∑

xi<x15−i

(xi − x15−i)h15−i

+ (x0 +
7∑

i=1

min(xi, x15−i))h0.

The sum of the coefficients of hi is equal to

∑
xi≥x15−i

(xi − x15−i) +
∑

xi<x15−i

(xi − x15−i) + x0 +
7∑

i=1

min(xi, x15−i))

which is equal to x0 +
∑7

i=1 max(xi, x15−i)). By our assumption on xi

it is not greater than 1. This implies z ∈ 〈0, h0, hi1 , · · · , hi7〉 for some
ik ∈ {k, 15 − k} (1 ≤ k ≤ 7). This proves (i).
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Next we prove that the convex closure 〈0, h0〉 of 0 and h0 = 2e8

intersects the interior of D(ω1
2 ). To see this it suffices to prove e8 := h0

2
is in the interior of D(ω1

2 ). In fact, we choose xj > 0 (0 ≤ j ≤ 7) such
that z :=

∑7
j=0 xj = 1

2 . Then we have

e8 =
1
2
· 0 +

1
2

7∑
j=1

xj(hj + h15−j) + x0h0.

Since 0 < xj < 1 for any j and 0 < z < 1, e8 is in the interior of D(ω1
2 ).

It follows that the line segment 〈0, h0〉 intersects the interior of D(ω1
2 ).

In particular, 〈0, h0〉 is not a Delaunay cell.
If any lower dimensional face of σ0 contains both the origin and

h0, then it is contained in the interior of D(ω1
2 ), which is impossible.

Therefore no lower dimensional face of σ0 contains both the origin and
h0. Hence any lower dimensional face of D(ω1

2 ) is a face of the simplex
either w · 〈0, h1, · · · , h7〉 or w · 〈h0, h1, · · · , h7〉 for some w ∈ W (D7).
Hence any lower dimensional face of D(ω1

2 ) is a W (D7)-transform of
a face of τ0 or τ2. If any k-dimensional face of D(ω1

2 ) contains the
origin, it is 〈0, hi1 , · · · , hik

〉 where ij + i
 �= 15 and ij �= 0. There are
these 2k

(
7
k

)
faces in total. If it contains h0, then it is 〈h0, hi1 , · · · , hik

〉
where ij + i
 �= 15 and ij �= 0. There are these 2k

(
7
k

)
faces in total.

If it contain neither the origin nor h0, then it is 〈hi1 , · · · , hik+1〉 where
ij + i
 �= 15 and ij �= 0. These total 2k+1

(
7

k+1

)
. Thus we see that there

are 2k+1
(

8
k+1

)
= 2k+1

(
7
k

)
+2k+1

(
7

k+1

)
k-dimensional faces of D(ω1

2 ). This
proves (ii).

Since τ2 = r0(τ1), τ2 is a W (Ẽ8)-transform of τ1. By (ii) any k-
dimensional face of D(ω1

2 ) is a W (D7)-transform of a face of τ0 or τ2

for k ≤ 7. Therefore it is a W (Ẽ8)-transform of a face of τ0 or τ1. We
note that there are exactly the same number of lower-dimensional faces
of D(ω1

2 ) containing h0 as those containing the origin. The assertions
(iii) and (iv) follow from Subsection 9.5 and the proof of Lemma 8.9 or
Corollary 8.10. Q.E.D.

Lemma 10.4. There are exactly 2160 W (E8)-transforms of D(ω1
2 )

containing the origin. Each W (E8)-transform is of the form D(a
2 ) for

some a ∈ X with a2 = 4 and vice versa.

Proof. Any W (E8)-transform of D(ω1
2 ) is of the form D(w · ω1

2 )
(w ∈ W (E8)). Hence the number of W (E8)-transforms of D(ω1

2 ) is
equal to |W (E8)/W (D7)|(= 2160), which is the number of a ∈ X with
a2 = 4 by Lemma 8.2. Q.E.D.
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Proposition 10.5. There are exactly 135 W (E8)-transforms of
D(ω1

2 ) up to translation by X.

Proof. Those 2160 copies of D(ω1
2 ) are of the form D(a

2 ) with a ∈ X

and a2 = 4 by Lemma 10.4. Since D(a
2 ) has 16 vertices, there are 16

translates-by-X of D(a
2 ) containing the origin. Hence there are exactly

135 (= 2160/16) W (E8)-transforms of D(ω1
2 ) up to translation by X .

Q.E.D.

Remark 10.6. D(a′

2 ) is a translate of D(a
2 ) by X if and only if

a − a′ = 2x for some root x. By Lemma 8.2, we assume a = 2e8. By
Lemma 8.2 we see readily a′ = ±2ek. It follows that there are precisely
16 translates D(a′

2 ) by X of D(2e8
2 ).

10.7. The Delaunay cell D(ω2
3 )

Lemma 10.8. The Delaunay cell D(ω2
3 ) is the convex closure of

the origin 0, hj = ej + e8 (1 ≤ j ≤ 7) and g0 := 1
2 (e1 + e2 + · · · + e8).

Proof. D(ω2
3 ) is the convex closure of a ∈ X with ‖a − ω2

3 ‖2 =
‖ω2

3 ‖2 = 8
9 . Let a =

∑8
j=1 xjej and suppose ‖a − ω2

3 ‖2 = 8
9 . If x8 ∈ Z,

then x8 = 0 or 1. If x8 = 0, then a = 0. If x8 = 1, then a = ej + e8

for some j ≤ 7. If x8 is not an integer, then x8 = 1
2 or 3

2 and xj = 1
2

for 1 ≤ 7. If x8 = 1
2 , then a = g0. If x8 = 3

2 , then no a ∈ X is
possible. Q.E.D.

Corollary 10.9. There are exactly
(
8
k

)
k-dimensional faces of D(ω2

3 ).

Proof. Clear because the 8-dimensional cell D(ω2
3 ) has only nine

vertices. Q.E.D.

We call a ∈ X primitive if a is not an integral multiple of any element
of X .

Lemma 10.10. There are exactly 17280 W (E8)-transforms of D(ω2
3 )

containing the origin. Each W (E8)-transform is of the form D(a
3 ) for

some primitive a ∈ X with a2 = 8 and vice versa.

Proof. Any W (E8)-transform of D(ω1
2 ) is of the form D(w · ω2

3 )
(w ∈ W (E8)), hence of the form D(a

3 ) with a primitive and a2 =
8. Therefore the number of W (E8)-transforms of D(ω2

3 ) is equal to
|W (E8)/W (A7)| = 17280, the number of a ∈ X with a2 = 8 by
Lemma 8.12. Q.E.D.

Proposition 10.11. There are exactly 1920 W (E8)-transforms of
D(ω2

3 ) up to translation by X.
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Proof. Those 17280 copies are of the form D(a
3 ) with a ∈ X and

a2 = 8. Each copy has 9 vertices, hence there are exactly 1920 (=
17280/9) W (E8)-transforms of D(ω2

3 ) up to translation by X . Q.E.D.

Remark 10.12. Since any vertex of D(ω2
3 ) other than 0 is a root,

D(a′

3 ) is a translate of D(a
3 ) by X if and only if a−a′ = 3x for some root

x ∈ X or x = 0. If a−a′ = 3x �= 0, then 2aa′ = −9x2 +a2 +(a′)2 = −2.
Hence aa′ = −1. Therefore x is a root with ax = 3. Conversely if x is a
root with ax = 3, then a′ = a− 3x gives a translate D(a′

3 ) of D(a
3 ). By

Lemma 8.12, we may assume a = e1 + e2 + e3 + e4 + 2e8. Suppose x is
a root with ax = 3. Then by Lemma 8.12, x = ek + e8 (1 ≤ k ≤ 4) or
x = 1

2 (e1 + e2 + e3 + e4 ± e5 ± e6 ± e7 + e8). Hence there are precisely 9
(= 1 + 4 + 4) X-translates D(a′

3 ) of D(a
3 ).

Thus we see the following table by applying Lemma 10.3 and Corol-
lary 10.9.

Table 3. The number of faces of 8-dim Delaunay cells

d 7 6 5 4 3 2 1 0

D(ω1
2 ) 256 1024 1792 1792 1120 448 112 16

D(ω2
3 ) 9 36 84 126 126 84 36 9

10.13. Adjacency of 8-dimensional Delaunay cells
Lemma 10.14. No pair of a, b ∈ X with a2 = 4, b2 = 2 and

(a, b) = 0 belong to the same 8-dimensional Delaunay cells.

Proof. By Lemma 8.5 they are equivalent to a = 2e8 and b =
−e6 + e7. They could belong to one of the Delaunay cells D(a

2 ) with
a2 = 4. Since h0 is the unique vertex of D(ω1

2 ) with h2
0 = 4, there

are no vertex z (�= 0) of D(ω1
2 ) with (h0, z) = 0. This proves the

lemma. Q.E.D.

Proposition 10.15. Let a, a′, b and b′ ∈ X with a2 = (a′)2 = 4 and
b2 = (b′)2 = 8.

(i) D(a
2 ) and D(a′

2 ) are adjacent iff (a, a′) = 3.
(ii) D(a

2 ) and D( b
3 ) are adjacent iff (a, b) = 5.

(iii) D( b
3 ) and D( b′

3 ) are not adjacent.

Proof. By Theorem 9.4 there are precisely two W (Ẽ8) equivalence
classes of 7-dimensional Delaunay cells. By Lemma 10.3, each class is
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represented by either 〈0, h1, · · · , h7〉 or 〈0, h1, · · · , h6, h8〉. In the first
case, the face 〈0, h1, · · · , h7〉 is a common face of D(ω1

2 ) and D(ω2
3 ) by

Lemma 10.2 and Lemma 10.8. We have ω1ω2 = 5. Any pair a and b with
a2 = 4, b2 = 8 and (a, b) = 5 is unique up to W (E8) by Lemma 8.14.
This proves (ii).

In the second case let α = 1
2 (e7 + e8 − (e1 + · · · + e6)). Then

since (α, hj) = (α, h8) = 0 (1 ≤ j ≤ 6), rα keeps the face τ1 =
〈0, h1, · · · , h6, h8〉 invariant. Therefore τ1 is a common face of D(ω1

2 )
and rαD(ω1

2 ) = D(ω
2 ) where ω = rα(ω1) = 1

2 (e1 + · · · + e6 − e7 + 3e8).
We have ω1ω = 3. Any pair a and b with a2 = b2 = 4 and ab = 3 is
unique up to W (E8) by Lemma 8.14. This proves (i).

There are 17280 copies of D(ω2
3 ). Hence there are 8 ·17280 = 138240

7-dimensional faces of copies of D(ω2
3 ). Meanwhile there are 2160 copies

of D(ω1
2 ), hence there are 128 · 2160 = 276480 7-dimensional faces of

copies of D(ω2
3 ), the half of which are faces of copies of D(ω1

2 ) and the
other half of which are faces of copies of D(ω2

3 ). It follows that there are
no common faces of D( b

3 ) and D( b′

3 ). This proves (iii). Q.E.D.

Corollary 10.16. (i) Any 8-dimensional cell adjacent to D(ω1
2 )

is either D(wrα1
ω1
2 ) or D(wω2

3 ) (w ∈ StabW (E8)(ω1) = W (D7)).
There are exactly 128 copies of D(ω1

2 ) adjacent to D(ω1
2 ) and

exactly 128 copies of D(ω2
3 ) adjacent to D(ω1

2 ).
(ii) Any 8-dimensional cell adjacent to D(ω2

3 ) is D(wω1
2 ) where

w ∈ StabW (E8)(ω2) = W (A7). There are exactly 8 copies of
D(ω1

2 ) adjacent to D(ω2
3 ).

Proof. By Lemma 10.15, D(ω1
2 ) is adjacent to D(ω

2 ) and D(ω2
3 )

where ω = 1
2 (e1 + · · · + e6 − e7 + 3e8) = rα(ω1). Therefore any 8-

dimensional Delaunay cell adjacent to D(ω1
2 ) is either D(w · ω

2 ) or D(w ·
ω2
3 ) for any w ∈ StabW (E8)(ω1) = W (D7). We note

α =
1
2
(e7 + e8 − (e1 + · · · + e6)) = rα8rα7 · · · rα3(α1).

Let w0 = rα8rα7 · · · rα3 ∈ W (D7). Then rα = w0 · rα1 · w0. Hence

D(
ω

2
) = w0 · rα1 · w0(D(

ω1

2
)) = w0 · rα1(D(

ω1

2
))

Hence any 8-dimensional Delaunay cell adjacent to D(ω1
2 ) is either

D(w · rα1
ω1
2 ) or D(wω2

3 ) for any w ∈ StabW (E8)(ω1) = W (D7). The
number of D(w · rα1

ω1
2 ) adjacent to D(ω1

2 ) is equal to the number of
7-dimensional Delaunay faces of D(ω1

2 ), W (E8)-equivalent to τ1 by the
proof of Proposition 10.15, hence it is equal to 28 ·

(
8
7

)
/8 = 128 where 8
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in the denominator is the number of vertices of τ1. Similarly the number
of D(wω2

3 ) adjacent to D(ω1
2 ) is equal to 28 ·

(
8
7

)
/8 = 128. The assertion

(ii) is clear. Q.E.D.

10.17. Inclusion relation of Delaunay cells
Proposition 10.18. Let a, b ∈ X with a2 = 4, b2 = 8 and let

{ak, ak+1, · · · , a7} (1 ≤ k ≤ 7) be a set of roots such that a2
i = 2 and

(ai, aj) = 1 for any i �= j. Let D be the convex closure of the origin and
ak, · · · , a7. Then D is a Delaunay cell and

(i) D ⊂ D(a
2 ) iff (ai, a) = 2 for any i.

(ii) D ⊂ D( b
3 ) iff (ai, b) = 3 for any i.

Proof. Since D is the convex closure of 0 and ai, D ⊂ D(a
2 ) iff 0

and ai are closest to the hole a
2 . Hence ‖a

2‖ = ‖ai − a
2‖. This proves (i).

The proof of (ii) is similar. Q.E.D.

Corollary 10.19. Let D be the convex closure of the origin and
ak, · · · , a7 as in Proposition 10.18. Then D is the intersection of D(a

2 )
and D( b

3 ) for all a and b such that a2 = 4 and (ai, a) = 2 for any i, or
b2 = 6 and (ai, b) = 3 for any i respectively.

Proof. Since any Delaunay cell is the intersection of all maximal
dimensional Delaunay cells containing it, Corollary follows from Propo-
sition 10.18. Q.E.D.

Corollary 10.20. For a Delaunay cell D of dimension 8−k given in
10.18, there are exactly the following number given in Table 4 of D(a

2 )’s
and D( b

3 )’s containing D:

Table 4. The number of 8-dim. cells containing a fixed De-
launay cell

k 7 6 5 4 3 2 ∆1
1 ∆2

1

D(a
2 ) 126 27 10 5 3 2 1 2

D( b
3 ) 576 72 16 5 2 1 1 0

total 702 99 26 10 5 3 2 2

Proof. Suppose k ≥ 2. Then by Lemma 8.9 we may assume ai =
ei+e8 (k ≤ i ≤ 7). Let D(k) be the convex closure of ai = ei+e8 (k ≤ i ≤
7). In view of Lemma 10.18 D(k) ⊂ D(a

2 ) iff (ai, a) = 2 for any i. Sup-
pose k = 7. Then D(7) ⊂ D(2e8

2 ). We see StabW (E8)(e7 + e8) = W (E7)
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and StabW (E8)(e7 + e8, 2e8) = W (D6). Thus in view of Lemma 8.8 the
number of D(a

2 ) with D(7) ⊂ D(a
2 ) is equal to |W (E7)|/|W (D6)| =

210 · 3 · 5 · 7/29 · 32 · 5 = 126. Similarly If k = 6, then D(6) ⊂ D(a
2 ) iff

a = 2e8, ±ei+e6+e7+e8, or 1
2 (

∑5
j=1 ±ej+e6+e7+3e8). Hence there are

exactly 1 + 10 + 24 = 27 cells D(a
2 ) which contain D(6). This is checked

by computing |W (E6)|/|W (D5)| = 27. If k = 5, then D(5) ⊂ D(a
2 ) iff

a = 2e8, e5+e6+e7+e8, or 1
2 (

∑4
j=1 ±ej +e5+e6+e7+3e8). Hence there

are exactly 1+1+8 = 10 cells D(a
2 ) which contain D(5). This is checked

by computing |W (D5)|/|W (D4)| = 10. If 2 ≤ k ≤ 4, then D(k) ⊂ D(a
2 )

iff a = 2e8 or 1
2 (

∑k−1
j=1 ±ej +ek + · · ·+e7 +3e8). Hence there are exactly

1 + 2k−2 cells D(a
2 ) which contain D(k). This is checked by computing

|W (A4)|/|W (A3)| = 5, |W (A1) × W (A2)|/|W (A1) × W (A1)| = 3 and
|W (A1))| = 2. If k = 1, then there is a unique D(a

2 ) which contain D.
Next we consider D( b

3 ). Let G(k) = StabW (E8)(ek + e8, · · · , e7 + e8)
and H(k) = StabW (E8)(ω2)∩G(k). Then though it is nontrivial, by ex-
plicit computation we see the number of D( b

3 ) containing D(k) is equal to
|G(k)|/|H(k)|. We see G(k) = W (E7), W (E6), W (D5), W (A4), W (A1 ×
A2) and W (A1), while H(k) = W (Ak−1) for any k. Hence the number
of D( b

3 ) containing D(k) is equal to 576, 72, 16, 5, 2 and 1 respectively.
The case k = 1 is clear from Proposition 10.15. Q.E.D.

§11. A PSQAS associated with E8

Now we return to the situation in the section three. Let B(x, y) be
the bilinear form on the lattice X in Definition 3.1. We assume that
(X, B) is the E8-lattice. Let (Q, L) be the flat projective R-scheme in
Theorem 3.3, (Q0, L0) the closed fibre of it. Let R(c) be the coordinate
ring of an affine chart U(c) (c ∈ X/Y ) of Q0 in Definition 3.6. The
purpose of this section is to show that there are actually nilpotent ele-
ments in R(0). For this purpose we determine the function v on X in
Definition 2.9 explicitly.

Let D be a convex polytope containing the origin, C(0, D) the cone
over R0 generated by D∩X , and Semi(0, D) the cone over Z0 of D∩X .

Recall (and define)

h0 = 2e8, hj = ej + e8, h15−j = −ej + e8 (1 ≤ j ≤ 7)

g0 =
1
2
(e1 + e2 + · · · + e8), g∞ = g0 + h0 =

1
2
(

7∑
j=1

ej + 5e8),

σ0 = 〈0, h1, h2, · · · , h7, h0〉, σ1 = 〈0, h1, h2, · · · , h6, h8, h0〉.



Stable quasi-abelian schemes 275

Lemma 11.1. Let h(σ0) = 1
2 (

∑7
j=0 hj) and h(σ1) = 1

2 (
∑6

j=1 hj +
h8). Then

(i) we have

Semi(0, σ0) = Z0h1 + · · · + Z0h6 + Z0h7 + Z0h0,

Semi(0, σ1) = Z0h1 + · · · + Z0h6 + Z0h8 + Z0h0.

(ii) h(σk) ∈ C(0, σk) ∩ X but h(σk) �∈ Semi(0, σk) (k = 0, 1).
(iii) C(0, D(ω1

2 ))∩X is the union of all C(0, w·σ0)∩X and C(0, w·
σ1) ∩ X where w ranges over W (D7).

(iv) C(0, σ0) ∩ X is generated by Semi(0, σ0) and h(σ0). It is the
disjoint union of Semi(0, σ0) and h(σ0) + Semi(0, σ0):

C(0, σ0) ∩ X = Semi(0, σ0) � (h(σ0) + Semi(0, σ0)).

(v) C(0, σ1) ∩ X is generated by Semi(0, σ1) and h(σ1). It is the
disjoint union of Semi(0, σ1) and h(σ1) + Semi(0, σ1):

C(0, σ1) ∩ X = Semi(0, σ1) � (h(σ1) + Semi(0, σ1)).

(vi) C(0, w · σk) ∩ X = w · (C(0, σk) ∩ X) where k = 0, 1 and
w ∈ W (D7).

Proof. By Lemma 10.2, σ0∩X ⊂ D(ω1
2 )∩X = {0, hj (0 ≤ j ≤ 14)}

and σ1∩X ⊂ D(ω1
2 )∩X , which implies (i). Since h(σ0) = g0 +2h0 ∈ X ,

(ii) is clear for σ0 because hj (0 ≤ j ≤ 7) are linearly independent and
σ0 ∩ X = {0, hj (0 ≤ j ≤ 7)}. Since h(σ1) = g0 + h0 + h8 ∈ X (ii) is
also clear for σ1. (iii) follows from the fact that D(ω1

2 ) is the union of
w ·σ0 and w ·σ1 (w ∈ W (D7)). See Lemma 10.3 (i). Next we prove (iii).
Let x ∈ C(0, σ0) ∩ X . Then we write x =

∑7
j=0 ajhj with aj ≥ 0. If

aj = 0 for any j ≥ 1, then x = a0h0, a0 ∈ Z+. Hence x ∈ Semi(0, σ0).
So we may assume a1 > 0 (by transforming x by S7 if necessary). If
a1 ∈ Z+, then x ∈ Semi(0, σ0). So we assume a1 is not an integer, hence
a1 ≡ 1

2 mod Z. Hence aj ≡ 1
2 mod Z for any j ≥ 2. Since x ∈ X ,∑7

j=0 aj is integral, hence a0 ≡ 1
2 mod Z. Hence aj ≥ 1

2 for any j ≥ 0.
Let z = x − h(σ0). Since h(σ0) ∈ X , we have z ∈ C(0, σ0) ∩ X and
z =

∑7
j=0 bjhj for some bj ∈ Z0, namely, z ∈ Semi(0, σ0). This proves

(iv).
Next we prove (v). Let x ∈ C(0, σ0) ∩ X . Then we write x =∑6

j=0 ajhj + a8h8 with aj ≥ 0. If aj = 0 for any j ≥ 1, then x =
a0h0, a0 ∈ Z+. Hence x ∈ Semi(0, σ0). So we may assume a1 > 0
(by transforming x by StabW (D7)(σ1) if necessary). If a1 ∈ Z+, then
x ∈ Semi(0, σ0). So we assume a1 is not an integer, hence a1 ≡ 1

2
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mod Z. Hence aj ≡ 1
2 mod Z for any j ≥ 2. Since x ∈ X ,

∑6
j=0 aj

is integral, hence a0 is integral. Let z = x − h(σ1). Since h(σ1) ∈ X ,
we have z ∈ C(0, σ1) ∩ X and z = a0h0 +

∑6
j=1 bjhj + b8h8 for some

bj ∈ Z0. Since a0 ∈ Z0, we have z ∈ Semi(0, σ0). This proves (v). The
remaining assertions are clear. Q.E.D.

Lemma 11.2. Let g∞ = g0 + h0 = 1
2 (

∑7
j=1 ej + 5e8). Then

C(0, D(ω2
3 )) ∩ X is generated by h1, h2, · · · , h7, g0 and g∞. It is

the disjoint union of Semi(0, D(ω2
3 )), g∞ + Semi(0, D(ω2

3 )) and 2g∞ +
Semi(0, D(ω2

3 )):

C(0, D(
ω2

3
)) ∩ X = �k=0,1,2(kg∞ + Semi(0, D(

ω2

3
))

where we note that g∞ does not belong to D(ω2
3 ) ∩ X.

Proof. First we note that 3g∞ = h1 + h2 + · · ·+ h7 + g0 and hence
g∞ ∈ C(0, D(ω2

3 )) ∩ X . Let C0 = Z0h1 + · · · + Z0h7 + Z0g0. Then
C0 = Semi(0, D(ω2

3 )). Suppose x ∈ C(0, D(ω2
3 )) ∩ X . Then we write

x =
7∑

j=1

xjhj + x0g0 =
7∑

j=1

(xj +
x0

2
)ej + (

7∑
j=1

xj +
x0

2
)e8

where xj ≥ 0, xj − xj ∈ Z, 2x1 + x0 ∈ Z and 7x1 + 2x0 ∈ Z. It follows
that 3x0 ∈ Z and xk ≡ x0 mod Z for any 1 ≤ k ≤ 7. Suppose x0 ∈ Z.
Then any xj ∈ Z and x ∈ C0. Suppose next x0 ≡ 1

3 mod Z. Then let
zj = xj − 1

3 and z = x − g∞. Since xj ≥ 0 and xj ≡ 1
3 mod Z, we

have zj ∈ Z0. It follows z ∈ C0. Suppose finally x0 ≡ 2
3 mod Z. Then

z = x − 2g∞ ∈ C0. This proves the lemma. Q.E.D.

Lemma 11.3. Let D = D(ω1
2 ) and let α(D) = ω1

2 = e8 be the hole
of D. Then

v(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(x, α(D)) if x ∈ Semi(0, D)
(x − h(σ0), α(D)) + 5 if x ∈ h(σ0) + Semi(0, σ0)
(x − h(σ1), α(D)) + 4 if x ∈ h(σ1) + Semi(0, σ1)
(x − w · h(σ0), α(D)) + 5 if x ∈ w · h(σ0) + Semi(0, w · σ0)
(x − w · h(σ1), α(D)) + 4 if x ∈ w · h(σ1) + Semi(0, w · σ1)

where w ∈ W (D7) = StabW (E8)(
ω1
2 ).

Proof. If x ∈ Semi(0, D), then v(x) = (x, α(D)) by Lemma 2.10.
Next suppose x = h(σ0). Then h(σ0) = g0 + h0 + h0 where g0 =
1
2 (

∑8
j=1 ej). Therefore v(h(σ0)) ≤ 1

2 (g2
0 + 2h2

0) = 5.
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Meanwhile (2h(σ0), α(D)) = (
∑7

j=0 hj , e8) = 9, whence v(h(σ0)) ≥
5 by Lemma 2.10 and Lemma 11.1. This proves v(h(σ0)) = 5. This also
proves the second equality for x = h(σ0). Next suppose x = h(σ0) + z
for some z ∈ Semi(0, σ0). Then v(x) ≤ v(h(σ0)) + v(z) = v(z) + 5.
Meanwhile v(x) ≥ (h(σ0))+z, α(D)) = 9

2 +v(z). This proves the second
equality for x = h(σ0) + z, z ∈ Semi(0, σ0).

We see h(σ1) = g0 + h0 + h8 and v(h(σ1)) ≤ 4. On the other hand
(2h(σ1), α(D)) = (

∑6
j=1 hj+h8, α(D)) = (

∑6
j=1 hj+h8, e8) = 7, whence

v(h(σ1)) ≥ 4 by Lemma 2.10 and Lemma 11.1. This proves v(h(σ1)) = 4.
This also proves the third equality for x ∈ h(σ1) + Semi(0, σ1). The
remaining assertions are clear. Q.E.D.

Lemma 11.4. Let D = D(ω2
3 ) and α(D) = ω2

3 the hole of D. Then
v(x + kg∞) = (x, α(D)) + 3k for k = 0, 1, 2 and x ∈ Semi(0, D).

Proof. Let a∞ = 1
2 (e1 + e2 + e3 + e4 − e5 − e6 + e7 + e8). Then

g∞ = h5 + h6 + a∞ and v(g∞) ≤ 3. Since (3g∞, α(D)) = 8, we have
v(g∞) ≥ (g∞, α(D)) = 8

3 . This proves v(g∞) = 3. This also proves the
lemma in the case k = 1. Similarly we see v(g∞) ≤ 6 while v(2g∞) ≥
(2g∞, α(D)) = 16

3 . Since v(2g∞) is an integer, we have v(2g∞) = 6.
This also proves the lemma in the case k = 2. Q.E.D.

Theorem 11.5. Let D ∈ Del(0) and α(D) its hole. For x ∈
C(0, D) ∩ X we have

v(x) = �(x, α(D))� := −[−(x, α(D))], the round-up of (x, α(D)).

In particular, x ∈ Semi(0, D) iff (x, α(D)) ∈ Z.

Proof. We may assume D is 8-dimensional. If D = D(ω1
2 ), then

v(x) =

{
(x, α(D)) if x ∈ Semi(0, D)
(x, α(D)) + 1

2 (otherwise).

This also proves the corollary when D ∈ Del(0) is an 8-dimensional
Delaunay cell W (E8)-equivalent to D = D(ω1

2 ). If D = D(ω2
3 ), then

v(x) =

⎧⎪⎨⎪⎩
(x, α(D)) if x ∈ Semi(0, D)
(x, α(D)) + 1

3 if x ∈ g∞ + Semi(0, D)
(x, α(D)) + 2

3 if x ∈ 2g∞ + Semi(0, D).

This also proves the corollary when D ∈ Del(0) is an 8-dimensional
Delaunay cell W (E8)-equivalent to D = D(ω2

3 ). The above proof also
proves the second assertion of the corollary. This completes the proof.

Q.E.D.
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Theorem 11.6. Let Q0 be the closed fibre of Q and rad(O0,Q0) the
radical of the algebra O0,Q0 . Then rad(O0,Q0 ) is generated over k(0)
by the monomials ξ̄(x) with v(x) > (x, α(D)) and x ∈ C(0, D) ∩ X for
some D ∈ Del(0). It is also generated by ξ̄(x) with x ∈ C(0, D)∩X and
(x, α(D)) not integral.

Proof. Let z ∈ O0,Q0 . We write z as a k(0)-linear irredundant
combination of ξ̄(x), (x ∈ X). Then if z ∈ O0,Q0 is nilpotent, each
monomial component ξ̄(x) of z is also nilpotent because the algebra
O0,Q0 is X-graded. The monomial ξ̄(x) = qv(x)wx ∈ rad(O0,Q0) iff
qnv(x)wnx = 0 for some positive n, iff q6nv(x)w6nx = 0 for some positive
n. We see by Lemma 2.10 that q6nv(x)w6nx = 0 iff 6nv(x) > v(6nx). Let
D ∈ Del(0) such that x ∈ C(0, D)∩X . In the E8-case, 6x ∈ Semi(0, D)
iff x ∈ C(0, D) ∩ X because 2x ∈ Semi(0, D1) iff x ∈ C(0, D1) ∩ X ,
while 3x ∈ Semi(0, D2) iff x ∈ C(0, D2) ∩ X . It follows that 6nv(x) >
v(6nx) iff 6nv(x) > (6nx, α(D)). Thus ξ̄(x) = qv(x)wx ∈ rad(O0,Q0)
iff v(x) > (x, α(D)). This proves the first part of the theorem. By
Theorem 11.5 v(x) = �(x, α(D))�. Hence v(x) > (x, α(D)) iff (x, α(D))
is not an integer. This proves the second part of the theorem. Q.E.D.

Corollary 11.7. Oc,Q0 is nonreduced for any c ∈ X.

Corollary 11.8. Let f = ξ̄(a) and g = ξ̄(b) ∈ O0,Q0 . Assume that
a, b ∈ C(0, D) for the same Delaunay cell D ∈ Del(0). If b ∈ Semi(0, D),
then fg �= 0 in O0,Q0 .

Proof. By Theorem 11.5, v(a) = �(a, α(D))�, while v(b) = (b, α(D))
is an integer. Hence v(a+b) = �(a+b, α(D))� = �(a, α(D))�+(b, α(D)) =
v(a)+v(b). It follows from Theorem 11.5 that fg �= 0 in Oc,Q0 . Q.E.D.

Example 11.9. We give examples of nilpotent elements of O0,Q0 .
Let D1 = D(ω1

2 ) and D2 = D(ω2
3 ). Consider ξ(h(σ0)). Then h(σ0) ∈

C(0, D1) ∩ X , (h(σ0), α(D1)) = 9
2 and v(h(σ0)) = � 9

2� = 5. Consider
next ξ(h(σ1)). Then we see h(σ1) ∈ C(0, D1) ∩ X , (h(σ1), α(D1)) = 7

2

and v(h(σ1)) = � 7
2� = 4. Finally consider ξ(g∞). Then we see g∞ ∈

C(0, D2) ∩ X , (g∞, α(D2)) = 8
3 and v(g∞) = � 8

3� = 3. It follows from
these that

ξ(h(σ0))2 = ξ(h(σ1))2 = ξ(g∞))3 = 0.

To be more precise, since

h(σ0) = g0 + 2h0, h(σ1) = g0 + h0 + h8, g∞ = g0 + h0,

ξ(h(σ0)) = ξg0ξ
2
h0

, ξ(h(σ1)) = ξg0ξh0ξh8 , ξ(g∞) = ξg0ξh0 .
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we see

ξ(h(σ0))2 = q · ξh0

7∏
j=1

ξhj , ξ(h(σ1))2 = q · ξh8

6∏
j=1

ξhj ,

ξ(g∞)3 = q · ξg0

7∏
j=1

ξhj .

We note that h(σ0) ∈ C(0, D1) and h0 ∈ D1, while g0 �∈ D1 by
Proposition 10.18 (i) because (g0, ω1) = 1 �= 2. Let a0 = 1

2 (3e8 −
e6 +

∑
k 	=6,8 ek). Then a2

0 = 4, (a0, ω1) = 3 and (a0, g0) = 2, which
implies that D(a0

2 ) is adjacent to D1 = D(ω1
2 ) and g0 ∈ D(a0

2 ) by
Proposition 10.15 (i) and Proposition 10.18 (i). In other words, though
g0 �∈ D1, g0 belongs to D(a0

2 ) adjacent to D1. We also note g0 ∈ D2,
which is adjacent to D1.

Similarly h(σ1) ∈ C(0, D1) and h0, h8 ∈ D1, while g0 �∈ D1 and
g0 ∈ D(a0

2 ) ∩ D2 as we saw above. We see h0 �∈ D2 because D2 is a
convex closure of 0, g0 and hj (1 ≤ j ≤ 7), and g2

0 = h2
j = 2, but h2

0 = 4.
Since h0 ∈ D1, h0 belongs to a Delaunay cell D1 adjacent to D2. See
Proposition 10.15 (ii). Finally we note that g∞ ∈ C(0, D2), g0 ∈ D2,
while h0 �∈ D2 but h0 ∈ D1, which is adjacent to D2.

Corollary 11.10. The (reduced) support of ξ(h(σk)) (resp. ξ(g∞))
contains one of the irreducible components of Q0, V (D(ω1

2 ))∩U(0) (resp.
V (D(ω2

3 ) ∩ U(0)).

Proof. Let Z = V (D(ω1
2 ))∩U(0). Then Z is reduced by definition,

whose coordinate ring Γ(OZ) is k(0)[Semi(0, D(ω1
2 ))], the ring generated

by the semi-group Semi(0, D(ω1
2 )). No element of this ring except 0

annihilates ξ(h(σk)) in R(0) by Theorem 11.5. Similarly the coordinate
ring of V (D(ω2

3 )∩U(0)) is k(0)[Semi(0, D(ω2
3 ))], none of whose elements

except 0 annihilate ξ(g∞). This proves the corollary. Q.E.D.

11.11. Degrees of irreducible components of Q0

Let D1 = D(ω1
2 ) or D2 = D(ω2

3 ). Let V (Dk) be the closure of
G8

m-orbit O(Dk) with reduced structure. By Lemma 11.1 and Theo-
rem 11.2, at a generic point of V (σ), we have rankk(V (D1)) nF 0,0

D1
= 2 and

rankk(V (D2)) nF 0,0
D1

= 3. Thus by Proposition 10.5 and Proposition 10.11
we have an equivalence

Q0 = 2 · 135[X : Y ]V (D1) + 3 · 1920[X : Y ]V (D2).
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modulo identification of the irreducible components of Q0 of the same
type. By Theorem 5.15 we have

dimH0(nF 0,·
σ , δ0,·

n ) = �

(
σ ∩ X

n

)
=

vol(σ)
8!

· n8 + O(n7),

dimH0(nF 0,·
D1

, δ0,·
n ) =

27 · 2
8!

· n8 + O(n7),

dimH0(nF 0,·
D2

, δ0,·
n ) =

3
8!

· n8 + O(n7).

Since Hq(nF k,·
σ , δk,·

n ) = 0 (q > 0), we have 2 · (L8
V (D1)) = vol(D1) =

28, and 3 · (L8
V (D2)

) = vol(D2) = 3. Thus we have

L8
Q0

= (L8Q0)(Q,∂Q)

= L8 (2 · 135[X : Y ]V (D1) + 3 · 1920[X : Y ]V (D2))(Q,∂Q)

= [X : Y ]
(
135 · 2 · (L8

V (D1)) + 1920 · 3 · (L8
V (D2)

)
)

= [X : Y ](135 · 28 + 1920 · 3) = 8! · [X : Y ]

which is compatible with L8
Q0

= L8
Qη

= 8! · [X : Y ].
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Semi-stable extensions on arithmetic surfaces

Christophe Soulé

Let S be a smooth projective curve over the complex numbers and
X → S a semi-stable projective family of curves. Assume that both S
and the generic fiber of X over S have genus at least two. Then the
sheaf of absolute differentials Ω1

X defines a vector bundle on X which
is semi-stable in the sense of Mumford-Takemoto with respect to the
canonical line bundle on X . The Bogomolov inequality

c2
1(Ω

1
X) ≤ 4 c2(Ω1

X)

leads to an upper bound for the self-intersection c1(ωX/S)2 of the relative
dualizing sheaf ωX/S .

Assume now that S is the spectrum Spec (OF ) of the ring of integers
in a number field F and that X → S is a semi-stable (regular) curve over
S, with generic genus at least two. In [7], Parshin asked for a similar
upper bound for the arithmetic self-intersection ĉ1(ω̄X/S)2 of the relative
dualizing sheaf of X over S, equipped with its Arakelov metric. He and
Moret-Bailly [5] proved that a good upper bound for this real number
ĉ1(ω̄X/S)2 would have beautiful arithmetic consequences (including the
abc conjecture).

If one tries to mimick in the arithmetic case the proof that we have
just checked in the geometric case, one soon faces the difficulty that we
do not know any arithmetic analog for the sheaf of absolute differentials
Ω1

X . In [3], Miyaoka proposed to turn this difficulty as follows. He no-
ticed that, in the geometric case, any general enough rank two extension
E of ωX/S by the pull-back to X of Ω1

S is semi-stable and that it can
be used instead of Ω1

X in the argument. When S = Spec (OF ) it is then
natural to apply an arithmetic analog of Bogomolov inequality to a rank
two extension Ē of ω̄X/S by some hermitian line bundle pulled back from
S.

But then, a new difficulty arises. Namely, the second Chern number
ĉ2(Ē) of Ē is more involved in the arithmetic case than in the geometric
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one, as it contains an archimedean summand – an integral over the set
of complex points of X – which is not easy to bound from above.

In this paper, which is a sequel to [8] and [9], although we are unable
to prove Parshin’s conjecture by Miyaoka’s argument, we show that
his method still provides interesting lower bounds form some successive
minima of the euclidean lattice of sections of hermitian line bundles on
the arithmetic surface X .

More precisely, we consider an hermitian line bundle N̄ on X , with
positive even degree on the generic fiber. We prove that, when k is big
enough, the logarithm µk of the k-th successive minimum of H1(X, N−1),
endowed with its L2-metric, is bounded below:

(∗) µk ≥ ĉ1(N̄)2

2 n d
− A ,

where n is the degree of N , d = [F : Q] and A is a simple constant
(Theorem 2).

This result is a complement to Theorem 4 in [9], where smaller
values of k were studied. The proof is similar and consists mainly in
making precise Miyaoka’s assertion that a general extension E of N by
the trivial line bundle is semi-stable on X ⊗ F̄ . For that, again inspired
by Miyaoka, we write E as an extension

0 → L → E → M → 0

over X ⊗ F̄ , with L = ωX/S ⊗ M−1 being the Serre dual of M , and
we show (Proposition 1) that E is semi-stable on X ⊗ F̄ as soon as the
boundary map

∂ : H0(XF̄ , M) → H1(XF̄ , L)

is an isomorphism. Next, we give an upper bound for the dimension of
a vector space V ⊂ Ext (L, M) such that, for every extension class in
V , the corresponding map ∂ is singular (Proposition 2). By a standard
argument it follows that, if k is big enough, there exists an extension E
of N by OX which is semi-stable over X⊗ F̄ and such that the L2-norm
of its extension class is bounded above by exp (µk + A). The proof of
(∗) (see Theorem 2) then follows from a theorem “à la Bogomolov” for
semi-stable hermitian vector bundles on arithmetic surfaces, which is
due to Miyaoka [4], [8] and Moriwaki [6].

The geometric aspect of our argument can also be expressed in terms
of the secant variety Σd of a smooth projective curve C. In [10], Voisin
gave an upper bound for the dimension of projective spaces contained in
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Σd, when d is small enough with respect to the degree of C. In Theorem
1, we prove a similar result for a slightly bigger value of d.

When doing this work, I got help from C. Gasbarri, B. Mazur,
Y. Miyaoka and especially C. Voisin, who found a gap in the proof
of Proposition 2 and fixed it. I wish to express to them my gratitude,
as well as to the organizers of this conference.

Notation. Given two line bundles on a scheme X , we denote by L−1

the dual of L and by LM the tensor product of L with M .

§1. Semi-stable extensions on curves

1.1.
Let k = k̄ be an algebraically closed field, and C a smooth connected

projective curve of genus g ≥ 0 over k. Let L and M be two line bundles
on X and

(1) 0 → L → E → M → 0

a rank two extension of M by L. Consider the associated boundary map
in cohomology

∂ : H0(C, M) → H1(C, L) .

Proposition 1. Assume that deg(L) ≤ deg(M) and that
a) Either deg(L) + deg(M) ≥ 2g − 2 and ∂ is injective;
b) Or deg(L) + deg(M) ≤ 2g − 2 and ∂ is surjective.

Then the vector bundle E is semi-stable on C.

1.2. Proof.
Let us prove a) by contradiction. Let N ⊂ E be a line bundle on C

such that

deg(N) >
deg(E)

2
=

deg(L) + deg(M)
2

.

Then deg(N) > deg(L), therefore N ∩ L = 0, and the composite map

N → E → M

is injective. The extension

0 → L → E′ → N → 0
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induced by (1) and this map is split. Therefore the associated boundary
map

H0(C, N) → H1(C, L)

is zero, i.e. the restriction of ∂ to H0(C, N) ⊂ H0(C, M) vanishes.

On the other hand, since deg(L) + deg(M) ≥ 2g − 2, we have

deg(N) > g − 1 ,

hence, by Riemann-Roch, H0(C, N) �= 0. This contradicts the assump-
tion that ∂ is injective.

To prove b) by contradiction we may consider a quotient N of E of
degree less than deg(E)/2 and look at the extension

0 → N → E′ → M → 0

induced by the composite map L → E′ → N . Alternatively, one can
deduce b) from a) by considering the Serre dual of E.

1.3. Remark.
There are cases where E is semi-stable when neither a) nor b) holds.

1.3.1. For instance, when C is an elliptic curve and A ∈ C(k), let
L = O(−A) and M = O(A). The group of extensions

Ext (M, L) = H1(C,O(2A))

has dimension two, when H0(C, M) and H1(C, L) have dimension one.
Therefore there exists a nontrivial extension

0 → L → E → M → 0

such that ∂ vanishes. On the other hand, if N ⊂ E has degree deg(N) >
deg(E)

2 = 0, it must be contained in M . Since deg(M) = 1 we get N = M
and the extension has to be trivial.

1.3.2. Another example, where L = OC is the trivial line bun-
dle and M is the sheaf ω = Ω1

C of differentials on C, was proposed by
J. Harris (I thank B. Mazur for explaining this to me). Choose a sextic
C′ ⊂ P2 with exactly two nodal singularities, and let C be the normal-
ization of C′. On this curve C of genus 8 let N be the pull-back of O(1)
from P2 to C. One can show that there exists an extension

0 → N → E → ω N−1 → 0
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such that the boundary map

H0(C, ω N−1) → H1(C, N)

has rank three, when H1(C, N) has dimension four. Furthermore E is
stable and has a nowhere vanishing section. Therefore E is an extension

0 → OC → E → ω → 0

with associated boundary map

∂ : H0(C, ω) → H1(C,OC)

which is neither injective nor surjective.

§2. Projective subspaces in secant varieties

2.1.

Let k be a field of characteristic zero, C a smooth projective curve
over k, and Ck̄ = C ⊗

k
k̄ its extension of scalars to the algebraic closure

of k. We assume that Ck̄ is irreducible of genus g ≥ 0.

Consider a line bundle N on C. Each cohomology class

e ∈ H1(C, N−1) = Ext (N,OC)

classifies an extension

0 → OC → E → N → 0 .

Let n = deg(N) be the degree of N .

Proposition 2. Assume that the degree n is even and nonnegative,
and that N is not trivial. Let V ⊂ H1(C, N−1) be a k-vector space of
dimension

dim(V ) ≥ n − m + g ,

where m is the integer defined by formula (3) below.

Then there exists e ∈ V such that the corresponding vector bundle
E is semi-stable (over Ck̄).
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2.2. Proof.

Since n is even, we can choose a line bundle H on Ck̄ such that, if
ω = Ω1

C ,
deg(N ω) = 2 deg(H) .

If H ′ = N ω H−1, we get deg(H ′) = deg(H), and

N ω = H H ′ .

Since Pic0(Ck̄) is divisible, there exists a line bundle A of degree zero
on Ck̄ such that

H ′ = H A2 .

Let M = H A and L = ω M−1. We get

N = H H ′ ω−1 = H2 A2 ω−1 = M(ω M−1)−1 = M L−1 .

Any class e ∈ H1(C, N−1) defines an extension

0 → OC → E → N → 0

over C and, by tensoring by L, an extension

(2) 0 → L → E ⊗ L → M → 0

over Ck̄. The vector bundle E is semi-stable if and only if E ⊗ L is
semi-stable.

From now on, and till the end of § 2, we assume that k = k̄. Since
deg(N) ≥ 0 we have deg(L) ≤ deg(M). Furthermore

deg(L) + deg(M) = 2g − 2 .

Therefore, by Proposition 1, E ⊗ L is semi-stable if and only if the
boundary map

∂e : H0(C, M) → H1(C, L)

defined by (2) is an isomorphism. Note that, by Serre duality,

H1(C, L) = H0(C, ω L−1)∗ = H0(C, M)∗

has the same dimension as H0(C, M). Let

(3) m = dimk H0(C, M) .
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To prove Proposition 2, we now follow an argument of C.Voisin. The
map ∂e is the cup-product by e ∈ H1(C, L M−1). Therefore, by Serre
duality again, the map

H1(C, N−1) = H0(C, N ω)∗

= H0(C, M2)∗ → Hom (H0(C, M) → H0(C, M)∗)

which maps e to ∂e is dual to the cup-product

H0(C, M)⊗2 → H0(C, M2) .

We denote by
µ : H0(C, M)⊗2 → V ∗

the composite of this cup-product with the projection of H0(C, M2) onto
the dual of V . Since the cup-product is commutative, any element in V
defines, via µ, a quadric in the projective space P(H0(C, M)).

Arguing by contradiction, we assume that all these quadrics are sin-
gular. Consider the Zariski closure B ⊂ P(H0(C, M)) of the union of the
singular loci of the quadrics with singular locus of minimal dimension,
and let b be the dimension of B.

Let σ ∈ H0(C, M) be a representative of a generic point [σ] ∈ B.
We claim that the map

µσ : H0(C, M) → V ∗

mapping τ ∈ H0(C, M) to

µσ(τ) = µ(σ ⊗ τ)

has rank at most b. Indeed, it follows from the definitions that a quadric
q ∈ V is singular at τ ∈ H0(C, M) if and only if it lies in the subspace
Qτ ⊂ V orthogonal to the image of µτ . Generically, the singular locus
of q is minimal. Therefore the union all the vector spaces Qτ , [τ ] ∈ B,
is an open subset of V . Since [σ] is generic in B, the dimension of Qσ is
at least dim(V) − b, and the rank of µσ is at most b as claimed.

This implies that the kernel Hσ ⊂ H0(C, M) of µσ has dimension
c ≥ m − b (note that this dimension c has a fixed value when [σ] is
generic in B). Let K ⊂ H0(C, M2) be the subspace orthogonal to V .
By definition, the vector space

Kσ = σ ∪ Hσ

is contained in K. Its dimension is c.
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On the other hand, we can choose points x0, ..., xb on C and vectors
σ0, ..., σb ∈ H0(C, M) such that [σi] lies in B and

σi(xj) = δij

for all i and j. By moving xi without moving the other points, we can
also assume that, for every i, at least one section in Hσi does not vanish
at xi. As a consequence, Kσi is not contain in the sum of the Kσj ’s,
j �= i, and the dimension of the sum of the subspaces Kσi , i = 0, ..., b, is
at least

b + c ≥ m .

Therefore K has dimension at least m and, since H1(C, N−1) has di-
mension n + g − 1, the dimension of V is at most n + g − m − 1. This
contradicts one of our hypotheses.

2.3. Remark.
In the proof of Proposition 2, N = M2 ω−1, therefore

deg(M) =
n

2
+ g − 1 ≥ g − 1 .

By the Riemann-Roch theorem:

χ(C, M) = deg(M) − g + 1 =
n

2
.

By Clifford’s theorem

dimk H1(C, M) ≤ Sup(g − 1, 0) ,

and dimk H1(C, M) = 0 whenever deg(M) > 2g − 2. Therefore

n

2
≤ m ≤ n

2
+ Sup(g − 1, 0) ,

hence
n

2
+ Inf(g, 1) ≤ n − m + g ≤ n

2
+ g

and n − m + g = n
2 + g as soon as n > 2g − 2.

2.4. Secant varieties
2.4.1. The Proposition 2 can be rephrased in terms of secant va-

rieties. Let d ≥ 1 be an integer and

n = 2 d + 2 .

Let k be an algebraically closed field of characteristic zero and C a
smooth connected projective curve over k, of genus g, say C ⊂ P. Let
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N−1 = ωO(−1) be the Serre dual of the canonical sheaf on C, and
assume that deg(N) = n.

Consider the secant variety

Σd =
⋃

Z∈X(d)

〈Z〉 ,

swept out by the linear spans of d-uples of points on C. Define m as in
(3).

Theorem 1. The secant variety Σd does not contain any projective
space Pδ of dimension

δ ≥ n − m + g − 1 .

2.4.2. Proof. Let e ∈ H1(C, N−1), e �= 0, and

0 → OC → E → N → 0

the corresponding extension. the semi-stability of E means that e does
not lie in the image of the boundary map

∂D : H0(D, N−1(D)) → H1(C, N−1)

coming from

0 → N−1 → N−1(D) → N−1(D)/D → 0 ,

for any effective divisor D of degree less than n
2 , i.e. deg(D) ≤ d.

This condition happens to be equivalent to the fact that the point in
P = P(H1(C, N−1)) defined by e does not belong to Σd. For more
details see [2], p. 451, or [9], § 1.6. Therefore Theorem 1 follows from
Proposition 2.

2.4.3. Using 2.3 we see that the lower bound

δ0 = n − m + g − 1

in Theorem 1 is such that

δ0 ≥ n

2
+ Inf (g − 1, 0) = d + Inf (g, 1) ,

and δ0 = d+g when n > 2g−2. The remark 1.3 above suggests that this
bound is not optimal. According to C. Voisin, when g > 0, Theorem 1
should remain true with δ ≥ d ([9] , § 1.3).
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§3. Semi-stable extensions on arithmetic surfaces

3.1.
Let F be a number field, OF its ring of integers and S = Spec(OF ).

Consider a semi-stable curve X over S such that X is regular and its
generic fiber XF is geometrically irreducible of genus g ≥ 0. Let

deg : Pic (X) → Z

be the morphism sending the class of a line bundle on X to the degree
of its restriction to XF .

Let N̄ = (N, h) be an hermitian line bundle over X , i.e. a line
bundle N on X together with an hermitian metric h on the restriction
NC of N to X(C) which is invariant under complex conjugation. The
cohomology group

Λ = H1(X, N−1)

is a finitely generated module over OF . For every complex embedding
σ : F → C, let Xσ = X⊗C be the corresponding surface and Λσ = Λ⊗C.
This cohomology group

Λσ = H1(Xσ, N−1
C

)

is canonically isomorphic to the complex vector space H0,1(Xσ, N−1
C

)
of harmonic differential forms of type (0, 1) with coefficients in the re-
striction N−1

C
of the line bundle N−1 to X(C) =

∐
σ

Xσ. Given α ∈

H0,1(Xσ, N−1
C

), we let α∗ be its transposed conjugate (the definition of
which uses the metric h), and we define

‖α‖2
L2 =

i

2π

∫
Xσ

α∗ α .

Given e ∈ Λ, we let
‖e‖ = Sup

σ
‖σ(e)‖L2 ,

where σ runs over all complex embeddings of F .

We are interested in (the logarithm of) the successive minima of Λ.
Namely, for any positive integer k ≤ rk(Λ), we let µk be the infimum of
all real numbers µ such that there exist k elements e1, . . . , ek in Λ which
are linearly independent in

Λ ⊗ F = H1(XF , N−1)



Semi-stable extensions on arithmetic surfaces 293

and such that

(4) ‖ei‖ ≤ exp(µ) for all i = 1, . . . , k .

Let n = deg(N). We assume that n > 0 and that n is even. We
define m by the formula (3) above (with ground field F̄ instead of k̄).
Finally, let

d = [F : Q]

be the degree of F over Q.

Theorem 2. Assume that k ≥ n − m + g. Then

µk ≥ ĉ1(N̄)2

2 n d
− A ,

where
A =

1
n

+ log(m(n + g − 1)) ,

and ĉ1(N̄)2 ∈ R denotes the self-intersection of the arithmetic Chern

class ĉ1(N̄) ∈ ĈH
1
(X).

3.2. Proof.
Let e1, . . . , ek be elements of Λ which are F -linearly independent

and such that (4) holds. Call V ⊂ H1(XF , N−1) the F -vector space
spanned by e1, . . . , ek. According to Proposition 2 there exists e ∈ V
such that the corresponding extension E of N by the trivial line bundle
on XF is semi-stable on XF̄ . Furthermore, using the notation of the
proof of Proposition 2, E is semi-stable as soon as

∂e : H0(XF̄ , M) → H1(XF̄ , L)

is an isomorphism. Choosing a basis of these two vector spaces, we get
a polynomial P of degree m on V ⊗ F̄ such that

P (e) = det(∂e) ,

so that E is semi-stable as soon as P (e) �= 0. Therefore, by a stan-
dard argument (see [9], proof of Proposition 5), there exists k integers
n1, . . . , nk, with |ni| ≤ m for all i, such that

(5) e = n1 e1 + . . . + nk ek

satisfies P (e) �= 0, hence E is semi-stable.



294 C. Soulé

From the definition of µk and (5) we get

(6) ‖e‖ ≤ m k exp(µk) ≤ m(n + g − 1) exp(µk)

(since rk(Λ) = n + g − 1). According to a result of Miyaoka ([4], [8]
Theorem 1) and Moriwaki [6], this implies that, for any choice of a
metric on E (invariant under complex conjugation), the inequality “à la
Bogomolov”

(7) ĉ1(Ē)2 ≤ 4 ĉ2(Ē)

is satisfied in R. Here, as in [8] § 2.1, given x ∈ ĈH
2
(X) we also denote

by x ∈ R its arithmetic degree d̂eg (x).

We now proceed in a way similar to [8], Proposition 1 and Corollary
(where more details can be found). Recall that E is an extension

(8) 0 → OX → E → N → 0 .

We endow OX with the trivial metric and N with a metric h′ to be
specified below. For any choice of a smooth splitting of (8) over X(C),
we get a metric on E, namely the orthogonal direct sum of the chosen
metrics on OX and N . The Cauchy-Riemann operator on EC can be
written in matrix form according to that splitting:

∂̄E =
(

∂̄ α
0 ∂̄N

)
,

where α is a smooth form of type (0, 1) over X(C) with coefficients in
N−1

C
. One can choose the smooth splitting of (8) over X(C) in such

a way that α is the harmonic representative of the restriction of e to
X(C). With this choice we get

ĉ1(Ē) = ĉ1(N, h′)

and
2 ĉ2(Ē) =

∑
σ:F→C

‖σ(e)‖′2L2 ,

where, for every complex embedding σ, ‖·‖′L2 is the L2-norm on H1(Xσ,

N−1
C

) defined by h′.

Now let t = ‖e‖2 and let us choose h′ = th. We get

ĉ1(N, h′)2 = ĉ1(N̄)2 − n d log(t)
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and ∑
σ

‖σ(e)‖′2L2 = t−1
∑

σ

‖σ(e)‖2
L2 ≤ d .

Therefore the inequality (7) reads

ĉ1(N̄)2 ≤ 2 n d log ‖e‖ + 2 d .

Since, by (6),
log ‖e‖ ≤ µk + log(m(n + g − 1)) ,

Theorem 2 follows.
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On the cusp form motives in genus 1 and level 1

Caterina Consani and Carel Faber

Abstract.

We prove that the moduli space of stable n-pointed curves of
genus 1 and the projector associated to the alternating representation
of the symmetric group on n letters define (for n > 1) the Chow
motive corresponding to cusp forms of weight n + 1 for SL(2, Z).
This provides an alternative (in level 1) to the construction of Scholl.

§1. Introduction

In this paper we give an alternative construction of the Chow mo-
tives S[k] corresponding to cusp forms of weight k for SL(2,Z). The
Betti cohomology related to these cusp forms was initially studied by
Eichler and Shimura, after which Deligne constructed the correspond-
ing �-adic Galois representations. Using the canonical desingularization
of the fiber products of the compactified universal elliptic curve con-
structed by Deligne, Scholl then defined projectors such that the real-
izations of the associated Chow motives are these parabolic cohomology
groups. The smooth projective varieties used in this construction are
called Kuga-Sato varieties.

Instead of the Kuga-Sato varieties, we use the spaces M1,n, the
Knudsen-Deligne-Mumford moduli spaces of stable n-pointed curves of
genus 1. The symmetric group Σn acts naturally on M1,n, by permuting
the n marked points. Let α denote its alternating character. Our main
result is that M1,n (for n > 1) and the projector Πα corresponding to α
define the Chow motive S[n+ 1]. In other words, we have the following
result.
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Theorem. For n > 1,

Πα(H∗(M1,n,Q)) = Πα(Hn(M1,n,Q)) = H1
! (M1,1, Symn−1R1π∗Q).

Here π : E →M1,1 is the universal elliptic curve and Hi
! = Im(Hi

c → Hi)
denotes the parabolic cohomology.

The cohomology H∗(Mg,n) of the moduli space of stable n-pointed
curves of genus g has been studied intensively in recent years, in particu-
lar for n > 0 through the connection with Gromov-Witten theory. Since
Mg,n is a smooth projective stack over Z, these groups have arithmetic
relevance as well. Getzler has initiated the study of the cohomology
H∗(Mg,n) of the moduli space of smooth n-pointed curves of genus g
as a representation of Σn. Through the theory of modular operads, as
developed by Getzler and Kapranov, the Σn-equivariant Euler charac-
teristics of the cohomology of the spaces Mg,n are expressed in the Σn-
equivariant Euler characteristics of the cohomology of the spaces Mg,n.
The action of Σn is crucial here. Another central idea of Getzler is to
express the Σn-equivariant Euler characteristic of H∗(Mg,n) in terms
of the Euler characteristics of the cohomology of irreducible symplectic
local systems on Mg. Since these local systems are pulled back from the
moduli space Ag of principally polarized abelian varieties of dimension g,
this provides a connection with genus g Siegel modular forms.

In genus 1, this connection is given by Eichler-Shimura theory. In
higher genus, despite the very important work of Faltings and Chai,
much less is known. Van der Geer and the second author have obtained
an explicit conjectural formula for the motivic Euler characteristics of
these local systems in genus 2.

Our work is motivated by the desire to understand the motives un-
derlying Siegel modular forms and the cohomology of the correspond-
ing local systems. We expect that the results proved in this paper for
genus 1, when suitably generalized, will provide a major step towards
this goal.

Unbeknownst to us, Manin had suggested in [Ma1], 0.2 and 2.5,
that it would be desirable to replace the Kuga-Sato varieties by moduli
spaces of curves of genus 1 with marked points and a level structure.
Cf. [Ma2], 3.6.2.

In section 2, we determine the alternating part of the Σn-equivariant
Euler characteristic of M1,n. Section 3 deals with the Σn-equivariant
cohomology of M0,n; some of the results obtained here may be of in-
dependent interest. The theory of modular operads and the results of
section 3 are used in section 4 to determine the alternating part of the
Euler characteristic of M1,n \M1,n. In section 5 we combine the results
of sections 2 and 4 and prove our main theorem.
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§2. The contribution of the interior

In this section we determine the contribution of M1,n, i.e., we de-
termine

〈s1n , eΣn
c (M1,n)〉,

the alternating part of the Σn-equivariant Euler characteristic of the
compactly supported cohomology of M1,n. Here, for a partition λ of n,
the notation sλ is used for the Schur function corresponding to the ir-
reducible representation of Σn indexed by λ, and 〈 , 〉 stands for the
standard inner product on the ring of symmetric functions, for which
the sλ form an orthonormal basis. We will usually not make a nota-
tional distinction between a (possibly virtual) Σn-representation V and
its characteristic chn(V ), the symmetric function corresponding to it
([GK], 7.1). The Euler characteristic is taken in K0 of a convenient cat-
egory, such as the category of mixed Hodge structures or of �-adic Galois
representations.

Let E = (E, 0) be an elliptic curve. We may think of the points of
En−1 as n-tuples

(0, x2, . . . , xn)

(with x1 = 0) and by doing so we find a natural action of Σn on
En−1 (combine the effect of a permutation σ with a translation of
each coordinate over −xσ−1(1)). We are interested in the subspace of
H•(En−1) = H•(E)⊗(n−1) where the induced action of Σn is via the
alternating representation.

Let Σn−1 ⊂ Σn be the subgroup permuting the last n− 1 entries.

Lemma 1. The subspace of H•(E)⊗(n−1) where the induced action
of Σn−1 is via the alternating representation is isomorphic to

⊕n−1
k=0 ∧k Heven(E) ⊗ Symn−1−kH1(E).

Proof. The subspace of V = H•(E)⊗(n−1) where Σn−1 acts alternatingly
is generated by sums ∑

σ∈Σn−1

(−1)sgn(σ)σ∗(v)

with v ∈ V . Clearly, we may restrict ourselves to pure tensors v such
that the first k factors are inHeven(E) and the remaining n−1−k factors
are in H1(E), for some k. Fix k. It suffices now to consider the action of
Σk×Σn−1−k on such v. This leads to the claimed isomorphism. Q.E.D.

Note that only the terms with k ≤ 2 in the direct sum above are
nonzero. Thus it is concentrated in degrees n− 2, n− 1, and n.
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Proposition 1. The subspace of H•(E)⊗(n−1) where the induced
action of Σn is via the alternating representation is Symn−1H1(E).

Proof. Let τ ∈ Σn be the transposition (12). We need to show that
τ∗(γ) = −γ for all γ ∈ Symn−1H1(E), but that none of the Σn−1-
alternating vectors coming from elements of Heven(E) ⊗ Symn−2H1(E)
and ∧2Heven(E) ⊗ Symn−3H1(E) have this property.

As an example, consider the case n = 2. Note that τ(0, x2) =
(x2, 0) = (0,−x2). Thus τ = −1E and the (−1)-eigenspace of τ∗ on
H•(E) is H1(E).

In the general case,

τ(0, x2, x3, . . . , xn) = (0,−x2, x3 − x2, . . . , xn − x2).

Denote by pri : En−1 → E the projection onto the ith factor (with
2 ≤ i ≤ n) and by τi the composition pri ◦ τ . Then

τ∗(γ2 ⊗ · · · ⊗ γn) = τ∗2 (γ2) · . . . · τ∗n(γn).

For k ≥ 3 we have τk = m ◦ ((−pr2) × prk), where m : E × E → E
denotes the group law. Observe now that

τ∗k (ζ) = −pr∗2(ζ) + pr∗k(ζ)

for ζ ∈ H1(E) and k ≥ 3.
Denote by pi : En−1 → En−2 the projection forgetting the ith factor

(2 ≤ i ≤ n). Let γ ∈ Symn−2H1(E) and denote by

Γ =
n∑

i=2

(−1)ip∗i γ

the Σn−1-alternating vector corresponding to 1 ⊗ γ. Let I be the ideal
pr∗2(H

1(E) ⊕H2(E)). Note that Γ ≡ p∗2γ = 1 ⊗ γ mod I. But τ∗(1 ⊗
γ) ≡ 1 ⊗ γ mod I by the above. Thus τ∗Γ = −Γ implies γ = 0.

This shows that the Σn−1-alternating vectors corresponding to ele-
ments of H0(E) ⊗ Symn−2H1(E) are not Σn-alternating. We conclude
that the alternating representation of Σn does not occur in degree n−2.
By duality, it does not occur in degree n either.

Denote by pij : En−1 → En−3 the projection forgetting the ith and
jth factors (2 ≤ i < j ≤ n). Let γ ∈ Symn−3H1(E) and denote by

Ξ =
n−1∑
i=2

n∑
j=i+1

(−1)i+jp∗ijγ · (pr∗i p− pr∗jp)



On the cusp form motives in genus 1 and level 1 301

the Σn−1-alternating vector corresponding to (1 ∧ p) ⊗ γ (here p is the
class of a point). Then

(−1)n+1pn∗Ξ = pn∗
( n−1∑

i=2

(−1)ip∗inγ · pr∗np
)

=
n−1∑
i=2

(−1)ip∗i γ,

the Σn−2-alternating vector in H•(E)⊗(n−2) corresponding to 1 ⊗ γ.
Using that pn◦τ = τ ◦pn, one shows that τ∗Ξ = −Ξ implies γ = 0. Thus
the alternating representation of Σn can occur only in Symn−1H1(E).

To conclude, we show that these vectors are indeed Σn-alternating.
Choose α and β in H1(E) with α ·β = p. Fix k and l with sum n−1 and
let γ = γ2⊗· · ·⊗γn with k of the factors equal to α and the remaining l
equal to β. If γ2 = α, then γ+ τ∗γ is a sum of l terms; each term arises
from γ by replacing γ2 by p and one of the β’s by 1. If γ2 = β, then
γ + τ∗γ is a sum of k terms; each term arises from γ by replacing γ2 by
−p and one of the α’s by 1. It is now easy to see that the symmetric
tensor Γ that is the sum of all γ satisfies τ∗Γ = −Γ. This finishes the
proof. Q.E.D.

We may think of the fiber of M1,n over [E] as the open subset D◦
n

of En−1 where the n points 0, x2, . . . , xn are mutually distinct, i.e., the
complement of the n− 1 zero sections xi = 0 (with 2 ≤ i ≤ n) and the
diagonals xi = xj (with 2 ≤ i < j ≤ n). Clearly this open subset is
Σn-invariant.

Lemma 2. The subspace of H•
c (D◦

n) where the induced action of
Σn is via the alternating representation is canonically isomorphic to the
corresponding subspace of H•(En−1), thus to Symn−1H1(E).

Proof. Write Dk for the closed subset of En−1 where {0, x2, . . . , xn}
has cardinality at most k and D◦

k = Dk \ Dk−1 for its open subset
where {0, x2, . . . , xn} has cardinality k. The subsets Dk and D◦

k are Σn-
invariant. By induction on k we show that H•

c (Dk) does not contain a
copy of the alternating representation for k ≤ n− 1. Note that D1 is a
point. We may assume n > 2. We have exact sequences

Hi−1
c (Dk−1) → Hi

c(D
◦
k) → Hi

c(Dk) → Hi
c(Dk−1)

of Σn-representations. By induction, the outer terms do not contain
alternating representations. Consider D◦

k for k ≤ n − 1. For every
connected component, there exists a transposition in Σn acting on it as
the identity. This shows that H•

c (D◦
k) does not contain an alternating

representation, and the same holds for H•
c (Dk). The exact sequence

above, with k = n, now gives the result. Q.E.D.



302 C. Consani and C. Faber

For a variety X with Σn-action, denote 〈s1n , eΣn
c (X)〉 by Ac(X).

Clearly, we have

Ac(En−1) = Ac(D◦
n) = (−1)n−1Symn−1H1(E).

Let π : E → S be a relative elliptic curve. We may consider the Σn-
action on the relative spaces En−1/S and D◦

n/S and obtain

Ac(En−1/S) = Ac(D◦
n/S) = (−1)n−1Symn−1R1π∗Q

and similarly with Q�-coefficients. The Leray spectral sequence gives
then immediately

Ac(En−1) = Ac(D◦
n) = (−1)n−1ec(S, Symn−1R1π∗Q).

Applying this to the universal elliptic curve, we obtain in particular

Ac(M1,n) = (−1)n−1ec(M1,1, Symn−1R1π∗Q).

Let n > 1. Then Hi
c(M1,1, Symn−1R1π∗Q) = 0 when i 
= 1 or n

even. For n odd,

H1
c (M1,1, Symn−1R1π∗Q) = S[n+ 1] + 1,

cf. [Ge4], Thm. 5.3 and below. Here we have written 1 for the trivial
Hodge structure Q (or the corresponding �-adic Galois representation)
and S[n+ 1] for Getzler’s Sn+1; this is an equality in the Grothendieck
group of our category. We have proved the following result.

Theorem 1. The alternating part of the Σn-equivariant Euler char-
acteristic of the compactly supported cohomology of M1,n is given by the
following formula:

Ac(M1,n) =
{ −S[n+ 1] − 1, n > 1 odd;

0, n even.

Here S[n+ 1] = H1
! (M1,1, Symn−1R1π∗Q), the parabolic cohomology of

the local system Symn−1R1π∗Q, is the part of the cohomology of M1,n

corresponding to cusp forms of weight n+ 1.

Of course Ac(M1,1) = L, the Hodge structure Q(−1). If we formally
define S[2] = −L− 1, then the formula above holds for n = 1 as well.
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§3. Cohomology of genus 0 moduli spaces and representations
of symmetric groups

In this section we study the cohomology groups Hi(M0,n) as rep-
resentations of the symmetric group Σn. One of our main tools is the
following. Let X be an algebraic variety, let Y ⊂ X be a closed subva-
riety, and let U = X \ Y denote the complement. Then the long exact
sequence of compactly supported cohomology

· · · → Hk
c (U) → Hk

c (X) → Hk
c (Y ) → Hk+1

c (U) → . . .

is a sequence of mixed Hodge structures. See [DK], p. 282.

Lemma 3. (Getzler) The mixed Hodge structure on Hi(M0,n) is
pure of weight 2i.

Proof. This is Lemma 3.12 in [Ge1]. We wish to give a different proof
here. The case n = 3 is trivial. For n = 4, we use the sequence above,
with X = P1, Y = {0, 1,∞}, and U = M0,4. The sequence reads

0 → H0
c (M0,4) → H0

c (P1) → H0
c ({0, 1,∞}) → H1

c (M0,4) → 0 → 0 →
→ H2

c (M0,4) → H2
c (P1) → 0.

Note first that H0
c (M0,4) = 0. Clearly, H1

c (M0,4) has weight 0 and
H2

c (M0,4) has weight 2. The statement follows by duality:

Hk
c (V )∨ ∼= H2m−k(V )(m)

as mixed Hodge structures, for V a nonsingular irreducible variety of
dimension m.

For n > 4 we have that U = M0,n is isomorphic to the complement
in X = M0,n−1 ×M0,4 of the disjoint union

Y =
n−1∐
i=4

{xi = xn} ,

where we think of a k-pointed curve of genus 0 as given by a k-tuple
(0, 1,∞, x4, . . . , xk) on P1. Thus,

Hk−1
c (Y ) → Hk

c (U) → Hk
c (X)

is an exact sequence of mixed Hodge structures. By dualizing and ap-
plying a Tate twist, the same holds for

Hi(X) → Hi(U) → Hi−1(Y )(−1)
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(with i = 2(n − 3) − k). By the Künneth formula and induction on n,
the terms on the left and right have pure Hodge structures of weight 2i.
Hence the same holds for the term in the middle. Q.E.D.

For k ≥ 0, denote by ∆k the closed part of M0,n corresponding to
stable curves with at least k nodes and denote by ∆◦

k the open part
∆k \ ∆k+1 corresponding to stable curves with exactly k nodes. Put
d = n − 3. Clearly, ∆k 
= ∅ for 0 ≤ k ≤ d. In general, ∆k is singular,
with nonsingular irreducible components, all of codimension k. But
∆0 = M0,n and ∆d (a collection of points) are nonsingular. All ∆◦

k are
nonsingular. Of course ∆◦

0 = M0,n and ∆◦
d = ∆d. We have the long

exact sequence

· · · → Ha−1
c (∆k+1) → Ha

c (∆◦
k) → Ha

c (∆k) → Ha
c (∆k+1) → . . .

of mixed Hodge structures. Since the ∆k are invariant for the natural
action of Σn, it is also a sequence of Σn-representations.

Lemma 4. The cohomology groups Hi(M0,n) vanish for i > n− 3.
For 0 ≤ i ≤ n − 3, the irreducible representations of Σn occurring in
Hi(M0,n) have Young diagrams with at most i+ 1 rows. In particular,
the irreducible representations of Σn occurring in H•(M0,n) have Young
diagrams with at most n− 2 rows.

Proof. The claimed vanishing is immediate. Let us abbreviate the rest of
the statement by “Hi(M0,n) has ≤ i+1 rows”. We prove it by induction
on n. The case n = 3 is trivial. Assume n > 3. Recall that d = n− 3.
We require an analysis of the boundary strata:
Claim. Assume d− b > 0. Then Ha

c (∆d−b) has ≤ d+ 1 + b− a rows.
We prove the claim by induction on b. We begin with the case b = 0.
Since ∆d is a collection of points, a = 0 may be assumed. Each point
corresponds to a stable curve with d nodes, hence with d + 1 com-
ponents. Each component has exactly three special points (nodes or
marked points). Let nj be the number of marked points on the jth
component, for some numbering of the components. By permuting the
n marked points on the stable curve, we obtain a Σn-representation R,
which is a direct summand of H0(∆d). Note that R is a subrepresenta-
tion of the induced representation

IndΣnQd+1
j=1 Σnj

1.

The induced representation has ≤ d+1 rows, henceR does. NowH0(∆d)
is a direct sum of representations analogous to R, thus it has ≤ d + 1
rows as well. This proves the claim in the case b = 0.
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Assume b > 0. Observe that Ha
c (∆◦

k) ∼= H2(d−k)−a(∆◦
k) as Σn-

representations. Also, each connected component of ∆◦
k is for k ≥ 1 a

product of k+1 spaces M0,mj , with mj < n. By induction on n and the
Künneth formula, Ha

c (∆◦
k) has ≤ 2(d−k)−a+k+1 = 2d−k−a+1 rows,

for k ≥ 1. Putting k = d− b, we find that Ha
c (∆◦

d−b) has ≤ d+ 1 + b− a
rows.

By induction on b, we have that Ha
c (∆d−b+1) has ≤ d+ b− a rows.

From the long exact sequence, we find that Ha
c (∆d−b) has ≤ d+1+b−a

rows. This proves the claim.
In particular, Ha

c (∆1) has ≤ 2d − a rows. Consider the exact se-
quence

Hk−1
c (∆1) → Hk

c (M0,n) α→ Hk
c (M0,n).

From Lemma 3 we know that Hk
c (M0,n) has weight 2k − 2d. But

Hk
c (M0,n) has weight k. Thus α = 0 for k < 2d. Hence Hk

c (M0,n)
has ≤ 2d + 1 − k rows for k < 2d. Thus Hi(M0,n) has ≤ i + 1 rows
for i > 0. But it is obviously true for i = 0 as well. This finishes the
proof. Q.E.D.

§4. The contribution of the boundary

In this section we determine the contribution of the boundary

∂M1,n = M1,n \M1,n,

i.e., we determine

〈s1n , eΣn
c (∂M1,n)〉.

We use the main result of [Ge2]. To state it, we introduce the following
notations:

ag :=
∑

n>2−2g

chn(eΣn
c (Mg,n)), and

bg :=
∑

n>2−2g

chn(eΣn
c (Mg,n)).

Here chn denotes the characteristic of a finite-dimensional Σn-represen-
tation ([GK], 7.1) and its extension by linearity to virtual representa-
tions. For a (formal) symmetric function f (such as ag and bg), we also
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write

f ′ =
∂f

∂p1
= p⊥1 f,

ḟ =
∂f

∂p2
=

1
2
p⊥2 f,

ψi(f) = pi ◦ f.
Here pi is the symmetric function equal to the sum of the ith powers of
the variables, p⊥i is the adjoint of multiplication with pi with respect to
the standard inner product, and ◦ is the plethysm of symmetric functions
([GK], 7.2). We will denote the ith complete symmetric function by hi

and the ith elementary symmetric function by ei.
We can now state Getzler’s result (Theorem 2.5 in [Ge2]):

b1 =
(
a1− 1

2

∞∑
n=1

φ(n)
n

log(1−ψn(a′′
0 ))+

ȧ2
0 + ȧ0 + 1

4ψ2(a′′
0 )

1 − ψ2(a′′
0 )

)
◦(h1+b′

0).

The numerator of the third term inside the big parentheses on the right-
hand side has been corrected here; there is a minor computational mis-
take in the derivation of the theorem in line 4 on page 487, which affects
the result (but not Corollary 2.8).

As Getzler remarks, the term a1 ◦ (h1 +b′
0) corresponds to the sum

over graphs obtained by attaching a forest whose vertices have genus 0
to a vertex of genus 1; in particular, a1 ◦ h1 = a1, the contribution of
smooth curves, is part of this term, corresponding to graphs consisting
of a single vertex of genus 1. The remainder of this term, corresponding
to graphs where at least one vertex of genus 0 has been attached to a
vertex of genus 1, is part of the contribution of the boundary. We show
that the alternating representation does not occur here. For a symmetric
function

f =
∞∑

n=0

fn,

we write

Alt(f) =
∞∑

n=0

〈s1n , fn〉tn.

Lemma 5. The alternating representation does not occur in the
contribution of the part of the boundary of M1,n corresponding to graphs
where at least one vertex of genus 0 has been attached to a vertex of
genus 1. In terms of the notation introduced above:

Alt(a1 ◦ (h1 + b′
0)) = Alt(a1).
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Proof. We choose to give a somewhat geometric proof instead of a proof
using mostly the language of symmetric functions.

Observe first that a boundary stratum corresponding to a graph
with a genus 1 vertex is isomorphic to a product

M1,m ×
∏

i

M0,ni ;

i.e., it is not necessary to take the quotient by a finite group. (The
corresponding graph has no automorphisms: there is a unique shortest
path from each of the n legs to the vertex of genus 1, and every vertex and
every edge lie on such a path.) By the Künneth formula, the cohomology
of such a product is isomorphic to the tensor product of the cohomologies
of the factors.

Consider the Σn-orbit of such a stratum. The direct sum of the
cohomologies of the strata in the orbit forms a Σn-representation V .
It is induced from the cohomology of a single stratum, considered as a
representation W of the stabilizer G in Σn of the stratum. By Frobe-
nius Reciprocity, V contains a copy of the alternating representation
if and only if W contains a copy of the restriction of the alternating
representation to G.

To each vertex of the graph, one associates the symmetric group
corresponding to the legs attached to the vertex. The product over the
vertices of these symmetric groups is a subgroup H of G and the further
restriction of the alternating representation to H is the tensor product
over the vertices of the alternating representations of these symmetric
groups.

Consider a moduli spaceM0,k corresponding to an extremal vertex of
the graph corresponding to a boundary stratum as above. The symmet-
ric group associated to this vertex is a standard subgroup Σk−1 ⊂ Σk,
permuting the k − 1 legs attached to the vertex and leaving the unique
half-edge fixed. By Lemma 4, the irreducible Σk-representations occur-
ring in H•(M0,k) have Young diagrams with at most k − 2 rows. The
Young diagrams of the irreducible representations occurring in the re-
striction to Σk−1 also have at most k − 2 rows, as they are obtained
by removing one box. Therefore the alternating representation does not
occur here. It follows that V does not contain a copy of the alternating
representation either. Q.E.D.

We return to Getzler’s result. We need to evaluate

Alt
((

−1
2

∞∑
n=1

φ(n)
n

log(1−ψn(a′′
0 ))+

ȧ2
0 + ȧ0 + 1

4ψ2(a′′
0 )

1 − ψ2(a′′
0 )

)
◦ (h1 +b′

0)
)
.
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Getzler remarks that the two terms inside the big inner parentheses
may be thought of as a sum over necklaces (graphs consisting of a single
circuit) and a correction term, taking into account the fact that necklaces
of 1 or 2 vertices have non-trivial involutions (while those with more
vertices do not). The plethysm with h1 + b′

0 stands again for attaching
a forest whose vertices have genus 0. We begin with the analogue of
Lemma 5.

Lemma 6. The alternating representation does not occur in the
contribution of the part of the boundary of M1,n corresponding to graphs
where at least one vertex of genus 0 has been attached to a necklace. In
terms of the notation introduced above:

Alt
((

−1
2

∞∑
n=1

φ(n)
n

log(1−ψn(a′′
0 )) +

ȧ2
0 + ȧ0 + 1

4ψ2(a′′
0 )

1 − ψ2(a′′
0 )

)
◦ (h1 + b′

0)
)

= Alt
(
−1

2

∞∑
n=1

φ(n)
n

log(1 − ψn(a′′
0 )) +

ȧ2
0 + ȧ0 + 1

4ψ2(a′′
0 )

1 − ψ2(a′′
0 )

)
.

Proof. In this case, each boundary stratum is isomorphic to a product( ∏
v∈necklace

M0,n(v)

)/
I ×

∏
v/∈necklace

M0,n(v).

The finite group I is trivial when the necklace has at least 3 vertices.
It has 2 elements when the necklace has 1 resp. 2 vertices and acts by
reversing the edge in the necklace resp. by interchanging the two edges
of the necklace. In particular, I acts trivially on the moduli spaces
corresponding to the vertices of the forest.

Just as in the proof of Lemma 5, the alternating representation does
not occur in the cohomology of a moduli space M0,k corresponding to
an extremal vertex of one of the trees of the forest. It follows that
the alternating representation does not occur in the cohomology of a
Σn-orbit of boundary strata as soon as the forest is nonempty. Q.E.D.

In order to determine the contribution of the part of the bound-
ary of M1,n corresponding to necklaces without attached trees, we need
several lemmas.

Lemma 7. The restriction of the Σn-representation H•(M0,n) to
the standard subgroup Σn−2 contains the alternating representation ex-
actly once. In terms of the notation introduced above:

Alt(a′′
0 ) =

t

1 + t
.
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Proof. The Young diagrams corresponding to the irreducible repre-
sentations of Σn−2 occurring in a′′

0 are obtained by removing 2 boxes
from a Young diagram occurring in a0. To obtain a copy of the al-
ternating representation of Σn−2, one needs to start with a Young di-
agram with at least n − 2 rows. From Lemma 4, only the top co-
homology Hn−3(M0,n) can contribute. Observe that Hn−3(M0,n) ∼=
Hn−3

c (M0,n) ∼= Hn−3(M0,n) as Σn-representations. Thus

Alt(a′′
0 ) = Alt

(
∂2

∂p2
1

∞∑
n=3

chn

(
eΣn

c (M0,n)
))

= Alt
(
∂2

∂p2
1

∞∑
n=3

(−1)n−3chn

(
Hn−3

c (M0,n)
))
.

Getzler shows in [Ge1], p. 213, l. 3 that

Hn−3
c (M0,n) ∼= sgnn ⊗ Lie((n)).

Here sgnn denotes the alternating representation and Lie((n)) the Σn-
representation that is part of the cyclic Lie operad. Getzler and Kapra-
nov show in [GK], Example 7.24 that

Ch(Lie) :=
∞∑

n=3

chn(Lie((n))) = (1 − p1)
∞∑

n=1

µ(n)
n

log(1 − pn) + h1 − h2,

where µ(n) is the Möbius function. Hence
∞∑

n=3

(−1)n−3chn(sgnn⊗Lie((n))) = −(1+p1)
∞∑

n=1

µ(n)
n

log(1+pn)+h1+e2

and

∂2

∂p2
1

( ∞∑
n=3

(−1)n−3chn(sgnn ⊗ Lie((n)))
)

=
∂

∂p1

(
−

∞∑
n=1

µ(n)
n

log(1 + pn) − (1 + p1)
1

1 + p1

)
+ 1

= 1 − 1
1 + p1

=
p1

1 + p1
.

But

Alt
(

p1

1 + p1

)
=

t

1 + t
,

since 〈pn
1 , s1n〉 = 1. Q.E.D.
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Lemma 8. Let fn be a symmetric function of degree n. Assume
that 〈s1n , fn〉 = 0. Then 〈s1nk , pk ◦ fn〉 = 0.

Proof. Write e(λ) resp. o(λ) for the number of even resp. odd parts of a
partition λ. For λ a partition of n,

o(λ) ≡ n (mod 2) and 〈s1n , pλ〉 = (−1)e(λ).

Here pλ =
∏

i pλi is the symmetric function of degree n that is the
product of the power sums corresponding to the parts of λ. If fn =∑

λ aλpλ , then pk ◦ fn =
∑

λ aλpkλ , where kλ is the partition of kn
obtained from λ by multiplying all parts with k. For k odd,

∑
λ

aλ(−1)e(λ) =
∑

λ

aλ(−1)e(kλ),

whereas for k even,

e(kλ) = o(λ) + e(λ) ≡ n+ e(λ) (mod 2),

so that ∑
λ

aλ(−1)e(kλ) = (−1)n
∑

λ

aλ(−1)e(λ).

The result follows. Q.E.D.

Lemma 9. The occurrence of the alternating representation ob-
served in Lemma 7 is stable under plethysm with pk. In terms of the
notation introduced above:

Alt(ψk(a′′
0 )) =

−(−t)k

1 − (−t)k
.

Proof. From Lemma 7,

Alt(a′′
0 ) = Alt

(
p1

1 + p1

)
.

Applying Lemma 8 and using that 〈s1kn , pn
k 〉 = (−1)(k−1)n, we find

Alt(ψk(a′′
0 )) = Alt

(
pk ◦

(
p1

1 + p1

))
= Alt

(
pk

1 + pk

)

= Alt
( ∞∑

n=1

(−1)n−1pn
k

)
=

∞∑
n=1

(−1)n−1(−1)(k−1)ntkn
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= −
∞∑

n=1

((−t)k)n =
−(−t)k

1 − (−t)k
.

Q.E.D.

For two symmetric functions f and g, we have

Alt(fg) = Alt(f)Alt(g).

This follows immediately from the Littlewood-Richardson rule (cf. [FH],
p. 456). One may use this identity to shorten the proof of Lemma 9.
Similarly,

Alt(log(1 − ψk(a′′
0 ))) = log

(
1 − −(−t)k

1 − (−t)k

)
= − log(1 − (−t)k)

and

Alt
(
−

∞∑
n=1

φ(n)
n

log(1 − ψn(a′′
0 )

)
=

∞∑
n=1

φ(n)
n

log(1 − (−t)n)

= −
∞∑

n=1

φ(n)
n

∞∑
k=1

(−t)nk

k
= −

∞∑
m=1

(−t)m

m

∑
d|m

φ(d)

= −
∞∑

m=1

(−t)m =
t

1 + t
.

It remains to evaluate the contribution of the correction term,

Alt
(

ȧ2
0 + ȧ0 + 1

4ψ2(a′′
0 )

1 − ψ2(a′′
0 )

)
.

We need one more lemma.

Lemma 10. The alternating part of the formal symmetric function

ȧ0 =
∂a0

∂p2

is given by the following formula:

Alt(ȧ0) =
1
2

t

1 − t
.
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Proof. In terms of Young diagrams, multiplication by s2 is the operation
of adding two boxes, not in the same column, and multiplication by
s12 is the operation of adding two boxes, not in the same row. Now
p2 = s2 − s12 and ∂

∂p2
= 1

2p
⊥
2 , where p⊥2 is the adjoint of multiplication

by p2. Thus, to obtain a copy of the alternating representation of Σn−2

in a term of ȧ0, one needs to start with a Young diagram with at least
n− 2 rows, just as in the proof of Lemma 7. So

Alt(ȧ0) = Alt
(

∂

∂p2

∞∑
n=3

(−1)n−3chn

(
Hn−3

c (M0,n)
))
.

We now find

∂

∂p2

( ∞∑
n=3

(−1)n−3chn(sgnn ⊗ Lie((n)))
)

=
1
2

1 + p1

1 + p2
− 1

2
=

1
2
p1 − p2

1 + p2
.

But

Alt
(

1
2
p1 − p2

1 + p2

)
=

1
2
t+ t2

1 − t2
=

1
2

t

1 − t
.

Q.E.D.

An easy calculation combining Lemmas 9 and 10 gives

Alt
(

ȧ2
0 + ȧ0 + 1

4ψ2(a′′
0 )

1 − ψ2(a′′
0 )

)
=

1
2

t

1 − t
.

The contribution from the necklaces becomes then

1
2

t

1 + t
+

1
2

t

1 − t
=

t

1 − t2
,

i.e., 1 for n odd and 0 for n even. We have proved the following result.

Theorem 2. The alternating part of the Σn-equivariant Euler char-
acteristic of the cohomology of ∂M1,n is given by the following formula:

〈s1n , eΣn
c (∂M1,n)〉 =

{
1, n odd;
0, n even.

§5. The construction of the motive

The main result of Section 4 (Theorem 2) is

Ac(∂M1,n) =
{

1, n odd;
0, n even.



On the cusp form motives in genus 1 and level 1 313

Combining this with Theorem 1, we immediately obtain

Ac(M1,n) =
{ −S[n+ 1], n odd;

0, n even.

Let n > 1 be an odd integer. The pair consisting of M1,n and the
projector

1
n!

∑
σ∈Σn

(−1)sgn(σ)σ∗

defines a Chow motive, since M1,n is the quotient of a smooth projective
variety by a finite group [BP]. We wish to show that it is pure of
degree n. This will conclude our construction of the motive S[n + 1],
an alternative (in level 1 only) to Scholl’s construction. The arguments
below are similar to those in [Sc], 1.3.4.

First, 〈s1n , Hi
c(M1,n)〉 = 0 for i 
= n. As in [De], proof of 5.3, the

degeneration of the Leray spectral sequence at E2 due to Lieberman’s
trick implies that 〈s1n , Hi

c(En−1)〉 = 0 when i 
= n for a relative elliptic
curve E → S and this implies the statement.

Thus we have an exact sequence

0 → Hn−1
c (M1,n)(α) → Hn−1

c (∂M1,n)(α) → Hn
c (M1,n)(α) →

→ Hn
c (M1,n)(α) → Hn

c (∂M1,n)(α) → 0

and isomorphismsHi(M1,n)(α) ∼= Hi(∂M1,n)(α) for i /∈ {n−1, n}. Here
V (α) denotes the alternating part of a Σn-representation V . Therefore
Hi(∂M1,n)(α) is pure of weight i for i > n. But then all these spaces
vanish, since Hi(∂M1,n) has weight ≤ i for all i and since Ac(∂M1,n)
has weight 0. Hence Hi(M1,n)(α) = 0 for i > n and then by duality for
i < n as well. This shows that Hn(M1,n)(α) = S[n+ 1] and concludes
the alternative construction of these motives.
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Polarized K3 surfaces of genus thirteen

Shigeru Mukai

A smooth complete algebraic surface S is of type K3 if S is regular
and the canonical class KS is trivial. A primitively polarized K3 surface
is a pair (S, h) of a K3 surface S and a primitive ample divisor class
h ∈ Pic S. The integer g := 1

2 (h2) + 1 ≥ 2 is called the genus of (S, h).
The moduli space of primitively polarized K3 surfaces of genus g exists
as a quasi-projective (irreducible) variety, which we denote by Fg. As
is well known a general polarized K3 surface of genus 2 ≤ g ≤ 5 is a
complete intersection of hypersurfaces in a weighted projective space:
(6) ⊂ P(1112), (4) ⊂ P3, (2) ∩ (3) ⊂ P4 and (2) ∩ (2) ∩ (2) ⊂ P5.

In connection with the classification of Fano threefolds, we have
studied the system of defining equations of the projective model S2g−2 ⊂
Pg and shown that a general polarized K3 surface of genus g is a com-
plete intersection with respect to a homogeneous vector bundle Vg−2 (of
rank g − 2) in a g-dimensional Grassmannian G(n, r), g = r(n− r), in a
unique way for the following six values of g:

g 6 8 9 10
r 2 2 3 5

Vg−2 3OG(1) ⊕OG(2) 6OG(1)
∧2 E ⊕ 4OG(1)

∧4 E ⊕ 3OG(1)

12 20
3 4

3
∧2 E ⊕ OG(1) 3

∧2 E
Here E is the universal quotient bundle on G(n, r). See [4] and [5] for
the case g = 6, 8, 9, 10, [6, §5] for g = 20 and §3 for g = 12.

By this description, the moduli space Fg is birationally equivalent
to the orbit space H0(G(n, r),Vg−2)/(PGL(n) × AutG(n,r) Vg−2) and

Received May 30, 2005.
Revised October 5, 2005.
Supported in part by the JSPS Grant-in-Aid for Scientific Research (B)

17340006.
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hence is unirational for these values of g. The uniqueness of the descrip-
tion modulo the automorphism group is essentially due to the rigidity
of the vector bundle E := E|S . All the cohomology groups Hi(sl(E))
vanish.

A general member (S, h) ∈ Fg is a complete intersection with respect
to the homogeneous vector bundle 8U in the orthogonal Grassmannian
O-G(10, 5) in the case g = 7 ([4]), and with respect to 5U in O-G(9, 3)
in the case 18 ([6]), where U is the homogeneous vector bundle on the
orthogonal Grassmannian such that H0(U) is a half spinor representa-
tion U16. Both descriptions are unique modulo the orthogonal group.
Hence F7 and F18 are birationally equivalent to G(8, U16)/PSO(10) and
G(5, U16)/SO(9), respectively. The unirationality of F11 is proved in [7]
using a non-abelian Brill-Noether locus and the unirationality of M11,
the moduli space of curves of genus 11.

In this article, we shall study the case g = 13 and show the following:

Theorem 1. A general member (S, h) ∈ F13 is isomorphic to a
complete intersection with respect to the homogeneous vector bundle

V =
2∧
E ⊕

2∧
E ⊕

3∧
F

of rank 10 in the 12-dimensional Grassmannian G(7, 3), where F is the
dual of the universal subbundle.

Corollary F13 is unirational.

Remark 1. A general complete intersection (S, h) with respect to
the homogeneous vector bundle

∧4 F⊕S2E in the 10-dimensional Grass-
mannian G(7, 2) is also a primitively polarized K3 surface of genus 13.
But (S, h) is not a general member of F13. In fact, S contains 8 mutually
disjoint rational curves R1, . . . , R7, which are of degree 3 with respect
to h. This will be discussed elsewhere.

Unlike the known cases described above, the vector bundle E = E|S
in the theorem is not rigid. Hence the theorem does not give a birational
equivalence between F13 and an orbit space. But E is semi-rigid, that
is, H0(sl(E)) = 0 and dim H1(sl(E)) = 2. Instead of F13 itself, the
theorem gives a birational equivalence between the universal family over
it and an orbit space.

Let S ⊂ G(7, 3) be a general complete intersection with respect to
V . Then S is the common zero locus of the two global sections of

∧2 E
corresponding to general bivectors σ1, σ2 ∈

∧2 C7 and one global section
of

∧3 F corresponding to a general τ ∈
∧3 C7,∨. The 2-dimensional
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subspace P = 〈σ1, σ2〉 ⊂
∧2 C7 is uniquely determined by S. Let P ∧ P

be the subspace of
∧3 C7,∨ corresponding to P ∧ P ⊂

∧4 C7. Then
Cτ modulo P ∧ P is also uniquely determined by S. It is known that
the natural action of PGL(7) on G(2,

∧2 C7) has an open dense orbit
(Sato-Kimura[9, p. 94]). Hence we obtain the natural birational map

(1) ψ : P∗(
4∧

C7/(P ∧ P ))/G · · · → F13,

which is dominant by the theorem, where G is the (10-dimensional)
stabilizer group of the action at P ∈ G(2,

∧2 C7).

Theorem 2. For every general member p = (S, h) ∈ F13, the fiber
of ψ at p is birationally equivalent to the moduli K3 surface MS(3, h, 4)
of semi-rigid rank three vector bundles with c1 = h and χ = 3 + 4.

As is shown in [8], Ŝ := MS(3, h, 4) carries a natural ample divi-
sor class ĥ of the same genus (=13) and (S, h) �→ (Ŝ, ĥ) induces an
automorphism of F13. (In fact, this is an involution.) Hence we have

Corollary The orbit space P∗(
∧4 C7/(P ∧ P ))/G is birationally

equivalent to the universal family over F13, or the coarse moduli space
of one pointed polarized K3 surfaces (S, h, x) of genus 13.

Remark 2. 8 Kondō[3] proves that the Kodaira dimension of Fg is
non-negative for the following 17 values:

g = 41, 42, 50, 52, 54, 56, 58, 60, 65, 66, 68, 73, 82, 84, 104, 118, 132.

The Kodaira dimension of Fm2(g−1)+1 is non-negative for these values
of g and for every m ≥ 2 since it is a finite covering of Fg.

Notations and convention. Algebraic varieties and vector bun-
dles are considered over the complex number field C. The dual of a vec-
tor bundle (or a vector space) E is denoted by E∨. Its Euler-Poincarè
characteristic

∑
i(−)ihi(E) is denoted by χ(E). The vector bundles of

traceless endomorphisms of E is denoted by sl(E). For a vector space
V , G(V, r) is the Grassmannian of r-dimensional quotient spaces of V
and G(r, V ) that of r-dimensional subspaces. The isomorphism class of
G(V, r) with dimV = n is denoted by G(n, r). The projective spaces
G(V, 1) and G(1, V ) are denoted by P∗(V ) and P∗(V ), respectively.
OG(1) is the pull-back of the tautological line bundle by the Plücker
embedding G(V, r) ↪→ P∗(

∧r V ).
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§1. Vanishing

We prepare the vanishing of cohomology groups of homogeneous
vector bundles on the Grassmannian G(n, r), which is the quotient
of SL(n) by a parabolic subgroup P . The reductive part Pred of P
is the intersection of GL(r) × GL(n − r) and SL(n) in GL(n). We
take {(a1, · · · , ar; ar+1, . . . , an) |

∑n
1 ai = 0} ⊂ Zn as root lattice and

Zn/Z(1, 1, . . . , 1) as the common weight lattice of SL(n) and Pred. We
take {ei − ei+1 | 1 ≤ i ≤ n − 1} as standard root basis. The half of the
sum of all positive roots is equal to

δ = (n − 1, n− 3, n − 5, . . . ,−n + 3,−n + 1)/2.

Let ρ be an irreducible representation of Pred and
w ∈ Zn/Z(1, 1, . . . , 1) its highest weight. We denote the homogeneous
vector bundle on G(n, r) induced from ρ by Ew. w is singular if a
number appears more than once in w + δ. If w is not singular and
w+δ = (a1, a2, . . . , an), then there is a unique (Grassmann) permutation
α = αw such that aα(1) > aα(2) > · · · > aα(n). We denote the length of
αw, that is, the cardinality of the set {(i, j) | 1 ≤ i < j ≤ n, ai < aj}, by
l(w).

Theorem 3 (Borel-Hirzebruch[2]). (a) If w is singular, then
all the cohomology groups Hi(G(n, r), Ew) vanish.

(b) If w is not, then all the cohomology groups Hi(G(n, r), Ew) van-
ish except for one i := l(w). Moreover, H l(w)(G(n, r), Eρ) is an
irreducible representation of SL(n) with highest weight

(aα(1), aα(2), . . . , aα(n)) − δ.

The dimension of this unique nonzero cohomology group is equal
to

∏
1≤i<j≤n |ai − aj |/(j − i).

l(w) is called the index of the homogeneous vector bundle Ew.

Example. In the following table, − means that the weight w is
singular and we put s = n − r.
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weight w homogeneous bundle Ew l(w) H l(w)

(1, 0, 0, . . . , 0, 0; 0, . . . , 0, 0) E , universal quotient 0 Cn

bundle
(0, 0, 0, . . . ,−1, 0; 0, . . . , 0, 0) E∨ -
(1, 1, 0, . . . , 0, 0; 0, . . . , 0, 0)

∧2 E 0
∧2 Cn

(1, 1, 1, . . . , 1, 1; 0, . . . , 0, 0) OG(1) = det E = detF 0
∧r Cn

(0, 0, 0, . . . , 0, 0;−1, . . . ,−1)
(0, 0, 0, . . . , 0, 0; 1, . . . , 0, 0) F∨, universal subbundle -
(0, 0, 0, . . . , 0, 0; 0, . . . , 0,−1) F 0 Cn,∨

(1, 0, 0, . . . , 0, 0; 0, . . . , 0,−1) TG(n,r), tangent bundle 0 sl(Cn)
(0, 0, 0, . . . ,−1; 1, 0, . . . , 0, 0) ΩG(n,r), cotangent bundle 1 C
(−s,−s, . . . ,−s; r, r, . . . , r) OG(−n), canonical bundle rs C

We apply the theorem to the 12-dimensional Grassmannian G(7, 3).

Lemma 4. (a) All cohomology groups of the homogeneous vec-
tor bundle

∧p(2E(−1)) ⊗
∧q(F(−1)) on G(7, 3) vanish except

for the following:
i) p = q = 0, h0(OG) = 1, and
ii) p = 6, q = 4, h12(OG(−7)) = 1.

(b) All cohomology groups of OG(1) ⊗
∧p(2E(−1)) ⊗

∧q(F(−1))
vanish except for the following:

i) p = q = 0, h0(OG(1)) = 35,
ii) p = 1, q = 0, h0(2E) = 2 · 7 = 14, and
iii) p = 0, q = 1, h0(F) = 7.

(c) All cohomology groups of E ⊗
∧p(2E(−1))⊗

∧q(F(−1)) vanish
except for h0(E) = 7 with p = q = 0.

(d) All cohomology groups of F ⊗
∧p(2E(−1))⊗

∧q(F(−1)) vanish
except for h0(F) = 7 with p = q = 0.

(e) All cohomology groups of
∧2 E⊗

∧p(2E(−1))⊗
∧q(F(−1)) van-

ish except for the following:
i) p = q = 0, h0(

∧2 E) = 21, and
ii) p = 1, q = 0, h0(

∧2 E ⊗ (2E(−1))) = 2.

(f) All cohomology groups of
∧3 F⊗

∧p(2E(−1))⊗
∧q(F(−1)) van-

ish except for the following:
i) p = q = 0, h0(

∧3 F) = 35,
ii) p = 0, q = 1, h0(

∧3 F ⊗ F(−1)) = 1, and
iii) p = 2, q = 0, h1(

∧3 F ⊗
∧2(2E(−1))) = 3h1(

∧3 F ⊗∧2 E∨) = 3.
(g) All cohomology groups of sl(E)⊗

∧p(2E(−1))⊗
∧q(F(−1)) van-

ish except for h6 = 2 with p = 3, q = 2.
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Proof. The following table describes the decomposition of∧p(2E(−1)) into indecomposable homogeneous vector bundles.

(2)

p decomposition weightw′ w′ + δ′

0 OG (0, 0, 0) (3, 2, 1)
1 2E(−1) 2(0,−1,−1) (3, 1, 0)
2 3(

∧2 E)(−2) 3(−1,−1,−2) (2, 1,−1),
⊕S2E(−2) ⊕(0,−2,−2) (3, 0,−1)

3 4OG(−2) 4(−2,−2,−2) (1, 0,−1),
⊕2sl(E)(−2) ⊕2(−1,−2,−3) (2, 0,−2)

4 3E(−3) 3(−2,−3,−3) (1,−1,−2),
⊕(S2

∧2 E)(−4) ⊕(−2,−2,−4) (1, 0,−3)
5 2(

∧2 E)(−4) 2(−3,−3,−4) (0,−1,−3)
6 OG(−4) (−4,−4,−4) (−1,−2,−3)

Here δ′ = (3, 2, 1) is the head of δ = (3, 2, 1; 0,−1,−2,−3).∧q(F(−1)) is indecomposable. The following lists its weight w′′ and
w′′ + δ′′, where δ′′ = (0,−1,−2,−3) is the tail of δ.

(3)

q bundle weightw′′ w′′ + δ′′

0 OG (0, 0, 0, 0) (0,−1,−2,−3)
1 F(−1) (1, 1, 1, 0) (1, 0,−1,−3)
2 (

∧2 F)(−2) (2, 2, 1, 1) (2, 1,−1,−2)
3 (

∧3 F)(−3) (3, 2, 2, 2) (3, 1, 0,−1)
4 OG(−3) (3, 3, 3, 3) (3, 2, 1, 0)

We prove (a), (f) and (g) applying Theorem 3. The other cases are
similar.

(a) Take w′ and w′′ from the tables (2) and (3), respectively, and
combine into w = (w′; w′′). Then w is singular except for the two cases

w + δ = (3, 2, 1; 0,−1,−2,−3) with p = q = 0

and

w + δ = (−1,−2,−3; 3, 2, 1, 0) with p = 6, q = 4.

The indices l(w) are equal to 0 and 12, respectively.
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(f) The homogeneous vector bundle
∧3 F ⊗

∧q(F(−1)) decomposes
in the following way:

(4)

q weightw′′ w′′ + δ′′

0 (0,−1,−1,−1) (0,−2,−3,−4)
1 (1, 0, 0,−1)⊕ (0, 0, 0, 0) (1,−1,−2,−4), (0,−1,−2,−3)
2 (2, 1, 0, 0)⊕ (1, 1, 1, 0) (2, 0,−2,−3), (1, 0,−1,−3)
3 (3, 1, 1, 1)⊕ (2, 2, 1, 1) (3, 0,−1,−2), (2, 1,−1,−2)
4 (3, 2, 2, 2) (3, 1, 0,−1)

Take w′ and w′′ from the table (2) and this table, respectively, and
consider w = (w′; w′′). Then w is singular except for the following three
cases.

i) p = q = 0, w + δ = (3, 2, 1; 0,−2,−3,−4), l(w) = 0,
ii) p = 0, q = 1, w + δ = (3, 2, 1; 0,−1,−2,−3), l(w) = 0, and
iii) p = 2, q = 0, w + δ = (2, 1,−1; 0,−2,−3,−4), l(w) = 1.
(g) The following table shows the indecomposable components of

sl(E) ⊗
∧p(2E(−1)) which do not appear in that of

∧p(2E(−1)).

(5)

p weightw′ other than Table (2) w′ + δ′

0 (1, 0,−1) (4, 2, 0)
1 2(1,−1,−2)⊕ 2(0, 0,−2) (4, 1,−1), (3, 2,−1)
2 4(0,−1,−3)⊕ (1,−2,−3) (3, 1,−2), (4, 0,−2)
3 2(0,−2,−4)⊕ 2(−1,−1,−4) (3, 0,−3), (2, 1,−3)

⊕2(0,−3,−3) (3,−1,−2)
4 (−1,−2,−5)⊕ 4(−1,−3,−4) (2, 0,−4), (2,−1,−3)
5 2(−2,−3,−5)⊕ 2(−2,−4,−4) (1,−1,−4), (1,−2,−3)
6 (−3,−4,−5) (0,−2,−4)

Take w′ and w′′ from the table (2) and this table, respectively, and
consider w = (w′; w′′). Then w is singular except for the case w + δ =
(3, 0,−3; 2, 1,−1,−2) with p = 3 and q = 2. The index is equal to
6. Q.E.D.

Let S ⊂ G(7, 3) be a complete intersection with respect to V =
2

∧2 E ⊕
∧3 F . The Koszul complex

K : OG ←− V∨ ←−
2∧
V∨ ←− · · · ←−

9∧
V∨ ←−

10∧
V∨ ←− 0

gives a resolution of the structure sheaf OS .
∧n V∨ is isomorphic to⊕

p+q=n

∧p(2E(−1)) ⊗
∧q(F(−1)).

Proposition 5. (a) H0(S,OS) = C, H1(S,OS) = 0.
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(b) The restriction map H0(G(7, 3),OG(1)) −→ H0(S,OS(1))is
surjective, H0(S,OS(1))is of dimension 14 and H1(S,OS(1))
= H2(S,OS(1)) = 0.

(c) The restriction map H0(G(7, 3), E) −→ H0(S, E) is an isomor-
phism and H1(S, E) = H2(S, E) = 0.

(d) The restriction map H0(G(7, 3),F) −→ H0(S, F ) is an iso-
morphism.

(e) H0(G(7, 3),
∧2 E) −→ H0(S,

∧2 E) is surjective and the kernel
is of dimension 2.

(f) H0(G(7, 3),
∧3 F) −→ H0(S,

∧3
F ) is surjective and the kernel

is of dimension 4.
(g) E is simple and semi-rigid, that is, H0(sl(E)) = 0 and

h1(sl(E)) = 2.

Proof. We prove (a) and (f) as sample. Other cases are similar.
(a) The restriction map H0(G(7, 3),OG) −→ H0(S,OS) is surjective

by the vanishing H1(V∨) = H2(
∧2 V∨) = · · · = H10(

∧10 V∨) = 0 and
the exact sequence 0 ←− OS ←− K. H1(S,OS) vanishes since H1(OG)
= H2(V∨) = · · · = H11(

∧10 V∨) = 0.
(f) The restriction map is surjective by the vanishing Hn(

∧3 F ⊗∧n V∨) for n = 1, . . . , 10 and the exact sequence

0 ←−
3∧

F ←−
3∧
F ⊗ K.

The dimension of the kernel is equal to

h0(
3∧
F ⊗ V∨) + h1(

3∧
F ⊗

2∧
V∨) = 1 + 3 = 4

since Hn−1(
∧3 F ⊗

∧n V∨) = 0 for n = 3, . . . , 10. Q.E.D.

§2. Proof of Theorems 1 and 2

Let S be the zero locus (s)0 of a general global section s of the
homogeneous vector bundle V =

∧2 E ⊕
∧2 E ⊕

∧3 F on the Grassman-
nian G(7, 3). Since V is generated by global sections, S is smooth by
[6, Theorem 1.10], the Bertini type theorem for vector bundles. Since
r(V) = 3 + 3 + 4 = dimG(7, 3) − 2 and

detV � OG(2) ⊗OG(2) ⊗OG(3) � detTG(7,3),

S is of dimension two and the canonical line bundle is trivial. By (a)
of Proposition 5, S is connected and regular. Hence S is a K3 sur-
face. We denote the class of hyperplane section by h. Then, by (b) of
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Proposition 5, we have χ(OS(h)) = 14, which implies (h2) = 24 by the
Riemann-Roch theorem. Hence we obtain the rational map

Ψ : P∗H
0(G(7, 3),V) · · · → F ′

13 s �→ ((s)0, h)

to the moduli space F ′
13 of polarized K3 surfaces which are not neces-

sarily primitive.
By (g) of Proposition 5, the vector bundle E = E|S is simple. Let

(S′, h′) be a small deformation of (S, h). Then there is a vector bun-
dle E′ on S′ which is a deformation of E by Proposition 4.1 of [6].
E′ enjoys many properties satisfied by E: E′ is simple, generated by
global sections, h0(E′) = 7,

∧3 H0(E′) −→ H0(
∧3 E′) is surjective, etc.

Therefore, E′ embeds S′ into G(7, 3) and S′ is also a complete intersec-
tion with respect to V . Hence the rational map Ψ is dominant onto an
irreducible component of F ′

13 and Theorem 1 follows from the following:

Proposition 6. The polarization h of (S, h), a complete intersec-
tion with respect to V in G(7, 3), is primitive.

In the local deformation space of (S, h), the deformations (S′, h′)’s
with Picard number one form a dense subset. More precisely, it is the
complement of an infinite but countable union of divisors. Hence we
have

Lemma 7. There exists a smooth complete intersection S with re-
spect to V whose Picard number is equal to one.

Proof of Proposition 6. Since the assertion is topological it suffices
to show it for one such (S, h). We take (S, h) as in this lemma. Assume
that h is not primitive. Since (h2) = 24, h is linearly equivalent to 2l
for a divisor class l with (l2) = 6. The Picard group Pic S is generated
by l. By the Riemann-Roch theorem and the (Kodaira) vanishing, we
have h0(OS(nl)) = 3n2 + 2 for n ≥ 1.

Claim 1. h0(E(−l)) = 0.
Assume the contrary. Then E contains a subsheaf isomorphic to

OS(nl) with n ≥ 1. Since h0(OS(nl)) ≤ h0(E) = 7, we have n = 1 and
the quotient sheaf Q = E/OS(l) is torsion free. Since 5 = h0(OS(l)) <
h0(E) = 7, we have H0(Q) �= 0. Since Q is of rank two and detQ �
OS(l), we have Hom(Q,OS(l)) �= 0, which contradicts (g) of Proposi-
tion 5.

Now we consider the vector bundle M = (
∧2

E)(−l). By the
claim and the Serre duality, we have h2(M) = dim Hom(M,OS) =
h0(E(−l)) = 0. Hence we have h0(M) ≥ χ(M) = 4. Take 4 linearly
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independent global sections of M and we consider the homomorphism
ϕ : 4OS −→ M .

Claim 2. ϕ is surjective outside a finite set of points on S.
Let r be the rank of the image of ϕ. Since Hom(OS(l), M) =

H0(
∧2

E)(−h)) = H0(E∨) = H2(E)∨ = 0 by (c) of Proposition 5,
we have r ≥ 2. Since Hom(M,OS) = 0, r = 2 is impossible. Hence
we have r = 3. Since the image and M have the same determinant line
bundle (� OS(l)), the cokernel of ϕ is supported by a finite set of points.

The kernel of ϕ is a line bundle by the claim. It is isomorphic to
OS(−l). Hence we have the exact sequence

0 −→ OS(−l) −→ 4OS
ϕ−→ M.

Since χ(Cokerϕ) = 3 < χ(M), ϕ is not surjective. In fact, the cokernel
is a skyscraper sheaf supported at a point. Tensoring OS(l), we have
the exact sequence

0 −→ OS −→ 4OS(l)
ϕ(l)−→

2∧
E −→ C(p) −→ 0.

H0(ϕ(l)) is surjective since h0(4OS(l)) = 20 and h0(
∧2

E) = 19. But
this contradicts (e) of Proposition 5. Q.E.D.

Proof of Theorem 2. Let P = 〈σ1, σ2〉 be a general 2-dimensional
subspace of

∧2 C7 and X6 ⊂ G(7, 3) the common zero locus of the
two global sections of

∧2 E corresponding to σ1 and σ2. A point q of
P∗(

∧3 C7,∨/P ∧ P ) determines a global section of
∧3 F|X . We denote

the zero locus by Sq ⊂ X6.

Sq ⊂ X6 ⊂ G(7, 3)
∩ ∩ ∩

P13 ⊂ P20 ⊂ P34

The restriction of E to Sq is semi-rigid by (g) of Proposition 5. Let
Ξ31 ⊂ P∗(

∧3 C7,∨/P ∧ P ) be the open subset consisting of points q such
that Sq is a K3 surface and the restriction E|Sq is stable with respect to
h.

Lemma 8. Ξ31 is not empty.

Proof. Let (S, h) be as in Lemma 7 and put E = E|S . Then, by
Proposition 6, PicS is generated by h. Since h0(OS(h)) = 14 > h0(E) =
7, we have Hom(OS(nh), E) = 0 for every integer n ≥ 1/3. Since
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c1(E) = h and since Hom(E,OS(nh)) = 0 for every integer n ≤ 1/3, E
is stable. Q.E.D.

The correspondence q �→ E|Sq induces a morphism from a general
fiber of Ξ31/G · · · → F13 at [Sq] to the moduli space MS(3, h, 4) of semi-
rigid bundles. Conversely there exists a morphism from a non-empty
open subset of MS(3, h, 4) to the fiber since a small deformation E′ of
E|Sq gives an embedding of Sq into G(7, 3) such that the image is a
complete intersection with respect to V .

Remark 3. By (f) of Proposition 5, H0(X6,
∧3 F|X) is isomorphic

to
∧3 C7,∨/P ∧ P . Hence the rational map ψ in (1) coincides with

P∗(H0(X6,
∧3 F|X))/G · · · → F13 induced by s �→ (s)0.

§3. K3 surface of genus seven and twelve

We describe two cases g = 7 and 12 closely related with Theorems
1 and 2. The proofs are quite similar to the cases g = 13 and 18,
respectively, and we omit them.

First a polarized K3 surface of genus 7 has the following description
other than that in the orthogonal Grassmannian O-G(5, 10):

Theorem 9. A general polarized K3 surface (S, h) of genus 7 is a
complete intersection with respect to the rank four homogeneous vector
bundle 2OG(1) ⊕ E(1) in the 6-dimensional Grassmannian G(5, 2).

S is the common zero locus of two hyperplane sections H1 and H2 of
G(5, 2) ⊂ P9 corresponding to σ1, σ2 ∈

∧2 C5 and one global section s

of E(1). The 2-dimensional subspace P = 〈σ1, σ2〉 ⊂
∧2 C5 is uniquely

determined by S and X4 = G(5, 2) ∩ H1 ∩ H2 is a quintic del Pezzo
fourfold. Let Q be the image of C5 ⊗ P by the natural linear map
C7 ⊗

∧2 C7 −→ H0(E(1)). Then Q is of dimension 10 and we obtain
the natural rational map

(6) P∗(H0(E(1))/Q)/G8 = P∗(H0(E(1)|X))/G8 · · · → F7

as in the case g = 13, where G8 is the general stabilizer group of the
action PGL(5) � G(2,

∧2 C5). H0(E(1)) is a 40-dimensional irreducible
representation of GL(5) by Theorem 3. The fiber of the map (6) at
general (S, h) is a surface and birationally equivalent to the moduli K3
surface MS(2, h, 3) of semi-rigid rank two vector bundles with c1 = h
and χ = 2 + 3.

Secondly, in the 12-dimensional Grassmannian G(7, 3), there is an-
other type of K3 complete intersection other than Theorem 1.
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Theorem 10. A general member (S, h) ∈ F12 is a complete inter-
section with respect to V10 = 3

∧2 E ⊕ OG(1) in G(7, 3).

S is the common zero locus of the three global sections of
∧2 E cor-

responding to general bivectors σ1, σ2, σ3 ∈
∧2 C7. The 3-dimensional

subspace N = 〈σ1, σ2, σ3〉 ⊂
∧2 C7 is uniquely determined by S. The

common zero locus XN of the global sections of
∧2 E corresponding to N

is a Fano threefold and is embedded into P13 anti-canonically. XN ’s are
parameterized by an open set Ξ6 of the orbit space G(3,

∧2 C7)/PGL(7).
See [5] for other descriptions of XN ’s and their moduli spaces. The mod-
uli space F12 is birationally equivalent to a P13-bundle over this Ξ6.
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Abstract.

In this paper we present a survey of rigid geometry. Here, spe-
cial emphasis is put on the so-called “birational approach” to rigid
geometry, which adopts classical methods of birational geometry to
the theory of rigid spaces. The paper is divided into three parts.
Part I is a general introduction to rigid geometry a la J. Tate and M.
Raynaud. In Part II we are to overview the birational approach to
rigid geometry, which combines the idea of Raynaud and that of O.
Zariski, as one of the conceptual starting points of rigid geometry. In
Part III we discuss some applications, which reveal the effectiveness
of the ideas in rigid geometry that arise from our viewpoint.
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Part I. Classical rigid analytic geometry

§1. What is rigid geometry?

1.1. Introduction

It is well-known that the field Q of rational numbers admits for any
prime number p a so-called p-adic norm |·|p, and they together with
the usual absolute value norm |·|∞ constitute the complete list of non-
trivial norms on Q up to equivalence. The completion of Q by the usual
absolute value |·|∞ yields the field R of real numbers, and its algebraic
closure C, the field of complex numbers. These complete fields are at
the bases of real and complex analytic geometries. As the absolute value
norm is merely one of infinitely many possible norms on Q, it is only
natural to imagine a similar realm of analytic geometries arising from
p-adic norms. The completion of Q by the p-adic norm |·|p is the field Qp

of p-adic numbers, and the p-adic counterpart of the field C of complex
numbers, denoted by Cp, is the completion of the algebraic closure of
Qp. Note that it is not simply the algebraic closure Qp, since that turns
out not to be complete with respect to the unique extension of the p-
adic norm. Assuming the existence of analytic geometry based on the
complete fields Qp and Cp corresponding to real and complex analysis,
one would, thus, finally arrive at the diagram starting from Q as in
Figure 1. The vacant slot in the diagram is actually occupied by rigid

Q

��������������

�������������

R Qp

C

��
��
��

Cp

����
��

Real-Complex
analytic geometry ?

Fig. 1. Dichotomy between real-complex world and p-adic
world
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geometry,1 which provides a systematic theory for analytic geometry
over complete non-archimedean valued fields, not only Qp and Cp.

Table 1 shows points of similarity between the fields C and Cp, which
are considered to be important in the genesis of analytic geometry. As

Table 1. C vs Cp

C Cp

Algebraically closed Algebraically closed

Complete with respect
to absolute value |·|∞

Complete with respect
to p-adic norm |·|p

the table shows, Cp is algebraically closed2 and complete. By complete-
ness one can speak of convergent power series and functions expressed
by them, which are, as in complex analysis, the fundamental things to
consider also in rigid analytic geometry.

1.2. Why analytic geometry?
But, already having nice analytic geometry on the real-complex side,

why do we need to consider analytic geometry also on the p-adic side? It
turns out that the reason mainly comes from number-theoretic consid-
erations. This is best explained in the context of uniformization, which
is one of the useful techniques that reveal already in complex analytic
geometry the true value of analytic methods.

Let us first briefly recall complex analytic uniformization of elliptic
curves:

• regarded as a compact Riemann surface, an elliptic curve over
C is realized as a quotient C/Λ, where Λ is a lattice in C of the
form Λ = 2π

√
−1(Z + Z · τ) for τ ∈ H = {z ∈ C | Im z > 0};

• another way of analytic representation is provided by the quo-
tient C× → C×/qZ = C/Λ, where q = exp(2π

√
−1τ), which

factorizes the previously mentioned quotient map C → C/Λ
through the exponential mapping exp( · ) : C → C×.

Whereas rigid analytic geometry over Cp fails to have an analogue
of the first uniformization, it actually affords that of the second, the
so-called Tate’s uniformization, given by a quotient of the form C×

p →

1The reason for the adjective “rigid” will be explained later (cf. §2.4).
2The non-trivial fact that Cp is algebraically closed is due to Krasner.
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C×
p /qZ with q ∈ C×

q , |q|p < 1, of which Tate was able to give an analytic
description [41]. In fact, we have the Weierstrass ℘-function on C×

p

defined by the usual (but transcribed by the coordinate change w =
e2π

√
−1z) formula, which induces the following commutative diagram

C×
p

(℘:℘′:1) ��

����
��

��
�

P2(Cp)

C×
p /qZ,

���
�

�
�

where the dashed arrow embeds C×
p /qZ in P2(Cp) onto a cubic curve.

The analytic curve C×
p /qZ thus obtained is called a Tate curve.

Remark 1.1. Contrary to the complex case, not all elliptic curves
can be realized as Tate curves. It is known that an elliptic curve E over
Cp is realized as a Tate curve if and only if |j(E)|p > 1, where j(E)
denotes the j-invariant of E; note that the last condition is equivalent
to E having multiplicative reduction.

Now we return to our first question: why do we need analytic geome-
try on the p-adic side? Consider an elliptic curve E over Q. The complex
analytic method tells us that the Riemann surface E(C) is a complex
torus, and gives us several useful analytical and topological properties.
On the p-adic side, on the other hand, assuming that there exists a
prime p at which E has multiplicative reduction, we know that E(Qp)
is written in the form Q×

p /qZ (by the Qp-rational version of Tate’s uni-
formization). This representation of E allows one to have a good grasp
on rational points on E; for example, one is able to show at a glance
that the torsion part of E(Q) is a finite group (Nagell-Lutz Theorem;
this is, however not the way they proved it).

One can therefore expect in general that for an algebraic variety X
over a number field, rigid analytic geometry reveals number-theoretic
information hidden behind X , and thus compensates for properties that
complex analytic geometry fails to capture. This is the reason why rigid
analytic geometry is useful.

The Tate curve C×
p /qZ is our first example of a rigid analytic space,

which will appear again and again in the sequel. Also for Tate, this curve
was actually the starting point that led him to discover rigid analytic
geometry. In the next section, we will overview Tate’s theory of rigid
analytic geometry [40], and will see at the end (in Example 2.15) how
the above picture is justified.
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§2. Tate’s rigid analytic geometry

2.1. Non-archimedean valued fields
The above-mentioned normed fields (Qp, |·|p) and (Cp, |·|p) are ex-

amples of so-called complete non-archimedean valued fields with non-
trivial valuation, which are one of the basic cornerstones of Tate’s rigid
analytic geometry.

By a non-archimedean valued field we mean a pair (K, |·|) consisting
of a field K and a non-archimedean norm |·|, that is, a mapping |·| : K →
R≥0 such that

(1) |x| = 0 ⇐⇒ x = 0;
(2) |xy| = |x||y|;
(3) |x + y| ≤ max{|x|, |y|},

for any x, y ∈ K. The norm |·| is said to be non-trivial if |K×| �= {1}.
Finally, we need to assume that (K, |·|) is complete, that is, K is complete
with respect to the norm |·|.

Example 2.1. Let V be a complete discrete valuation ring, and K
its field of fractions. As usual, the field K comes with a discrete valuation
v : K → Z∪{∞}, which induces the corresponding norm |·|v : K → R≥0

by the formula |x|v = e−v(x) for any x ∈ K, where e is a real number
with e > 1. Then the pair (K, |·|v) is a complete non-archimedean valued
field with non-trivial valuation.

The p-adic number field (Qp, |·|p) together with the p-adic norm is an
example of this kind. Another such example is provided by (k((x)), |·|x),
where k((x)) is the fractional field of V = k[[x]], the ring of formal
power series over a field k endowed with the x-adic valuation. These
are examples of complete discrete valuation fields, which the reader is
invited to always bear in mind.

Similarly to the construction of Cp, the completion CK of the alge-
braic closure of the valuation field K from Example 2.1 is algebraically
closed, and the resulting pair (CK , |·|v) provides another example of a
complete non-archimedean valued field with non-trivial valuation.

Notice that one can perform a similar construction as in Example
2.1 starting from a valuation ring V of height 1 (but not necessarily
discrete), that is, the fractional field K has a valuation of the form
v : K → R ∪ {∞}.3

In the sequel of this section, K denotes a complete non-archimedean
valued fields with non-trivial valuation.

3For generalities of valuations, we refer to [7, Chap. VI] and [46, Chap.
VI].
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2.2. Basic idea
Tate modeled his rigid analytic geometry on the geometry of schemes

in the sense that his rigid analytic spaces are constructed by gluing
certain “affine” objects. As such objects are defined, like affine schemes,
as certain spectra of rings of some kind, one can say that Tate’s rigid
analytic geometry belongs to the general trend of understanding spaces
as spectra of rings, the historical origin of which can be traced back to
Gelfand. A consequence of this is the seemingly strange-looking fact
that Tate’s rigid analytic geometry is better understood in analogy with
classical algebraic geometry over a field k than with complex analytic
geometry.

Table 2. Comparison between algebraic geometry and rigid
geometry (the italic-written items are explained in
the text.)

Algebraic geometry /k Rigid geometry /K

Function
algebra

Finitely generated
algebra A/k

Topologically finitely
generated algebra A/K
(called: affinoid algebra)

Points
(Naive)

Maximal ideals of A
(with Zariski topology)

Maximal ideals of A
(with admissible

topology)

Building
block

Affine variety
(SpecmA, OX)

Affinoid
(Spm A, OX)

The rings that rigid analytic geometry deals with, which in algebraic
geometry correspond to finitely generated algebras over k, are the so-
called affinoid algebras,4 which are by definition topologically finitely
generated algebras over K (cf. Definition 2.4). Similarly to algebraic
geometry, Tate’s rigid analytic geometry takes the maximal ideals of A
as the spectrum. As a counterpart of Zariski topology, we have the so-
called admissible topology, which is, however, not a topology in the naive
sense, but is actually a Grothendieck topology.5 Finally, the maximal

4In some literature, affinoid algebras are called Tate algebras. Here we
follow the terminology of [5], where Tate algebra means affinoid algebra of a
special kind; cf. Definition 2.3.

5That one has to use a Grothendieck topology is a fatal drawback of Tate’s
theory, which makes the theory look extremely difficult. It is one of our aims
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spectrum SpmA together with a suitably defined structure sheaf with
respect to the admissible topology provides the basic building block
of general analytic spaces in a similar way that varieties in algebraic
geometry are constructed by gluing affine varieties. The building block
thus obtained is called an affinoid.

Remark 2.2. Notwithstanding the perfect looking comparison with
algebraic geometry, there is in fact no a priori reason in rigid geometry
why one should take maximal ideals as points, and one could even say
that here lies a serious problem of Tate’s approach. In fact, Tate’s rigid
analytic spaces in general are severely deficient in points, and it is for
this reason that one has to use Grothendieck topology as the natural
topology to think about. This mismatching of points and topology leads
to several problems: for instance, points of Tate’s rigid analytic spaces
are not enough to detect abelian sheaves with respect to the admissible
topology.

As a matter of fact, there are many more approaches to rigid geom-
etry, including ours (which will be explained later), and one of the most
important differences between these approaches lies in what to choose as
points. Namely, the notion of points in rigid analytic geometry depends
entirely on the way one approaches it. Thus one can say that it is only
due to Tate’s way of approaching rigid geometry that one takes maxi-
mal ideals as points. This means, in other words, that another choice
of points would avoid Grothendieck topology. We will see that this is in
fact the case.6

2.3. Affinoid algebras
The most important example of affinoid algebras, which plays the

role of polynomial rings in algebraic geometry, is the so-called Tate al-
gebra.

Definition 2.3 (Tate algebra).

K〈〈T1, . . . , Tn〉〉

=
{ ∑

ν1,...,νn≥0 aν1,...,νnT ν1
1 · · ·T νn

n |aν1,...,νn | → 0 as
∈ K[[T1, . . . , Tn]] ν1 + · · · + νn → ∞

}
.

of this paper to show that it is by no means essential to use Grothendieck
topologies in developing rigid geometry. See Remark 2.2.

6Here we would like to stress that, nevertheless, it is not our intension
to defy Tate’s approach; each approach has its own advantage and drawback.
Rather, we believe that a good attitude is to have various approaches at one’s
disposal and to feel free in choosing one of them depending on the situation.
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The similarity with the polynomial ring comes from the fact that
the Tate algebra K〈〈T1, . . . , Tn〉〉 is the K-algebra consisting of power
series converging absolutely and uniformly on the closed unit polydisk
{(z1, . . . , zn) ∈ Kn | |zi| ≤ 1 for 1 ≤ i ≤ n} in Kn.7 Assume for sim-
plicity that K is algebraically closed. Then the set of all maximal ideals
of K〈〈T1, . . . , Tn〉〉 coincides with the closed unit polydisk (this follows
from the weak Nullstellensatz for affinoid algebras stated below). The
corresponding affinoid is, therefore, underlain by this set. Table 3 shows
the dictionary for comparison between the polynomial ring and the Tate
algebra.

Table 3. Polynomial ring vs Tate algebra

Algebraic geometry /k = k Rigid geometry /K = K

k[X1, . . . , Xn] K〈〈X1, . . . , Xn〉〉

kn (z1, . . . , zn) ∈ Kn

with |zi| ≤ 1

An
k

affine space
Dn

K

closed unit polydisk

Basic properties. Here we list some basic properties of the Tate al-
gebra; one finds more in [5, Chap. 5]:

• it is a K-Banach algebra endowed with the so-called Gauss
norm:

‖
∑

ν1,...,νn≥0

aν1,...,νnT ν1
1 · · ·T νn

n ‖ = sup
ν1,...,νn≥0

|aν1,...,νn |;

• it is Noetherian, and every ideal is closed with respect to the
topology induced by the Gauss norm.

Definition 2.4 (Affinoid algebra). An affinoid algebra is a K-algebra
of the form

A = K〈〈T1, . . . , Tn〉〉/I

for some n, where I is an ideal. This is a K-Banach algebra by the norm
induced from the Gauss norm.

7Note that this set is an open subset of Kn with respect to the metric
topology.
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Among several basic properties of affinoid algebras, we mention the
analogue of Noether’s normalization theorem ([5, 6.1.2]):

• (Noether’s normalization theorem for affinoid algebras) for any
affinoid algebra A over K there exists a finite injective K-
algebra homomorphism

K〈〈T1, . . . , Td〉〉 −→ A

for some d ≥ 0.
By this we have the following property, which implies the functoriality
of taking the maximal spectrum:

• (Weak Nullstellensatz for affinoid algebras) for any maximal
ideal m of A, the residue field A/m is a finite extension of K.

2.4. Wobbly topology
For an affinoid algebra A we set Spm A to be the set of all maximal

ideals of A. For any K-algebra homomorphism A → B between affinoid
algebras8 we have an induced mapping SpmB → SpmA. As usual, any
element f of A is regarded as a function on the set SpmA; since for any
x ∈ SpmA the residue field at x is a finite extension of K and thus admits
a unique extension of the norm |·|, one can put |f(x)| = |f mod x|. For
any f, g ∈ A we set

R(f, g) = {x ∈ SpmA | |f(x)| ≤ |g(x)|}.

As a subset of Spm A, we have

R(f, g) = SpmA〈〈X〉〉/(gX − f),

where A〈〈X〉〉 denotes the ring A⊗̂KK〈〈X〉〉. The ring A〈〈X〉〉/(gX − f),
which is again an affinoid algebra, is often abbreviated as A〈〈f

g 〉〉.

Definition 2.5 (Wobbly topology). The wobbly topology on the set
SpmA is the topology having {R(f, g)}f,g∈A as open basis.

Example 2.6. Suppose for simplicity that K is algebraically closed,
and consider Dn

K = SpmK〈〈X1, . . . , Xn〉〉, which is identified as a set
with the closed unit polydisk in Kn. Then one sees easily that the
wobbly topology on Dn

K coincides with the topology induced from the
metric topology on Kn (which is, as is well-known, totally disconnected).

8Any K-algebra homomorphism between affinoid algebras is automati-
cally continuous.
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Difficulties. As Example 2.6 indicates, the wobbly topology is not
such a good topology; for example:

• SpmA with the wobbly topology is, in most cases, not quasi-
compact, which would be troublesome when one considers glu-
ing;

• the presheaf R(f, g) �→ A〈〈 f
g 〉〉, which comes as the most natural

candidate for the structure sheaf on Spm A, is in general not a
sheaf.

These difficulties come from the fact that the wobbly topology is some-
what too fine. Indeed, considering the sheafification of the above presheaf,
we would get a ring of functions on Spm A that is much larger than A
itself, which contradicts our basic requirement that A should be the ring
of all “holomorphic” functions on Spm A. In other words, the wobbly
topology leads to a very feeble notion of analytic functions. Hence, to
obtain a reasonable theory of analysis, one has to “rigidify” the notion
of analytic functions,9 and, to this end, one wants to replace the wobbly
topology with a more legitimate one.

2.5. Admissible topology

In 1961 Tate [40] overcame the above-mentioned difficulties by in-
troducing the so-called admissible topology. The admissible topology is,
in short, a Grothendieck topology that is

• weaker than the wobbly topology,
• the strongest one that makes each R(f, g) quasi-compact.

The actual definition is given as follows.

Definition 2.7 (Admissible site). Let AK be the category of affinoid
algebras over K and K-algebra homomorphisms. For any object A of
AK , we denote by SpmA the same object considered as an object of the
opposite category A

opp
K . We define a Grothendieck topology on A

opp
K as

follows: a finite collection {SpmAi → SpmA}i∈I of morphisms in A
opp
K

is a covering of SpmA if and only if

(1) each Ai is étale over A (see, for example, [17, §8.1] for the
definition of étaleness);

(2) SpmAi → SpmA is injective for each i and induces an isomor-
phism between the residue fields at each point of Spm Ai;

(3) SpmA =
⋃

i∈I Spm Ai.

We denote the resulting site by A
opp
K,ad.

9This is the reason for the name “rigid” geometry.
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Here is a typical example of coverings in the admissible site. Let A
be an affinoid algebra over K, and f0, . . . , fn ∈ A elements of A such
that (f0, . . . , fn) = A. Set

Ai = A〈〈X0, . . . , X̂i, . . . , Xn〉〉/(fiXj − fj | j �= i).

Then the collection {SpmAi → SpmA}0≤i≤n is a covering in the site
A

opp
K,ad; for each i, the image of SpmAi → SpmA is given as {x ∈

SpmA | |fi(x)| ≥ |fj(x)| for j �= i}. Let us denote this covering by
R(f0, . . . , fn).

Theorem 2.8 (Gerritzen-Grauert). Any covering family {SpmAi →
SpmA}i∈I in the site A

opp
K,ad has a refinement to a covering of the form

R(f0, . . . , fn) for some f0, . . . , fn ∈ A.

Another version of the Gerritzen-Grauert theorem will be stated in
Corollary 6.21 below.

Affinoids and general rigid spaces. For an affinoid algebra A over K,
consider the presheaf OSpm A on the comma site (Aopp

K,ad)Spm A defined by

OSpm A : (Spm B → SpmA) �→ B.

The following theorem says that the admissible topology defined above
is the good one in the sense that it gives rise to the correct notion of
“holomorphic” functions.

Theorem 2.9 (Tate’s acyclicity theorem). The presheaf OSpm A is
a sheaf on (Aopp

K,ad)Spm A with respect to the admissible topology.

Definition 2.10 (Tate’s rigid analytic space). (1) A representable
sheaf on the site A

opp
K,ad is called an affinoid.

(2) A map Y ↪→ X between affinoids is said to be an open immer-
sion if, identified with a morphism in the category A

opp
K , it satisfies the

conditions (1) and (2) in Definition 2.7.
(3) A sheaf X of sets on the site A

opp
K,ad is called a (Tate’s) rigid

analytic space if there exists a surjective map of sheaves∐
i∈I

Yi −→ X ,

where Yi for each i ∈ I is an affinoid, such that, for each i, j ∈ I, the
projection Yi ×X Yj → Yi is isomorphic to the limit of a filtered direct
system {Uλ → Yi}λ∈Λ of maps between affinoids such that all maps in
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the commutative diagram for µ ≤ λ

Uλ
�� Yi

Uµ

�� ��������

are open immersions.

In other words, Tate’s rigid analytic spaces are constructed by gluing
affinoids. As the definition indicates, it allows non-separated or non-
quasi-separated gluing.

Remark 2.11. In Tate’s original approach, rigid analytic spaces are
regarded as local ringed spaces with Grothendieck topology.10 For ex-
ample, an affinoid is such a space isomorphic to the one given by the
data (Spm A, TA, OSpm A) consisting of the set Spm A, the Grothendieck
topology TA (equivalent to the admissible topology in our sense), and
the sheaf of rings (essentially the same as the one that we have given
above). General rigid analytic spaces are obtained by gluing these spaces
with respect to what is called the strong topology. This viewpoint of rigid
analytic geometry is surely useful. But one has to be careful, since, as we
have already seen in Remark 2.2, the point set SpmA is not the correct
“underlying set” for the affinoid Spm A.

In the sequel, for brevity and conformity with the usual notation,
we denote the affinoid SpmA simply by Spm A.

2.6. Examples

Example 2.12 (Annulus). An annulus is an affinoid that is, if K
is algebraically closed, supported on the set

{z ∈ K | |a| ≤ |z| ≤ |b|}

with a, b ∈ K. The corresponding affinoid algebra is given by

K〈〈a
z , z

b 〉〉 = K〈〈X, Y 〉〉/(XY − a
b ).

Note that, since it is an affinoid, it is quasi-compact.

In general, a rigid analytic space is said to be quasi-compact if it has
an admissible covering consisting of finitely many affinoids.

10See [5, 9.1] for what “Grothendieck topology” means here.
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Example 2.13 (Affine line). An affine line A1,an
K in rigid analytic

geometry is realized as, for example, the limit of concentric closed disks,
each of which is an affinoid:

A1,an
K = lim−→

n≥1

SpmK〈〈anz〉〉,

where a is an element of K with |a| < 1. This of course reflects the
equality

K =
⋃
n≥1

D(0, |a|−n),

where D(0, r) = {z ∈ K | |z| ≤ r}. The affine line A1,an
K is not quasi-

compact.

Example 2.14 (Multiplicative group). Let a ∈ K be as above. The
multiplicative group K× is regarded as the union of countably many
annuli:

K× =
⋃
n≥1

{z ∈ K | |a|n ≤ |z| ≤ |a|−n}

=
⋃
n∈Z

{z ∈ K | |a|n+1 ≤ |z| ≤ |a|n}.

Taking up, for example, the latter description, one defines

Gan
m,K =

⋃
n∈Z Spm K〈〈an+1

z , z
an 〉〉.

This is again a rigid analytic space that is not quasi-compact.

Example 2.15 (Tate curve). The last description of the rigid ana-
lytic multiplicative group Gan

m,K allows one to display the analytic struc-
ture of the Tate curve discussed in §1.2. For q ∈ K with |q| < 1,
the Tate curve is given by Gan

m,K/qZ. In order to describe an analytic
covering, take a ∈ K such that |a|k = |q| for some k ≥ 2 and the an-
alytic covering Gan

m,K =
⋃

n∈Z An considered in Example 2.14, where

An = SpmK〈〈an+1

z , z
an 〉〉. Multiplication by q maps each An isomorphi-

cally onto An+k. Thus, Gan
m,K/qZ is written as the union of k annuli,

glued together by identifying the “exterior” boundary component with
the “interior” boundary component of another one. In particular, it is
a quasi-compact rigid analytic space.

As mentioned at the end of §1, one of Tate’s goals in formulating
rigid analytic geometry was to give a legitimate way of regarding C×

p /qZ

as an “analytification” of an elliptic curve. This was done in the last
example.
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§3. Raynaud’s approach to rigid geometry

3.1. Formal models of affinoids
The moral basis of the p-adic counterpart of real-complex analytic

geometry, leading to the saga of Tate’s theory of rigid analytic geometry,
was, as we have seen in §1.1, the similarity between the complex number
field C and its p-adic counterpart Cp, as listed in Table 1. Now we change
our view to the completely opposite direction, and rather pay attention
to differences between C and Cp. The most important difference is that
Cp has, while C does not, the subring consisting of integral elements,
that is, elements of norm ≤ 1 (Table 4). Similarly, any affinoid algebras,

Table 4. C vs Cp (continued)

C Cp

� ∃ integer ring ∃ integer ring

unlike function algebras in real-complex analysis, have a “model” over
the integer ring. This observation, however simple it might look, is the
starting point of Raynaud’s approach to rigid analytic geometry, which,
as we will see, leads to a bold shift of viewpoint.

Situation. In the sequel of this section we work in the following
situation:

• V is a valuation ring of height 1 that is complete with respect to
the a-adic topology for an element a belonging to the maximal
ideal mV ;

• we set K = Frac(V ) (the field of fractions), which has the a-
adic norm |·| and is complete with respect to the metric topol-
ogy induced from this norm.

Note that a valuation ring V of arbitrary height is a-adically sepa-
rated if and only if V [ 1a ] is a field (and hence coincides with Frac(V )).

Example 3.1. The typical example is provided by a complete dis-
crete valuation ring V with π-adic topology, where π is a generator of
the maximal ideal (uniformizer). The corresponding norm |·| on the
fractional field K coincides with the one as in Example 2.1 up to equiv-
alence.

In this situation, for any topologically finitely generated V -algebra
A, we obtain an affinoid algebra

AK = A ⊗V K
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over K. Here, a V -algebra A is said to be topologically finitely generated
if it is a quotient by an ideal of an algebra of the form V 〈〈X1, . . . , Xn〉〉,
the a-adic completion of the polynomial ring V [X1, . . . , Xn].

In general, let A be an affinoid algebra over K. A formal model of A
is a topologically finitely generated V -algebra A such that AK = A⊗V K
is isomorphic to A as a K-algebra. If, in addition, A is flat over V , or
what amounts to the same, A is a-torsion free, then we say that A is
a distinguished (or flat) formal model of A . For example, the alge-
bra V 〈〈X1, . . . , Xn〉〉 is a distinguished formal model of the Tate algebra
K〈〈X1, . . . , Xn〉〉. Any affinoid algebra has a distinguished formal model;
indeed, if it is given as K〈〈X1, . . . , Xn〉〉/I with I = (f1, . . . , fr) finitely
generated (recall that the Tate algebra is Noetherian), by multiplying
each fi with a power of a, one can assume fi ∈ V 〈〈X1, . . . , Xn〉〉 and
then A/Aa-tor, where A = V 〈〈X1, . . . , Xn〉〉/(f1, . . . , fr), gives a desired
formal model.

Remark 3.2. It is known that, if a topologically finitely generated V -
algebra A is flat, then it is actually topologically finitely presented ([6]).
As it is also known that any finitely generated ideal of V 〈〈X1, . . . , Xn〉〉
is closed with respect to the a-adic topology (i.e. the Artin-Rees lemma
is valid for finitely generated ideals; cf. [18]), any topologically finitely
generated flat V -algebra is complete with respect to the a-adic topology.

3.2. Raynaud’s functor
Let X = Spf A be an affine flat formal scheme of finite type over

Spf V , where V is considered with some a-adic topology. Then, as we
have seen, AK = A⊗V K is an affinoid algebra, and thus we can consider
the corresponding affinoid XK = SpmAK over K. This correspondence
X �→ XK is globalized in the following way.

Consider the localization A{f} by an element f ∈ A, that is, the
a-adic completion of Af . Note that we have11

A{f} = A〈〈X〉〉/(fX − 1).

Therefore, the corresponding affinoid Spm(A{f})K is nothing but R(1, f)
(cf. §2.4), an admissible open subset of SpmAK with respect to the
admissible topology. Hence, by patching, one obtains a functor

X �→ XK

11Indeed, while the a-adic completion of A〈〈X〉〉/(fX − 1) obviously co-
incides with A{f}, as we have mentioned in Remark 3.2, A〈〈X〉〉/(fX − 1) is

already complete, whence the equality.
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from the category of coherent (= quasi-compact and quasi-separated)
flat formal schemes of finite type over V to the category of Tate’s rigid
spaces over K ([37]). This functor is called the Raynaud functor, and
the rigid space XK associated to X is the Raynaud generic fiber of X .
Put in the other way, when a rigid space X is isomorphic to XK for a
flat formal scheme X as above, we say that X is a (distinguished) formal
model of X .

Note that, by the definition of the functor, if X has an affine covering
X =

⋃
i∈I Ui, then we get an admissible covering XK =

⋃
i∈I Ui,K . Let

us call this covering of XK the admissible covering induced from the
affine covering {Ui}i∈I of X .

Example 3.3. Let V be as in Example 3.1, and consider a semi-
stable curve E → Spec V such that the generic fiber Eη is an elliptic
curve over K, and that the closed fiber E0 is the union of non-singular
rational curves arranged as type Ik in Kodaira’s classification. Consider
the formal completion Ê along the closed fiber E0. It admits the affine
covering Ê =

⋃k
n=1 Un, where each Un = Spf V 〈〈πn+1

z , z
πn 〉〉 is isomorphic

to Spf V 〈〈X, Y 〉〉/(XY − π). The corresponding rigid space E = ÊK

is the Tate curve, which has the induced admissible covering Un,K =
SpmK〈〈πn+1

z , z
πn 〉〉. Note that this rigid analytic space E , as well as the

admissible covering, is nothing but the one we have already described in
Example 2.15.

3.3. Zariski topology vs admissible topology
Needless to say, there may be many choices of formal models for

a given rigid space, and this diversity of choice is, in fact, reflected in
diversity of choice of admissible coverings of the rigid space. To see this,
let us first establish a typical change of formal models.

Admissible blow-up. Let X be a formal scheme of finite type over
V . An admissible ideal is a quasi-coherent open ideal J of OX of finite
type. For an admissible ideal J , the admissible blow-up along J is the
morphism of formal schemes

X ′ = lim−→
k≥0

Proj

⎛⎝⊕
n≥0

J n ⊗ OXk

⎞⎠ −→ X,

where Xk = (X, OX/ak+1OX). If, for instance, X = Spf A is affine,
then J is of the form12 J∆ for a uniquely determined finitely generated

12Here we followed the commonly used notation as in [EGA, Inew,
(10.10)].
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ideal J of A that contains a power of a, and the admissible blow-up
X ′ → X is nothing but the a-adic completion of the usual blow-up
Y ′ = Proj

⊕
n≥0 Jn → Y = Spec A.

Example 3.4. Consider X = Spf V 〈〈z〉〉. The corresponding rigid
space XK is the “closed unit disk” D1

K = Spm K〈〈z〉〉. Consider the
admissible ideal J = (X, a) of V 〈〈z〉〉. The admissible blow-up X ′

along J is the union of two affine subsets U = Spf V 〈〈 z
a 〉〉 and W =

Spf V 〈〈z, a
z 〉〉 = Spf V 〈〈z, w〉〉/(zw − a). The resulting rigid space X ′

K is
therefore covered by two admissible open subsets UK = Spm K〈〈 z

a 〉〉 and
WK = SpmK〈〈z, a

z 〉〉; UK is again a closed disk but having a different
radius equal to |a|, and WK is a closed annulus “{z ∈ K | |a| ≤ |z| ≤ 1}”.
Thus the rigid space X ′

K is isomorphic to XK . The difference is that,
while XK was considered as rigid space by the trivial covering (the cov-
ering by itself), X ′

K has the non-trivial induced covering {UK , WK}.
As indicated in Example 3.4, whereas an admissible blow-up does

not change the Raynaud generic fiber, viz. for a coherent (= quasi-
compact and quasi-separated) flat formal V -scheme of finite type X and
an admissible blow-up X ′ → X we have X ′

K = XK , it replaces the
admissible covering by a refinement. Raynaud’s very important insight
is that this fact is the key point for comparing admissible topology and
Zariski topology.

Consider, for example, the affine case X = Spf A, and let U be a
quasi-compact open subset of an admissible blow-up X ′ of X :

U
� � �� X ′

��
X .

Then we have the open immersion

UK ↪−→ Spm AK

identifying UK with a quasi-compact open subset of Spm AK with re-
spect to the admissible topology. Due to the Gerritzen-Grauert theorem
(Theorem 2.8), the open subsets of the form UK constructed as above
constitute an open basis for the admissible topology. Thus one can re-
cover the admissible topology on XK from the Zariski topology of formal
models. The important fact is that, in order to recover the admissible
topology, one has to vary the formal model.

3.4. Raynaud’s viewpoint
The important point of the above observation is that it explains the

admissible topology entirely in terms of formal models. Based on this,
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we can now illustrate Raynaud’s viewpoint of rigid analytic geometry;
this is itemized as follows:

• from this viewpoint, rigid analytic geometry in totality is in-
duced from a geometry of “models” (Figure 2);

• as the geometry of models, Raynaud suggests geometry of for-
mal schemes over valuation rings.

Geometry of
models

�� Rigid analytic
geometry

Fig. 2. Raynaud’s viewpoint

For instance, if K is the fractional field of a complete discrete valuation
ring V , then theorems in rigid analytic geometry over K should follow
from theorems in formal geometry over V , already stated in [EGA, III,
§4, §5].

In practice, this program goes along the following thread. Starting
from a coherent formal scheme X of finite type over V , we obtain the
rigid analytic space X = XK over K, whose topology, points, and
structure sheaf are characterized as follows.

• Topology: a quasi-compact admissible open subset of X is of
the form U = UK where U is a quasi-compact open subset of
an admissible blow-up X ′ of X ;

• Points:

X (K) = {sections Spf V → X},
U (K) = {sections that factors through U};

• Structure sheaf: when U = Spf A, then Γ(U , OX ) = AK .
This viewpoint culminates in the following theorem.

Theorem 3.5 (Raynaud 1972 [37]). The Raynaud functor X �→ XK

gives rise to the categorical equivalence⎧⎨⎩
Coherent formal

schemes of finite

type over V

⎫⎬⎭/8

<

:

Admissible

blow-ups

9

=

;

∼−→

⎧⎨⎩
Coherent rigid

analytic spaces of

finite type over K

⎫⎬⎭ .
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Here the left-hand category is the quotient category, that is, the category
consisting of the same objects as the category of coherent formal schemes
of finite type over V but of arrows with all admissible blow-ups inverted.

Remark 3.6. (1) The objects in the right-hand category are defined
a priori by “patching affinoids” (cf. Definition 2.10). The equivalence
shows that this patching turns out to be equivalent to, so to speak,
“birational patching” (birational up to admissible blow-ups). This in-
vokes a birational viewpoint in rigid geometry, which will play a very
important role in our approach (to be explained) to rigid geometry.

(2) Let us briefly mention something about the proof of Theorem
3.5. There are two important ingredients:

• existence of formal birational patching,
• comparison of topologies.

The last point was already mentioned in connection with the Gerritzen-
Grauert Theorem.

3.5. Significance of Raynaud’s viewpoint

Perhaps the most significant aspect of Raynaud’s viewpoint (and
Raynaud’s theorem) lies in the shift from “analysis” to “geometry”.
To be more precise, whereas Tate’s rigid analytic geometry is moti-
vated by “analysis” over non-archimedean fields, Raynaud’s approach
starts totally differently, namely from formal “geometry,” and is devel-
oped entirely as a geometric theory with seemingly no flavor of analysis.
Consequently, contrary to Tate’s rigid analytic geometry, which aims at
something similar to complex analytic geometry, Raynaud’s approach
forces one to think that rigid geometry is entirely not similar to complex
analytic geometry.

§4. Our approach: brief announcement

In the next part, we are to exhibit our approach to rigid geometry,
which is different both from Tate’s and Raynaud’s approaches. Our
General Policy is the following.

General Policy: rigid geometry is a hybrid of formal geome-
try and birational geometry.

There is little doubt that our approach has been largely influenced by
Raynaud’s approach. But, nevertheless, it differs much from Raynaud’s
in how to deal with birational geometry, on which our approach puts
much more stress. For the general treatment of birational geometry, we
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will take up Zariski’s classical idea that deals with the so-called Zariski-
Riemann spaces as its foremost objects. Schematically shown, our ap-
proach is an “amalgam” of Raynaud’s approach and Zariski’s classical
approach to birational geometry (Figure 3).

Raynaud’s
approach + Zariski’s

classical idea

Fig. 3. Our approach

For this reason, we will start the next part of this paper with a brief
recap of birational geometry from Zariski’s classical viewpoint.

Part II. Birational approach to rigid geometry

Part II consists of two sections. In §5 we describe some birational
geometry in the spirit of Zariski’s classical viewpoint. What we do in this
section is a preparation for the next section, §6, where we will outline
our approach to rigid geometry.

§5. Birational geometry from Zariski’s viewpoint

5.1. Basic Question: Extension problem

Throughout this section we work in the following situation:

• S: a coherent scheme,
• I = ID: a quasi-coherent ideal sheaf of finite type such that

U = S \ D is a dense open subset of S, where D = V (I ).

Here a scheme is said to be coherent if it is quasi-compact and quasi-
separated.13 Note that, as the ideal sheaf ID is of finite type, the open
subset U is quasi-compact.

The basic problem we are concerned with is of the following type.

13Coherent schemes are the analogue of compact Hausdorff topological
spaces in the category of schemes.
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Fig. 4. Situation for the extension problem

Problem 5.1 (Extension problem). Let P be a property of mor-
phisms (e.g. P =“flat”). Let fU : XU → U be a morphism of schemes
of finite presentation with the property P . Suppose there exists at least
one morphism f : X → S such that f ×S U = fU . Then, can one find
such an f that satisfies the property P?

This problem may have a trivial solution; for instance, if P =“flat”,
then f = j◦fU , where j : U → S is the open immersion, gives a solution.
Such a solution is, needless to say, not the one we want to have. We like
to find a “good” solution. However, if we like to clarify what “good”
means, we find that the problem itself is not well-posed (or, say, not
reasonable). For instance, if, trying to make the problem well-posed, we
put P =“proper and flat”, then a moment thought immediately gives
a negative answer in practically important cases (e.g. family of curves
over a surface S with D a normal crossing divisor), and hence we find
that the problem in this case is not reasonable.

5.2. Admissible modifications and modified extension prob-
lem

In order to make the extension problem more reasonable, one needs
to allow birational changes of S that preserve the dense open part U .
Thus we are naturally led to the following notion.

Definition 5.2 (U -admissible modification). (1) A U -admissible
modification of S is a diagram

U
� � ��� �

���
��

��
��

S′

��
S

such that the vertical arrow is proper and the other arrows are open
immersions onto dense open subsets (hence the vertical arrow is bira-
tional).
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(2) A morphism between two U -admissible modifications S′ → S
and S′′ → S is an S-morphism S′ → S′′.

U -admissible modifications constitute the category MD(S,U), which
is cofiltered; indeed, for two U -admissible modifications S′ → S and
S′′ → S one constructs the diagram in MD(S,U)

S′′′

		��
��

�
���

��
��

S′ S′′,

where S′′′ is the closure of the image of the diagonal mapping U ↪→
S′ ×S S′′.14

The following special class of U -admissible modifications will be of
particular importance.

Definition 5.3 (U -admissible blow-up). A U -admissible blow-up of
S is a blow-up S′ → S whose center is given by a quasi-coherent ideal
J of OS of finite type such that the corresponding closed subscheme
V (J ) is set-theoretically contained in D, or what amounts to the same,
there exists a positive integer n such that I n

D ⊆ J .

Here is an example: when S = Spec A is affine, and D = V (I), then
a U -admissible blow-up is given by

S′ = Proj
⊕

n≥0 Jn → S,

where J is a finitely generated ideal of A that contains Ik for some k > 0.
We denote by BL(S,U) the full subcategory of MD(S,U) consisting

of U -admissible blow-ups. To state the modified extension problem, we
need yet one more concept.

Definition 5.4 (Strict transform). Let S′ → S be a U -admissible
modification, and f : X → S an S-scheme. The strict transform f ′ : X ′ →
S′ of f is the S′-scheme defined by the commutative diagram

X

f

��

XS′ = X ×S S′



fS′
��

X ′� �



f ′
��											

S S′,



where the map X ′ ↪→ XS′ is the closed immersion given by dividing out
ID-torsion.

14The scheme S′′′ might be called the join of S′ and S′′.
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Having these notions on birational changes of schemes, we can now
state the desired “modified” version of our basic question that we are
going to consider.

Problem 5.5 (Modified extension problem). Let fU : XU → U be
a morphism of finite presentation that satisfies the property P . Suppose
an extension f : X → S of fU on S, that is, a morphism such that
f ×S U = fU , is given. Then, can one find a U -admissible modification
(resp. blow-up) S′ → S such that the strict transform f ′ : X ′ → S′ of f
satisfies P?

5.3. Flattening theorem

Problem 5.5 in the case P =“flat” is the so-called flattening problem,
and was affirmatively solved by Raynaud and Gruson [38].

Theorem 5.6 (Raynaud-Gruson 1970 [38]). Let f : X → S be a
morphism of finite presentation such that f ×S U : X ×S U → U is flat.
Then there exists a U -admissible blow-up S′ → S such that the strict
transform f ′ : X ′ → S′ is flat of finite presentation.

Among many valuable corollaries of this theorem, we refer to the
following one.

Corollary 5.7 ([38, (5.7.12)]). The full subcategory BL(S,U) is co-
final in the category MD(S,U).

Remark 5.8. Here a few remarks on the flattening theorem are in
order.

(1) The theorem is entirely clear in case S = Spec V where V is a
discrete valuation ring. Indeed, in this case, one can take as S′ → S
the identity map S′ = S, and thus the strict transform X ′ is the closed
subscheme of X given by dividing out V -torsions.

(2) More generally, if S = Spec V where V is a (not necessarily
discrete) valuation ring, then flatness of a similarly defined X ′ is clear
by the same reasoning, whereas the finite presentation of f ′ is rather
difficult to show.

5.4. Revival of Zariski’s idea

In the rest of this section we are going to outline the proof of Theo-
rem 5.6. The proof that we are going to present here is not the one in [38],
but is done by Zariski’s classical idea, which Zariski invented in order to
apply it to the resolution of singularities of algebraic surfaces [44]. The
keystone of Zariski’s argument is the so-called Zariski-Riemann space,
and the most crucial point of the proof is its quasi-compactness.
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Definition 5.9 (Zariski-Riemann space; cf. [44][45]).

〈U〉cpt = lim←−
S′∈BL(S,U)

S′,

where the projective limit is taken in the category of local ringed spaces.

Let us say that an ideal J of OS is admissible if it is quasi-coherent
of finite type and the corresponding closed subscheme V (J ) is set-
theoretically contained in D. Then U -admissible blow-ups are exactly
the morphisms of the form Proj

⊕
n≥0 J n → S by an admissible ideal

J . Hence the projective limit in Definition 5.9 is regarded as the filtered
projective limit taken along the directed set of all admissible ideals with
the ordering ≤ defined as follows: J ≥ J ′ if and only if there exists an
admissible ideal J ′′ such that J = J ′J ′′. This justifies Definition
5.9, for the category of local ringed spaces is closed under filtered projec-
tive limits. Note that the Zariski-Riemann space thus defined generalizes
the so-called abstract Riemann surface, the introduction of which traces
back to Dedekind-Weber in the 19th century, for if S is a regular curve
then we have 〈U〉cpt = S.

Points. Let x ∈ 〈U〉cpt. The point x is, by definition, a compatible
system of points {xS′}S′∈BL(S,U) with xS′ ∈ S′ for any S′ ∈ BL(S,U).

• The topological space 〈U〉cpt contains U . If x ∈ U , then the
corresponding points xS′ lie in the common U , and all of them
are equal.

• If on the other hand x �∈ U , then the system {xS′} is described
in terms of a valuation ring15 as follows: there exists a valuation
ring Vx (of height ≥ 1) and a map α : Spec Vx → S of schemes
mapping the closed point to xS and the generic point to a point
in U . For any U -admissible blow-up S′ → S, by the valuative
criterion of properness, one has a unique arrow α′ : Spec Vx →
S′ such that the resulting triangle

S′

��
Spec Vx α

��

α′
���

�
�

�
S

commutes. The point xS′ is the image of the closed point by
α′.

15See, for example, [46, Chap. VI] and [7, Chap. VI] for basics of valuation
rings.



Rigid geometry and applications 351

Local rings. The local rings of the structure sheaf O〈U〉cpt are best
described by the following notion.

Definition 5.10. Let A be a ring, and I a finitely generated ideal.
The ring A is said to be I-valuative if any finitely generated ideal J
of A that contains Ik for some k > 0 (called an I-admissible ideal) is
invertible.

In case A is a local ring, then A is I-valuative if and only if I is a
principal ideal I = (a) generated by a non-zero-divisor a ∈ A and every
I-admissible ideal is principal.

Proposition 5.11. (1) Let A be a local ring, and I = (a) a principal
ideal generated by a non-zero-divisor a ∈ A. Set J =

⋂
n≥1 In. Suppose

A is I-valuative. Then:

(a) B = A[ 1a ] is a local ring, and V = A/J is a valuation ring,
which is a-adically separated, where a = (a mod J);

(b) A = {f ∈ B | (f mod mB) ∈ V }, where mB is the maximal
ideal of B;

(c) J = mB.

(2) Conversely, if B is a local ring and V is an a-adically sep-
arated valuation ring for some non-zero a ∈ V such that the frac-
tional field of V coincides with the residue field of B, then the subring
A = {f ∈ B | (f mod mB) ∈ V } is an I-valuative local ring for any
finitely generated ideal I such that IV = (a), and B = A[ 1a ].

Proposition 5.11 shows that an I-valuative local ring is a “com-
posite” of a local ring and a valuation ring. The following proposition
follows from basic properties of U -admissible blow-ups, and is easy to
verify.

Proposition 5.12. For any point x ∈ 〈U〉cpt the local ring O〈U〉cpt,x

is an (IDO〈U〉cpt,x)-valuative ring.

For Ax = O〈U〉cpt,x, we set Bx = Ax[ 1a ] (where Ix = IDO〈U〉cpt,x =
(a)) and Vx = Ax/Jx, where Jx =

⋂
n≥1 In

x . The local ring Bx is a local
ring on U , and the valuation ring Vx is the one that describes the point
x = {xS′}S′∈BL(S,U) as above. In other words, each local ring of 〈U〉cpt

is a “composite” of a valution ring and a local ring of U .
Note that the above description of points and the local rings is es-

sentially due to Zariski’s original description of Zariski-Riemann space,
which Zariski originally introduced not by projective limit of varieties,
but as a certain space of places.
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Remark 5.13. Notice that the valuation rings Vx that appear in the
above context are not necessarily of height 1 even if the scheme S is
Noetherian (e.g. an algebraic variety over a field). This is exactly the
reason why valuation rings of higher height need to be considered in
Zariski’s argument. See Table 5 for the classification given by Zariski
[44] of possible valuations that appear on algebraic surfaces.

Table 5. Valuation rings on algebraic surfaces

Height Rational rank

0 0 trivial valuation

1 1 divisorial

non-divisorial

2 non-divisorial

2 2 composite of two divisorial valuations

Intuitive description. Recall that the set of ideals of a valuation
ring V is totally ordered by the inclusion order. In particular, the spec-
trum Spec V consists of points that are linearly configured as depicted
in Figure 5. It can therefore be understood as a “long curve”16 with

� � � � � � � � � � � � �
(0) mV

Fig. 5. Spectrum of valuation ring

the extremities (0), the generic point, and mV , the closed points. Each
point is the specialization of points sitting on its left (in the figure), and
the generalization of points sitting on its right. In the finite height case,
the height is the number of points minus one.

It is, therefore, appropriate to say that (the image of) a map SpecV →
S of schemes from a valuation ring is a “long path” in S. Intuitively,
from what we have seen above in the description of points, one can say

16The adjective “long” indicates that it might be of large height.
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that the space 〈U〉cpt is like a “path space.” More precisely, we have a
set-theoretical decomposition

〈U〉cpt = U � T ∗
D/S ,

where T ∗
D/S is the set of all “long paths” that pass through D, or is, so

to speak, an analogue of a tubular neighborhood17 of D in S; see Figure
6.

Fig. 6. Set-theoretical description of 〈U〉cpt

5.5. Quasi-compactness

The space 〈U〉cpt, being defined as the projective limit of all U -
admissible blow-ups, would seem fairly gigantic. The following theorem,
which turns out to be ineffably important, says that it is actually not.

Theorem 5.14 (Zariski 1944). The space 〈U〉cpt is quasi-compact.

This theorem played one of the most essential roles in Zariski’s
proofs of resolution of singularities on algebraic surfaces (cf. §5.7) and
Abhyankar’s proof for three-folds. Also in our proof of the flattening
theorem, quite similarly, this plays a very important role. The proof
of Theorem 5.14 is by no means technical, but rather, one can say, the
quintessence lies in a general principle applicable to a much wider situ-
ation.

One way of proof relies on the fact that the (2-categorical) filtered
projective limit of coherent topoi with coherent transition maps is again
coherent [SGA4-2, Exposé VI], which confers with the well-known fact
that the filtered projective limit of compact Hausdorff spaces is again
compact Hausdorff. Applying Deligne’s theorem on the existence of
points for locally coherent topoi, one shows the theorem.

17It might be more precise to say deleted tubular neighborhood.
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A more handy way is provided by Stone’s representation theorem,
which asserts that the category of coherent topological spaces18 and
quasi-compact maps is categorically equivalent to the opposite category
of unital distributive lattices (cf. [24]). As the latter category is closed
under filtered direct limit, the theorem follows immediately (a minor
point that should be confirmed here is that the direct limit taken in the
category of topological spaces is equal to the one taken in the category
of coherent topological spaces and quasi-compact maps).

In both proofs, the most important point is the following fact (ex-
istence of points): the filtered projective limit of non-empty coherent
spaces with coherent transition maps is non-empty. An extensive use
of this fact verifies the finite intersection property for open coverings,
whence the quasi-compactness as desired. Notice that the above two
ways of the proof are not entirely different from each other, and both
arguments actually prove coherence, not only quasi-compactness.

5.6. Outline of the proof of Theorem 5.6
Now we can outline the proof of Theorem 5.6. The idea of the proof

is the following.
Idea: reduction to the case of “long curves” Spec V by means
of quasi-compactness of Zariski-Riemann space.

This can be regarded as a “curve-cut” technique, which is quite often
employed in algebraic geometry. In this sense, one can say that our
approach is a quite geometric one.

First step. Observe first that the theorem is true for long curves
S = Spec V , where V is a valuation ring. As we have mentioned in
Remark 5.8, the flattening theorem in this case is not easy, whereas the
“flattening part” (without finiteness property) is trivial. The proof of
the finiteness part has a quite different flavor from the other part; first,
using composition of valuation rings, we reduce to the case of height 1,
and then employ Gröbner basis arguments to show the finiteness. We
omit the details here, and proceed to the general case, assuming the
validity of the theorem in this case.

Second step. Observe next that the theorem is true for S = Spec A,
where A is the local ring at a point of 〈U〉cpt. Here we use the fact that
the ring A is I-valuative, and the assertion follows from the previous

18A sober topological space is said to be coherent if it is quasi-compact,
quasi-separated (i.e., the intersection of finitely many quasi-compact open
subsets is quasi-compact), and has an open basis consisting of quasi-compact
open subsets. Notice that this condition is equivalent to that the associated
topos is coherent in the sense of [SGA4-2, Exposé VI].
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step, the assumption that f is flat on U , and patching of flatness, where
“patching” means composition in the sense of Proposition 5.11.

Third step. By the previous steps and the fact that the property
P =“flat” is locally finitely presented, one deduces that the assertion is
true locally on 〈U〉cpt, that is, for any point x ∈ 〈U〉cpt, there exists an
admissible blow-up S′ → S and a quasi-compact open subset Ux of S′

such that
• Ux contains the image of x by the projection 〈U〉cpt → S′;
• f ′|Ux is flat and finitely presented, where f ′ : X ′ → S′ is the

strict transform of f .
Here we have tacitly used the following extension of admissible ideals.

Proposition 5.15. Let T ⊂ S be a quasi-compact open subset of
S, and J an admissible ideal on T (with respect to V = U ∩ T ). Then
there exists an admissible ideal J̃ on S such that J̃ |T = J .

Fourth step. Finally, by quasi-compactness (Theorem 5.14), the as-
sertion follows by birational patching. More precisely, there exist finitely
many points xi (i = 1, . . . , n) such that 〈U〉cpt =

⋃n
i=1 p−1

i (Uxi), where,
for each i, Uxi ⊂ Si, and pi : 〈U〉cpt → Si is the projection map. Take
S′ ∈ BL(S,U) that dominates the Si’s. Replacing S′ by the blow-up
along IDOS′ , we may assume that IDOS′ is an invertible ideal. Let U ′

i

be the pull-back of Uxi by the map S′ → Si. Then S′ =
⋃n

i=1 U ′
i , and

thus the strict transform f ′ : X ′ → S′ is flat and finitely presented.

5.7. Other applications
The argument of the above type, which uses the quasi-compactness

of Zariski-Riemann spaces, was largely applicable to several other situ-
ations. Let us list some of them (which are, however, not new).

Resolution of singularities of quasi-excellent surfaces. This is the
one to which Zariski originally applied this argument (in the case of
algebraic sufaces). Similarly to the above-mentioned procedure, one first
reduces the claim to the case of “long curves” to show that resolution can
be done locally (local uniformization), and then patches the resulting
local resolutions into a regular model by using quasi-compactness of
Zariski-Riemann space. See, for example, [31, Chap. I] for more details.

Embedding theorem for algebraic spaces (cf. Nagata 1963). This as-
serts that a separated algebraic space of finite type over a coherent
scheme can be embedded into a proper space. This was first proved
by Nagata in 1963 for Noetherian separated schemes. Considering “long
curves”, one first observes that, locally, an appropriate embedding can be
constructed (local extension lemma), and then birationally patches these
locally extended data into a globally extended space, which is possible
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because of the quasi-compactness of Zariski-Riemann space. Finally by
the valuative criterion of properness, one shows that the resulting space
is proper.

Remark 5.16. There are two remarks in order on the Nagata’s em-
bedding theorem.

(1) The theorem is true not only for schemes but also for algebraic
spaces. There are several motivations for this generalization. One of
them will be seen below (Theorem 6.11). Another motivation is that the
embedding theorem potentially has large applications to the compacti-
fication of moduli spaces that are usually not representable by schemes;
e.g. M. Rapoport’s Habilitationschrift. We also remark that this gener-
alized form of Nagata’s embedding theorem has an application to trace
formula; cf. Remark 8.3.

(2) One can actually simplify the proof of the embedding theorem
by using ideas from rigid geometry. The details will be shown in [21].

§6. Birational approach to rigid geometry

6.1. Introduction
Now we come to the stage of expounding our approach to rigid

geometry. As we have briefly announced in §4 our general policy is that
rigid geometry is a hybrid of formal geometry and birational geometry;
here, in our approach to rigid geometry, we will see that Zariski’s classical
idea of birational geometry explained in §5 revives, and plays one of the
most important roles. One can thus refine the picture from Figure 3 into
the one from Figure 7.

As Raynaud’s viewpoint of rigid geometry takes up geometry of for-
mal schemes as the starting point, from which rigid geometry is supposed
to arise in the way that birational changes by admissible blow-ups are
inverted, the birational geometry on the right-hand side means, so to
speak, birational geometry of formal schemes, which should be a theory
of a formal analogue of Zariski-Riemann spaces. One arrives in this way
at the following “central dogma,” which realizes more concretely our
general policy for approaching rigid geometry:19

Birational geometry of formal schemes = Rigid geometry .

The analogue of Zariski-Riemann spaces in this context gives rise to
the so-called Zariski-Riemann triples (Definition 6.15), which provide

19There is no reason why we should deal only with formal schemes, and a
perhaps more reasonable formulation would be given by allowing formal spaces
(= formal algebraic spaces) to enter in. See Theorem 6.12.
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Raynaud’s viewpoint of
rigid geometry

Geometry

of models
�� Rigid analytic

geometry

Geometry of formal schemes

+

Zariski’s viewpoint of
birational geometry

Zariski-Riemann space

Fig. 7. Birational approach to rigid geometry

for each rigid space a topological space together with two sheaves of
local rings, the integral structure sheaf and the rigid structure sheaf.
We think of these objects as the most basic figure in rigid geometry in
which rigid analytic and formal geometric aspects are amalgamated and
crystalized in a certain canonical way. Moreover, the admissible topology
of a rigid space is honestly represented by the topology of the underlying
topological space of the corresponding Zariski-Riemann triple. In this
sense, one can say that the Zariski-Riemann triple visualizes the rigid
space (cf. Proposition 6.16).

Our basic dictionary of comparing the situation of birational geom-
etry as in §5.1 with that of, say, p-adic rigid geometry is as follows:

• S ←→ formal scheme of finite type over Spf Zp;
• D ←→ the closed fiber, that is, the closed subscheme defined

by “p = 0.”
Note that, by means of this comparison, the notion of U -admissible blow-
ups as in §5.2 precisely correspond to the admissible blow-ups introduced
in §3.3. The object corresponding to the classical Zariski-Riemann space
〈U〉cpt is the underlying topological space of the Zariski-Riemann triple
arising from formal schemes.

6.2. Adequate formal schemes

We have seen in Remark 5.13 that, in Zariski’s approach to bira-
tional geometry, one needs to consider valuation rings of large height in
general, even when dealing with Noetherian schemes. It turns out, for
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the same reason, that valuation rings of higher height have to be consid-
ered also in our situation. Indeed, even when we deal with Noetherian
formal schemes to define rigid spaces, points are described by means of
valuation rings. However, the valuation rings that enter in this situa-
tion may be of height greater than 1. Note that, without such valuation
rings, or, as a result, without enough points, one cannot detect topology
and sheaves. Hence, as such valuation rings are rarely Noetherian, one
almost always has to deal with non-Noetherian formal schemes, of which
we lack sufficiently practical knowledge; even in [EGA], apart from the
generalities at the first set-up, most of the theorems, such as finitudes,
GFGA, etc., are proven under the Noetherian hypothesis. Thus, one
first has to establish a class of formal schemes that is wide enough to
contain Noetherian and some other hitherto considered classes of formal
schemes (such as formal spectra of a-adically complete valuation rings),
and to generalize the necessary theorems.

The new class of adic formal schemes that we would like to offer here
is that of so-called adequate formal schemes. We postpone the precise
definition of them to another opportunity [21], and confine ourselves to
the following rough explanation.

Basic properties.

• the definition is given ring theoretically;
• the rings are Noetherian outside the ideal of definition.

Objects. Let Fsadq denote the category of adequate formal schemes.
It contains as objects

• Spf V , where V is an a-adically complete valuation ring for
some non-zero a ∈ mV ,

• Noetherian formal schemes.

Functoriality. The category Fsadq has the following pleasant func-
toriality: it is

• closed under finite type extensions;
• closed under base change by finite type morphisms.

Figure 8 depicts the category Fsadq together with some subcate-
gories, where FsNoe, Fsfin

/V , Fsfin
/DVR denote respectively the categories

of Noetherian formal schemes, of formal schemes of finite type over an
a-adically complete valuation ring, and of formal schemes of finite type
over a complete discrete valuation ring. Notice that:

• the height of valuation rings appearing in the category Fsadq

is arbitrary, finite or infinite;
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Fsadq

FsNoe

Fsfin
/V

Fsfin
/DVR

Fig. 8. Category of adequate formal schemes

• more importantly, the category Fsadq contains all objects of the
form Spf A, where A is a formal model of an affinoid algebra
in Tate’s theory of rigid analytic geometry.

Among several nice points of adequate formal schemes, we would
like to announce that most of the important theorems, such as fini-
tudes, GFGA comparison, GFGA existence theorems, can be proved
in this category, which therefore gives generalizations of the theorems
in [EGA, III]. The details will be shown in [21]. There, these theo-
rems are stated and proved entirely by using systematically the derived
categorical framework.20

6.3. Coherent rigid spaces

Let us denote by CFsadq the category of coherent adequate formal
schemes.

Proposition 6.1. (1) Any coherent (= quasi-compact and quasi-
separated) adequate formal scheme has an ideal of definition of finite
type.

20Let us list two reasons why it is necessary to work in the derived cat-
egorical language: (1) it is user-friendly for applications; (2) recently, the
importance of derived categories has been more and more recognized in alge-
braic geometry and in mathematical physics. The last point is related to the
cohomological mirror symmetries speculated on by Kontsevich-Soibelman and
Fukaya et al., in which our theorems in terms of the derived categorical lan-
guage, as well as our approach involving higher-height valuation rings, could
be important.



360 K. Fujiwara and F. Kato

(2) Let X be a coherent adequate formal scheme, and I an ideal of
definition. If OX is I -torsion free, then OX is coherent21 as a module
over itself.

Definition 6.2 (Admissible ideal). Let X be a coherent adequate
formal scheme, and J an ideal of OX . Then J is said to be admissible
if it is an adically quasi-coherent open ideal of finite type.

Here an OX -module F is said to be adically quasi-coherent if the
following conditions are satisfied:

(a) F is complete with respect to I -adic topology, where I is an
ideal of definition of X ;

(b) for any k ≥ 0, the sheaf Fk = F/I k+1F is a quasi-coherent
sheaf on the scheme Xk = (X, OX/I k+1).

Definition 6.3 (Admissible blow-up). Let X be a coherent ade-
quate formal scheme, and J an admissible ideal. The admissible blow-
up along J is the morphism of formal schemes

X ′ = lim−→
k≥0

Proj

⎛⎝⊕
n≥0

J n ⊗ OXk

⎞⎠ −→ X,

where Xk = (X, OX/I k+1) is the scheme defined as above.

As X ′ is clearly of finite type over X , X ′ is again a coherent adequate
formal scheme. Notice that the above definition of admissible blow-ups
does not depend on the choice of an ideal of definition I .

Having obtained a nice category of formal schemes and a nice notion
of admissible blow-ups, we can now define rigid spaces in our approach
by applying Raynaud’s idea.

Definition 6.4 (Coherent rigid spaces). The category CRf of co-
herent rigid spaces is defined to be the quotient category of CFsadq

where all admissible blow-ups are inverted:

CRf = CFsadq/{admissible blow-ups}.

We denote the quotient functor CFsadq → CRf by

X �−→ Xrig.

21Perhaps the reader might complain that there is too much use of “co-
herent.” Do not mix up the coherence of sheaves and the coherence of spaces.
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For a coherent rigid space X , a formal model of X is defined to be
a coherent adequate formal scheme X such that Xrig ∼= X . A formal
model X of X is said to be distinguished if OX is I -torsion free, where
I is an ideal of definition of X .

6.4. Admissible topology
Definition 6.5. (1) A morphism U → X of coherent rigid spaces

is said to be a (coherent) open immersion if it has as a formal model an
open immersion U ↪→ X .

(2) Let {Uα ↪→ X } be a family of open immersions between coher-
ent rigid spaces. We say that the family is a covering with respect to
the admissible topology if it has a finite refinement {Vi ↪→ X } satisfying
the following condition: there exist a formal model X of X and formal
models Vi ↪→ X of Vi ↪→ X such that X =

⋃
Vi.

The last notion gives rise to a topology on CRf , called the admis-
sible topology. The resulting site is denoted by CRfad.

6.5. General rigid spaces
The category CFsadq is a good category that allows “formal bira-

tional patching”; the following statement is a consequence of the exis-
tence of formal birational patching of morphisms.

Proposition 6.6. Any representable presheaf on CRfad is a sheaf.

The proposition allows a consistent definition of more general rigid
spaces.

Definition 6.7 (General rigid spaces). A general rigid space is a
sheaf F of sets on the site CRfad such that the following conditions are
satisfied:

(1) there exists a surjective map of sheaves∐
i∈I

Yi −→ F ,

where {Yi}i∈I is a collection of sheaves represented by coherent
rigid spaces;

(2) for i, j ∈ I, the map Yi ×F Yj −→ Yi is isomorphic to the
direct limit of a direct system {Uλ → Yi}λ∈Λ of maps between
coherent rigid spaces such that all maps in the commutative
diagram for µ ≤ λ

Uλ
�� Yi

Uµ

�� ��������
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are coherent open immersions.

We denote by Rf the category of general rigid spaces. It has CRf
as a full subcategory.

Example 6.8. Here is an example of (coherent) rigid spaces that
cannot be dealt with in classical rigid geometry (by Tate). Consider the
ring Z[[q]] of formal power series with integral coefficients. This ring is
not a valuation ring, but is a complete ring with respect to the q-adic
topology. Hence we can consider the formal scheme S = Spf Z[[q]], which
is clearly adequate, since it is Noetherian. Any adic formal scheme X
of finite type over S therefore gives rise to a rigid space X = Xrig over
S = Srig. A particularly important example of this form, which we will
discuss later in §7.1, is a Tate curve over S .

Rigid spaces of the above form over (Spf Z[[q]])rig (or higher dimen-
sional adic rings) enter quite naturally in discussions on compactification
of moduli spaces. Although such kinds of rigid spaces are ruled out in
the classical rigid geometry, they come rather naturally in our approach
to rigid geometry, and this proves to be one of the advantages of our
approach.

6.6. Fiber products
A morphism ϕ : X → Y of coherent rigid spaces is said to be of

finite type if it has a formal model f : X → Y that is of finite type.
The notion of “locally of finite type” is defined for morphisms between
general rigid spaces in an obvious way. The following proposition follows
from the fact that the adequateness of formal schemes is closed under
base change locally of finite type (as we have mentioned in §6.2).

Proposition 6.9. Consider the diagram

X
ϕ−→ S

ψ←− Y

in Rf . If either one of the morphisms is locally of finite type, then the
fiber product X ×S Y is representable in Rf .

Remark 6.10. As we will see later (Remark 6.17), for a rigid space
X , points (in a certain topos-theoretic sense) correspond to valuation
rings of a certain kind; that is, points are represented by morphisms
of the form (Spf V )rig → X , where V is an a-adically complete valua-
tion ring. Hence, in our rigid geometry, “fibers over points” are those
fiber products taken with morphisms of this kind. The importance of
studying rigid spaces over rigid spaces of the form (Spf V )rig thus arises.
Notice that, even if we work in the categories of rigid spaces coming
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from Noetherian formal schemes, valuation rings V of higher height are
inevitable.

Technically, the importance of the last remark lies in the fact that,
by considering fibers over points, one can usually reduce quite a few
geometric properties of rigid spaces of finite type to those of rigid spaces
of finite type over valuation rings. In case the valuation ring is of finite
height, one can further reduce to the case of height 1 (by the gluing
method), where one can use some extra tools, such as Noether’s normal-
ization theorem, etc.

6.7. Relation with algebraic spaces
Let Spf A be an affine adequate formal scheme, and I a finitely

generated ideal of definition of A. We set U = Spec A \ V (I), which is
a Noetherian scheme (cf. §6.2). The precise meaning of the following
somewhat vague statement will be clarified in [21].

Theorem 6.11 (GAGA functor). The GAGA functor{
Separated algebraic spaces
of finite type /U

}
−→ RfS , X �→ Xan,

where S = (Spf A)rig, exists.

Notice that the GAGA functor of this general form has not been
defined even in the classical rigid geometry (at least in literature). There
are two main ingredients for the proof. One is the embedding theorem
(of Nagata) for algebraic spaces, and the other one is the following.

Theorem 6.12 (Equivalence theorem). Let S be a coherent ade-
quate formal scheme. Then the natural functor{

Formal schemes

of finite type /S

}/8

<

:

Admissible

blow-ups

9

=

;

−→

⎧⎨⎩
Formal alge-

braic spaces of

finite type /S

⎫⎬⎭/8

<

:

Admissible

blow-ups

9

=

;

is a categorical equivalence.

This follows from the following theorem.

Theorem 6.13. Let S be as above, and X → S a formal algebraic
space of finite type. Then there exists an admissible blow-up X ′ → X
such that X ′ is a formal scheme.

The proof of this theorem uses (again!) the technique of Zariski-
Riemann spaces.
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6.8. Tate’s rigid analytic spaces
Tate’s rigid analytic spaces are naturally objects of the category Rf

via Raynaud’s theorem (Theorem 3.5) and obvious patching arguments,
that is, we have the natural functor{

Tate’s rigid
spaces

}
−→ Rf ,

which maps affinoids to affinoids. Here by an affinoid in Rf we mean a
coherent rigid space of the form (Spf A)rig.

The essential image of the above functor considered on the category
of Tate’s rigid analytic spaces over K is the category of rigid spaces
locally of finite type over (Spf V )rig, where V is a complete valuation
ring of height 1, and K is its fractional field. Note that this is essentially
the assertion of Raynaud’s theorem (Theorem 3.5).

6.9. Visualization
The moral basis of our (and hence Raynaud’s) defining rigid spaces

as “generic fibers” of formal schemes stems from the policy that rigid
geometry is so to speak the birational geometry of formal schemes (cf.
§6.1). It being so, one can say that the visualization of rigid spaces,
which we are going to pursue below, is the way to enhance the bira-
tional geometric aspect of rigid geometry. It does this job by adopting
Zariski’s old idea of birational geometry, and the visualization itself is
given by the so-called Zariski-Riemann triple. The pleasant thing is that
the admissible topology attached to a rigid space is equivalent to the
topology (in the usual sense) of the associated Zariski-Riemann space,
the underlying topological space of the Zariski-Riemann triple. This is
the origin of the name “visualization.” As we can easily imagine, having
the genuine ringed space that really represents the rigid space helps and
streamlines discussions, and enables many applications.

Definition 6.14. Let X = Xrig be a coherent rigid space.
(1) Define the projective limit

〈X 〉 = lim←−
X′→X

X ′

along all admissible blow-ups of X taken in the category of local ringed
spaces. Note that, by the similar reasoning as in §5.4, the projective limit
can be replaced by the filtered projective limit taken along the directed
set of all admissible ideals, and hence is well-defined as a local ringed
space. The canonical projection map 〈X 〉 → X ′ for any admissible
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blow-up X ′ of X is called the specialization map, and is denoted by

spX′ : 〈X 〉 −→ X ′.

This is a continuous map.
(2) The structure sheaf of 〈X 〉, which is the direct limit of the sheaf

sp−1
X′ OX′ , is called the integral structure sheaf, and is denoted by O int

X .
(3) The rigid structure sheaf OX is the sheaf on 〈X 〉 defined by

OX = lim−→
n≥0

HomOint
X

(I n, O int
X );

here we take an ideal of definition IX of X and set I = (sp−1
X IX)O int

X .

Here the definition of OX calls for an explanation. It turns out that
the sheaf O int

X of local rings is I -valuative, and due to Proposition 5.11,
one sees that the sheaf OX is also a sheaf of local rings. For example, in
the p-adic situation, we have OX = O int

X [ 1p ]. As this particular example
indicates, it is OX that plays the role of the structure sheaves of Tate’s
rigid analytic geometry. In fact, when X comes from a rigid analytic
space in the sense of Tate via the functor as in §6.8, OX “is” the struc-
ture sheaf of the original Tate rigid space. Thus the realization of rigid
spaces as a topological space 〈X 〉 naturally weaves its structure sheaf
OX with, one can say, its “canonical” formal model O int

X .

Definition 6.15 (Zariski-Riemann triple). We write

ZR(X ) = (〈X 〉, O int
X , OX ),

and call it the Zariski-Riemann triple associated to the rigid space X .

One can, in fact, extend the above definition to general rigid spaces
by gluing. It is worth remarking here that the idea of considering the
triple as above, rather than merely a local ringed space, comes from the
analogy between hermitian vector bundles (E , |·|) and pairs (E , E int) of
vector bundle with its integral model (which is at the center of the idea
of, for example, Arakelov geometry).

Be that as it may, the main motivation for introducing Zariski-
Riemann triples is that they really visualize the rigid spaces, as the
following proposition indicates.

Proposition 6.16. The topos associated to the topological space
〈X 〉 is isomorphic to the admissible topos X ∼

ad .22

22An essentially equivalent statement was proved by Huber [23]; a similar
but different approach was taken by van der Put-Schneider [42].
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Remark 6.17. The last proposition forces us to review the issue of
points of rigid analytic spaces, which was already considered during the
discussion of Tate’s basic idea of approaching rigid geometry (see Re-
mark 2.2). Even in case where X comes from a Tate rigid analytic space,
the topological space 〈X 〉 was not considered by Tate, since Tate’s no-
tion of points only grasps points coming from maximal ideals of affinoid
algebras, which occupies only a very small part of the space 〈X 〉. This
is why Tate had to introduce the Grothendieck topology machinery to
obtain the admissible topology.

Now, the space 〈X 〉 gives the correct notion of points for rigid ana-
lytic spaces; in fact, quite similarly to §5.4, points of 〈X 〉 are described
in terms of a-adically complete valuation rings. It is based on this fact
that we say that the Zariski-Riemann triple visualizes rigid spaces.

Remark 6.18. We would like to mention that, by using visualiza-
tion, one can simplify the definition of the so-called “dagger-ring” that
appears in the theory of rigid cohomology (cf. [4]). Let us give a sim-
ple example. Let A = V 〈〈X〉〉, where V is a complete discrete valua-
tion ring of mixed characteristic (0, p) such that the residue field k is
perfect, and consider D = (Spf A)rig (closed unit disk). It is a coher-
ent open rigid subspace of the projective line P1

S = ((P1
V )∧)rig, where

S = (Spf V )rig. Consider the closure 〈D〉 of 〈D〉 in 〈P1
S 〉. Consider

the sheaf O†
D defined by the pull-back i∗OP1

S
of OP1

S
by the inclusion

i : 〈D〉 ↪→ 〈P1
S 〉. The dagger-ring in this case, usually denoted by A†

K , is
the ring Γ(〈D〉, i∗OP1

S
).

6.10. Relation with other theories

Now let us mention something about the relation between our ap-
proach to rigid geometry and other hitherto known approaches.

(1) As we have already mentioned in §6.8, there exists a natural
functor that maps Tate’s rigid analytic spaces to rigid spaces in Rf .

(2) Zariski-Riemann triples are regarded as Huber’s adic spaces,
whence we have a natural functor

ZR : Rf −→
{

Huber’s adic
spaces

}
,

which is, however, not fully faithful in general; but it is fully faithful in
practically important situations.
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(3) Each Zariski-Riemann space 〈X 〉 admits, by means of maximal
generalization23 of all points, a so-called separation map

sepX : 〈X 〉 −→ [X ],

where [X ] is the set of all points of 〈X 〉 of height 1. The map sepX

is a continuous map. At least in case where X comes from a Tate
rigid analytic space via the functor as in §6.8, the target space [X ]
(with more structure coming from X ) can naturally be regarded as a
Berkovich space ([2][3]).

Figure 9 depicts the above mentioned relations.

Rf

not f.f.ZR ��{
Tate’s rigid

spaces

} f.f.

��













f.f. ��

f.f. 

���������

{
Huber’s adic

spaces

}

{
Berkovich

spaces

}

Fig. 9. Relation with other theories (f.f.= fully faithful)

6.11. Formal flattening theorem

Applying Zariski’s idea explained in §5, but now using the Zariski-
Riemann triple introduced as above, one can show the following theorem.

Theorem 6.19 (Bosch-Raynaud, Fujiwara). Let f : X → S be a
morphism of finite type between coherent adequate formal schemes. Then
the following conditions are equivalent:

(1) f rig : Xrig → Srig is flat, that is, 〈f rig〉 : 〈Xrig〉 → 〈Srig〉 is flat
as a mapping of local ringed spaces (with the rigid structure
sheaf);

23It can be shown that any point of 〈X 〉 has a unique maximal
generalization.
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(2) there exists an admissible blow-up S′ → S such that the strict
transform f ′ : X ′ → S′ is flat.

Corollary 6.20. Admissible blow-ups are cofinal in the category of
formal modifications.

The following corollary is, as we have already seen in §3.3, important
in Tate’s rigid analytic geometry (see Theorem 2.8).

Corollary 6.21 (Gerritzen-Grauert). Let ϕ : X → Y be a mor-
phism of Tate’s rigid analytic spaces over a complete non-archimedean
valued field K with non-trivial valuation. Then the following conditions
are equivalent:

(1) ϕ is an open immersion;
(2) ϕ is separated, étale, and injective, and induces an isomor-

phism between the residue fields at any point.

6.12. Properness in rigid geometry
Definition 6.22. (1) A morphism ϕ : X → Y of rigid spaces is

said to be closed if the induced map 〈ϕ〉 : 〈X 〉 → 〈Y 〉 of topological
spaces is closed.

(2) Let ϕ : X → Y be a morphism locally of finite type. The
morphism ϕ is said to be universally closed if, for any morphism Z → Y
of rigid spaces, the base change ϕX : X ×Y Z → Z is closed.

Definition 6.23. A morphism ϕ : X → Y of rigid spaces is said
to be proper if it is universally closed, separated, and of finite type.

In case X and Y are coherent, according to our general policy of
regarding rigid geometry as birational geometry of formal schemes, the
properness thus defined should be equivalent to that in formal geometry
as follows.

Proposition 6.24. Let ϕ : X → Y be a morphism of coherent
rigid spaces. Then the following conditions are equivalent:

(1) ϕ is proper;
(2) (Raynaud properness) there exists a proper formal model f : X →

Y of ϕ.
(3) (Kiehl properness) there exist affinoid enlargements (cf. [26])

of coverings for each relatively compact affinoid open subset;
that is, there exists a finite admissible covering X =

⋃
Ui

consisting of affinoids together with a refinement X =
⋃

Vi

again consisting of affinoids with Ui ↪→ Vi such that, for each
i, 〈Ui〉 ⊂ 〈Vi〉, where the closure is taken in 〈X 〉.
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Historically, properness in Tate’s rigid geometry has been first de-
fined by Kiehl in his work [26] on finiteness theorem; there, properness
was defined by existence of enlargements according to the general idea
by Cartan-Serre and Grauert for proving finiteness of cohomologies of
coherent sheaves.

Whereas the implication (3) ⇒ (2) is in general not difficult to show,
the converse is a very difficult theorem; even in case where all rigid
spaces are of finite type over (Spf V )rig with V being a complete discrete
valuation ring, Lütkebohmert’s 1990 paper [32] was the first for the
proof. We claim (in [21]) that this is also valid in general. In the case
over (Spf V )rig where V is an a-adically complete valuation ring, this
amounts to showing the following statement.

Theorem 6.25. Let f : X → Spf V be a morphism of adequate
formal schemes of finite type, and U ⊂ X an affine open subset such that
U is proper. Then there exists an admissible blow-up π : X ′ → X and
an open subset W ⊂ X ′ such that the following conditions are satisfied:

(a) π−1(U) ⊆ W ;
(b) there exists a map W → Spf A to an affine adequate formal

scheme that is a contraction (that is, W rig = (Spf A)rig).

6.13. Cohomology theory
Let X be a rigid space, and F an abelian sheaf on the topological

space 〈X 〉. We write

Hq(X , F ) = Hq(〈X 〉, F ).

Similarly, for a morphism ϕ : X → Y of rigid spaces, we write

Rqϕ∗F = Rq〈ϕ〉∗F .

As we have mentioned before, an affinoid is a coherent rigid space of the
form Xrig, where X is an affine adequate formal scheme. For a rigid
space X , by a coherent sheaf on X , we mean a coherent OX -module
on 〈X 〉.

Theorem 6.26. For a rigid space X , the rigid structure sheaf OX

is coherent.

Thus an OX -module is coherent if and only if it is finitely presented.

Definition 6.27. An affinoid X is said to be a Stein affinoid if one
of the following equivalent conditions is satisfied:

(1) H1(X , F ) = 0 for any coherent sheaf F ;
(2) Hq(X , F ) = 0 for q ≥ 1 and for any coherent sheaf F ;
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(3) There exists a formal model X of X such that X is affine
X = Spf A and that Spec A \ V (I) is an affine scheme, where
I is an ideal of definition of A.

(4) There exists a distinguished formal model X of X such that X
is affine X = Spf A and that Spec A \V (I) is an affine scheme,
where I is an ideal of definition of A.

The equivalence of the above conditions follows from the compari-
son theorem for affinoids and GFGA existence theorem. It can be shown
that, for any rigid space X , any admissible covering of X by affinoids
can be refined by an admissible covering consisting of Stein affinoids.
Combined with this fact, the next theorem shows that one can compute
cohomology of coherent sheaves by means of Čech calculation using ad-
missible covering by Stein affinoids.

Theorem 6.28 (Theorem A and Theorem B). Let X be a Stein
affinoid, and F a coherent sheaf on X .

(1) If X = Spf A is a distinguished formal model of X such that
Spec A\V (I) (where I is an ideal of definition of A) is affine, then there
exists a finitely presented A-module M such that

H0(X , F ) = lim−→
n≥0

HomA(In, M).

(2) For q ≥ 1, we have Hq(X , F ) = 0.

Finally, we mention the finiteness theorem for proper morphisms.

Theorem 6.29 (Finiteness theorem for proper morphisms of rigid
spaces). Let ϕ : X → Y be a proper morphism between quasi-compact24

rigid spaces. Then the functor Rϕ∗ maps D∗
coh(X ) to D∗

coh(Y ) for
∗ = ∅, +,−, b.

Here, for a rigid space X , D∗
coh(X ) denotes the full subcategory of

the derived category of the category of OX -modules consisting of objects
that have only coherent cohomologies.

Most of material presented in this part will be written in detail in
the book [21] in preparation by the authors.

Part III. Applications

24A rigid space X is said to be quasi-compact if the topological space
〈X 〉 is quasi-compact; this is equivalent to the small admissible topos X ∼

ad

being quasi-compact.
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We expect that rigid geometry, especially that of our approach ex-
plained in the previous part, allows diverse applications. The applica-
tions within our scope at this moment include, at least, the following
things:

• arithmetic geometry of Shimura varieties: p-adic period map
and local models, p-adic automorphic representations, etc.,

• cohomology theory of algebraic varieties: 	-adic Lefschetz trace
formulas, p-adic cohomology theory, etc.

In this final part, we discuss the applications of these things. In §7
we discuss arithmetic compactification of moduli of elliptic curves, and
in §8, Lefschetz trace formulas.

Although we are not going to treat in this paper, one might moreover
expect, in addition, the following applications:

• mirror symmetry (construction of mirror partner); cf. [28],
• p-adic Hodge theory (via theory of almost étale extensions); cf.

[22],
• derived category equivalence,
• non-archimedean uniformization.

As for the last, we remark that, by means of the visualization, one can
understand the known uniformization (e.g. [34], [35]) entirely as topolog-
ical uniformization, that is, the uniformization by taking the universal
covering. This point also streamlines the theory of orbifold uniformiza-
tions of rigid analytic curves developed in [25] (see also [10]).

§7. Application to compactification of moduli

In this section we discuss compactification of moduli spaces. We
want to show that rigid geometry is useful in the analysis of moduli
object near the boundary, and thus can be applied to the construction
of the compactification. As the method that we are going to take is
abstract enough, it affords the construction of the compactifications not
only over fields, but over Z, that is, arithmetic compactifications.

Here, at first, we would like to remind the reader of the fact that,
in the classical theory of toroidal compactifications, complex analytic
methods play an important role. The important point here is that the
notion of rigid spaces is much broader than that of schemes, and rigid
spaces are much flexible than schemes. In fact, there are several merits
of using non-scheme theoretical geometric objects, such as rigid spaces,
in application to the theory of moduli; among them are:

• topological feature: admissible topology of rigid spaces is finer
than Zariski topology;
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• it allows, in general, “construction by infinite repetition;” in
this context, non-coherent objects play an essential role.

A typical example of the methods in the second point is the theory of
p-adic uniformization, which provides, as we have already seen in §1.2,
numerous nice techniques and viewpoints already in the classical rigid
geometry by Tate.

First we fix some notations that we are going to use frequently in the
sequel. We often consider pairs of the form (X, D), where X = Spec A
is an affine scheme, and D is a closed subscheme defined by a finitely
generated ideal I of A. Let Â be the I-adic completion of A. We write
X/D = Spec Â. It forms another pair (X/D, D) of the form as above
together with the closed subscheme defined by the ideal IÂ, which is,
by a slight abuse of notation, again denoted by D.

In practice, the affine scheme X in the sequel appears as a “partial
compactification” of a scheme X such that ∂X = X \ X = D. In this
situation, the complement (X/D)\D (∼= X/D×X X) is denoted by X/D.

For a pair (X, D) as above we denote by X̂|D the formal completion
of X along D, i.e., X̂|D = Spf Â. The canonical morphism γX : X̂|D →
X is factorized into the composite

X̂|D
βX−→ X/D

αX−→ X.

Notice that the formal completion of (X/D, D) is the same as that of
(X, D).

7.1. Analysis near cusps

In this section, we discuss the arithmetic compactification of the
moduli space of elliptic curves over Z, which is considered as one of the
simplest but non-trivial examples, and then, later, indicate more general
situation of Shimura varieties of PEL-type.

Let M be the moduli stack of elliptic curves over Z. It is the alge-
braic stack characterized by the following condition: for a scheme S the
category of Cartesian sections M (S) over S forms the groupoid consist-
ing of elliptic curves over S, where morphisms are isomorphisms of the
elliptic curves. We view M as a Deligne-Mumford stack, and denote by
funiv : E univ → M the universal elliptic curve. We want to compactify
the stack M . To this end, first we are to analyze points near the cusps.

In order to do this, the construction of the Tate curves as in Example
3.3 provides a good picture. To apply it to our situation, we need to
recast the construction in the universal form. Let W be the moduli
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space of maps of the form

u : Z −→ Gm

over Z; that is, an affine scheme identified with Spec Z[q, q−1]. Notice
that the map as above is determined by its value at u = 1, and thus,
the identification of W with Spec Z[q, q−1] is given by the universal map
uuniv : Z → Gm that maps 1 to q. We choose a torus embedding W ↪→
W = Spec Z[q], which is seen as a partial compactification, and denote
the infinity W \ W by D. The closed subscheme D is defined by the
equation q = 0. We consider the pair (W, D).

By Tate construction (or the generalization due to Mumford), we
have a semi-abelian scheme A over W /D, which has the following prop-
erties:

(1) the restriction AW/D
of A to W/D is an elliptic curve, and the

restriction to D is isomorphic to Gm;
(2) (AW/D

)an is canonically isomorphic to the quotient (Gm)an

by the subgroup generated by q as a rigid space over W =
(Ŵ |D)rig;

(3) the construction is functorial in the sense as follows: for any
complete valuation ring V of height 1 and an adic homomor-
phism Γ(W /D, OW /D

) = Z[[q]] → V that maps q to an element
in mV (which we again denote by q), the base change of A to
V corresponds to the Tate curve (Gm,K)an/qZ as in Example
2.15, where K is the field of fractions of V .

Moreover the following property is known for the Tate construction:

Proposition 7.1 (Uniformization theorem, converse to
Tate construction; cf. [16, Chap. II, §4]). Assume that (S, D) = (Spec V, V (I))
is a pair of affine schemes, where V is a Noetherian normal ring that
is complete with respect to the I-adic topology. Let A be a semi-abelian
scheme over S that satisfies following conditions:

(1) the relative dimension is 1;
(2) the restriction of A to D is a split torus;
(3) the restriction of A to S \ D is an elliptic curve.

Then there exists a morphism g : S → W /D such that A is isomorphic
to the pullback g∗A . Moreover, the morphism g is unique up to isomor-
phisms.

The proposition says that A is seen as the universal Tate curve, and
W /D is the classifying space for elliptic curves with split multiplicative
reductions over complete base schemes. Moreover one can drop the



374 K. Fujiwara and F. Kato

assumption “normal” of S when S is of dimension 1. The uniformizaiton
theorem, and the extension to the general 1-dimensional base schemes
due to Raynaud, which we often abbreviate to “Raynaud-Tate theory”,
becomes very important later.

Now let us return to the moduli stack M . We have a map

ε : W/D −→ M

defined by the elliptic curve AW/D
over W/D. This map sits in the

following 2-commutative diagram in a suitable 2-category of spaces:

W /D

��

W/D� �



ε

��

W



		��
��

��
�

Spec Z M ,



The rigid space W = (Ŵ |D)rig is considered to be the family of
“punctured unit disks” over Z, or “(deleted) tubular neighborhood” of
D inside W . The desired compactification M is obtained by patching
the stack M and the scheme W /D along the rigid space W . This will
be made more precise in the next two sections.

7.2. Arithmetic compactification
The following assertion provides the model case of the arithmetic

compactifications in general.

Proposition 7.2. There exists a proper smooth Deligne-Mumford
stack M over Z that contains M as an open substack enjoying the fol-
lowing properties:

(1) there exists a semi-abelian scheme f : E
univ → M that extends

E univ;
(2) the morphism ε : W/D → M extends to ε : W /D → M in such

a way that ε∗E
univ

= A holds;
(3) moreover, the morphism ε induces a formally étale surjective

morphism on passage to the formal completions.

In fact, the rigid space W = (Ŵ /D|D)rig = (Ŵ |D)rig is almost iso-

morphic to (M̂ |∂M )rig; it gives an isomorphism when we introduce level
structures to make the moduli problem fine. Thus the compatification
M in question should be constructed as the patching of M and W /D

along W = (Ŵ /D|D)rig. This gives the strategy for the construction
that is quite similar to the complex analytic case. Notice that, to carry
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out this strategy, the framework of general rigid spaces (introduced in
§6.5) is necessary.

7.3. Construction
The construction of M takes three steps. The method exhibited here

follows [20]. It is influenced by M. Rapoport work on Hilbert-Blumenthal
varieties [36] and G. Faltings work on Siegel modular varieties [15].

First step (Algebraization). First we are to algebraize the family A
over W /D to a semi-abelian scheme over an affine scheme of finite type
over Z. For any n ≥ 1, by Artin’s approximation theorem, we have
an affine smooth scheme V n over Z and a closed subscheme Dn ⊂ V n

such that the formal completion of V n along Dn is identified with Ŵ |D
(we fix this identification). Moreover, there is a semi-abelian scheme An

of relative dimension 1 over V n such that An is an elliptic curve over
Vn = V n \ Dn and is a split torus over Dn.

The family An is “very near” to A in the following sense: when
we regard An as a quotient of Gm by qn

Z over V n/Dn
for some qn ∈

Γ(Ŵ |D, ÔW |D
) by the uniformization theorem (Proposition 7.1), qn ≡ q

mod qn holds. To achieve the last condition, one must approximate
the semi-abelian scheme with a line bundle and sections, i.e. with theta
functions.

When An is very near to A in the sense as above and n ≥ 2, the
morphism

δn : V n/Dn
−→ W /D, q �→ qn

by the universality of W /D (again by Proposition 7.1) is an isomor-
phism25, and that the pull back δ∗nA is isomorphic to An.

One sets V = V n, D = Dn, and AV = An for some n ≥ 2, and
V = V \ D.

Second step (Openness of versality). We show that the classifying
morphism V = V \ D → M defined by AV is étale by shrinking V
around D if necessary. For this, it suffices to show that V/D → M is
formally smooth at any closed point of V/D (note that the residue field
at any closed point is a complete discrete valuation field). To show this,
one uses the infinitesimal criterion of formal smoothness, and reduces to
show the following assertion.

Proposition 7.3. Let R0 be a complete discrete valuation ring, π
a uniformizer, and R a finite local algebra that is a thickening of R0.

25The identification by δn can be different from the one which is already
chosen
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Assume that we are given an elliptic curve E over R[ 1
π ] such that the

restriction ER0 to R0 is a Tate curve over R0. Then, by replacing R by
a finite modification (= finite map that induces isomorphism outside the
ideal (π)) if necessary, E is also a Tate curve.

This is a direct consequence of the uniformization theorem (Raynaud-
Tate theory over 1-dimensional complete rings). Roughly speaking, the
point is to show the deformations of an elliptic curve with split multi-
plicative reduction are the same as the deformations of corresponding
1-motives obtained by the Raynaud-Tate theory. (A related work for
Mumford curves is in [11, §9].)

Third step (Patching). We construct M by patching V (obtained
in Step 2) and M along (V |D)rig. This is easy by using the openness of
versality (Proposition 7.3). Since M is a Deligne-Mumford stack, there
are an étale surjective morphism P → M from a smooth affine scheme
P , and a relation R → P ×Z P that defines M as a stack. Note that
we have the pull back AP to P of the universal elliptic curve. Together
with AV over V , we have a semi-abelian scheme AP

‘

V on P
∐

V .

We take the normalization R̃ of (P
∐

V )×Z (P
∐

V ) in R, and show
that R̃ defines an étale relation on P

∐
V and defines a Deligne-Mumford

stack M . Semi-abelian scheme AP
‘

V also descends to a semi-abelian

scheme E
univ → M . The point here is that one can control the situ-

ation using the semi-abelian scheme on P
∐

V and the uniformization
theorem. By the construction, the properties (1)–(3) of Proposition 7.2
follow.

The properness of M follows from the valuative criterion, using
Grothendieck’s semi-stable reduction theorem for abelian varieties. Then
we finish the construction.

7.4. General case: Shimura varieties of PEL-type

The method of the arithmetic compactification of the moduli of
elliptic curves generalizes to more general Shimura varieties.

First, we need a good model of Shimura varieties over Z. For this
purpose, we must restrict ourselves to the so-called PEL-case, which
can be seen as a moduli of abelian varieties with some rigidification
structures, namely a rigidification of a polarization, the endomorphism
ring, the Hodge filtration, and the Betti realization ([39], [12]). For the
general definition of Shimura varieties we refer to [12] and [13].

Let L be a semi-simple algebra over Q with a positive involution
∗, V a finite dimensional Q-vector space that is a faithful L-module
with a non-degenerate Q-valued skew symmetric form ϕ that satisfies
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the equality

ϕ(	x, y) = ϕ(x, 	∗y), for x, y ∈ V, 	 ∈ L.

The reductive group G over Q is the group of L-linear symplectic simil-
itudes of V .

Let X be the set of all homomorphisms h : ResC/RGm → GR such
that the R-Hodge structure defined by h on VR has the type {(−1, 0), (0,
−1)} and polarized by ϕ. The involution of L is required to be positive
for this structure.

Then X carries a natural complex structure. Each connected com-
ponent of X is a hermitian symmetric domain. To simplify the situation,
we assume that all R-simple factors of the derived group Gder are of type
A or C, and hence Gder is simply connected. The corresponding (non-
connected) Shimura variety for (G, X) over C is defined by

ShK(G, X)(C) = G(Q)\X × G(Af )/K,

where K is a compact open subgroup of G(Af ). The space ShK(G, X) is
a quasi-projective variety defined over an explicit number field E called
the reflex field of (G, X).

To get an arithmetic moduli, except for several successful cases,
only the case of good reduction has been considered in general. Zink
[47], Langlands-Rappoport [30] have defined a smooth arithmetic model
ShK(G, X) over SK of ShK(G, X)(C) as the solution of a moduli prob-
lem involving abelian schemes (under the restriction on G). Here OE is
the ring of integers of E, and SK ⊂ Spec OE is an open set explicitly
described by K (for general K, we regard ShK(G, X) as a Deligne-
Mumford stack).

By definition, there exists the universal abelian scheme

funiv : A univ → ShK(G, X)

that gives Shimura’s family over C in [39].

Proposition 7.4. Choose an admissible cone decomposition Σ that
is compatible with K. Then the toroidal compactification ShK(G, X)(Σ)
of ShK(G, X) over SK for this cone decomposition that satisfies the
following properties exists:

(1) ShK(G, X)(Σ) is a proper Deligne-Mumford stack over SK

whose local structure near the boundary is described by the
toroidal embeddings that correspond to cones in Σ;

(2) the geometric fiber over Spec C is the one constructed in [1];
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(3) the universal abelian scheme funiv : A univ → ShK(G, X) ex-
tends uniquely to a semiabelian scheme

f
univ

: A
univ −→ ShK(G, X)(Σ).

Note that our compactification ShK(G, X)(Σ) is, a priori, an alge-
braic stack or, for K small enough, an algebraic space. Here we suggest
how the construction will be done along the line described in subsection
7.3.

The role of W in §7.1 is played by (the arithmetic model of) the
mixed Shimura varieties Sh(P, XP ) associated to Q-maximal parabolic
subgroup P of G [8]. These mixed Shimura varieties are seen as a
moduli space of 1-motives with PEL-structure, and admit a fibration
Sh(P, XP ) → BP by a split torus TP . Our choice of the cone decom-
position determines a torus embedding TP ↪→ TP,σ for a cone σ, and
a partial compactification Sh(P, XP )σ of Sh(P, XP ) is obtained by the
contracted product Sh(P, XP ) ∧TP TP,σ (that is, the fiber bundle with
the fibers TP,σ associated to the torus bundle Sh(P, XP ) → BP ).

The partial compactification Sh(P, XP )σ plays the role of W in §7.1.
Then one uses the Mumford construction of semi-abelian schemes, which
is a generalization of Tate construction to higher dimensional abelian
schemes, to get a semi-abelian scheme Aσ from the universal 1-motive
on Sh(P, XP ) after completion along the closed TP -orbit Dσ. Then we
algebraize (Aσ, Sh(P, XP )σ/Dσ

) by using Artin’s approximation theo-
rem as in §7.3, Step 1.

The difficulty to construct ShK(G, X)(Σ), compared to the elliptic
curve case, lies in the fact that the openness of versality is much harder
to show. For example, the types of degenerations of abelian varieties of
fixed PEL-type is much more complicated, so we must somehow control
the various types of degenerations and different partial compactifications
at the same time to show the openness of versality.

To check the versality, we use rigid geometry and the Raynaud-Tate
theory for semiabelian schemes over one-dimensional complete rings (the
argument is similar to that in §7.3, Step 2 and Step 3, but more compli-
cated), with a closer analysis of degenerations using the uniformization
theory in [16].

Recall that the use of rigid geometry in compactification problem
goes back to Rapoport’s fundamental and important work on Hilbert-
Blumental varieties [36]. The use of Artin’s approximation theorem goes
back to Faltings work, and discussed in [16] for Siegel modular varieties.
For Siegel modular varieties, there is also a method of Chai [9]. He
constructs the arithmetic toroidal compactification (corresponding to



Rigid geometry and applications 379

projective cone decomposition) by blowing up the minimal compactifi-
cation, using the theory of algebraic theta functions26.

Remark 7.5. In [16], Kodaira-Spencer mappings are used to verify
the openness of versality, so one needs to assume the smoothness of
arithmetic models in principle. The method here has the advantage that
it is singularity free: if a good theory of canonical arithmetic models of
Shimura varieties over the ring of integers were available, our method
in §7.3 also gives the arithmetic compactifications including the bad
reduction cases, as long as arithmetic models of mixed Shimura varieties
corresponding to parabolics are normal.

7.5. Applications of arithmetic compactifications
The existence of arithmetic compactification has important conse-

quences on modular forms. Fix an admissible cone decomposition Σ and
consider the arithmetic toroidal compactification. The line bundle

ω = det(Lie(A
univ

/ShK(G, X)(Σ))∨)

on ShK(G, X)(Σ) is semi-ample by a theorem of Moret-Bailly [33]. The
space of sections

Mk = Γ(ShK(G, K)(Σ), ω⊗k)

is independent of Σ and regarded as a space of geometric modular forms
of weight k. By the properness of ShK(G, X)(Σ), Mk is finitely gen-
erated Γ(CK , OCK )-module, and the graded ring

⊕
k≥1 Mk is finitely

generated over Γ(XK , OCK ) by Moret-Bailly’s theorem. This is already
an important finiteness statement on geometric modular forms, which
is hard to prove by other methods. The geometric modular forms in
our sense is identified with holomorphic modular forms with integral co-
efficients (q-expansion principle). Summing up, we have the following
statement.

Proposition 7.6 (cf. [16, Chap. V, §1] in the Siegel modular case).
The following properties hold if bad primes are invertible in the coefficients:

(a) Koecher principle,
(b) q-expansion principle,
(c) the finiteness theorem for the space of geometric modular forms

of given weight (including the vector valued case).

26This method works over Z[ 1
2
]. One must exclude prime 2 since it is a

bad prime for the theory of algebraic theta functions.
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One can also show that ShK(G, X)min = Proj
⊕

k≥1 Mk gives an-
other compactification of ShK(G, X), which is in fact the arithmetic
minimal (= Satake, Baily-Borel) compactification:

Proposition 7.7 (cf. [16, Chap. V, §2] in the Siegel modular case).
The compactification ShK(G, X)min of ShK(G, X) has the following
property: for a Noetherian normal scheme S, an open dense subscheme
U , and a morphism f : U → ShK(G, X) such that the pull-back of the
universal abelian scheme f∗(A univ) admits a semi-stable reduction to S,
f has a unique extension f : S → ShK(G, X)min.

These integrality results have very important consequence in number
theory. For example, one can use q-expansion principle to produce con-
gruence between two modular forms. Deligne and Ribet [14] constructed
p-adic L-functions for finite order characters over a totally real field by
using Hilbert-Blumenthal varieties, and recently Urban and Skinner use
similar method for unitary Shimura varieties in their study of Iwasawa
main conjecture of elliptic curves over Q.

§8. Rigid spaces and Frobenius

The main subject to be dealt with in this section, as the second
application, is an application of rigid geometry to theory of schemes.
The category of rigid spaces is, as pointed out before, much broader
than that of schemes. Hence, what we like to show is, so to speak, one
of the “non-scheme-theoretic” methods for treating schemes. In fact,
such methods that derail from scheme theory often reveal hidden and
important features in scheme theory, which would be quite invisible only
from the scheme-theoretic point of view.

In this section, we particularly focus on Frobenius. To do this, we
first show the general technique to bridge between scheme theory and
rigid geometry in the next subsection.

8.1. From schemes to rigid spaces; constant deformation
technique

This is the general technique that is important for applying rigid
geometry to geometry of schemes. The general picture is as follows
(Figure 10).

First, start from a variety X over a field k. From X we are going to
construct canonically a rigid space. Consider the ring of formal power
series k[[t]] endowed with the t-adic topology, and put X̂k[[t]] = X ×k

Spf k[[t]] (constant deformation). Then one takes its associated rigid
space (X̂k[[t]])rig over (Spf k[[t]])rig.
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Variety

X⏐⏐�
Spec k

�

Formal
scheme

X̂k[[t]]⏐⏐�
Spf k[[t]]

�

Rigid space

(X̂k[[t]])rig⏐⏐�
(Spf k[[t]])rig

Fig. 10. Constant deformation technique

In spite of its entirely trivial looking, this construction opens the way
for several effective applications of rigid geometry to algebraic geometry.

8.2. Frobenius
Rigid geometry reveals a new feature of Frobenius morphisms in

positive characteristic. This feature will be given in Claim 8.1.
Consider the following situation:

• S: an Fq-scheme,
• Frq : S → S: Frobenius over Fq, that is, the q-th power map,
• CS : a category of geometric objects over S.

One of the properties of Frobenius morphisms that are already
known to be very important in classical algebraic and arithmetic ge-
ometry is that, most of the time, the Frobenius induces a self-functor

Fr∗q : CS −→ CS .

In other words, one has the “dynamical system” with the “phase space”
CS acted on by the “self-similarity map” Fr∗q . As usual in the theory of
dynamical system, one is particularly interested in the “Fr∗q-fixed point”,
that is, the Frq-structure

Fr∗qA ∼= A.

Once one has such a structure, one is interested in the following question.
Question: what happens near the “Fr∗q-fixed point”?

Constant deformation and Frobenius. In this context, the constant
deformation technique proves to be useful. First observe that, in complex
situation with A1

C = Spec C[X ], the selfmap

A1
C −→ A1

C, X �→ Xq
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is a contracting map near the origin for the analytic topology. The rigid
geometric counterpart of this is the following:

D1 −→ D1, X �→ Xq

is contracting near 0 in the sense that (Frq(D1(r)) ⊂ D1(rq).
More precisely, for an Fq-variety X , consider the rigid space

X = (X̂Fq [[t]])rig

obtained by constant deformation. Let Y ⊆ X be an Frq-invariant
subspace, and set

Y = (ŶFq [[t]])rig.

We think of X as the phase space equipped with the dynamical system

X
Frq−→ X

Frq−→ X
Frq−→ · · · .

This can be more concretely done by means of the associated Zariski-
Riemann space 〈X 〉; by this, we have a topological space (in the usual
sense) as the phase space.

Claim 8.1. “The Frobenius mapping is contracting near Y ,” i.e.,
Frq is contracting near 〈Y 〉 in 〈X 〉.

The claim can be shown by the reasoning similar to that in the case
of the unit disk as above. The property of Frobenius that the claim
shows is so essential in general that it actually simplifies arguments in
many situations. The Lefschetz trace formula, which we are to discuss
in the next subsection, is one of them.

8.3. Trace formula in characteristic p

The “dynamical system” approach to Frobenius as in §8.2 has al-
ready appeared and applied in the study of Lefschetz trace formula in
characteristic p by the first-named author (solution of Deligne’s conjec-
ture [19]). Let us briefly outline the argument therein.

Deligne’s conjecture. Let X be an algebraic variety over a field k.
Consider a correspondence

a : Y −→ X ×k X

such that a1 = pr1 ◦ a is proper and that a2 = pr2 ◦ a is quasi-finite. Let
K be a Q
-complex (where 1


 ∈ k) with a cohomological correspondence
compatible with a. In this situation the Lefschetz number, an element
of Q
, is defined by

Lef(a, RΓc(X, K)) = Trace(a∗, RΓc(X, K)).
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Theorem 8.2 (Deligne’s conjecture; [19]). Let k = Fq. If the above
data admit Frq-structure, then there exists N ∈ N such that the following
conditions are satisfied:

(1) dim Fix(Frn
q ◦ a) = 0 for qn > N ;

(2) for qn > N ,

Lef(Frn
q ◦ a, RΓc(X, K)) =

∑
D∈Fix(Frn

q ◦a)

naive.locD(Frn
q ◦ a, K).

Here naive.locD(a, K) vanishes if K|a2(D) = 0.

The proof is given by establishing the trace formula for certain rigid
analytic correspondences; note that this argument is not completely
scheme-theoretical.

Another way of proof was given by Shpiz and Pink in their work
around 1990, in which they assume that X is smooth and K is a smooth
sheaf, that there exists a good compactification, and that K is tame.
Recently, T. Saito and Y. Varshavsky [43] independently gave scheme-
theoretic proofs.

Remark 8.3. In [19] it was assumed that X and Y are schemes.
But, by Equivalence Theorem (Theorem 6.12) and Nagata’s Embedding
Theorem for algebraic spaces, we may weaken the assumption to that
X and Y are separated algebraic spaces of finite type over k. This
generalization actually eliminates the use of an argument in [29] to show
that the moduli space of Shtuka is a scheme.27

Applications of Deligne’s conjecture. Finally, let us list some of the
applications of Deligne’s conjecture, which provides a very strong count-
ing argument in arithmetic and many other areas in mathematics:

• Non-abelian class field theory (Shtuka moduli (L. Lafforgue
[29]), Shimura varieties (Harris-Taylor...)),

• Representation theory of Chevalley groups (Digne-Rouquier,
...),

• Model theory (Hrushovski-Macintyre).
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Abstract.

In this paper, we show that the family of moduli spaces of ¸′-
stable (t,–)-parabolic φ-connections of rank 2 over P1 with 4-regular
singular points and the fixed determinant bundle of degree −1 is
isomorphic to the family of Okamoto–Painlevé pairs introduced by
Okamoto [O1] and [STT]. We also discuss about the generalization of
our theory to the case where the rank of the connections and genus
of the base curve are arbitrary. Defining isomonodromic flows on
the family of moduli space of stable parabolic connections via the
Riemann-Hilbert correspondences, we will show that a property of
the Riemann-Hilbert correspondences implies the Painlevé property
of isomonodromic flows.

§1. Introduction

In part I [IIS1], we established a complete geometric background
for Painlevé equations of type VI or more generally for Garnier systems
from view points of moduli spaces of rank 2 stable parabolic connections,
moduli spaces of SL2-representations of π1(P1\D(t)) and the Riemann-
Hilbert correspondences between them.

In this formulation, Painlevé equations of type VI or Garnier sys-
tems are vector fields or systems of vector fields on each correspond-
ing family of moduli spaces of stable parabolic connections arising from
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isomonodromic deformations of linear connections. Most notably, we
can give a complete geometric proof of the Painlevé property of Painlevé
equations of type VI and Garnier systems by proving that the Riemann-
Hilbert correspondences are bimeromorphic proper surjective holomor-
phic maps. Moreover, one can prove that the Riemann-Hilbert corre-
spondences give analytic resolutions of singularities of moduli spaces of
the SL2-representations. Then on the inverse image of each singular
point, which is a family of compact subvarieties in the family of moduli
spaces of connections, the vector fields admit classical solutions such as
Riccati solutions in Painlevé VI case. See [Iw1], [Iw2], [SU], [IIS0], [STe]
and [IIS3], for further applications of our approach to explicit dynamics
of the Painlevé VI equations such as the classification of Riccati solutions
and rational solutions, nonlinear monodromy, and Bäklund transforma-
tions as well as the relation with the former results [Miwa], [Mal] on the
Painlevé property.

In this paper, with the notation in §3, we study in detail the moduli
space Mα′

4 (t, λ,−1) of α′-stable (t, λ)-parabolic φ-connections of rank
2 over P1 with the fixed determinant bundle of degree −1 as well as the
moduli space Mα

4 (t, λ,−1) of corresponding α-stable (t, λ)-parabolic
connections of rank 2 over P1. From a general result ([Theorem 1.1,
[IIS1]] or [Theorem 5.1, §3]) which is also valid for n ≥ 5, we can show
that

• Mα′
4 (t, λ,−1) is a projective surface,

• Mα
4 (t, λ,−1) is a smooth irreducible algebraic surface with a

holomorphic symplectic structure and
• there exists a natural embedding Mα

4 (t, λ,−1) ↪→ Mα′
4 (t, λ,−1).

In Theorem 4.1, which is the main theorem in this paper, we will
show that the moduli space Mα′

4 (t, λ,−1) is isomorphic to a smooth
projective rational surface St,λ. Moreover we can show that there exists
a unique effective anti-canonical divisor Yt,λ ∈ | − KSt,λ

| of St,λ such
that St,λ \ Yt,λ,red � Mα

4 (t, λ,−1). Moreover (St,λ, Yt,λ) is a non-
fibered rational Okamoto–Painlevé pairs of type D

(1)
4 which is defined

in [STT] (cf. [Sakai]). Note that St,λ \ Yt,λ,red is isomorphic to the
space of initial conditions for Painlevé equations of type VI constructed
by Okamoto [O1].

We should mention here that an algebraic moduli space of parabolic
connections without stability conditions was essentially considered by
D. Arinlin and S. Lysenco in [AL1], [AL2] and [A] and they constructed
a nice moduli space for generic λ. However for special λ, we should
consider certain stability condition to construct a nice moduli space.
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There are also different approaches [N], [Ni] for constructions of moduli
spaces of logarithmic connections with or without parabolic structures.

The rough plan of this paper is as follows. In §2, we will explain
about motivation of this paper and the theory of Okamoto–Painlevé
pairs in [STa] and [STT]. In §3, we review results in part I [IIS1]. In
§4, we will state Theorem 4.1 and the rest of the section will be devoted
to show this theorem. In §5, we give a formulation of moduli theory of
stable parabolic connection with regular singularities of any rank over
any smooth curve. We also define the moduli space of representations
of the fundamental group of n-punctured curve of genus g. Then we
state the existence theorem of moduli space due to Inaba [Ina] without
proof. In §6, we define the Riemann-Hilbert correspondence and state,
also without proof, Theorem 6.1 which says that the Riemann–Hilbert
correspondence is a proper surjective bimeromorphic analytic morphism.
In §7, we will define isomonodromic flows on the family of the moduli
spaces of α-stable parabolic connections. Assuming that Theorem 6.1 is
true, we will show that isomonodromic flows satisfy the Painlevé prop-
erty. (Note that, if rank r = 2 and over P1, a proof of Theorem 6.1 is
found in [IIS1]).

Throughout in this paper, we will work over the field C of complex
numbers.

§2. Motivation–Painlevé equations of type VI and Okamoto–
Painlevé pairs

Let us recall the theory of space of initial conditions of Painlevé
equation of type VI. Fix λ = (λ1, · · · , λ4) ∈ Λ4 = C4 and consider
the following ordinary differential equation of Painlevé VI type PV I(λ)
parameterized by λ:
(1)
PV I(λ) :
d2x

dt2
=

1
2

(
1
x

+
1

x − 1
+

1
x − t

)(
dx

dt

)2

−(
1
t

+
1

t − 1
+

1
x − t

)(
dx

dt

)
+

x(x − 1)(x − t)
t2(t − 1)2

×[
2(λ4 −

1
2
)2 − 2λ2

1

t

x2
+ 2λ2

2

t − 1
(x − 1)2

+
(

1
2
− 2λ2

3

)
t(t − 1)
(x − t)2

]
.
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It is known that this algebraic differential equation PV I(λ) is equivalent
to the following nonautonomous Hamiltonian system:

(2) (HV I(λ)) :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dx

dt
=

∂HV I

∂y
,

dy

dt
= −∂HV I

∂x
,

where the Hamiltonian is given as follows.

HV I(x, y, t) =
1

t(t − 1)
[
x(x − 1)(x − t)y2 − {2λ1(x − 1)(x − t)

+2λ2x(x − t) + (2λ3 − 1)x(x − 1)} y + λ(x − t)](
λ :=

{
(λ1 + λ2 + λ3 − 1/2)2 − (λ4 −

1
2
)2
})

.

Let us set T = C \ {0, 1} and consider the following algebraic vector
fields on S(0) = C2 × T × Λ4 � (x, y, t, λ)

(3) v =
∂

∂t
+

∂HV I

∂y

∂

∂x
− ∂HV I

∂x

∂

∂y

Taking a relative compactification S(0)
= Σ0 × T × Λ4 of S(0) where

Σ0 = P1×P1 and setting D(0) = S(0) \S(0), we obtain the commutative
diagram:

(4)
S(0) ↪→ S(0) ←↩ D(0)

↘ π ↓ π(0) ↙
T × Λ4.

We can extend the vector field v in (3) on S(0) to a rational vector field

(5) ṽ ∈ H0(S(0)
, ΘS(0)(∗D(0))).

In general, the rational vector field ṽ has accessible singularities at the
boundary divisor D(0). In [O1], Okamoto gave explicit resolutions of ac-
cessible singularities by successive blowings-up at points on the boundary
divisor. Then finally, we obtain a smooth family of smooth projective
rational surfaces

(6)
S ↪→ S ←↩ D

↘ π ↓ π ↙
T × Λ4.
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such that D := S \S is a reduced normal crossing divisor and S contains
S(0) as a Zariski open set. Moreover one can show that

(7) ṽ ∈ H0(S, ΘS(− logD)(D)),

where ΘS(− logD) denotes the sheaf of germs of regular vector fields
with logarithmic zero along D (cf. [STT]). The extended rational vector
field ṽ on S has poles of order 1 along D and is regular on S = S \ D.

For each fixed (t, λ) ∈ T × Λ4, the fiber π−1((t, λ)) = St,λ has a
unique effective anti-canonical divisor Yt,λ ∈ | − KSt,λ

| with the irre-
ducible decomposition

Yt,λ = 2D0 + D1 + D2 + D3 + D4

such that Yt,λ,red =
∑4

i=0 Di = Dt,λ. Moreover it satisfies the following
numerical conditions

(8) Yt,λ · Di = deg(−KSt,λ|Di
) = 0 for i = 0, . . . , 4.

In [STT], we give the following

Definition 2.1. (Cf. [STT], [STa], [Sakai]). A pair (S, Y ) of a
smooth projective rational surface with an anti-canonical divisor Y ∈
| − KS | with the irreducible decomposition Y =

∑
i miYi is called a

rational Okamoto–Painlevé pair if it satisfies the condition

(9) Y · Yi = deg(−KSt,λ|Yi
) = 0 for all i.

A rational Okamoto–Painlevé pair (S, Y ) is called of fibered-type if there
exists an elliptic fibration f : S −→ P1 such that f∗(∞) = nY for some
n ≥ 1.

It is easy to see that for a rational Okamoto–Painlevé pair the con-
figuration of Y is in the list of degenerate fibers of elliptic surfaces due
to Kodaira, which was classified by affine Dynkin diagrams. Therefore,
we have a classification of rational Okamoto–Painlevé pairs (S, Y ) by
the Dynkin diagram of Y . For the case of Painlevé VI, we can say that
the pair (St,λ,Yt,λ) appeared in a fiber of the family (6) is a rational
Okamoto–Painlevé pair of type D

(1)
4 . The family of the complement

of the divisor D in (6) S −→ T × Λ4, where the rational vector field
ṽ is regular, should be the family of the space of initial conditions of
Painlevé equations of type VI or the phase space of the vector field ṽ.
Note that S −→ T × Λ4 contains the original family S(0) −→ T × Λ4

as a proper Zariski open subset, that is, S(0) � S. Here we recall the
following technical lemma proved in [Proposition 1.3, [STT]].
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Lemma 2.1. Let (S, Y ) be a rational Okamoto–Painlevé pair. Then
the following conditions are equivalent to each other.

(1) (S, Y ) is non-fibered type.
(2) A regular algebraic functions on the complement S \ Yred must

be a constant function.
In particular, for a non-fibered rational Okamoto–Painlevé pair (S, Y ),
the complement S \ Yred is never an affine variety.

Since one can show that an Okamoto–Painlevé pair (St,λ,Yt,λ) which
appeared in a fiber of π in (6) is non-fibered type, we obtain the following

Corollary 2.1. As for the family (6) for Painlevé equations of type
VI constructed by Okamoto [O1], each fiber St,λ = St,λ \ Dt,λ is not an
affine variety.

In Theorem 4.1, we will show that the family (6) S −→ T × Λ4

constructed by Okamoto in [O1] is isomorphic to the family of moduli
spaces

Mα′
4 (−1) −→ T4 × Λ4

of α′-stable parabolic φ-connections of rank 2 over P1 with 4 regular
singular points. (In order to identify, we need to normalize 4 points
(t1, t2, t3, t4) to (0, 1, t,∞)).

In [IIS1], for a = (a1, · · · , a4) ∈ A4 � C4, we can also consider the
moduli space R(P4,t)a of SL2(C)-representations ρ of π1(P1\D(t)) with
the conditions Tr[ρ(γi)] = ai. Then we can define the Riemann-Hilbert
correspondence

(10) RHt,λ : St,λ � Mα
4 (t, λ,−1) −→ R(P4,t)a

where ai = 2 cos 2πλi.
Note that the Riemann–Hilbert correspondence is a highly transcen-

dental analytic morphism, which is never an algebraic morphism. From
results in [IIS1], we can show the following Theorem, which shows highly
transcendental nature of the Riemann–Hilbert correspondence RHt,λ.

Proposition 2.1. (Cf. [Theorem 1.4, Theorem 1.3, [IIS1]] )
(1) For all (t, λ) ∈ T × Λ4, the Riemann–Hilbert correspondence

RHt,λ is a bimeromorphic proper surjective analytic morphism.
If λ ∈ Λ4 is generic, RHt,λ is an analytic isomorphism.

(2) For all a ∈ A4, R(P4,t)a is an affine variety, while St,λ �
Mα

4 (t, λ,−1) is not an affine variety. Hence if λ ∈ Λ4 is
generic, RHt,λ gives an analytic isomorphism between a non-
affine variety St,λ � Mα

4 (t, λ,−1) and an affine variety R(P4,t)a.
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(3) For a generic λ ∈ Λ4, St,λ � Mα
4 (t, λ,−1) is a Stein manifold,

but not an affine variety.

In §4, in order to obtain Okamoto-Painlevé pairs (St,λ,Yt,λ), we use
a process of blowings-up which is a little bit different from Okamoto’s in
[O1]. The process can be explained as follows. Take Σ2 = P(OP1(2) ⊕
OP1) −→ P1, which is the Hirzebruch surface of degree 2. Let D0

denote the unique infinite section with D2
0 = −2 and take the fibers Fi

over ti for i = 1, . . . , 4. From the data λi, we can determine two points
b+
i and b−i on Fi. (See §4 for precise definition of b±i ). By blowing-

up of Σ2 at 8-points {b±i }4
i=1, we obtain the rational surface St,λ and

the unique effective anti-canonical divisor Yt,λ can be given by Yt,λ =
2D0 +D1 +D2 +D3 +D4 where Di denotes the proper transform of Fi,
(see Fig. 1).

St,λ

D1 D2 D3 D4

D0

t1 t2 t3 t4

π

P1

∞-section

Fig. 1. Okamoto–Painlevé pair of type D
(1)
4

§3. Moduli spaces of rank 2 stable parabolic connections on
P1 and their compactifications. A review of Part I.

In this section, we reproduce basic notation and definition in part I
[IIS1] for reader’s convenience.
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3.1. Parabolic connections on P1.
Let n ≥ 3 and set

(11) Tn = {(t1, . . . , tn) ∈ (P1)n | ti 
= tj , (i 
= j)},

(12) Λn = {λ = (λ1, . . . , λn) ∈ Cn}.

Fixing a data (t, λ) = (t1, . . . , tn, λ1, . . . , λn) ∈ Tn × Λn, we define a
reduced divisor on P1 as

(13) D(t) = t1 + · · · + tn.

Moreover we fix a line bundle L on P1 with a logarithmic connection
∇L : L −→ L ⊗ Ω1

P1(D(t)).

Definition 3.1. A (rank 2) (t, λ)-parabolic connection on P1 with
the determinant (L,∇L) is a quadruplet (E,∇, ϕ, {li}1≤i≤n) which con-
sists of

(1) a rank 2 vector bundle E on P1,
(2) a logarithmic connection ∇ : E −→ E ⊗ Ω1

P1(D(t))
(3) a bundle isomorphism ϕ : ∧2E

�−→ L
(4) one dimensional subspace li of the fiber Eti of E at ti, li ⊂ Eti ,

i = 1, . . . , n, such that
(a) for any local sections s1, s2 of E,

ϕ ⊗ id(∇s1 ∧ s2 + s1 ∧∇s2) = ∇L(ϕ(s1 ∧ s2)),

(b) li ⊂ Ker(resti(∇) − λi), that is, λi is an eigenvalue of
the residue resti(∇) of ∇ at ti and li is a one-dimensional
eigensubspace of resti(∇).

Definition 3.2. Two (t, λ)-parabolic connections

(E1,∇1, ϕ, {li}1≤i≤n), (E2,∇2, ϕ
′, {l′i}1≤i≤n)

on P1 with the determinant (L,∇L) are isomorphic to each other if there
is an isomorphism σ : E1

∼−→ E2 and c ∈ C× such that the diagrams

(14)

E1
∇1−−−−→ E1 ⊗ Ω1

P1(D(t))

σ

⏐⏐�∼= ∼=
⏐⏐�σ⊗id

E2
∇2−−−−→ E2 ⊗ Ω1

P1(D(t))

∧2 E1
ϕ−−−−→∼=

L

∧2σ

⏐⏐�∼= c

⏐⏐�∼=∧2
E2

ϕ′

−−−−→∼=
L

commute and (σ)ti (li) = l′i for i = 1, . . . , n.
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3.2. The set of local exponents λ ∈ Λn

Note that a data λ = (λ1, . . . , λn) ∈ Λn � Cn specifies the set of
eigenvalues of the residue matrix of a connection ∇ at t = (t1, . . . , tn),
which will be called a set of local exponents of ∇.

Definition 3.3. A set of local exponents λ = (λ1, . . . , λn) ∈ Λn is
called special if

(1) λ is resonant, that is, for some 1 ≤ i ≤ n,

(15) 2λi ∈ Z,

(2) or λ is reducible, that is, for some (ε1, . . . , εn) ∈ {±1}n

(16)
n∑

i=1

εiλi ∈ Z.

If λ ∈ Λn is not special, λ is said to be generic.

3.3. Parabolic degrees and α-stability

Let us fix a series of positive rational numbers α = (α1, α2, . . . , α2n),
which is called a weight, such that

(17) 0 ≤ α1 < α2 < · · · < αi < · · · < α2n < α2n+1 = 1.

For a (t, λ)-parabolic connection on P1 with the determinant (L,∇L),
we can define the parabolic degree of E = (E,∇, ϕ, l) with respect to
the weight α by

pardegα E = deg E +
n∑

i=1

(α2i−1 dimEti/li + α2i dim li)(18)

= deg L +
n∑

i=1

(α2i−1 + α2i).

Let F ⊂ E be a rank 1 subbundle of E such that ∇F ⊂ F ⊗Ω1
P1(D(t)).

We define the parabolic degree of (F,∇|F ) by
(19)

pardegα F = deg F +
n∑

i=1

(α2i−1 dimFti/li ∩ Fti + α2i dim li ∩ Fti) .

Definition 3.4. Fix a weight α. A (t, λ)-parabolic connection
(E,∇, ϕ, l) on P1 with the determinant (L,∇L) is said to be α-stable
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(resp. α-semistable ) if for every rank-1 subbundle F with ∇(F ) ⊂
F ⊗ Ω1

P1(D(t))

(20) pardegα F <
pardegα E

2
, (resp. pardegα F ≤ pardegα E

2
).

(For simplicity, “α-stable” will be abbreviated to “stable”).

We define the coarse moduli space by

(21)

Mα
n (t, λ, L) =

⎧⎨⎩(E,∇, ϕ, l);
an α-stable (t, λ)-parabolic
connection with
the determinant (L,∇L)

⎫⎬⎭ /isom.

3.4. Stable parabolic φ-connections

If n ≥ 4, the moduli space Mα
n (t, λ, L) never becomes projective

nor complete. In order to obtain a compactification of the moduli
space Mα

n (t, λ, L), we will introduce the notion of a stable parabolic
φ-connection, or equivalently, a stable parabolic Λ-triple. Again, let
us fix (t, λ) ∈ Tn × Λn and a line bundle L on P1 with a connection
∇L : L → L ⊗ Ω1

P1(D(t)).

Definition 3.5. The data (E1, E2, φ,∇, ϕ, {li}n
i=1) is said to be a

(t, λ)-parabolic φ-connection of rank 2 with the determinant (L,∇L) if
E1, E2 are rank 2 vector bundles on P1 with deg E1 = deg L, φ : E1 →
E2, ∇ : E1 → E2⊗Ω1

P1(D(t)) are morphisms of sheaves, ϕ :
∧2

E2
∼−→ L

is an isomorphism and li ⊂ (E1)ti are one dimensional subspaces for
i = 1, . . . , n such that

(1) φ(fa) = fφ(a) and ∇(fa) = φ(a) ⊗ df + f∇(a) for f ∈ OP1 ,
a ∈ E1,

(2) (ϕ⊗ id)(∇(s1)∧φ(s2)+φ(s1)∧∇(s2)) = ∇L(ϕ(φ(s1)∧φ(s2)))
for s1, s2 ∈ E1 and

(3) (resti(∇) − λiφti)|li = 0 for i = 1, . . . , n.

Definition 3.6.
Two (t, λ) parabolic φ-connections

(E1, E2, φ,∇, ϕ, {li}), (E′
1, E

′
2, φ

′,∇′, ϕ′, {l′i})
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are said to be isomorphic to each other if there are isomorphisms σ1 :
E1

∼−→ E′
1, σ2 : E2

∼−→ E′
2 and c ∈ C \ {0} such that the diagrams

E1
φ−−−−→ E2

σ1

⏐⏐�∼= ∼=
⏐⏐�σ2

E′
1

φ′

−−−−→ E′
2

E1
∇−−−−→ E2 ⊗ Ω1

P1(D(t))

σ1

⏐⏐�∼= ∼=
⏐⏐�σ2⊗id

E′
1

∇′
−−−−→ E′

2 ⊗ Ω1
P1(D(t))∧2

E2
ϕ−−−−→∼=

L

∧2σ2

⏐⏐�∼= c

⏐⏐�∼=∧2 E′
2

ϕ′

−−−−→∼=
L

commute and (σ1)ti(li) = l′i for i = 1, . . . , n.

Remark 3.1. Assume that two vector bundles E1, E2 and mor-
phisms φ : E1 → E2, ∇ : E1 → E2 ⊗ Ω1

P1(D(t)) satisfying φ(fa) =
fφ(a), ∇(fa) = φ(a) ⊗ df + f∇(a) for f ∈ OP1 , a ∈ E1 are given. If φ
is an isomorphism, then (φ⊗ id)−1 ◦∇ : E1 → E1 ⊗Ω1

P1(D(t)) becomes
a connection on E1.

Fix rational numbers α′
1, α

′
2, . . . , α

′
2n, α′

2n+1 satisfying

0 ≤ α′
1 < α′

2 < · · · < α′
2n < α′

2n+1 = 1

and positive integers β1, β2. Setting α′ = (α′
1, . . . , α

′
2n), β = (β1, β2),

we obtain a weight (α′, β) for parabolic φ-connections.

Definition 3.7. Fix a sufficiently large integer γ. Let

(E1, E2, φ,∇, ϕ, {li}n
i=1)

be a parabolic φ-connection. For any subbundles F1 ⊂ E1, F2 ⊂ E2

satisfying φ(F1) ⊂ F2, ∇(F1) ⊂ F2 ⊗ Ω1
P1(D(t)), we define

µ((F1, F2))α′β =
1

β1 rank(F1) + β2 rank(F2)
(β1(deg F1(−D(t)))

+ β2(deg F2 − γ rank(F2)) +
n∑

i=1

β1(α′
2i−1d2i−1(F1) + α′

2id2i(F1))

where d2i−1(F ) = dim((F1)ti/li ∩ (F1)ti), d2i(F1) = dim((F1)ti ∩ li).
A parabolic φ-connection (E1, E2, φ,∇, ϕ, {li}n

i=1) is said to be (α′, β)-
stable (resp. (α′, β)-semistable) if for any subbundles F1 ⊂ E1, F2 ⊂
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E2 satisfying φ(F1) ⊂ F2, ∇(F1) ⊂ F2 ⊗ Ω1
P1(D(t)) and (F1, F2) 
=

(E1, E2), (0, 0), the inequality

µ((F1, F2))α′β < µ((E1, E2))α′β,(22)
(resp. µ((F1, F2))α′β ≤ µ((E1, E2))α′β.)

We define the coarse moduli space of (α′, β)-stable (t, λ)-parabolic
φ-connections with the determinant (L,∇L) by

(23) Mα′β
n (t, λ, L) := {(E1, E2, φ,∇, ϕ, {li})} /isom.

For a given weight (α′, β) and 1 ≤ i ≤ 2n, define a rational number αi

by

(24) αi =
β1

β1 + β2
α′

i.

Then α = (αi) satisfies the condition

(25) 0 ≤ α1 < α2 < · · · < α2n <
β1

(β1 + β2)
< 1,

hence α defines a weight for parabolic connections. It is easy to see
that if we take γ sufficiently large (E,∇, ϕ, {li}) is α-stable if and only
if the associated parabolic φ-connection (E, E, idE ,∇, ϕ, {li}) is stable
with respect to (α′, β). Therefore we see that the natural map

(26) (E,∇, ϕ, {li}) �→ (E, E, idE ,∇, ϕ, {li})

induces an injection

(27) Mα
n (t, λ, L) ↪→ Mα′β

n (t, λ, L).

Conversely, assuming that β = (β1, β2) are given, for a weight α = (αi)
satisfying the condition (25), we can define α′

i = αi
β1+β2

β1
for 1 ≤ i ≤ 2n.

Since 0 ≤ α′
1 < α′

2 < · · · < α′
2n = α2n

β1+β2
β1

< 1, (α′, β) give a weight
for parabolic φ-connections.

Moreover, considering the relative setting over Tn×Λn, we can define
two families of the moduli spaces

(28) πn : Mα′β
n (L) −→ Tn × Λn, πn : Mα

n (L) −→ Tn × Λn

such that the following diagram commutes;

(29)

Mα
n (L)

ι
↪→ Mα′β

n (L)

πn

⏐⏐� ⏐⏐�πn

Tn × Λn Tn × Λn.



Moduli of stable parabolic connections 399

Here the fibers of πn and πn over (t, λ) ∈ Tn × Λn are

(30) π−1
n (t, λ) = Mα(t, λ, L), π−1

n (t, λ) = Mα′β(t, λ, L).

3.5. The existence of moduli spaces and their properties

The following theorem was proved in [IIS1].

Theorem 3.1. ( [Theorem 2.1, [IIS1]]).
(1) Fix a weight β = (β1, β2). For a generic weight α′,

πn : Mα′β
n (L) −→ Tn × Λn

is a projective morphism. In particular, the moduli space
Mα′β(t, λ, L) is a projective algebraic scheme for all (t, λ) ∈
Tn × Λn.

(2) For a generic weight α, πn : Mα
n (L) −→ Tn × Λn is a smooth

morphism of relative dimension 2n − 6 with irreducible closed
fibers. Therefore, the moduli space Mα

n (t, λ, L) is a smooth,
irreducible algebraic variety of dimension 2n−6 for all (t, λ) ∈
Tn × Λn.

Remark 3.2. (1) The structures of moduli spaces Mα
n (L) and

Mα′β
n (L) may depend on the weights α, (α′, β) and deg L.

(2) The moduli spaces Mα
n (L) is a fine moduli space. In fact, we

have the universal families over these moduli spaces.
(3) The moduli space Mα

n (t, λ, L) admits a natural holomorphic
symplectic structure. (See [Proposition 6.2, [IIS1]). This fact
is a part of the reason why Painlevé VI and Garnier systems
can be written in nonautonomous Hamiltonian systems.

(4) In case of n = 4, we can show that Mα′β
4 (t, λ, L) is smooth

(cf. Proposition 4.3 ). However we do not know whether
Mα′β

n (t, λ, L) is smooth or not for n ≥ 5.

When we describe the explicit algebraic or geometric structure of the
moduli spaces Mα

n (L) and Mα′β
n (L), it is convenient to fix a determinant

line bundle (L,∇L). As a typical example of the determinant bundle is

(31) (L,∇L) = (OP1(−tn), d)

where the connection is given by

(32) ∇L(z − tn) = d(z − tn) = (z − tn) ⊗ dz

z − tn
.
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Here z is an inhomogeneous coordinate of P1 = SpecC[z] ∪ {∞}. For
this (L,∇L) = (OP1(−tn), d), we set

Mα
n (t, λ,−1) = Mα

n (t, λ, L), (resp. Mα′β
n (t, λ,−1) = Mα′β

n (t, λ, L) ).

§4. Explicit construction of moduli spaces for the case of n = 4
(Painlevé VI case).

In this section, we will deal with the case of n = 4 in detail. Let us
fix a sufficiently large integer γ and take a weight (α′, β) for parabolic
φ-connections where α′ = (α′

1, . . . , α
′
8), β = (β1, β2), γ and fix (t, λ) =

(t1, . . . , t4, λ1, . . . , λ4) ∈ T4 × Λ4.
Then the corresponding weight α = (α1, . . . , α8) for parabolic con-

nections can be given by

αi = α′
i

β1

β1 + β2
1 ≤ i ≤ 8.

For simplicity, we will assume that β1 = β2 = 1, hence α = α′/2. We
also assume (L,∇l) = (OP1(−tn), d) and set

Mα′
4 (t, λ,−1) = Mα′β

4 (t, λ, L), Mα′
4 (−1) = Mα′β

4 (L).

From Theorem 3.1, we can obtain the commutative diagram:

(33)

Mα
4 (−1)

ι
↪→ Mα′

4 (−1)

π4

⏐⏐� ⏐⏐�π4

T4 × Λ4 T4 × Λ4,

such that π−1
4 ((t, λ)) � Mα

4 (t, λ,−1) and π−1
4 (t, λ) � Mα′

4 (t, λ,−1).
(Note that α = α′/2). From Theorem 3.1, we see that for a generic
weight α′, π4 is a projective morphism and π4 is a smooth morphism of
relative dimension 2.

4.1. Main Theorem (Explicit description for n = 4 case).
Putting β1 = β2 = 1, we further assume that |α′

j | � 1 for i =
1, . . . , 8. Let t̃1, . . . , t̃4 ⊂ P1 × Λ4 × T4 be the pull-back of the universal
sections on P1 × T4 over T4. Put D(t̃) := t̃1 + · · · + t̃4 and consider the
projective bundle

π : P
(
Ω1

P1×T4×Λ4/T4×Λ4
(D(t̃)) ⊕OP1×T4×Λ4

)
−→ P1 × T4 × Λ4.
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Note that since Ω1
P1(D(t)) � OP1(2) the fiber of p23 ◦ π over (t, λ) ∈

T4 × Λ4 is isomorphic to

P(OP1(2) ⊕OP1) � Σ2

where Σ2 is the Hirzebruch surface of degree 2.
Let D̃i ⊂ P

(
Ω1

P1×T4×Λ4/T4×Λ4
(D(t̃)) ⊕OP1×T4×Λ4

)
be the inverse

image of t̃i. Since the residue map induces an isomorphism

Ω1
P1×T4×Λ4/T4×Λ4

(D(t̃))|t̃i

∼−→ Ot̃i
,

we have a canonical isomorphism D̃i
∼→ P1 × T4 × Λ4. Let b̃+

i ⊂ D̃i

(resp. b̃−i ⊂ D̃i) be the inverse image of [λ+
i : 1] ⊂ P1 × T4 × Λ4 (resp.

[λ−
i : 1] ⊂ P1 × T4 × Λ4). We denote by B+ (resp. B−) the reduced

induced structure on b̃+
1 ∪ · · · ∪ b̃+

4 (resp. b̃−1 ∪ · · · ∪ b̃−4 ) and we consider
the reduced induced structure on B = B+ ∪ B−. Let

g : Z → P
(
Ω1

P1×T4×Λ4/T4×Λ4
(D(t̃)) ⊕OP1×T4×Λ4

)
be the blow-up along B+ and S be the blow-up of Z along the closure of
g−1(B− \(B+∩B−)). (It is easy to see that S −→ T4×Λ4 is isomorphic
to the family constructed by Okamoto [O1]). Note that Z is isomorphic
to the blow-up of Z along g−1(B).

The main purpose of this section is to prove the following theorem:

Theorem 4.1. Take α′ = (α′
i)1≤i≤2n, β = (β1, β2) and γ such

that β1 = β2 = 1, γ � 0, |α′
i| � 1 for 1 ≤ i ≤ 2n, α′

2i − α′
2i−1 <∑

j 	=i(α
′
2j − α′

2j−1) for 1 ≤ i ≤ n and that any (α′, β)-semistable para-
bolic φ-connection is (α′, β)-stable.

(1) There exists an isomorphism

(34) Mα′
4 (OP1(−t̃4))

∼−→ S

over T4 × Λ4.
(2) Let Y be the closed subscheme of Mα′

4 (OP1(−t̃4)) defined by
the condition ∧2φ = 0. Then

(35) M
α′/2
4 (OP1(−t̃4)) = Mα′

4 (OP1(−t̃4)) \ Y.

(3) For each (t, λ) ∈ T4 ×Λ4, the fiber Y(t,λ) is the anti-canonical
divisor of Mα′

4 (t, λ,OP1(−t̃4)) and the pair

(36) (Mα′
4 (t, λ,OP1(−t̃4)),Y(t,λ))

is an Okamoto-Painlevé pair of type D
(1)
4 .
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4.2. Construction of the morphism Mα′
4 (t, λ,−1) → Σ2

We assume that (αi) satisfies the condition of Lemma 4.2 below.
Take any point (E1, E2, φ,∇, ϕ, {li}) ∈ Mα′

4 (t, λ,−1). There are
unique trivial subbundles L

(0)
1 ⊂ E1, L

(0)
2 ⊂ E2, whose existence is

confirmed by Proposition 4.1 bellow. Since the composite

OP1 ∼= L
(0)
1 ↪→ E1

φ−→ E2 → E2/L
(0)
2

∼= OP1(−1)

is zero, the composite
(37)
u : L

(0)
1 ↪→ E1

∇−→ E2 ⊗ Ω1
P1(D(t)) → E2/L

(0)
2 ⊗ Ω1

P1(D(t)) ∼= OP1(1)

becomes a homomorphism. By Proposition 4.1 bellow, there is a unique
point q ∈ P1 satisfying u(q) = 0. Put L

(−1)
1 := E1/L

(0)
1 , L

(−1)
2 :=

E2/L
(0)
2 and let pj : Ej → L

(−1)
j be the projection for j = 1, 2. We

define a homomorphism B : E1 → L
(−1)
2 ⊗ Ω1

P1(D(t)) by B(a) := (p2 ⊗
id)∇(a) − d(p2φ(a)) for a ∈ E1, where d is the canonical connection
on L

(−1)
2

∼= OP1(−t4). Since uq = 0, Bq induces a homomorphism

h1 : (L(−1)
1 )q →

(
L

(−1)
2 ⊗ Ω1

P1(D(t))
)

q
which makes the diagram

0 → (L
(0)
1 )q −→ (E1)q −→ (L

(−1)
1 )q → 0

↘ uq=0 Bq ↓ ∃h1 ↙
“

L
(−1)
2 ⊗ Ω1

P1(D(t))
”

q

commute. On the other hand, φ induces the following commutative
diagram

0 −−−−→ L
(0)
1 −−−−→ E1 −−−−→ L

(−1)
1 −−−−→ 0

φ1

⏐⏐� φ

⏐⏐� φ2

⏐⏐�
0 −−−−→ L

(0)
2 −−−−→ E2 −−−−→ L

(−1)
2 −−−−→ 0.

We put h2 := φ2(q). Then h1, h2 determine a homomorphism
(38)
ι : (L(−1)

1 )q −→
(
L

(−1)
2 ⊗ Ω1

P1(D(t)) ⊕ L
(−1)
2

)
q
; a �→ (−h1(a), h2(a)).

By Proposition 4.2, ι is injective and the inclusion

ι : (L(−1)
1 )q ↪→ (L(−1)

2 )q ⊗ (Ω1
P1(D(t)) ⊕OP1)q
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determines a point p(E1, E2, φ,∇, ϕ, {li}) of P∗(Ω1
P1(D(t))⊕OP1 ), where

P∗(Ω1
P1(D(t)) ⊕ OP1) means ProjS((Ω1

P1(D(t)) ⊕ OP1)∨). So we can
define a morphism

(39)
p : Mα′

4 (t, λ,−1) −→ P∗(Ω1
P1(D(t)) ⊕OP1);

(E1, E2, φ,∇, ϕ, {li}) �→ p(E1, E2, φ,∇, ϕ, {li}).

Proposition 4.1. For any member

(E1, E2, φ,∇, ϕ, {li}) ∈ Mα′
4 (t, λ,−1),

we have
E1

∼= E2
∼= OP1 ⊕OP1(−1).

Proof. Take decompositions

E1 = OP1(d1) ⊕OP1(−d1 − 1) (d1 ≥ 0)

E2 = OP1(d2) ⊕OP1(−d2 − 1) (d2 ≥ 0).

Assume that d1 + d2 > 1. Then we have φ(OP1(d1)) ⊂ OP1(d2).
The composite

OP1(d1) → E1
∇−→ E2⊗Ω1

P1(D(t)) → OP1(−d2−1)⊗Ω1
P1(D(t)) ∼= OP1(1−d2)

becomes a homomorphism and must be zero since H0(OP1(1 − (d1 +
d2))) = 0. So we have ∇(OP1(d1)) ⊂ OP1(d2)⊗Ω1(D(t)). Then the sub-
bundles (OP1(d1),OP1(d2)) breaks the stability of (E1, E2, φ,∇, ϕ, {li}).

If d1 = 1 and d2 = 0, then φ(OP1(1)) = 0 and the composite

f : OP1(1) ↪→ E1
∇−→ E2 ⊗ Ω1

P1(D(t))

becomes a homomorphism.
Put L := (Im f)⊗Ω1(D(t))∨. Then L is a vector bundle and either

L = 0 or L is a line bundle with deg L ≥ −1. Then the subsheaves
(OP1(1), L) breaks the stability of (E1, E2, φ,∇, ϕ, {li}).

If d1 = 0 and d2 = 1, then the composite E1
φ→ E2 → OP1(−2)

must be zero and the composite f : E1
∇→ E2⊗Ω1

P1(D(t)) → OP1(−2)⊗
Ω1

P1(D(t)) becomes a homomorphism. Put L := ker f . Then we have
either L = E1 or L is a line bundle such that deg L ≥ −1. Then the
subbundles (L,OP1(1)) breaks the stability of (E1, E2, φ,∇, ϕ, {li}).

Hence we have d1 = d2 = 0 and E1
∼= E2

∼= OP1 ⊕ OP1(−1).
Q.E.D.
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Lemma 4.1. For any (E1, E2, φ,∇, ϕ, {li}) ∈ Mα′
4 (t, λ,−1), the

homomorphism u defined in (37) is injective.

Proof. Assume that u = 0. Then the subbundles (L(0)
1 , L

(0)
2 ) breaks

the stability of (E1, E2, φ,∇, ϕ, {li}). Thus u 
= 0 and u is injective.
Q.E.D.

Lemma 4.2. Assume α′
2i − α′

2i−1 <
∑

j 	=i(α
′
2j − α′

2j−1) for any
1 ≤ i ≤ n. Then the homomorphism ι defined above is injective.

Proof. If φ is isomorphic, then h2 : (L(−1)
1 )q → (L(−1)

2 )q is isomor-
phic, and so ι is injective. So we assume that φ is not isomorphic, that
is, ∧2φ = 0.

First consider the case rankφ = 1. Take decompositions E1 =
OP1 ⊕OP1(−1), E2 = OP1 ⊕OP1(−1). Then the homomorphism φ can
be represented by a matrix(

φ1 φ3

0 φ2

)
(φ1, φ2 ∈ H0(OP1), φ3 ∈ H0(OP1(1))),

where the composite E1
φ→ E2

p2→ OP1(−1) is represented by (0, φ2) and

E1
φ→ E2 → OP1 by (φ1, φ3).
Now assume that p2 ◦ φ = 0. Then φ2 = 0. If moreover φ1 =

0, then φ3 
= 0 since rankφ = 1. Take local bases e1 of OP1 ⊂ E1

and e2 of OP1(−1) ⊂ E1. Then the condition ∇(e1) ∧ φ(e2) + φ(e1) ∧
∇(e2) = 0 implies that ∇(e1) ∈ OP1 ⊗ΩP1(D(t)), which contradicts the
result of Lemma 4.1. Thus we have φ1 
= 0. Then, by multiplying an
automorphism of E1 given by(

c1 c3

0 c2

) (
c1, c2 ∈ H0(O×

P1), c3 ∈ H0(OP1(1))
)
,

the matrix representing φ changes into the form(
φ1 φ3

0 0

)(
c1 c3

0 c2

)
=
(

c1φ1 c3φ1 + c2φ3

0 0

)
.

For a suitable choice of c1, c2 and c3, we have c1φ1 = 1 and c3φ1+c2φ3 =
0. So we may assume without loss of generality that φ3 = 0 and φ1 = 1.

The homomorphism B : E1 → L
(−1)
2 ⊗Ω1

P1(D(t)) = Ω1
P1(D(t))(−1)

defined by B(a) := (p2 ⊗ id)∇(a) − d(p2φ(a)) for a ∈ E1 can be rep-
resented by a matrix (ω3, ω4) where ω3 ∈ H0(Ω1

P1(D(t))(−1)) and
ω4 ∈ H0(Ω1

P1(D(t))). Define a homomorphism A : E1 → Ω1
P1(D(t))

by A(a) := (q2 ⊗ id)∇(a) − d(q2φ(a)) for a ∈ E1, where q2 : E2 → OP1
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is the projection with respect to the given decomposition of E2 and d
is the trivial connection on OP1 . Then A can be represented by a ma-
trix (ω1, ω2), where ω1 ∈ H0(Ω1

P1(D(t))) and ω2 ∈ H0(Ω1
P1(D(t))(1)).

Roughly speaking ∇ is represented by the matrix(
ω1 ω2

ω3 ω4

)
.

Since φ(e2) = 0 and φ(e1) ∈ OP1 , the condition ∇(e1) ∧ φ(e2) + φ(e1)∧
∇(e2) = 0 implies that ∇(e2) ∈ OP1⊗Ω1

P1(D(t)). Thus we have ω4 = 0.
Take a nonzero vector v(i) ∈ li ⊂ (E1)ti . Then we must have

(40) (resti ∇)(v(i)) = λiφti(v
(i)).

Since E1 = OP1 ⊕ OP1(−1), we can write v(i) =

(
v
(i)
1

v
(i)
2

)
with v

(i)
1 ∈

(OP1)ti and v
(i)
2 ∈ (OP1(−1))ti . Then we have

(resti ∇)

(
v
(i)
1

v
(i)
2

)
=

(
resti(ω1)v

(i)
1 + resti(ω2)v

(i)
2

resti(ω3)v
(i)
1

)
,

φti

(
v
(i)
1

v
(i)
2

)
=
(

v
(i)
1

0

)
Thus the equality (40) is equivalent to the equalities

resti(ω1)v
(i)
1 + resti(ω2)v

(i)
2 = λiv

(i)
1 , resti(ω3)v

(i)
1 = 0.

Since u is injective by Lemma 4.1, ω3 
= 0. So there is at most one point
ti which satisfies resti(ω3) = 0, because ω3 ∈ H0(Ω1

P1(D(t))(−1)) ∼=
H0(OP1(1)). Thus, for some i, we have restj (ω3) 
= 0 for j 
= i. Then
we have v

(j)
1 = 0 for j 
= i. So we have lj ⊂ (OP1(−1))tj for j 
= i.

Recall that the image of ∇|OP1 (−1) is contained in OP1 ⊗ Ω1
P1(D(t))

because ω4 = 0. Let F∗(E1) be the filtration of E1 corresponding to
{lj}. Then (OP1(−1),OP1 , Φ|OP1(−1), F∗(E1)∩OP1(−1)) is a parabolic
φ-subconnection of (E1, E2, Φ, F∗(E1)). Since 2(α′

2i−1 +
∑

j 	=i α′
2j) >∑8

j=1 α′
j by the assumption of the lemma, we have

µ((OP1 (−1),OP1 , Φ|OP1(−1), F∗(E1) ∩ OP1(−1)))

≥ −1−4−1−γ+α′
2i−1+

P

j �=i α′
2j

2

>
−2−8−2−2γ+

P4
j=1(α′

2j−1+α′
2j)

4 = µ((E1, E2, Φ, F∗(E1))),
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which breaks the stability of (E1, E2, Φ, F∗(E1)). Therefore p2 ◦ φ 
= 0
and the homomorphism L

(−1)
1 → L

(−1)
2 induced by φ is an isomorphism.

Hence h2 : (L(−1)
1 )q → (L(−1)

2 )q is bijective and so ι is injective.
Next consider the case φ = 0. In this case, ∇ : E1 → E2⊗Ω1

P1(D(t))
is a homomorphism. If we choose a decomposition E1 = OP1⊕OP1(−1),
E2 = OP1 ⊕OP1(−1), ∇ is represented by a matrix

(
ω1 ω2

ω3 ω4

) ⎧⎨⎩
ω1, ω4 ∈ H0(Ω1

P1(D(t))),
ω2 ∈ H0(Ω1

P1(D(t))(1)),
ω3 ∈ H0(Ω1

P1(D(t))(−1)).

Notice that ω3 corresponds to the homomorphism u : L
(0)
1 → E2/L

(0)
2 ⊗

ΩP1(D(t)) and so ω3 
= 0. Let q be the point of P1 satisfying ω3(q) = 0.
Assume that ω4(q) = 0. Multiplying an automorphism of E1 given by(

c1 c3

0 c2

) (
c1, c2 ∈ H0(O×

P1), c3 ∈ H0(OP1(1))
)
,

the matrix representing ∇ changes into the form(
ω1 ω2

ω3 ω4

)(
c1 c3

0 c2

)
=
(

c1ω1 c3ω1 + c2ω2

c1ω3 c3ω3 + c2ω4

)
.

For a suitable choice of c2, c3, we have c3ω3 + c2ω4 = 0. So we may
assume without loss of generality that ω4 = 0. Take a nonzero element

v(i) of li ⊂ (E1)ti . We can write v(i) =

(
v
(i)
1

v
(i)
2

)
with v

(i)
1 ∈ (OP1)ti

and v
(i)
2 ∈ (OP1(−1))ti . Then we have

(resti ∇)(v(i)) = (resti ∇)

(
v
(i)
1

v
(i)
2

)

=

(
resti(ω1)v

(i)
1 + resti(ω2)v

(i)
2

resti(ω3)v
(i)
1

)

Since (resti ∇)(v(i)) = λiφti(v(i)) = 0, we have resti(ω3)v
(i)
1 = 0 for

i = 1, . . . , 4. There is at most one i satisfying resti(ω3) = 0 because
ω3 ∈ H0(Ω1

P1(D(t))(−1)). So we may assume that for some i, ω3(tj) 
= 0
for j 
= i. Then we have v

(j)
1 = 0 for j 
= i and lj ⊂ OP1(−1)tj for j 
= i.

Since ω4 = 0, ∇(OP1(−1)) ⊂ OP1 ⊗ Ω1
P1(D(t)). If F∗(E1) is the filtra-

tion of E1 corresponding to {lj}, then (OP1(−1),OP1 , Φ|OP1(−1), F∗(E1)∩
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OP1(−1)) is a parabolic φ-subconnection of (E1, E2, Φ, F∗(E1)) and

µ(OP1(−1),OP1 , Φ|OP1 (−1), F∗(E1) ∩ OP1(−1))

≥ −1−4−1−γ+α′
2i−1+

P

j �=i α′
2j

2

>
−2−8−2−2γ+

P4
j=1(α′

2j−1+α′
2j)

4 = µ(E1, E2, Φ, F∗(E1))

which contradicts the stability of (E1, E2, Φ, F∗(E1)). Therefore we have
ω4(q) 
= 0, which means that h1 is bijective and so ι is injective. Q.E.D.

4.3. Smoothness of Mα′
4 (t, λ,−1)

Let Y be the closed subscheme of Mα′
4 (−1) defined by the condition

∧2φ = 0 and Y (t, λ) be the fiber of Y over (t, λ).

Proposition 4.2. Under the assumption of Lemma 4.2, the restric-
tion Y (t, λ)

p−→ P∗
(
Ω1

P1(D(t)) ⊕OP1

)
of the morphism p defined above

is injective.

Proof. Let D0 be the section of P∗
(
Ω1

P1(D(t)) ⊕OP1

)
over P1

defined by the injection Ω1
P1(D(t)) ↪→ Ω1

P1(D(t)) ⊕ OP1 . Take any
point (E1, E2, φ,∇, ϕ, {li}) ∈ Y (t, λ). From the proof of Lemma 4.2, we
can see that p((E1, E2, φ,∇, ϕ, {li}) ∈ D0 if and only if φ = 0.

First assume that rankφ = 1. As in the proof of Lemma 4.2, We
take decompositions E1 = OP1 ⊕ OP1(−1), E2 = OP1 ⊕ OP1(−1) and
represent φ by a matrix(

φ1 φ3

0 φ2

)
(φ1, φ2 ∈ H0(OP1), φ3 ∈ H0(OP1(1))).

By the proof of Lemma 4.2, φ2 
= 0. Multiplying a certain auto-
morphism of E2, we may assume that φ3 = 0 and φ2 = 1. Since
rankφ = 1, we have φ1 = 0. Consider the homomorphism B : E1 →
OP1(−1) ⊗ Ω1

P1(D(t)) defined by B(a) = p2∇(a) − d(p2φ(a)). Let
(ω3, ω4) (ω3 ∈ H0(Ω1

P1(D(t))(−1)), ω4 ∈ H0(Ω1
P1(D(t)))) be the ma-

trix which represents B. Since φ1 = 0, φ3 = 0, the composite E1
∇→

E2 ⊗ Ω1
P1(t)

q2⊗1−−−→ OP1 ⊗ Ω1
P1(t) becomes a homomorphism, which

can be represented by a matrix (ω1, ω2) with ω1 ∈ H0(Ω1
P1(t)), ω2 ∈

H0(Ω1
P1(t)(1)). Roughly speaking, ∇ is represented by the matrix(

ω1 ω2

ω3 ω4

)
.

We use the same notation as in the proof of Lemma 4.2. Then we
have ∇(e1) ∧ φ(e2) + φ(e1) ∧ ∇(e2) = 0. Since φ(e1) = 0 and φ(e2) ∈
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OP1(−1), we have ∇(e1) ∈ OP1(−1) ⊗ Ω1
P1(D(t)) and so ω1 = 0. Take

a nonzero element v(i) of li ⊂ (E1)ti and write v(i) =

(
v
(i)
1

v
(i)
2

)
where

v
(i)
1 ∈ (OP1)ti and v

(i)
2 ∈ OP1(−1)ti . Then we have

(resti ∇)(v(i)) = (resti ∇)

(
v
(i)
1

v
(i)
2

)

=

(
resti(ω2)v

(i)
2

resti(ω3)v
(i)
1 + resti(ω4)v

(i)
2 + resti

(
dz

z−t4

)
v
(i)
2

)
,

φti(v(i)) = φti

(
v
(i)
1

v
(i)
2

)
=
(

0
v
(i)
2

)
Since (resti ∇)(v(i)) = λiφti(v(i)), we have

resti(ω2)v
(i)
2 = 0,

resti(ω3)v
(i)
1 + resti(ω4)v

(i)
2 + resti

(
dz

z−t4

)
v
(i)
2 = λiv

(i)
2 .

If ω2(ti) = 0 for any i, then ω2 = 0 because ω2 ∈ H0(Ω1
P1(D(t))(1)) ∼=

H0(OP1(3)) and there is a decomposition

(E1, E2, φ,∇, {li}) = (E1,OP1(−1), φ,∇, {li}) ⊕ (0,OP1 , 0, 0, {0}),

which contradicts the stability of (E1, E2, φ,∇, ϕ, {li}). On the other
hand, if ω2(ti) 
= 0, then v

(i)
2 = 0, v

(i)
1 
= 0 and ω3(ti) = 0. How-

ever, there is at most one i which satisfies ω3(ti) = 0 because ω3 ∈
H0(Ω1

P1(D(t))(−1)) ∼= H0(OP1(1)). Therefore there is only one i which
satisfies ω2(ti) 
= 0. In this case, ω3(ti) = 0 and so q = ti, which means
that the image p(E1, E2, φ,∇, ϕ, {lj}) is contained in the fiber Di of
P∗
(
Ω1

P1(D(t)) ⊕OP1

)
over ti. Applying certain automorphisms of E1

and E2 represented by a matrix of the form(
c 0
0 1

)
(c ∈ H0(O×

P1)),

we may assume that

ω2 =

∏
j 	=i(z − tj)∏4
j=1(z − tj)

dz, ω3 =
z − ti∏4

j=1(z − tj)
dz,

where z is a fixed inhomogeneous coordinate of P1. Then giving a value
resti(ω4) is equivalent to giving a point p(E1, E2, φ,∇, ϕ, {li}) in the
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fiber Di. Applying an automorphism of E1 represented by a matrix of
the form (

1 c
0 1

)
(c ∈ H0(OP1(1))),

we may assume that ω4 is of the form

ω4 =
adz∏4

j=1(z − tj)

with a ∈ C. a is determined by the value resti(ω4). Thus the matrices
representing φ and ∇ are determined uniquely, up to automorphisms of
E1 and E2, by the point p(E1, E2, φ,∇, ϕ, {lj}). Recall that v

(i)
1 
= 0,

v
(i)
2 = 0 and restj (ω3)v

(j)
1 + restj (ω4)v

(j)
2 + restj (

dz
z−t4

)v(j)
2 = λjv

(j)
2 for

j 
= i. Since restj (ω3) 
= 0 for j 
= i, every v(j) (including v(i)) is uniquely
determined up to a scalar multiplication. Thus the parabolic structure is
determined by φ,∇. Hence (E1, E2, φ,∇, ϕ, {lj}) is uniquely determined
by the point p(E1, E2, φ,∇, ϕ, {lj}).

Next we assume that φ = 0. Let

(
ω1 ω2

ω3 ω4

)
,

⎧⎨⎩
ω1, ω4 ∈ H0(Ω1

P1(D(t))),
ω2 ∈ H0(Ω1

P1(D(t))(1)),
ω3 ∈ H0(Ω1

P1(D(t))(−1)).

be a matrix representing∇. Let q be the point of P1 satisfying ω3(q) = 0.
We may assume without loss of generality that q 
= ti for i = 1, 2, 3. From
the proof of Lemma 4.2, we have ω4(q) 
= 0. Applying an automorphism
of E1, we may assume

ω4 =
(z − t1)(z − t2)∏4

j=1(z − tj)
dz, ω3 =

z − q∏4
j=1(z − tj)

dz.

For a nonzero element v(i) ∈ li, we have (resti ∇)(v(i)) = λiφti(v(i)) = 0
for i = 1, . . . , 4. Thus det(∇ti) = ω1(ti)ω4(ti) − ω2(ti)ω3(ti) = 0 for
i = 1, . . . , 4. Since ω3(ti) 
= 0 for i = 1, 2, we have ω2(ti) = 0 for i = 1, 2.
We write

ω2 =
(z − t1)(z − t2)u∏4

j=1(z − tj)
dz

with u a polynomial in z of degree less than or equal to 1. Applying a
certain automorphism of E2 of the form(

c1 c2

0 1

)
(c1 ∈ H0(O×

P1), c2 ∈ H0(OP1(1))),
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we may assume that u = z − t3. Note that ∇ is of the form

dz∏4
j=1(z − tj)

(
α (z − t1)(z − t2)(z − t3)

z − q (z − t1)(z − t2)

)
(α ∈ H0(OP1(2)))

Since det(∇t3) = 0, we have α(t3) = 0. The condition det(∇t4) = 0
implies that α is of the form α = (z − t3)(c(z − t4) + t4 − q), where
c ∈ C. If c = 1, we have ∇(E1) ⊂ OP1(−1) ⊗ Ω1

P1(D(t)) after
applying a certain automorphism of E2. Then there is a decomposi-
tion (E1, E2, φ,∇, {li}) = (E1,OP1(−1), φ,∇, {li}) ⊕ (0,OP1 , 0, 0, {0}),
which contradicts the stability of (E1, E2, φ,∇, ϕ, {li}). Thus we have
c 
= 1. Applying a certain automorphism of E2 of the form(

t (1 − t)(z − t3)
0 1

)
(t ∈ H0(O×

P1)),

we may assume that c = 0. Since ∇ti 
= 0, ker(∇ti) = li for i =
1, . . . , 4. Hence (E1, E2, φ,∇, ϕ, {li}) is uniquely determined by q and it
is determined by the point p(E1, E2, φ,∇, ϕ, {li}). Q.E.D.

Proposition 4.3. Under the assumption of Lemma 4.2, Mα′
4 (−1)

is smooth over T4 × Λ4.

Proof. Let A be an artinian local ring over T4 × Λ4 with residue
field A/m = k and I be an ideal of A such that mI = 0. It is sufficient
to show that

Mα′
4 (−1)(A) −→ Mα′

4 (−1)(A/I)

is surjective. Take any member

(E1, E2, φ,∇, ϕ, {li}) ∈ Mα′
4 (−1)(A/I).

Note that E1
∼= OP1

A/I
⊕ OP1

A/I
(−1) and E2

∼= OP1
A/I

⊕ OP1
A/I

(−1).
Then the homomorphism φ : E1 → E2 can be represented by a matrix
of the form(

φ1 φ3

0 φ2

)
(φ1, φ2 ∈ A/I, φ3 ∈ H0(OP1

A/I
(1))).

As in the proof of Proposition 4.2, we may assume that φ3 ∈ m ⊗
H0(OP1

A/I
(1)). Put

A : = (q2 ⊗ 1) ◦ ∇ − d ◦ q2 ◦ φ : E1 −→ OP1
A/I

⊗ Ω1
P1(D(t)) ∼= OP1

A/I
(2),

B : = (p2 ⊗ 1) ◦ ∇ − d ◦ p2 ◦ φ : E1 −→ OP1
A/I

(−1) ⊗ Ω1
P1(D(t)) ∼= OP1

A/I
(1),
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where q2 : E2 → OP1
A/I

, p2 : E2 → OP1
A/I

(−1) are projections with
respect to the decomposition of E2. Let (ω1, ω2) and (ω3, ω4) be the
matrices representing A and B, respectively. We can see that the con-
dition

(ϕ ⊗ 1)(∇(s1) ∧ φ(s2) + φ(s1) ∧∇(s2)) = d(ϕ(φ(s1) ∧ φ(s2))) (s1, s2 ∈ E1)

is equivalent to the equality

ω1φ2 − ω3φ3 + ω4φ1 = 0.

Let (t1, . . . , t4) ∈ P1(A) × · · · × P1(A), (λ1, . . . , λ4) ∈ A × · · · × A be
the data corresponding to the structure morphism SpecA → T4 × Λ4.

Let v(i) be a basis of li. Then we can write v(i) =

(
v
(i)
1

v
(i)
2

)
with

v
(i)
1 ∈ OP1

A/I
|ti and v

(i)
2 ∈ OP1

A/I
(−1)|ti We must find lifts

φ̃1, φ̃2, φ̃3, ω̃1, ω̃2, ω̃3, ω̃4,

(
v
(i)
1

v
(i)
2

)
i=1,...,4

over A of φ1, φ2, φ3, ω1, ω2, ω3, ω4,

(
v
(i)
1

v
(i)
2

)
i=1,...,4

satisfying the follow-

ing conditions:⎧⎪⎪⎪⎨⎪⎪⎪⎩
ω̃1φ̃2 − ω̃3φ̃3 + ω̃4φ̃1 = 0,

(resti(ω̃1) − λiφ̃1)ṽ
(i)
1 + (resti(ω̃2) − λiφ̃3(ti))ṽ

(i)
2 = 0,

resti(ω̃3)ṽ
(i)
1 +

(
resti(ω̃4) +

(
resti

(
dz

z−t4

)
− λi

)
φ̃2

)
ṽ
(i)
2 = 0,

for i = 1, . . . , 4.

Since we have already proved the smoothness of M
α/2
4 (−1) over

T4 × Λ4, we may assume that ∧2φ ∈ mA/I.
Assume that φ1 ∈ mA/I and φ2 ∈ (A/I)×. Still we may assume

that φ3 = 0. In this case we can see from the proof of Proposition 4.2
that resti(ω3) ∈ mA/I and resti(ω2) ∈ (A/I)× for some i. Take lifts
ω̃

(i)
2 ∈ Ω1

P1
A
(D(t))(1)ti , ω̃4 ∈ H0(Ω1

P1
A
(D(t))), φ̃1 ∈ A and φ̃2 ∈ A of

ω2(ti), ω4, φ1 and φ2, respectively. Put ω̃1 := −ω̃4φ̃1φ̃
−1
2 . Then we can

find a lift ω̃3 ∈ H0(Ω1
P1

A
(D(t))(−1)) of ω3 satisfying

(resti(ω̃1) − λiφ̃1)
(
resti(ω̃4) +

(
resti

(
dz

z−t4

)
− λi

)
φ̃2

)
− resti(ω̃

(i)
2 ) resti(ω̃3) = 0.
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Let ω̃2 be the element of H0(Ω1
P1

A
(D(t))(1)) satisfying

(restj (ω̃1) − λj φ̃1)
(
restj (ω̃4) +

(
restj

(
dz

z−t4

)
− λj

)
φ̃2

)
− restj (ω̃2) restj (ω̃3) = 0

for j 
= i and ω̃2(ti) = ω̃
(i)
2 . For j = 1, . . . , 4, we can take lifts ṽ

(j)
1 ∈

OP1
A
|tj , ṽ

(j)
2 ∈ OP1

A
(−1)|tj of v

(j)
1 , v

(j)
2 satisfying

(resti(ω̃1) − λiφ̃1)ṽ
(i)
1 + resti(ω̃2)ṽ

(i)
2 = 0.

and

restj (ω̃3)ṽ
(j)
1 +

(
restj (ω̃4) +

(
restj

(
dz

z − t4

)
− λj

)
φ̃2

)
ṽ
(j)
2 = 0.

for j 
= i. Put φ̃3 := 0. Then φ̃1, φ̃2, φ̃3, ω̃1, ω̃2, ω̃3, ω̃4, (ṽ
(j)
1 , ṽ

(j)
2 )4j=1 are

desired lifts.
Next assume that φ2 ∈ m/I. In this case, we can see from the proof

of Proposition 4.2 that φ1 ∈ m/I and φ2 ∈ mH0(OP1
A/I

(1)). Take a lift
ω̃3 ∈ H0(Ω1

P1
A
(D(t))(−1)) of ω3 and let q ∈ P1(A) be the zero point of

ω̃3. There exists i ∈ {1, . . . , 4} such that restj (ω̃3) ∈ A× for j 
= i. Ap-
plying a certain auotomorphism of E1, we may assume that resti(ω4) ∈
(A/I)×. Take lifts ω̃4 ∈ H0(ΩP1

A
(D(t))), ω̃

(i)
2 ∈ ΩP1

A
(D(t)(1))ti and

φ̃2 ∈ A of ω4, ω2(ti) and φ2, respectively. We can see from Lemma
4.2 that ω̃4(q) is a basis of Ω1

P1
A
(D(t))|q . Then we can find an element

ω̃1 ∈ H0(Ω1
P1

A
(D(t))) such that

(
resti(ω̃1)ω̃4(q) + λiω̃1(q)φ̃2

)(
resti(ω̃4) +

(
resti

(
dz

z − t4

)
− λi

)
φ̃2

)
= resti(ω̃3) resti(ω̃

(i)
2 )ω̃4(q) − λi

(
resti(ω̃1)φ̃2ω̃4(q) − resti(ω̃4)ω̃1(q)φ̃2

)
.

We can take an element φ̃1 of A such that φ̃2ω̃1(q)+ φ̃1ω̃4(q) = 0. Then
there is an element φ̃3 ∈ H0(OP1

A
(1)) such that

ω̃1φ̃2 − ω̃3φ̃3 + ω̃4φ̃1 = 0.

Let ω̃2 be the element of H0(Ω1
P1

A
(D(t))(1)) satisfying ω̃2(ti) = ω̃

(i)
2 and

(restj (ω̃1) − λj φ̃1)
(
restj (ω̃4) +

(
restj

(
dz

z−t4

)
− λj

)
φ̃2

)
= restj (ω̃3)(restj (ω̃2) − λj φ̃3(tj))
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for j 
= i. We can take lifts ṽ
(j)
1 ∈ OP1

A
|tj , ṽ

(j)
2 ∈ OP1

A
(−1)|tj of v

(j)
1 , v

(j)
2

such that

restj (ω̃3)ṽ
(j)
1 +

(
restj (ω̃4) +

(
restj

(
dz

z − t4

)
− λj

)
φ̃2

)
ṽ
(j)
2 = 0

for j = 1, . . . , 4. Then φ̃1, φ̃2, φ̃3, ω̃1, ω̃2, ω̃3, ω̃4, (ṽ
(j)
1 , ṽ

(j)
2 )4j=1 are desired

lifts. Q.E.D.

4.4. Proof of Theorem 4.1
We put λ+

i := λi for i = 1, . . . , 4, λ−
i := −λi for i = 1, . . . , 3 and

λ−
4 := 1− λ4. Let Di be the fiber of P∗(Ω1

P1(D(t))⊕OP1) over ti ∈ P1

and b+
i (resp. b−i ) be the point of Di corresponding to λ+

i (resp. λ−
i ).

Put Z := {b+
1 , . . . , b+

4 , b−1 , . . . , b−4 }.
Proposition 4.4. Under the above notation,

(41) Mα′
4 (t, λ,−1) \ p−1(Z)

p−→ P∗(Ω1
P1(D(t)) ⊕OP1) \ Z

is an isomorphism.

Proof. Let D0 be the section of P∗(Ω1
P1(D(t)) ⊕ OP1) over P1

defined by the injection Ω1
P1(D(t)) ↪→ Ω1

P1(D(t)) ⊕ OP1 . First we will
show that

(42) Mα
4 (t, λ,−1) \

4⋃
i=0

p−1(Di) −→ P∗(Ω1
P1(D(t)) ⊕OP1) \

4⋃
i=0

Di

is an isomorphism. Fix a section

τ : (π2)∗(π∗
1Ω1

P1(D(t))|∆) −→ (π2)∗(π∗
1Ω1

P1(D(t)))

of the canonical homomorphism

(π2)∗(π∗
1Ω1

P1(D(t))) −→ (π2)∗(π∗
1Ω1

P1(D(t))|∆),

where

π1 : P1 × (P1 \ D(t)) → P1, π2 : P1 × (P1 \ D(t)) → P1 \ D(t)

are projections and ∆ ⊂ P1 × (P1 \D(t)) is the diagonal. Take a point
s of P∗(Ω1

P1(D(t)) ⊕OP1) \
⋃4

i=0 Di, which is given by q ∈ P1 and an
injection (−h1, h2) : C ↪→ Ω1

P1(D(t))|q ⊕ OP1 |q. We may assume that
h2 = 1. We put

ω4 := τq(h1) ∈ H0(Ω1
P1(D(t))),

ω3 := z−q
(t4−q)

Q4
j=1(z−tj)

dz ∈ H0(Ω1
P1(D(t))(−1)),
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where z is a fixed inhomogeneous coordinate of P1. Let ω2 be the
element of H0(Ω1

P1(D(t))(1)) determined by

(resti(ω4) + λi)

„

resti(ω4) + resti

„

dz

z − t4

«

− λi

«

+ resti(ω2) resti(ω3) = 0

for i = 1, . . . , 4. Define a rational connection ∇ on OP1 ⊕OP1(−1) by

∇
(

f1

f2

)
:=
(

df1

df2

)
+
(

−f1ω4 + f2ω2

f1ω3 + f2ω4

)
for f1 ∈ OP1 and f2 ∈ OP1(−1). Then s �→ (OP1 ⊕ OP1(−1),∇)
determines a morphism

P∗(Ω1
P1(D(t)) ⊕OP1) \

4⋃
i=0

Di −→ Mα′
4 (t, λ,−1) \

4⋃
i=0

p−1(Di),

which is just the inverse of the morphism (42). Then the morphism (41)
is surjective, since it is proper and dominant. The morphism (41) is also
injective by the above argument and Proposition 4.2. Thus, by Zariski’s
Main Theorem, the morphism (41) is an isomorphism. Q.E.D.

Proposition 4.5. If λ+
i 
= λ−

i , then p−1(b+
i ) ∼= P1, p−1(b−i ) ∼= P1

and these are (−1)-curves.

Proof. We can see that p−1(b+
i ) is just the moduli space of (t, λ)-

parabolic φ-connections (OP1 ⊕OP1(−1),OP1 ⊕OP1(−1), φ,∇, ϕ, {lj})
satisfying

φ

(
s1

s2

)
=
(

φ1s1

s2

)

∇
(

s1

s2

)
=
(

φ1s1

s2

)
+

⎛⎜⎝ s1φ1
λ+

i

Q

j �=i(ti−tj)
Q4

j=1(z−tj)
dz + s2ω2

s1
(z−ti)dz
Q4

j=1(z−tj)
− s2

λ+
i

Q

j �=i(ti−tj)
Q4

j=1(z−tj)
dz

⎞⎟⎠
for s1 ∈ OP1 and s2 ∈ OP1(−1), where φ1 ∈ C, lj = ker(restj (∇) −
λ+

j φ|tj ) for j = 1, . . . , 4 and ω2 ∈ H0(Ω1
P1(D(t))(1)) satisfies the condi-

tion

φ1

„

restk

„

λ+
i

Q

j �=i(ti−tj)
Q4

j=1(z−tj)
dz

«

− λ+
k

«„

restk

„

dz
z−t4

− λ+
i

Q

j �=i(ti−tj)
Q4

j=1(z−tj)
dz

«

− λ+
k

«

− restk

„

(z−ti)dz
Q4

j=1(z−tj)

«

restk(ω2) = 0.
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for k 
= i. Then we can define a mapping

p−1(b+
i ) −→ P1

(OP1 ⊕OP1(−1),OP1 ⊕OP1(−1), φ,∇, ϕ, {lj}) �→ [φ1 : resti(ω2)]

which is an isomorphism.
Similarly we can see that p−1(b−i ) ∼= P1. Since Mα′

4 (t, λ,−1) and
P∗(Ω1

P1(D(t))⊕OP1 ) are smooth, p−1(b+
i ), p−1(b−i ) must be (−1)-curves.

Q.E.D.

Proposition 4.6. Assume that λ+
i = λ−

i . Put

C1 :=
{
(E1, E2, φ,∇, ϕ, {lj}) ∈ p−1(b+

i )
∣∣∣li = L

(0)
1 |ti

}
,

C2 :=
{

(E1, E2, φ,∇, ϕ, {lj}) ∈ p−1(b+
i )
∣∣ resti(∇) = λiφti

}
.

Then C1
∼= P1, C2

∼= P1, C1 ∩ C2 = {one point}, C1 ∩ Y (t, λ) =
{one point}, C2 ⊂ Mα

4 (t, λ,−1), (C1)2 = −1, (C2)2 = −2 and p−1(b+
i ) =

C1 ∪ C2.

Proof. p−1(b+
i ) is the moduli space of the objects

(OP1 ⊕OP1(−1),OP1 ⊕OP1(−1), φ,∇, ϕ, {lj})

satisfying

φ

(
s1

s2

)
=
(

φs1

s2

)

∇
(

s1

s2

)
=
(

φds1

ds2

)
+

⎛⎜⎝ s1φ1
λ+

i

Q

j �=i(ti−tj)
Q4

j=1(z−tj)
dz + s2ω2

s1
(z−ti)dz
Q4

j=1(z−tj)
− s2

λ+
i

Q

j �=i(ti−tj)
Q4

j=1(z−tj)
dz

⎞⎟⎠
for s1 ∈ OP1 and s2 ∈ OP1(−1), where φ1 ∈ C, lk = ker(restk

(∇) −
λkφ|tk

) for k 
= i and ω2 satisfies the condition

φ1

„

restk

„

λ+
i

Q

j �=i(ti−tj)
Q4

j=1(z−tj)
dz

«

− λ+
k

«„

restk

„

dz
z−t4

− λ+
i

Q

j �=i(ti−tj)
Q4

j=1(z−tj)
dz

«

− λ+
k

«

− restk

„

(z−ti)dz
Q4

j=1(z−tj)

«

restk(ω2) = 0.

for k 
= i. If v(i) =

(
v
(i)
1

v
(i)
2

)
is a basis of li, resti(ω2)v

(i)
2 = 0. Thus we

have

p−1(b+
i ) =

(
{v(i)

2 = 0} ∩ p−1(b+
i )
)
∪
(
{ω2(ti) = 0} ∩ p−1(b+

i )
)
.



416 M. Inaba, K. Iwasaki and M.-H. Saito

We can see that {v(i)
2 = 0}∩p−1(b+

i ) = C1 and {ω2(ti) = 0}∩p−1(b+
i ) =

C2. From the proof of Proposition 4.2, we can see that the objects of C2

satisfies the condition φ1 
= 0. Thus we have C2 ∩ Y (t, λ) = ∅. We can
also see that C1 ∩ C2 consists of one point corresponding to the object
of p−1(b+

i ) satisfying ω2(ti) = 0, φ1 = 1 and li = L
(0)
1 |ti . C1 ∩ Y (t, λ)

consists of one point corresponding to the object of C1 satisfying φ1 = 0.
We have C1

∼= P1 by the same proof as Proposition 4.5. φ,∇, ϕ and
lk for k 
= i are all constant on C2. So C2 is just the moduli of lines
li ⊂ OP1 |ti ⊕OP1(−1)|ti , which is isomorphic to P1.

Let N4(t, λ,−1) be the moduli space of rank 2 bundles E with
a connection ∇ : E → E ⊗ Ω1

P1(D(t)) and a horizontal isomorphism
ϕ :
∧2 E

∼→ OP1(−x4) satisfying
(1) det(resti(∇) − λiidE|ti

) = 0 for i = 1, . . . , 4 and
(2) (E,∇) is stable in the sense of Simpson [Sim].

Then there is a canonical morphism

Mα
4 (t, λ,−1) −→ N4(t, λ,−1),

which is obtained by forgetting parabolic structure. We can see that the
image of C2 in N4(t, λ,−1) is a singular point with A1-singularity. Thus
C2 is a (−2)-curve and we can see that C1 is a (−1)-curve. Q.E.D.

The morphism p : Mα′
4 (t, λ,OP1(−t4)) → P(Ω1

P1(D(t)) ⊕ OP1)
defined in (39) extends to the morphism

p : Mα′
4 (OP1×T4×Λ4(−t̃4)) −→ P

(
Ω1

P1×T4×Λ4/T4×Λ4
(D(t̃)) ⊕OP1×T4×Λ4

)
.

We can check that the inverse image p−1(B+) is a Cartier divisor on
Mα′

4 (t, λ,OP1(−t4)). Since Z is a blow up of

P
(
Ω1

P1×T4×Λ4/T4×Λ4
(D(t̃)) ⊕OP1×T4×Λ4

)
along B+, p induces a morphism

f : Mα′
4 (t, λ,OP1(−t4)) −→ Z.

We can also check that f−1(g−1(B)) = p−1(B) is a Cartier divisor on
Mα′

4 (t, λ,OP1(−t4)). Since S is a blow up of Z along g−1(B), f induces
a morphism

f ′ : Mα′
4 (t, λ,OP1(−t4)) −→ S.

We can see by Proposition 4.4, Proposition 4.5 and Proposition 4.6 that
each fiber of f ′ over T4 × Λ4 is an isomorphism. Thus f ′ is an isomor-
phism and Theorem 4.1 (1) is proved.
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Theorem 4.1 (2) is easy. It is well-known that KS(t,λ)
≡ −(2D0 +

D1 +D2 +D3 +D4). So it is sufficient to prove the following proposition
in order to prove Theorem 4.1 (3).

Proposition 4.7. Y is a Cartier divisor on Mα′
4 (−1) flat over T4×

Λ4 and the divisor Y (t, λ) on Mα′
4 (t, λ,−OP1(−t4)) has multiplicity 2

along (p|Y(t,λ))−1(D0) and 1 along (p|Y (t,λ))−1(Di) for i = 1, . . . , 4.

Proof. Let (E1, E2, φ̃, ∇̃, ϕ̃, {l̃i}) be a universal family on P1×Mα′
4 (−1).

Then φ̃ : E1 → E2 determines a section f of (πMα
4

)∗(det(E1)−1⊗det(E2)),
whose zero scheme is Y. Since (πMα

4
)∗(det(E1)−1⊗det(E2)) is a line bun-

dle on Mα′
4 (−1), Y is a Cartier divisor on Mα′

4 (−1). Y (t, λ) is also a
Cartier divisor on Mα′

4 (t, λ,−1) and so Y is flat over T4 × Λ4.
Let Ui be the open subscheme of Y (t, λ) whose underlying space is

(p|Y (t,λ))−1(Di \ (D0 ∩ Di)). Then Ui is just the moduli space of the
objects (OP1 ⊕OP1(−1),OP1 ⊕OP1(−1), φ,∇, ϕ, {lj}) satisfying

φ

(
f1

f2

)
=
(

0
f2

)
,

∇
(

f1

f2

)
=
(

0
df2

)
+

⎛⎝ f2

Q

j �=i(z−tj)
Q4

j=1(z−tj)
dz

f1
(z−ti)dz
Q4

j=1(z−tj)
+ f2

adz
Q4

j=1(z−tj)

⎞⎠
for f1 ∈ OP1 and f2 ∈ OP1(−1), where a ∈ C and lj = ker(restj (∇) −
λjφtj ) for j = 1, . . . , 4. Thus Ui

∼= A1 and Ui is reduced.
Let U0 be the open subscheme of Y (t, λ) such that p(U0) = D0 \⋃4

j=1 Dj as sets. U0 is the moduli space of the objects (OP1 ⊕OP1(−1),
OP1 ⊕OP1(−1), φ,∇, ϕ, {lj}) satisfying

φ

(
f1

f2

)
=
(

f1φ1 + f2φ3

f2φ2

)
∇
(

f1

f2

)
=
(

φ1df1 + φ3df2

φ2df2

)
+
(

ω1f1

ω3f1 + ω4f2

)
for f1 ∈ OP1 and f2 ∈ OP1(−1) with the conditions φ1φ2 = 0 and
ω1φ2 −ω3φ3 +ω4φ1 = 0, where q ∈ P1 \ {t1, . . . , t4}, lj = ker(restj (∇)−
λjφtj ) for j = 1, . . . , 4 and

ω1 =

Q4
k=3(z − tk + (tk − t1)(tk − t2)λkφ1)

Q4
j=1(z − tj)

dz, ω3 =
(z − q)dz

(t4 − q)
Q4

j=1(z − tj)

ω4 =

Q2
k=1(z − tk + (tk − t3)(tk − t4)λkφ2)

Q4
j=1(z − tj)

dz.
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φ2 and φ3 are determined by φ1 and the conditions

ω1(q)φ2 + ω4(q)φ1 = 0, ω3(tj)φ3(tj) = ω1(tj)φ2 +ω4(tj)φ1 (j = 1, 2)

and φ2 must satisfy the condition φ2
1 = 0. Thus U0

∼= P1 \ {t1, . . . , t4}×
SpecC[φ1]/(φ2

1) and Y (t, λ) has multiplicity 2 along (p|Y (t,λ))−1(D0).
Q.E.D.

§5. Moduli of stable parabolic connections in general case

In this section, we will formulate the general moduli theory of α-
stable parabolic connections over a curve and state the existence theorem
of the coarse moduli scheme due to Inaba [Ina]. We fix integers g, d, r, n
with g ≥ 0, r > 0, n > 0 and let (C, t) = (C, t1, . . . , tn) be an n-pointed
smooth projective curve of genus g, which consists of a smooth projective
curve C and a set of n-distinct points t = {ti}1≤i≤n on C. We denote
by D(t) = t1 + · · · + tn the divisor associated to t. Define the set of
exponents as
(43)

Λn
r (d) :=

⎧⎨⎩λ = (λ(i)
j )1≤i≤n

0≤j≤r−1 ∈ Cnr

∣∣∣∣∣∣ d +
∑

1≤i≤n, 0≤j≤r−1

λ
(i)
j = 0

⎫⎬⎭ .

Definition 5.1. A (t, λ)-parabolic connection of rank r on C is a
collection of data (E,∇, {l(i)∗ }1≤i≤n) consisting of:

(1) a vector bundle E of rank r on C,
(2) a logarithmic connection ∇ : E −→ E ⊗ Ω1

C(D(t)),
(3) and a filtration l

(i)
∗ : E|ti

= l
(i)
0 ⊃ l

(i)
1 ⊃ · · · ⊃ l

(i)
r−1 ⊃ l

(i)
r = 0 for

each i, 1 ≤ i ≤ n such that dim(l(i)j /l
(i)
j+1) = 1 and (resti(∇) −

λ
(i)
j )(l(i)j ) ⊂ l

(i)
j+1 for j = 0, 1, · · · , r − 1.

We set deg E = deg (∧rE) as usual.

Take a sequence of rational numbers α = (α(i)
j )1≤i≤n

1≤j≤r such that

(44) 0 < α
(i)
1 < α

(i)
2 < · · · < α(i)

r < 1

for i = 1, . . . , n and α
(i)
j 
= α

(i′)
j′ for (i, j) 
= (i′, j′). We choose α =

(α(i)
j ) sufficiently generic. Let (E,∇, {l(i)∗ }1≤i≤n) be a (t, λ)-parabolic

connection, and F ⊂ E a nonzero subbundle satisfying ∇(F ) ⊂ F ⊗
Ω1

C(D(t)). We define integers len(F )(i)j by

(45) len(F )(i)j = dim(F |ti ∩ l
(i)
j−1)/(F |ti ∩ l

(i)
j ).
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Note that len(E)(i)j = dim(l(i)j−1/l
(i)
j ) = 1 for 1 ≤ j ≤ r.

Definition 5.2. A parabolic connection (E,∇, {l(i)∗ }1≤i≤n) is α-
stable if for any proper nonzero subbundle F � E satisfying ∇(F ) ⊂
F ⊗ Ω1

C(D(t)), the inequality
(46)
deg F +

∑m
i=1

∑r
j=1 α

(i)
j len(F )(i)j

rankF
<

deg E +
∑n

i=1

∑r
j=1 α

(i)
j len(E)(i)j

rankE

holds.

For a fixed (C, t) and λ, let us define the coarse moduli space by
(47)
Mα

((C,t),λ)(r, n, d) =

{(E,∇, {l(i)∗ }1≤i≤n) | an α-stable (t, λ)-parabolic connection
of rank r and degree d over C

}/ � .

Varying (C, t) and λ, we can also consider the moduli space in rel-
ative setting. Let Mg,n be the coarse moduli space of n-pointed curves
of genus g. Here we assume that every point of Mg,n corresponds to
an n-pointed smooth curve (C, t) such that t = (t1, . . . , tn) is a set of
n-distinct points on C. We consider a finite covering M′

g,n → Mg,n

where M′
g,n is the coarse moduli space of n-pointed curves of genus g

with a suitable level structure so that there exists the universal family
(C, t̃) = (C, t̃1, . . . , t̃n) of n-pointed curves (with a level structure). From
now on, for simplicity, we set

(48) T = M′
g,n

and let

(49) (C, t̃) −→ T = M′
g,n

be the universal family.
We can show the existence theorem of moduli space as a smooth

quasi-projective algebraic scheme (cf. [IIS1], [Ina]).

Theorem 5.1. (Cf. [IIS1], [Ina]). Assume that r, n, d are positive
integers. There exists a relative moduli scheme

(50) ϕr,n,d : Mα
(C,t̃)/T

(r, n, d) −→ T × Λ(n)
r (d)

of α-stable parabolic connections of rank r and degree d, which is smooth
and quasi-projective over T×Λ(n)

r (d). Moreover the fiber Mα
((C,t),λ)(r, n, d)

of ϕr,n,d over ((C, t), λ) ∈ T × Λ(n)
r (d) is the moduli space of α-stable
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(t, λ)-parabolic connections over C, which is a smooth algebraic scheme
and

(51) dimMα
((C,t),λ)(r, n, d) = 2r2(g − 1) + nr(r − 1) + 2.

Remark 5.1.

(1) When C = P1 and r = 2, Theorem 5.1 is proved in [IIS1].
(2) Inaba [Ina] showed that the moduli space Mα

((C,t),λ)(r, n, d) is
irreducible in the following cases:
(a) g ≥ 2, n ≥ 1,
(b) g = 1, n ≥ 2,
(c) g = 0, r ≥ 2, rn − 2r − 2 > 0

5.1. The moduli space of representations

For each n-pointed curve (C, t) = (C, t1, · · · , tn) ∈ T = M′
g,n (g ≥

0, n ≥ 1), set D(t) = t1 + · · · + tn. By abuse of notation, we denote by
π1(C \ D(t)∗) the fundamental group of C \ {t1, · · · , tn}. The set

(52) Hom(π1(C \ D(t), ∗), GLr(C))

of GLr(C)-representations of π1(C \ D(t), ∗) is an affine variety, and
GLr(C) naturally acts on this space by the adjoint action.

We define the moduli space by

(53) RPr
(C,t) = Hom(π1(C \ D(t), ∗), GLr(C))//Ad(GLr(C)).

Here the quotient // means the categorical quotient ([Mum]). More
precisely, it is known that π1(C \ D(t), ∗) is generated by (2g + n)-
elements α1, . . . , αg, β1, . . . , βg, γ1, . . . , γn with one relation

g∏
i=1

[αi, βi]γ1 · · · γn = 1.

Therefore if we denote by R the ring of invariants of the simultaneous
adjoint action of GLr(C) on the coordinate ring of GLr(C)2g+n−1, then
we have an isomorphism

(54) RPr
(C,t) � Spec(R).

Hence the moduli space RPr
(C,t) becomes an affine algebraic scheme.

Furthermore, each closed point of RPr
(C,t) corresponds to a Jordan

equivalence class of a representation (cf. [Section 4, [IIS1]]).
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Let us set

(55) A(n)
r :=

{
a = (a(i)

j )1≤i≤n
0≤j≤r−1 ∈ Cnr

∣∣∣a(1)
0 a

(2)
0 · · · a(n)

0 = (−1)rn
}

.

For each a = (a(i)
j ) ∈ A(n)

r and i, 1 ≤ i ≤ n, we set a(i) = (a(i)
0 , · · · , a

(i)
r−1)

and define

(56) χa(i)(s) = sr + a
(i)
r−1s

r−1 + · · · + a
(i)
0 .

Moreover we define a morphism

(57) φr
(C,t) : RPr

(C,t) −→ A(n)
r

by the relation

(58) det(sIr − ρ(γi)) = χa(i)(s)

where [ρ] ∈ RPr
(C,t) and γi is a counterclockwise loop around ti.

For a = (a(i)
j ) ∈ A(n)

r , we denote by RPr
(C,t),a the fiber of φr

(C,t)

over a, that is,
(59)

RPr
(C,t),a = {[ρ] ∈ RPr

(C,t)| det(sIr − ρ(γi)) = χa(i)(s), 1 ≤ i ≤ n}.

For any covering T ′ → T , we can define a relative moduli space
RPr

n,T ′ =
∐

(C,t)∈T ′ RPr
(C,t) of representations with the natural mor-

phism

(60) RPr
n,T ′ −→ T ′.

As in Section 4, [IIS1], there exists a finite covering T ′ −→ T with
the morphism

(61) φr
n : RPr

n,T ′ −→ T ′ ×A(n)
r ,

such that
(φr

n)−1((C, t),a) = RPr
(C,t),a.

§6. The Riemann-Hilbert correspondence

Next we define the Riemann-Hilbert correspondence from the mod-
uli space of α-stable parabolic connections to the moduli space of the
representations.

Let us fix positive integers r, d, α = (α(i)
j ) as in (44), and (C, t) ∈

T ′ = M′
g,n. For simplicity, we set Mα

((C,t),λ) = Mα
((C,t),λ)(r, n, d) (cf.

(47)).
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We define a morphism

(62) rh : Λ(n)
r (d) −→ A(n)

r , rh(λ) = a

by the relation

(63)
r−1∏
j=0

(s − exp(−2π
√
−1λ(i)

j )) = sr + a
(i)
r−1s

r−1 + · · · + a
(i)
0 .

For each member (E,∇, {l(i)j }) ∈ Mα
(C,t),λ, the solution subsheaf of

Ean

(64) ker(∇an|C\D(t)) ⊂ Ean

becomes a local system on C \D(t) and corresponds to a representation

(65) ρ : π1(C \ {t}, ∗) −→ GLr(C).

Since the eigenvalues of the residue matrix of ∇an at ti are λ
(i)
j , 0 ≤

j ≤ r − 1, considering the local fundamental solutions of ∇an = 0 near
ti, the monodromy matrix of ρ(γi) has eigenvalues exp(−2π

√
−1λ(i)

j ),
0 ≤ j ≤ r − 1. Hence under the relation (63), or a = rh(λ), we can
define a morphism

(66) RH(C,t),λ : Mα
((C,t),λ) −→ RPr

(C,t),a.

Replacing T = M′
g,n by a certain finite étale covering u : T ′ −→ T

and varying ((C, t), λ) ∈ T ′ × Λ(n)
r (d) we can define a morphism

(67) RH : Mα
(C,t)/T ′(r, n, d) −→ RPr

n,T ′

which makes the diagram

(68)

Mα
(C,t̃)/T ′(r, n, d) RH−−−−→ RPr

n,T ′

ϕr,n,d

⏐⏐� ⏐⏐�φr
n

T ′ × Λ(n)
r (d) Id×rh−−−−→ T ′ ×A(n)

r

commute. The following result is proved in [Ina].

Theorem 6.1. ([Theorem 2.2, [Ina]] ). Assume that α is so generic
that α-stable ⇔ α-semistable. Moreover we assume that r ≥ 2, rn−2r−
2 > 0 if g = 0, n ≥ 2 if g = 1 and n ≥ 1 if g ≥ 2. Then the morphism

(69) RH : Mα
(C,t̃)/T ′(r, n, d) −→ RPr

n,T ′ ×A(n)
r

Λ(n)
r
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induced by (67) is a proper surjective bimeromorphic analytic morphism.
In particular, for each ((C, t), λ) ∈ T ′×Λ(n)

r (d), the restricted morphism

(70) RH((C,t),λ) : Mα
((C,t),λ)(r, n, d) −→ RPr

(C,t),a

gives an analytic resolution of singularities of RPr
(C,t),a where a =

rh(λ).

Remark 6.1. Take λ ∈ Λ(n)
r such that rh(λ) = a. A representation

ρ such that [ρ] ∈ RPr
(C,t),a is said to be resonant if

(71) dim(ker(ρ(γi) − exp(−2π
√
−1λ(i)

j ))) ≥ 2 for some i, j.

The singular locus of RPr
(C,t),a is given by the set

(72)
(
RPr

(C,t),a

)sing

:=
{

[ρ] ∈ RPr
(C,t),a

∣∣∣∣ ρ is reducible or
resonant

}
.

Moreover we denote the smooth part of RPr
(C,t),a by

(73)
(
RPr

(C,t),a

)


= RPr
(C,t),a \

(
RPr

(C,t),a

)sing

.

Theorem 6.1 implies that the restriction

(74) RH
((C,t),λ)|

“

Mα
(C,t),λ

”� :
(
Mα

(C,t),λ

)
 �−→
(
RPr

(C,t),a

)


is an analytic isomorphism, where(
Mα

(C,t),λ

)


= RH−1
((C,t),λ)(

(
RPr

(C,t),a

)


).

§7. Isomonodromic flows and Differential systems of Painlevé
type

Consider the family of the moduli spaces of α-stable parabolic con-
nections

(75) ϕr,n,d : Mα
(C,t)/T (r, d, n) −→ T × Λ(n)

r (d)

where T = M′
g,n as in (48).

Fix ((C0, t0), λ0) ∈ T ×Λ(n)
r (d) and take an α-stable parabolic con-

nection x = (E,∇, {l(i)∗ }1≤i≤n) ∈ Mα
((C0,t0),λ0)(r, d, n). Let ∆ = {t ∈

C||t| < 1} be the unit disc and let h : ∆ −→ T be a holomorphic
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embedding such that h(0) = (C0, t0). Then pulling back the univer-
sal family, we obtain the family of n-pointed curves f : (C, t) −→ ∆
with the central fiber f−1(0) = (C0, t0). An α-stable parabolic connec-
tion (E ,∇, l) on the family of n-pointed curves (C, t) over ∆ is called a
(1-parameter) deformation of (E,∇, {l(i)∗ }1≤i≤n) if we have an isomor-
phism (E ,∇, l)|(C0,t0) � (E,∇, {l(i)∗ }1≤i≤n). Restricting the α-stable
parabolic connection (E ,∇, l) to each fiber (Ct, tt), we have a family of
α-stable parabolic connections (Et,∇t, lt) over (Ct, tt) which are auto-
matically flat in the direction of each fiber. If the connection ∇ on E
is flat on the total space C, which means that the curvature 2-form
of ∇ vanishes over the total space C, the associated representations
ρt : π1(Ct \{tt}, ∗) −→ GLr(C) is constant with respect to t ∈ ∆. More-
over the converse is also true. Therefore such a deformation (E ,∇, l)
over C −→ ∆ is called an isomonodromic deformation of a α-stable
parabolic connection. Under an isomonodromic deformation, local ex-
ponents λt of the connection (Et,∇t, lt) are also constant, so we have
λt = λ0. Therefore an isomonodromic deformation determines a holo-
morphic map h̃ : ∆ −→ Mα

(C,t),λ0/T (r, d, n) which is a lift of h : ∆ −→ T

such that h̃(0) = x ∈ Mα
((C0,t0),λ0)(r, d, n).

Mα
(C,t),λ0/T (r, n, d)

h̃ ↗ ↓ ϕr,n,d,–0

∆ h−→ T × {λ0}

.

Next we will define a global foliation IF on the total space of
Mα

(C,t)/T (r, d, n) from isomonodromic deformations of the α-stable par-
abolic connections. We mean that a foliation IF is a subsheaf of the
tangent sheaf ΘMα

(C,t)/T
(r,d,n). We will show that the global foliation IF

coming from isomonodromic deformations has the Painlevé property,
whose precise meaning will be defined in Theorem 7.1.

Let us consider the universal covering map u : T̃ → T = M′
g,n. Note

that u factors thorough the morphism u′ : T̃ → T ′. Pulling back the
fibration φr

n : RPr
n,T ′ −→ T ′×A(n)

r in (61) by u′, we obtain the fibration
RPr

n,T ′ ×T ′ T̃ −→ T̃ , which becomes a trivial fibration as explained in
Section 4 in [IIS1]. This means that if we fix a point (C0, t0) ∈ T there
exists an isomorphism

(76) π : RPr
n,T ′ ×T ′ T̃

�−→ RPr
(C0,t0) × T̃
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which makes the following diagram commute.

(77)

RPr
n,T ′ ×T ′ T̃

π−−−−→
�

RPr
(C0,t0) × T̃

fφr
n

⏐⏐� ⏐⏐�p2×φr
(C0,t0)

T̃ ×A(n)
r −−−−→ T̃ ×A(n)

r .

Fixing a ∈ A(n)
r , we set RPr

n,T ′,a = (φr
n)−1 (T ′ × {a}). From the mor-

phisms (57) and (61), we also have the following commutative diagram:

(78)

RPr
n,T ′,a ×T ′ T̃

πa−−−−→
�

RPr
(C0,t0),a × T̃

gφr
n,a

⏐⏐� ⏐⏐�p2

T̃ × {a} �−−−−→ T̃ .

By using the isomorphism (78) we can define the smooth part of
RPr

n,T ′,a ×T ′ T̃ by(
RPr

n,T ′,a ×T ′ T̃
)


= π−1
a

((
RPr

(C0,t0),a

)


× T̃

)

where
(
RPr

(C0,t0),a

)


is the smooth locus of RPr
(C0,t0),a (cf. (73)). Note

that for generic a the variety RPr
(C0,t0),a is non-singular, but for special

a, RPr
(C0,t0),a does have singularities (cf. [(72), Remark 6.1]).

We also have the following commutative diagram

(79)

(
RPr

n,T ′,a ×T ′ T̃
)
 πa−−−−→

�

(
RPr

(C0,t0),a

)


× T̃⏐⏐� ⏐⏐�p2

T̃ × {a} �−−−−→ T̃

.

By using this isomorphism, for any fixed a ∈ A(n)
r , we define the set of

constant sections
(80)

Isomd(T̃ ,
(
RPr

n,T ′,a ×T ′ T̃
)


) =
{

σ : T̃ →
(
RPr

n,T ′,a ×T ′ T̃
)


, constant
}

.

Note that by using the isomorphism (79), we have a natural isomorphism

(81) Isomd(T̃ ,
(
RPr

n,T ′,a ×T ′ T̃
)


) �
(
RPr

(C0,t0),a

)


.
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A section σ ∈ Isomd(T̃ ,
(
RPr

n,T ′,a ×T ′ T̃
)


) is called an isomonodromic

section by trivial reason and its image σ(T̃ ) is called an isomonodromic
flow.

Next, considering the pullback of ϕr,n,d in (50) by T̃ −→ T , we can
obtain the family of moduli spaces of α-stable parabolic connections

(82) ϕ̃r,n,d : Mα
(C,t)/T̃

−→ T̃ × Λ(n)
r (d).

Fixing λ ∈ Λ such that rh(λ) = a, we also obtain the restricted family
over T̃ × {λ}

(83) ϕ̃r,n,d,λ : Mα
((C,t),λ)/T̃

−→ T̃ × {λ}.

Restricting the Riemann-Hilbert correspondence (68) to this space, we
obtain the following commutative diagram

(84)

Mα
((C,t̃),λ)/T̃

(r, n, d) RHλ−−−−→ RPr
n,T,a ×T T̃

˜ϕr,n,d,λ

⏐⏐� ⏐⏐�gφr
n,a

T̃ × {λ} Id×rh−−−−→ T̃ × {a}

.

Note that by Theorem 6.1 the morphism RHλ gives an analytic resolu-
tion of singularities. Set

(85)
(
Mα

((C,t̃),λ)/T̃
(r, n, d))

)


= RH−1
λ ((RPr

n,T,a ×T T̃ )
),

and

(86)
(
Mα

((C,t̃),λ)/T̃
(r, n, d))

)sing

= RH−1
λ ((RPr

n,T,a ×T T̃ )sing).

(Cf. (72), (73)). Then we have an analytic isomorphism

(RHλ)
 :
(
Mα

((C,t̃),λ)/T̃
(r, n, d))

)
 �−→ (RPr
n,T,a ×T T̃ )
.

Now we define:
(87)

Isomd(T̃ ,
(
Mα

((C,t̃),λ)/T̃
(r, n, d))

)


) = RH−1
λ (Isomd(T̃ , (RPr

n,T,a×T T̃ )
)).

Each section σ ∈ Isomd(T̃ ,
(
Mα

((C,t̃),λ)/T̃
(r, n, d)

)


) is called an isomon-

odromic section on
(
Mα

((C,t̃),λ)/T̃
(r, n, d)

)


and its image

σ(T̃ ) ⊂
(
Mα

((C,t̃),λ)/T̃
(r, n, d)

)
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is called an isomonodromic flow. Note that since the Riemann-Hilbert
correspondence (RHλ)
 is a highly non-trivial analytic isomorphism,
isomonodromic flows {σ(T̃ )} are not constant any more and it is known
that they define highly transcendental analytic functions.

From the morphism (83) restricted to
(
Mα

((C,t̃),λ)/T̃
(r, n, d)

)


, we
obtain the natural sheaf homomorphism

Θ“
Mα

((C,t̃),λ)/T̃
(r,n,d)

”�

˜ϕr,n,d,λ
∗

−→ ϕ̃r,n,d,λ
∗
(ΘT̃ )

|
“

Mα
((C,t̃),λ)/T̃

(r,n,d)
”� −→ 0.

Then the set of all isomonodromic sections defines a sheaf homomor-
phism

(88) Vλ : ϕ̃r,n,d,λ
∗
(ΘT̃ )

|
“

Mα
((C,t̃),λ)/T̃

(r,n,d)
”� −→ Θ“

Mα
((C,t̃),λ)/T̃

(r,n,d)
”�

which gives a splitting of the homomorphism ϕ̃r,n,d,λ
∗
. The splitting

(88) is algebraic, because the condition of isomonodromic flows given by
the vanishing of the curvature 2-forms of the associated universal connec-
tions. Since the exceptional locus for RH = ∪λ RHλ has codimension
at least 2, by Hartogs’ theorem, it is easy to see that this algebraic split-
ting (88) can be extend to the whole family of moduli spaces, and we
obtain an extended homomorphism

(89) Vλ : ϕ̃r,n,d,λ
∗
(ΘT̃ ) −→ ΘMα

((C,t̃),λ)/T̃
(r,n,d).

Under the notation above, we have the following

Definition 7.1. (1) The foliation IFλ defined by the sub-
sheaf

(90) IFλ = Vλ(ϕ̃r,n,d,λ
∗
(ΘT̃ )) ⊂ ΘMα

((C,t̃),λ)/T̃
(r,n,d)

is called an isomonodromic foliation on Mα
((C,t̃),λ)/T̃

(r, n, d).

(2) Let h : ∆ −→ T̃ be a holomorphic embedding such that
h(t) = (Ct, tt) for t ∈ ∆. A holomorphic map h̃ : ∆ −→
Mα

((C,t̃),λ)/T̃
(r, n, d) such that ϕ̃r,n,d,λ ◦ h̃ = h is called a IFλ-

lift of h if h̃ is tangent to IFλ, that is, h̃∗(Θ∆) ⊂ IFλ.

Lemma 7.1. Let h : ∆ −→ T̃ be a holomorphic embedding and h̃ :
∆ −→ Mα

((C,t̃),λ)/T̃
(r, n, d) a IFλ-lift of h. Then the image of RHλ ◦h̃

lies in the image of a constant section σ ∈ Isomd(T̃ ,
(
RPr

n,T ′,a ×T ′ T̃
)
).
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Proof. Note that a lift h̃ of h corresponds to a 1-parameter de-
formation of α-stable parabolic connection under a deformation of n-

pointed curves associated to h : ∆ −→ T̃ . Since
(
Mα

((C,t̃),λ)/T̃
(r, n, d)

)


is a Zariski dense open subset of
(
Mα

((C,t̃),λ)/T̃
(r, n, d)

)
, we see that the

curvature form vanishes on the IF-foliation defined on the total space(
Mα

((C,t̃),λ)/T̃
(r, n, d)

)
. Therefore if h̃ is a IF-lift of h, we can conclude

that the deformation of connections is isomonodromic. Hence the asso-
ciated representations of the fundamental group of Ct\{tt} are constant,
which means that RHλ(h̃(∆)) is contained in the image of a constant
section of

(
RPr

n,T ′,a ×T ′ T̃
)
−→ T̃ . Q.E.D.

Now, we can show that the isomonodromic foliation is a differential
system satisfying the Painlevé property (cf. [Mal], [Miwa] and [IIS3]).

Theorem 7.1. For any λ ∈ Λ(n)
r (d), the isomonodromic foliation

IFλ defined on Mα
((C,t̃),λ)/T̃

(r, n, d) has Painlevé property. That is,

for any holomorphic embedding h : ∆ −→ T̃ of the unit disc ∆ =
{t ∈ C||t| < 1} such that h(0) = (C, t) and x = (E,∇, {l(i)∗ }1≤i≤n) ∈
Mα

((C,t),λ)(r, n, d), there exists the unique IFλ-lift

h̃ : ∆ −→ Mα
((C,t̃),λ)/T̃

(r, n, d)

of h such that h̃(0) = x.

Proof. If x ∈
(
Mα

((C,t),λ)(r, n, d)
)


, there is a unique isomonodromic

section σ : T̃ −→
(
Mα

((C,t̃),λ)/T̃
(r, n, d)

)


such that σ((C, t)) = x. The

holomorphic map h̃ = σ◦h : ∆ −→
(
Mα

((C,t̃),λ)/T̃
(r, n, d)

)


is the unique
IFλ-lift of h.

Let us consider the case when x ∈
(
Mα

((C,t),λ)(r, n, d)
)sing

. Pulling
back the commutative diagrams (84) and (78) via the embedding h :
∆ −→ T̃ , we obtain the commutative diagram

(91)

Mα
((C,t̃),λ)/∆

(r, n, d) πa◦RHλ−−−−−−→ RPr
(C0,t0),a × ∆

fϕ∆

⏐⏐� ⏐⏐�p2

∆ Id−−−−→ ∆

.
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The restriction of the foliation IFλ to Mα
((C,t̃),λ)/∆

(r, n, d) deter-

mines a vector field vλ on Mα
((C,t̃),λ)/∆

(r, n, d) such that ϕ̃∆∗(vλ) = ∂
∂t

where t is a coordinate of ∆. We will show that there exist a unique sec-
tion h̃ : ∆ −→ Mα

((C,t̃),λ)/∆
(r, n, d) such that h̃(0) = x and h̃∗( ∂

∂t ) = vλ,

which gives a IFλ-lift of h. Such a section h̃ can be locally given by an
analytic solution of the Cauchy problem of an ordinary differential equa-
tion associated to the vector field vλ. Such an analytic solution can be
locally given by holomorphic functions of t on ∆ε = {t ∈ C | |t| < ε} for
some 0 < ε < 1. This gives a section h̃ε : ∆ε −→ Mα

((C,t̃),λ)/∆ε
(r, n, d)

which is a IFλ-lift of hε = h|∆ε
. Let ε1 be the supremum of ε such that

a IFλ lift of hε exists. The above argument shows that ε1 > 0. Now
we will show that ε1 = 1. Assume the contrary, that is, ε1 < 1, and let
h̃ε1 : ∆ε1 −→ Mα

((C,t̃),λ)/∆ε1
(r, n, d) be the section over ∆ε1 .

Let p1 : RPr
(C0,t0),a × ∆ −→ RPr

(C0,t0),a be the first projection and
consider the morphism

p1 ◦ πa ◦ RHλ : Mα
((C,t̃),λ)/∆

(r, n, d) −→ RPr
(C0,t0),a.

By definition of
(
Mα

((C,t),λ)(r, n, d)
)sing

, the point y = p1◦πa◦RHλ(x)
is a singular point of RPr

(C0,t0),a and let

K∆,y = (πa ◦ RHλ)−1({y} × ∆) ⊂
(
Mα

((C,t̃),λ)/∆
(r, n, d)

)sing

denote the exceptional locus dominated over {y} ×∆. Then restricting
(91) to K∆,y, we have the following commutative diagram:

(92)

K∆,y
πa◦RHλ−−−−−−→ {y} × ∆

ϕ̃∆,y

⏐⏐� ⏐⏐�p2

∆ Id−−−−→ ∆.

From Theorem 6.1, we see that πa ◦ RHλ is a resolution of singularity
of RPr

(C0,t0),a × ∆, hence each fiber of ϕ̃∆,y : K∆,y −→ ∆ is compact.
Now from Lemma 7.1, we see that h̃ε1(∆ε) ⊂ K∆ε1 ,y. Moreover since
ϕ̃∆,y is proper, we see that h̃ε1(∆ε1) ⊂ K∆ε1 ,y where ∆ε1 = {t, |t| ≤ ε1}.
Take and fix t = b such that |b| = ε1. Then

h̃ε1(b) = yb ∈ K∆ε1 ,y ⊂ Mα
((C,t̃),λ)/∆ε1

(r, n, d)

Starting from t = b and yb, we can extend the section h̃ε1 over ∆(b, εb) =
{t ∈ ∆ | |t− b| < εb} with 0 < εb ≤ 1− ε1. Again, from the compactness
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of the fiber of ϕ̃∆,y : K∆,y −→ ∆, we can show that the minimum ε0 of
εb for |b| = ε1 is positive, hence for ε = ε1 + ε0 the section h̃ε exists and
this contradicts to the fact that ε1 is the supremum and ε1 < ε. Q.E.D.

Remark 7.1. Let us remark that the isomonodromic foliation IFλ

on Mα
((C,t̃),λ)/T̃

(r, n, d) descends to a foliation on Mα
((C,t̃),λ)/T ′(r, n, d)

under the covering map T̃ −→ T ′, which we also denote by IFλ. Re-
call that the isomonodromic section (81) is the constant section with
respect to the isomorphism (76). Moreover, when the base point ∗ ∈ T ′

corresponds to (C0, t0), the fundamental group π1(T ′, ∗) acts on the
moduli space RPr

(C0,t0) via the action to the generators of π1(C0 \
D(t0), ∗′). Therefore, we can define the local isomonodromic sections
for RPr

n,T ′,a′ −→ T ′, which also defines a local isomonodromic sections

for
(
Mα

((C,t),λ)/T ′

)


−→ T ′. Now the set of local isomonodromic sec-
tions determines a splitting homomorphism Vλ like (89), and it defines
an isomonodromic foliation

IFλ = Vλ(ΘT ′) ⊂ ΘMα
((C,t),λ)/T ′

which is obviously the descent of the original isomonodromic foliation
on Mα

((C,t),λ)/T̃ ′
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