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Cobordism of fibered knots and related topics

Vincent Blanlœil and Osamu Saeki

Abstract.

This is a survey article on the cobordism theory of non-spherical
knots studied in [BM, B2, BS1, BMS, BS2, BS3]. Special emphasis
is put on fibered knots.

We first recall the classical results concerning cobordisms of
spherical knots. Then we give recent results on cobordisms of simple
fibered (2n − 1)-knots for n ≥ 2 together with relevant examples.
We discuss the Fox-Milnor type relation and show that the usual
spherical knot cobordism group modulo the subgroup generated by
the cobordism classes of fibered knots is infinitely generated for odd
dimensions. The pull back relation on the set of knots is also dis-
cussed, which is closely related to the cobordism theory of knots via
the codimension two surgery theory. We also present recent results
on cobordisms of surface knots in S4 and 4-dimensional knots in S6.
Finally we give some open problems related to the subject.
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§1. Introduction

1.1. History
In the early fifties Rohlin [Rh1] and Thom [Th] studied the cobor-

dism groups of manifolds. At the 1958 International Congress of Math-
ematicians in Edinburgh, René Thom received a Fields Medal for his
development of cobordism theory. Then, Fox and Milnor [FM1, FM2]
were the first to study cobordism of knots, i.e., cobordism of embeddings
of the circle S1 into the 3-sphere S3. Knot cobordism is slightly different
from the general cobordism, since its definition is more restrictive. After
Fox and Milnor, Kervaire [K1] and Levine [L2] studied embeddings of
the n-sphere Sn (or homotopy n-spheres) into the (n + 2)-sphere Sn+2,
and gave classifications of such embeddings up to cobordism for n ≥ 2.
Moreover, Kervaire defined group structures on the set of cobordism
classes of n-spheres embedded in Sn+2, and on the set of concordance
classes of embeddings of Sn into Sn+2. The structures of these groups
for n ≥ 2 were clarified by Kervaire [K1], Levine [L2, L3] and Stoltzfus
[Sf].

Note that embeddings of spheres were studied only in the codimen-
sion two case, since in the PL category Zeeman [Ze] proved that all such
embeddings in codimension greater than or equal to three are unknotted,
and Stallings [Sg] proved that it is also true in the topological category
(here, one needs to assume the locally flatness condition), provided that
the ambient sphere has dimension greater than or equal to five. In the
smooth category Haefliger [Ha] proved that a cobordism of spherical
knots in codimension greater than or equal to three implies isotopy.

Milnor [M3] showed that, in a neighborhood of an isolated singular
point, a complex hypersurface is homeomorphic to the cone over the
algebraic knot associated with the singularity. Hence, the embedded
topology of a complex hypersurface around an isolated singular point
is given by the algebraic knot, which is a special case of a fibered knot.
After Milnor’s work, the class of fibered knots has been recognized as an
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important class of knots to study. Usually algebraic knots are not home-
omorphic to spheres, and this motivated the study of embeddings of gen-
eral manifolds (not necessarily homeomorphic to spheres) into spheres
in codimension two. Moreover, in the beginning of the seventies, Lê
[Lê] proved that isotopy and cobordism are equivalent for 1-dimensional
algebraic knots. Lê proved this for the case of connected (or spherical)
algebraic 1-knots, and the generalization to arbitrary algebraic 1-knots
follows easily (for details, see §4). About twenty years later, Du Bois
and Michel [DM] gave the first examples of algebraic spherical knots
that are cobordant but are not isotopic. These examples motivated the
classification of fibered knots up to cobordism.

1.2. Contents
This article is organized as follows. In §2 we give several definitions

related to the cobordism theory of knots. Seifert forms associated with
knots are also introduced. In §3 we review the classifications of (simple)
spherical (2n− 1)-knots with n ≥ 2 up to isotopy and up to cobordism.
In §4 we review the properties of algebraic 1-knots and present the clas-
sification theorem of algebraic 1-knots up to cobordism due to Lê [Lê].
In §5 we present the classifications of simple fibered (2n− 1)-knots with
n ≥ 3 up to isotopy and up to cobordism. The classification up to cobor-
dism is based on the notion of the algebraic cobordism. In order to clarify
the definition of algebraic cobordism, we give several explicit examples.
We also explain why this relation might not be an equivalence relation
on the set of bilinear forms defined on free Z-modules of finite rank. A
classification of 3-dimensional simple fibered knots up to cobordism is
given in §6. In §7 we recall the Fox-Milnor type relation on the Alexan-
der polynomials of cobordant knots. As an application, we show that
the usual spherical knot cobordism group modulo the subgroup gener-
ated by the cobordism classes of fibered knots is infinitely generated for
odd dimensions. In §8 we present several examples of knots with inter-
esting properties in view of the cobordism theory of knots. In §9 we
define the pull back relation for knots which naturally arises from the
viewpoint of the codimension two surgery theory. We illustrate several
results on pull back relations for fibered knots using some explicit ex-
amples. Some results for even dimensional knots are given in §10, where
we explain recent results about embedded surfaces in S4 and embedded
4-manifolds in S6. Finally in §11, we give several open problems related
to the cobordism theory of non-spherical knots.1

1A “non-spherical manifold” in this article refers to a general manifold
which may not necessarily be a homotopy sphere.
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With all the results collected in this paper, we have classifications of
knots up to cobordism in every dimension, except for the classical case
of one dimensional knots and the case of three dimensional knots. In the
latter two cases, a complete classification still remains open until now.

Throughout the article, we shall work in the smooth category un-
less otherwise specified. All the homology and cohomology groups are
understood to be with integer coefficients. The symbol “∼=” denotes an
(orientation preserving) diffeomorphism between (oriented) manifolds,
or an appropriated isomorphism between algebraic objects.

The authors would like to express their gratitude to Jean-Paul Bras-
selet and Tatsuo Suwa for encouraging the authors to write this survey
article on the theory of knot cobordisms. They also would like to thank
the referee for some useful comments.

§2. Several definitions

Since our aim is to study cobordisms of codimension two embeddings
of general manifolds, not necessarily homeomorphic to spheres, we define
the following.

Definition 2.1. Let K be a closed n-dimensional manifold em-
bedded in the (n + 2)-dimensional sphere Sn+2. We suppose that K is
([n/2] − 1)-connected, where for a ∈ R, [a] denotes the greatest inte-
ger not exceeding a. (We adopt the convention that a space is (−1)-
connected if it is not empty.) Equivalently, we suppose that K is

(k − 2)-connected if n = 2k − 1 and k ≥ 2, or
(k − 1)-connected if n = 2k and k ≥ 1.

When K is orientable, we further assume that it is oriented.2 Then we
call K or its (oriented) isotopy class an n-knot, or simply a knot.

An n-knot K is spherical if K is

(1) diffeomorphic to the standard n-sphere Sn for n ≤ 4, or
(2) a homotopy n-sphere for n ≥ 5.

Remark 2.2. We adopt the above definition of a spherical knot for
n ≤ 4 in order to avoid the difficulty related to the smooth Poincaré
conjecture in dimensions three and four.

Note that we impose the connectivity condition on the embedded
submanifold in Definition 2.1. This is motivated by the following rea-
sons. First, a knot associated with an isolated singularity of a complex

2In this article, we always assume that n-knots are oriented if n �= 2.
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hypersurface satisfies the above connectivity condition as explained be-
low. Second, if we assume that K is [n/2]-connected, then K is neces-
sarily a homotopy sphere so that K is spherical at least for n �= 3, 4.
Third, the connectivity condition on K technically helps to perform cer-
tain embedded surgeries and this simplifies the arguments in various
situations.

Remark 2.3. For the case of n = 1, i.e., for the classical knot case,
a 1-knot in our sense is usually called a “link”, and a connected (or
spherical) 1-knot is usually called a “knot”.

As mentioned in §1, Definition 2.1 is motivated by the study of the
topology of isolated singularities of complex hypersurfaces. More pre-
cisely, let f : Cn+1, 0 → C, 0 be a holomorphic function germ with an
isolated singularity at the origin. If ε > 0 is sufficiently small, then
Kf = f−1(0) ∩ S2n+1

ε is a (2n− 1)-dimensional manifold which is natu-
rally oriented, where S2n+1

ε is the sphere in Cn+1 of radius ε centered at
the origin. Furthermore, its (oriented) isotopy class in S2n+1

ε = S2n+1

does not depend on the choice of ε (see [M3]). We call Kf the alge-
braic knot associated with f . Since the pair (D2n+2

ε , f−1(0)∩D2n+2
ε ) is

homeomorphic to the cone over the pair (S2n+1
ε , Kf ), the algebraic knot

completely determines the local embedded topological type of f−1(0)
near the origin, where D2n+2

ε is the disk in Cn+1 of radius ε centered at
the origin.

In [M3], Milnor proved that algebraic knots associated with iso-
lated singularities of holomorphic function germs f : Cn+1, 0 → C, 0
are (2n − 1)-dimensional closed, oriented and (n − 2)-connected sub-
manifolds of the sphere S2n+1. This means that algebraic knots are in
fact knots in the sense of Definition 2.1. Moreover, the complement of an
algebraic knot Kf in the sphere S2n+1 admits a fibration over the circle
S1, and the closure of each fiber is a compact 2n-dimensional oriented
(n−1)-connected submanifold of S2n+1 which has Kf as boundary. This
motivates the following definition.

Definition 2.4. We say that an oriented n-knot K is fibered if
there exists a smooth fibration φ : Sn+2

� K → S1 and a trivialization
τ : N(K) → K × D2 of a closed tubular neighborhood N(K) of K in
Sn+2 such that φ|N(K)�K coincides with π ◦ τ |N(K)�K , where π : K ×
(D2

�{0}) → S1 is the composition of the projection to the second factor
and the obvious projection D2

� {0} → S1. Note that then the closure
of each fiber of φ in Sn+2 is a compact (n + 1)-dimensional oriented
manifold whose boundary coincides with K. We shall often call the
closure of each fiber simply a fiber.
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Furthermore, we say that a fibered n-knot K is simple if each fiber
of φ is [(n − 1)/2]-connected.

Note that an algebraic knot is always a simple fibered knot.
Let us now recall the classical definition of Seifert forms of odd

dimensional oriented knots, which were first introduced in [Se] and play
an important role in the study of knots.

First of all, for every oriented n-knot K with n ≥ 1, there exists a
compact oriented (n + 1)-dimensional submanifold V of Sn+2 having K
as boundary. Such a manifold V is called a Seifert manifold associated
with K.

For the construction of Seifert manifolds (or Seifert surfaces) asso-
ciated with 1-knots, see [Rl], for example.

For general dimensions, the existence of a Seifert manifold associ-
ated with a knot K can be proved by using the obstruction theory as
follows. It is known that the normal bundle of a closed orientable man-
ifold embedded in a sphere in codimension two is always trivial (see

[MS, Corollary 11.4], for example). Let N(K)
τ∼= K × D2 be a closed

tubular neighborhood of K in Sn+2, and Φ: ∂N(K)
∼=→ K × S1 pr2→ S1

the composite of the restriction of τ to the boundary of N(K) and the
projection pr2 to the second factor. Using the exact sequence

H1(Sn+2
� IntN(K)) → H1(∂N(K))

→ H2(Sn+2
� IntN(K), ∂N(K)),

associated with the pair (Sn+2
� IntN(K), ∂N(K)), we see that the

obstruction to extending Φ to Φ̃ : Sn+2
� IntN(K) → S1 lies in the

cohomology group

H2(Sn+2
� IntN(K), ∂N(K)) ∼= Hn(Sn+2

� IntN(K)).

By Alexander duality we have

Hn(Sn+2
� IntN(K)) ∼= H1(K),

which vanishes if n ≥ 4, since K is simply connected for n ≥ 4. When
n ≤ 3, we can show that by choosing the trivialization τ appropriately,
the obstruction in question vanishes. Therefore, a desired extension Φ̃
always exists. Now, for a regular value y of Φ̃, the manifold Φ̃−1(y) is
a submanifold of Sn+2 with boundary being identified with K × {y} in
K × S1. The desired Seifert manifold associated with K is obtained by
gluing a small collar K × [0, 1] to Φ̃−1(y).

When K is a fibered knot, the closure of a fiber is always a Seifert
manifold associated with K.
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Definition 2.5. We say that an n-knot is simple if it admits an
[(n − 1)/2]-connected Seifert manifold.

Now let us recall the definition of Seifert forms for odd dimensional
knots.

Definition 2.6. Suppose that V is a compact oriented 2n-dimen-
sional submanifold of S2n+1, and let G be the quotient of Hn(V ) by
its Z-torsion. The Seifert form associated with V is the bilinear form
A : G×G → Z defined as follows. For (x, y) ∈ G×G, we define A(x, y)
to be the linking number in S2n+1 of ξ+ and η, where ξ and η are n-
cycles in V representing x and y respectively, and ξ+ is the n-cycle ξ
pushed off V into the positive normal direction to V in S2n+1.

By definition a Seifert form associated with an oriented (2n−1)-knot
K is the Seifert form associated with F , where F is a Seifert manifold
associated with K. A matrix representative of a Seifert form with respect
to a basis of G is called a Seifert matrix.

Remark 2.7. Some authors define A(x, y) to be the linking number
of ξ and η+ instead of ξ+ and η, where η+ is the n-cycle η pushed off V
into the positive normal direction to V in S2n+1. There is no essential
difference between such a definition and ours. However, one should be
careful, since some formulas may take different forms.

Remark 2.8. For codimension two embeddings between general
manifolds, similar invariants have been constructed by Cappell-Shaneson
[CS1] and Matsumoto [Mt1, Mt2] (see also [St]). These invariants arose
as obstructions for certain codimension two surgeries.

Let us illustrate the above definition in the case of the trefoil knot.
Let us consider the Seifert manifold V associated with this knot as de-
picted in Fig. 1, where “+” indicates the positive normal direction. Note
that rankH1(V ) = 2. We denote by ξ and η the 1-cycles which represent
the generators of H1(V ). Then, with the aid of Fig. 1, we see that the
Seifert matrix for the trefoil knot is given by

A =
(
−1 1

0 −1

)
.

Note that a Seifert matrix is not symmetric in general. When A
is a Seifert matrix associated with a Seifert manifold V ⊂ S2n+1 of a
(2n − 1)-knot K = ∂V , the matrix S = A + (−1)nAT is the matrix of
the intersection form for V with respect to the same basis, where AT

denotes the transpose of A (for example, see [D]).
When a knot is fibered, its Seifert form associated with a fiber is

always unimodular by virtue of Alexander duality (see [Kf]). In the
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Fig. 1. Computing a Seifert matrix for the trefoil knot

following, for a fibered (2n− 1)-knot, we use the Seifert form associated
with a fiber unless otherwise specified.

Furthermore, when a (2n−1)-knot is simple, we consider an (n−1)-
connected Seifert manifold associated with this knot unless otherwise
specified.

Let us now focus on the cobordism classes of knots.

Definition 2.9. Two n-knots K0 and K1 in Sn+2 are said to be
cobordant if there exists a properly embedded (n + 1)-dimensional man-
ifold X of Sn+2 × [0, 1] such that

(1) X is diffeomorphic to K0 × [0, 1], and
(2) ∂X = (K0 × {0}) ∪ (K1 × {1})

(see Fig. 2). The manifold X is called a cobordism between K0 and
K1. When the knots are oriented, we say that K0 and K1 are oriented
cobordant (or simply cobordant) if there exists an oriented cobordism X
between them such that ∂X = (−K0 × {0}) ∪ (K1 × {1}), where −K0

is obtained from K0 by reversing the orientation.

In Fig. 2 the manifold X ∼= K0 × [0, 1], embedded in Sn+2 × [0, 1],
and its boundary (K0 ×{0})∪ (K1 ×{1}), embedded in (Sn+2 ×{0})∪
(Sn+2×{1}), are drawn by solid curves and black dots respectively, and
the levels Sn+2 × {t}, t ∈ (0, 1), are drawn by dotted curves.

Recall that a manifold with boundary Y embedded in a manifold X
with boundary is said to be properly embedded if ∂Y = ∂X ∩ Y and Y
is transverse to ∂X .

It is clear that isotopic knots are always cobordant. However, the
converse is not true in general, since the manifold X ∼= K0 × [0, 1] can
be knotted in Sn+2 × [0, 1] as depicted in Fig. 3. For explicit examples,
see §8.
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�

�

K0

Sn+2 × {0}

�

�

K1

Sn+2 × {1}

Sn+2 × [0, 1]

Fig. 2. A cobordism between K0 and K1

�K0 �K1

Fig. 3. A cobordism which is not an isotopy

We also introduce the notion of concordance for embedding maps as
follows.

Definition 2.10. Let K be a closed n-dimensional manifold. We
say that two embeddings fi : K → Sn+2, i = 0, 1, are concordant if
there exists a proper embedding Φ: K × [0, 1] → Sn+2 × [0, 1] such that
Φ|K×{i} = fi : K × {i} → Sn+2 × {i}, i = 0, 1.

Note that an embedding map ϕ : Y → X between manifolds with
boundary is said to be proper if ∂Y = ϕ−1(∂X) and Y is transverse to
∂X .

Recall that for a simple (2n− 1)-knot K with an (n− 1)-connected
Seifert manifold V , we have the following exact sequence

0 → Hn(K) → Hn(V ) S∗→ Hn(V, K) → Hn−1(K) → 0,(2.1)
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where the homomorphism S∗ is induced by the inclusion. Let

P̃ : Hn(V, K)
∼=→ HomZ(Hn(V ), Z)

be the composite of the Poincaré-Lefschetz duality isomorphism and
the universal coefficient isomorphism. Set S = A + (−1)nAT and let
S∗ : Hn(V ) → HomZ(Hn(V ), Z) be the adjoint of S, where A is the
Seifert form associated with V . Then we see easily that the homomor-
phisms S∗ and S∗ are related together by S∗ = P̃ ◦ S∗.

Cobordant knots are diffeomorphic. Hence, to have a cobordism be-
tween two given knots, we need to have topological informations about
the knots as abstract manifolds. Since a simple fibered (2n − 1)-knot
is the boundary of the closure of a fiber, which is an (n − 1)-connected
Seifert manifold associated with the knot, by considering the above exact
sequence (2.1) we can use the kernel and the cokernel of the homomor-
phism S∗ to get topological data of the knot. Note that in the case of
spherical knots, these considerations are not necessary, since S∗ and S∗

are isomorphisms.

§3. Spherical knots

In this section, let us briefly review the case of spherical knots, which
was studied mainly by Kervaire and Levine.

The Seifert form is the main tool to study cobordisms of odd di-
mensional spherical knots. In [L4] Levine described the possible mod-
ifications on Seifert forms of a spherical simple knot corresponding to
alterations of Seifert manifolds as follows.

An enlargement A′ of a square integral matrix A is defined as follows:

A′ =

⎛
⎝ A O O

α 0 0
OT 1 0

⎞
⎠ or

⎛
⎝ A β O
OT 0 1
OT 0 0

⎞
⎠ ,

where O is a column vector whose entries are all 0, and α (resp. β) is
a row (resp. column) vector of integers. In this case, we also call A a
reduction of A′.

Two square integral matrices are said to be S-equivalent if they are
related each other by enlargement and reduction operations together
with the congruence. We also say that two integral bilinear forms defined
on free Z-modules of finite rank are S-equivalent if so are their matrix
representatives.

Levine [L4] proved
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Theorem 3.1. For n ≥ 2, two spherical simple (2n−1)-knots are
isotopic if and only if they have S-equivalent Seifert forms.

Remark 3.2. For spherical simple (2n− 1)-knots, we have another
algebraic invariant, called the Blanchfield pairing, which is closely related
to the Seifert form (see [Ke1, T]). In fact, it is known that giving an S-
equivalence class of a Seifert form is equivalent to giving an isomorphism
class of a Blanchfield pairing.

Kervaire showed that the set Cn of cobordism classes of spherical
n-knots has a natural group structure. The group operation is given by
the connected sum and the inverse of a knot K is given by its mirror
image with reversed orientation −K !. We say that an n-knot K ⊂ Sn+2

is null-cobordant if it is cobordant to the trivial knot, i.e., if there exists
an (n + 1)-disk Dn+1 properly embedded in the (n + 3)-disk Dn+3 such
that ∂Dn+1 = K ⊂ Sn+2 = ∂Dn+3. Note that the neutral element of
Cn is the class of null-cobordant n-knots.

In the case of spherical (2n− 1)-knots Kervaire and Levine used the
following notion for integral bilinear forms.

Definition 3.3. Let A : G × G → Z be an integral bilinear form
defined on a free Z-module G of finite rank. The form A is said to
be Witt associated to 0 if the rank m of G is even and there exists a
submodule M of rank m/2 in G such that M is a direct summand of G
and A vanishes on M . Such a submodule M is called a metabolizer for
A.

The following theorem was proved by Levine [L2] (see also [K2]).

Theorem 3.4. For n ≥ 2, a spherical (2n− 1)-knot is null-cobor-
dant if and only if its Seifert form is Witt associated to 0.

Remark 3.5. For Blanchfield pairing (see Remark 3.2), there is also
a notion of “null-cobordism”, and we have a result similar to Theorem 3.4
(see [Ke2]).

For two spherical (2n−1)-knots K0 and K1 with Seifert forms A0 and
A1 respectively, the oriented connected sum K = K0�(−K !

1) has A =
A0 ⊕ (−A1) as the Seifert form associated with the oriented connected
sum along the boundaries of the Seifert manifolds associated with K0

and −K !
1, where −K !

1 denotes the mirror image of K1 with reversed
orientation. Hence, as a consequence of Theorem 3.4, we have that
two spherical knots K0 and K1 are cobordant if and only if the form
A = A0 ⊕ (−A1) is Witt associated to 0. In this case we sometimes say
that A0 and A1 are Witt equivalent.
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For ε = ±1, let Cε(Z) be the set of all Witt equivalence classes of
integral bilinear forms A defined on free Z-modules of finite rank such
that A + εAT is unimodular (for the notation, we follow [K2]). It can
be shown that Cε(Z) has a natural abelian group structure, where the
addition is defined by the direct sum. Then we have the following.

Theorem 3.6 (Levine [L2]). Let Φn : C2n−1 → C(−1)n

(Z) be the
(well-defined) homomorphism induced by the Seifert form. Then Φn is
an isomorphism for n ≥ 3. For n = 2, Φ2 is a monomorphism whose
image C+1(Z)0 is a specified subgroup of C+1(Z) of index 2. For n = 1,
Φ1 : C1 → C−1(Z) is merely an epimorphism.

Furthermore, Levine [L3] showed the following (see also Remark 7.4).

Theorem 3.7. For ε = ±1, we have

Cε(Z) ∼= Z∞
2 ⊕ Z∞

4 ⊕ Z∞,(3.1)

where the right hand side is the direct sum of countably many (but infi-
nite) copies of the cyclic groups Z, Z2 and Z4.

Note that the right hand side of (3.1) is not an unrestricted direct
sum, i.e., each element of the group is a linear combination of finitely
many elements corresponding to the generators of the factors.

Remark 3.8. Michel [Mc] showed that for n ≥ 1, spherical alge-
braic (2n − 1)-knots have infinite order in C2n−1, provided that the
associated holomorphic function germ has an isolated singularity at the
origin and is not non-singular. Note, however, that they are not inde-
pendent. See Remark 4.2.

For n = 1, Φ1 : C1 → C−1(Z) is far from being an isomorphism.
The non-triviality of the kernel of this epimorphism was first shown
by Casson-Gordon [CG]. The classification of spherical 1-knots up to
cobordism is still an open problem. Moreover, for spherical 1-knots, we
have also the important notion of a ribbon knot (see, for example, [Rl]).
Ribbon knots are null-cobordant. It is still an open problem whether
the converse is true or not.

For even dimensions, we have the following vanishing theorem.

Theorem 3.9 (Kervaire [K1]). For all n ≥ 1, C2n vanishes.

Let C̃n be the group of concordance classes of embeddings into Sn+2

of
(1) the n-dimensional standard sphere Sn for n ≤ 4, or
(2) homotopy n-spheres for n ≥ 5.
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In [K1] Kervaire showed that the natural surjection i : C̃n → Cn is a
group homomorphism.

Let us denote by Θn the group of h-cobordism classes of smooth
oriented homotopy n-spheres, and by bPn+1 the subgroup of Θn con-
sisting of the h-cobordism classes represented by homotopy n-spheres
which bound compact parallelizable manifolds [KM]. Then we have the
following

Theorem 3.10 (Kervaire [K1]). For n ≤ 5 we have C̃n
∼= Cn,

and for n > 6 we have the short exact sequence

0 → Θn+1/bPn+2 → C̃n
i→ Cn → 0.

Note that for n ≥ 4, Θn+1/bPn+2 is a finite abelian group. For
details, see [KM].

§4. Cobordism of algebraic 1-knots

As has been pointed out in the previous section, the classification of
1-knots up to cobordism is still unsolved. However, for algebraic 1-knots,
a classification is known as follows.

Consider an algebraic 1-knot K associated with a holomorphic func-
tion germ f : C2, 0 → C, 0 of two variables with an isolated critical point
at the origin. Note that K is naturally oriented. Let us further assume
that K is spherical. Then it is known that K is an iterated torus knot
[Br]. An iterated torus knot is a knot obtained from a torus knot by an
iteration of the cabling operation (for example, see [Rl]). Furthermore,
the relevant operations are always “positive” cablings, which is peculiar
to algebraic knots.

For a knot, the fundamental group of its complement in the ambient
sphere is called the knot group. In [Z1] Zariski explicitly gave generators
and relations of the knot group of a spherical algebraic 1-knot. When
two spherical algebraic 1-knots are isotopic, they have isomorphic knot
groups. Although the converse is not true for general spherical (not
necessarily algebraic) 1-knots, it was proved that two spherical algebraic
1-knots with isomorphic knot groups are isotopic (see [Bu1, Z1, Re,
Lê]). Furthermore, Burau [Bu1] proved that two spherical algebraic 1-
knots with the same Alexander polynomial are isotopic. For a definition
of the Alexander polynomial, see §7. It is known that the Alexander
polynomial of a spherical 1-knot is determined by its knot group (see,
for example, [CF]).

For general algebraic 1-knots which are not necessarily spherical, the
following is known. Let K = K1∪K2∪· · ·∪Ks and L = L1∪L2∪· · ·∪Lt
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be algebraic 1-knots, where Ki, 1 ≤ i ≤ s, and Lj , 1 ≤ j ≤ t, are
components of K and L respectively. Then K and L are isotopic if
and only if s = t, Ki is isotopic to Li, 1 ≤ i ≤ s, and the linking
number of Ki and Kj coincides with that of Li and Lj for i �= j, after
renumbering the indices if necessary (for example, see [Re]). It is also
known that the multi-variable Alexander polynomial classifies algebraic
1-knots [Bu2, Re, Y].

As to the classification of algebraic 1-knots up to cobordism, we
have the following result due to Lê [Lê]. Let K and L be two cobordant
spherical algebraic 1-knots. Let us denote their Alexander polynomials
by ∆K(t) and ∆L(t) respectively, where we normalize them so that
their degree 0 terms are positive. In [FM2], Fox and Milnor proved
that then there exists a polynomial f(t) ∈ Z[t] such that ∆K(t)∆L(t) =
tdf(t)f(1/t), where d is the degree of f(t) (for details, see §7 of the
present survey). Using this, one can conclude that the product of the
Alexander polynomials of two cobordant spherical algebraic 1-knots is
a square in Z[t]. In fact, Lê [Lê] proved that two cobordant spherical
algebraic 1-knots have the same Alexander polynomial, and hence the
following holds.

Theorem 4.1 ([Lê]). Two cobordant spherical algebraic 1-knots
are isotopic.

For general (not necessarily spherical) algebraic 1-knots, since the
linking numbers between the components are cobordism invariants, we
see that the same conclusion as in Theorem 4.1 holds also for the general
case of not necessarily spherical algebraic 1-knots.

Remark 4.2. It has been shown that the images of the cobordism
classes of spherical algebraic 1-knots by Φ1 : C1 → C−1(Z) are not in-
dependent. An explicit example is given in [LM].

§5. Cobordism of simple fibered (2n − 1)-knots

In this section, we will give a classification of simple fibered (2n−1)-
knots up to cobordism for n ≥ 3.

Let us first recall that Durfee [D] and Kato [Kt] independently
proved an analogue of Theorem 3.1 for (not necessarily spherical) simple
fibered knots as follows. Recall that Seifert forms associated with simple
fibered knots are unimodular.

Theorem 5.1. For n ≥ 3, there is a one-to-one correspondence
between the isotopy classes of simple fibered (2n−1)-knots in S2n+1 and
the isomorphism classes of integral unimodular bilinear forms, where the
correspondence is given by the Seifert form.
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Note that isomorphism classes of integral bilinear forms correspond
to congruence classes of integral square matrices.

The study of cobordism of (not necessarily spherical) odd dimen-
sional simple fibered knots cannot be done by a direct generalization of
the results proved by Kervaire and Levine for spherical (2n − 1)-knots
with n ≥ 2, since we have to consider the topological data contained in
the kernel and the cokernel of the intersection form of the fiber (see the
exact sequence (2.1)).

For n ≥ 3, Du Bois and Michel [DM] constructed the first examples
of spherical algebraic (2n − 1)-knots which are cobordant but are not
isotopic. Hence, algebraic knots of dimension greater than or equal to
five do not have the nice behavior of algebraic 1-knots, since the notion
of cobordism and isotopy are distinct.

Moreover, there exist plenty of examples of knots, not necessarily
spherical nor algebraic, which are cobordant but are not isotopic for any
dimension. For example, in the case of dimension one, the square knot,
which is the connected sum of the right hand and the left hand trefoil
knots, is cobordant but is not isotopic to the trivial knot. (For more
explicit examples, see §8.)

Using Seifert forms, we have a complete characterization of cobor-
dism classes of simple fibered knots as follows (see [BM, B1, B3]).

Theorem 5.2 ([BM]). For n ≥ 3, two simple fibered (2n − 1)-
knots are cobordant if and only if their Seifert forms are algebraically
cobordant.

The definition of algebraically cobordant forms will be given later
in this section.

Remark 5.3. Related results had been obtained by Vogt [V1, V2],
who proved that if two simple (not necessarily fibered) (2n − 1)-knots,
n ≥ 3, are cobordant, then their Seifert forms are Witt equivalent and
satisfy certain properties which are weaker than the algebraic cobor-
dism. Conversely, if two simple (2n − 1)-knots, n ≥ 3, with torsion
free homologies have algebraically cobordant Seifert forms, then they
are cobordant.

In Theorem 5.2 the condition on the integer n is only used to prove
the sufficiency, and we have the following theorem which is valid for all
odd dimensions.

Theorem 5.4 ([BM]). For n ≥ 1, two cobordant simple fibered
(2n − 1)-knots have algebraically cobordant Seifert forms.

Furthermore, the following holds for (not necessarily fibered) simple
knots.
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Theorem 5.5 ([BM]). For n ≥ 3, two simple (2n − 1)-knots are
cobordant if their Seifert forms associated with (n− 1)-connected Seifert
manifolds are algebraically cobordant.

To define the algebraic cobordism, we first need to fix some notations
and definitions. Let A be the set of all bilinear forms defined on free
Z-modules of finite rank. Set ε = (−1)n. Let A : G × G → Z be a
bilinear form in A. We denote by AT the transpose of A, by S the ε-
symmetric form A+ εAT associated with A, by S∗ : G → G∗ the adjoint
of S with G∗ being the dual HomZ(G, Z) of G, and by S : G × G → Z
the ε-symmetric non-degenerate form induced by S on G = G/ KerS∗.
For a submodule M of G, we denote by M the image of M in G by the
natural projection map. A submodule M of a free Z-module G of finite
rank is said to be pure if G/M is torsion free, or equivalently if M is
a direct summand of G. For a submodule M of a free Z-module G of
finite rank, we denote by M∧ the smallest pure submodule of G which
contains M .

Definition 5.6 ([BM]). Let Ai : Gi × Gi → Z, i = 0, 1, be two
bilinear forms in A. Set G = G0 ⊕G1, A = A0 ⊕ (−A1), Si = Ai + εAT

i

and S = A + εAT . We say that A0 is algebraically cobordant to A1 if
there exist a metabolizer M for A in the sense of Definition 3.3 with M
pure in G, an isomorphism ψ : KerS∗

0 → KerS∗
1 , and an isomorphism

θ : Tors(CokerS∗
0 ) → Tors(CokerS∗

1 ) which satisfy the following two
conditions:

M ∩ KerS∗ = {(x, ψ(x)) : x ∈ KerS∗
0} ⊂ KerS∗

0 ⊕ KerS∗
1(c1)

= KerS∗,

d(S∗(M)∧) = {(y, θ(y)) : y ∈ Tors(CokerS∗
0)}(c2)

⊂ Tors(CokerS∗
0 ) ⊕ Tors(CokerS∗

1 )

= Tors(CokerS∗),

where d is the quotient map G∗ → CokerS∗ and “Tors” means the
torsion subgroup.

In the above situation, we also say that A0 and A1 are algebraically
cobordant with respect to ψ and θ.

Recall that the knot cobordism is an equivalence relation. Further-
more, any unimodular matrix can be realized as a Seifert matrix associ-
ated with a simple fibered (2n−1)-knot, n ≥ 3. Therefore, Theorem 5.2
implies the following

Theorem 5.7. Algebraic cobordism is an equivalence relation on
the set of unimodular forms.
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Example 5.8. In [BM, Theorem 1], it is claimed that the algebraic
cobordism is an equivalence relation on the whole set of integral bilinear
forms A. However, this may be not true as explained below.

Let us consider the three matrices

A0 =

⎛
⎜⎜⎝

0 4 −2 −3
−4 0 −2 1

2 2 0 −1
3 −1 0 0

⎞
⎟⎟⎠ , A1 =

⎛
⎜⎜⎝

0 4 1 2
−4 0 1 −2
−1 −1 0 0
−2 2 −1 0

⎞
⎟⎟⎠

and

A2 =

⎛
⎜⎜⎝

0 4 −6 1
−4 0 −2 −1

6 2 0 1
−1 1 0 0

⎞
⎟⎟⎠ ,

which are given in [V2, p. 45]. We identify Ai with the corresponding
bilinear form Ai : Gi × Gi → Z with Gi

∼= Z4, i = 0, 1, 2. Set

m1 = (0, 0, 1, 0, 0, 0, −2, 0) ∈ G0 ⊕ G1,

m2 = (0, 1, 0, 2, 0, 0, 0, −1) ∈ G0 ⊕ G1,

m3 = (1, 0, 0, 0, 1, 0, 0, 0) ∈ G0 ⊕ G1,

m4 = (0, 1, 0, 0, 0, 1, 0, 0) ∈ G0 ⊕ G1,

n1 = (0, 0, 2, 0, 0, −1, −1, 0) ∈ G1 ⊕ G2,

n2 = (0, 0, 0, 1, 0, 0, 0, 2) ∈ G1 ⊕ G2,

n3 = (1, 0, 0, 0, 1, 0, 0, 0) ∈ G1 ⊕ G2,

n4 = (0, 1, 0, 0, 0, 1, 0, 0) ∈ G1 ⊕ G2.

Then we see that the subgroup generated by m1, m2, m3, m4 of G0⊕G1

gives a metabolizer for A0⊕ (−A1), and that the subgroup generated by
n1, n2, n3, n4 of G1 ⊕ G2 gives a metabolizer for A1 ⊕ (−A2). Further-
more, it is easy to check that Ai and Ai+1 are algebraically cobordant
for ε = +1 with respect to the “identity”

Z ⊕ Z ⊕ 0 ⊕ 0 = KerS∗
i → KerS∗

i+1 = Z ⊕ Z ⊕ 0 ⊕ 0,

i = 0, 1, where Si = Ai + AT
i , i = 0, 1, 2.

However, in [V2] it is shown that A0 and A2 are not algebraically
cobordant with respect to the “identity”.

In the proof given in [BM, pp. 38–39], it is shown that if Ai and Ai+1

are algebraically cobordant with respect to ψi, i = 0, 1 (see Definition 5.6
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(c1)), then A0 and A2 are algebraically cobordant with respect to ψ1◦ψ0.
So, this contradicts Vogt’s result mentioned above.

In fact, in general we may not have the direct sum decomposition
Gi = KerS∗

i ⊕ Ti, i = 0, 1, 2, mentioned in the proof given in [BM,
p. 39].

Presumably, the above example would show that the algebraic cobor-
dism is not an equivalence relation on the set of general (not necessarily
unimodular) integral bilinear forms defined on free Z-modules of finite
rank. Since the relation introduced by Vogt [V2] and that of Defini-
tion 5.6 are slightly different, we do not know at present if the relation
of algebraic cobordism is an equivalence relation or not.

Remark 5.9. For general forms which are not necessarily unimod-
ular, we can consider the equivalence relation generated by the algebraic
cobordism, called the weak algebraic cobordism. Then by using Theo-
rem 5.5,3 we can show that if two simple (2n − 1)-knots, n ≥ 3, have
weakly algebraically cobordant Seifert forms with respect to (n − 1)-
connected Seifert manifolds, then they are cobordant.

Furthermore, we can prove the following. A simple (2n− 1)-knot is
said to be C-algebraically fibered if its Seifert form is algebraically cobor-
dant to a unimodular form (see [BS1]). Then, two simple C-algebraically
fibered (2n − 1)-knots, n ≥ 3, are cobordant if and only if their Seifert
forms are weakly algebraically cobordant. We do not know if this is true
for all simple (2n − 1)-knots, n ≥ 3.

Let Ai be Seifert forms associated with (n − 1)-connected Seifert
manifolds Vi of simple (2n − 1)-knots Ki, i = 0, 1, and S∗

i the adjoint
of the intersection form of Vi. Since we have the exact sequence

0 = Hn+1(Vi, Ki) → Hn(Ki) → Hn(Vi)
S∗

i−→ Hn(Vi, Ki)

→ Hn−1(Ki) → Hn−1(Vi) = 0

associated with the pair (Vi, Ki), where we identify Hn(Vi, Ki) with the
dual of Hn(Vi) (see (2.1)), KerS∗

i and CokerS∗
i are naturally identified

with Hn(Ki) and Hn−1(Ki) respectively.
As remarked before, in the case of a spherical knot K we have

Hn(K) = Hn−1(K) = 0, and the intersection form is an isomorphism.
Hence the algebraic cobordism for Seifert forms associated with spher-
ical simple knots is reduced to the Witt equivalence, and Theorem 5.2

3Here, we also need the fact that every form in A can be realized as the
Seifert form of a simple (2n − 1)-knot.
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follows from the classical result of Kervaire and Levine (see Theorem 3.4
and the paragraph just after Remark 3.5).

In order to clarify the relation of algebraic cobordism, we present
here several examples.

Example 5.10. (1) Let us consider any integral bilinear form A
in A such that A + εAT is unimodular. Then, A ⊕ (−A) is always
algebraically cobordant to the zero form.

(2) Let us consider the integral bilinear forms A0 and A1 repre-
sented by the matrices

(
1 1
0 6

)
and

(
2 −1

−2 4

)

respectively, which are given in [K2, p. 93]. Then it is easy to check
that the subgroup of Z4 generated by (3, 1, 3, 0)T and (0, 1, 2, 1)T is a
metabolizer for A0⊕ (−A1). Since Ai −AT

i are unimodular, i = 0, 1, we
see that A0 and A1 are algebraically cobordant for ε = −1. Note that
A0 and A1 are not congruent to each other.

(3) The following example is a generalization of those given in
[BMS]. Let us consider the two matrices

A0 =
(

p2 1
−1 0

)
and A1 =

(
q2 1
−1 0

)
,

which are identified with the corresponding integral bilinear forms, where
p and q are odd integers with 1 ≤ p < q. Note that they are both
unimodular and

S0 = A0 + εAT
0 = S1 = A1 + εAT

1 =
(

0 2
−2 0

)
,

where ε = −1. Let us show that A0 and A1 are algebraically cobordant
in the sense of Definition 5.6 for ε = −1.

Let r be the greatest common divisor of p and q and set p = rp′ and
q = rq′. Furthermore, set m = (q′, 0, p′, 0)T and m′ = (0, p′, 0, q′)T .
Then it is easy to see that the submodule M of Z4 generated by m and
m′ constitutes a metabolizer for A = A0 ⊕ (−A1). Since S0 = S1 are
non-degenerate, we have only to verify condition (c2) of Definition 5.6.

Set S = S0 ⊕ (−S1) = A − AT . Let S∗ : Z4 → Z4, S∗
0 : Z2 → Z2

and S∗
1 : Z2 → Z2 be the adjoints of S, S0 and S1 respectively. It is easy

to see that CokerS∗
0 = CokerS∗

1 is naturally identified with Z2 ⊕ Z2.
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Furthermore, we have

S∗(m) = mT S = (0, 2q′, 0, −2p′) and

S∗(m′) = (m′)T S = (−2p′, 0, 2q′, 0).

Therefore, S∗(M)∧, the smallest direct summand of Z4 containing S∗(M),
is the submodule of Z4 generated by (0, q′, 0, −p′) and (−p′, 0, q′, 0).
Hence, for the natural quotient map d : Z4 → CokerS∗ = (Z2 ⊕ Z2) ⊕
(Z2 ⊕ Z2), we have

d(S∗(M)∧) = {(x, x) : x ∈ CokerS∗
0 = Z2 ⊕ Z2},

since Im S∗
i is generated by (2, 0) and (0, 2), i = 0, 1, and ImS∗ is gen-

erated by (2, 0, 0, 0), (0, 2, 0, 0), (0, 0, 2, 0) and (0, 0, 0, 2). Therefore,
we conclude that the unimodular matrices A0 and A1 are algebraically
cobordant.

Note that A0 and A1 are not congruent, since there exists an element
x ∈ Z2 such that xTA0x = p2, while such an element does not exist for
A1.

Let us give a sketch of the proof of Theorem 5.2. Let K0 = ∂F0 and
K1 = ∂F1 be two simple fibered (2n−1)-knots with n ≥ 3 with fibers F0

and F1 respectively. Denote by A0 and A1 the Seifert forms associated
with F0 and F1 respectively.

To prove the necessity in Theorem 5.2, we first suppose that K0 ⊂
S2n+1 × {0} and K1 ⊂ S2n+1 × {1} are cobordant. Then we see that
the union of the cobordism and the fibers bound a compact oriented
(2n + 1)-dimensional manifold W embedded in S2n+1 × [0, 1] by using
the obstruction theory as in §2. Using the kernel of the homomorphism
induced by the inclusion F0∪F1 → W , we can construct a metabolizer for
A0 ⊕ (−A1) which fulfills all the conditions in the definition of algebraic
cobordism. (For this we need to have that A0 and A1 are unimodular,
which is guaranteed since K0 and K1 are fibered.) We refer to [BM] for
details.

For sufficiency we suppose that A0 and A1 are algebraically cobor-
dant with respect to a metabolizer M . We consider Fi to be embed-
ded in S2n+1 × {i}, i = 0, 1, and denote by F the connected sum
F = F0�F1 embedded in S2n+1 × [0, 1]. Note that we naturally have
Hn(F ) = Hn(F0)⊕Hn(F1). Then, since n ≥ 3, we can show that one can
perform embedded surgeries on the connected sum of Seifert manifolds
in S2n+1× [0, 1] so that we obtain a simply connected submanifold X of
S2n+1 × [0, 1] with ∂X = (K0 × {0})

∐
(K1 × {0}) and H∗(X, Ki) = 0

for i = 0, 1. According to Smale’s h-cobordism theorem [Sm2, M2] we
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have X ∼= K0×[0, 1], and thus X gives a cobordism between K0 and K1.
This is where we need to have (2n − 1)-dimensional knots with n ≥ 3,
since the h-cobordism theorem is valid only for dimX ≥ 6.

The crucial point in the proof is to see that the technical conditions
imposed on the metabolizer in Definition 5.6 give a strategy to perform
the right embedded surgeries. For details, see [BM, B3].

§6. 3-Dimensional knots

In this section, we deal with 3-dimensional knots.4 This case is
much more difficult than that of higher dimensional knots, since the
dimension of the Seifert manifolds associated with 3-knots is equal to
four. The topology of 4-dimensional manifolds is exceptional, and the
usual technics like the Whitney trick [W2] used in the case of higher
dimensional manifolds are not available any more.

The algebraic cobordism of Seifert forms is a necessary condition for
the existence of a cobordism between two simple fibered (2n − 1)-knots
for all n ≥ 1 (see Theorem 5.4). Furthermore, two isotopic simple fibered
(2n− 1)-knots have isomorphic Seifert forms for all n ≥ 1 (for example,
see [D, Kt, S1]). However, it is known that there exist 3-dimensional sim-
ple fibered knots which are abstractly diffeomorphic and have isomorphic
Seifert forms but which are not isotopic (see Example 6.1 below). This
shows that the one-to-one correspondence between the isotopy classes
of knots and the isomorphism classes of Seifert forms stated in Theo-
rem 5.1 does not hold for n = 2. In fact, these fibered 3-knots are even
not cobordant (see Remark 6.7). Hence, for 3-dimensional knots, isotopy
classes and cobordism classes must be characterized by new equivalence
relations. Isotopy classes of 3-knots were studied in [S1, S2, S4] (see also
[Hi]). For cobordism classes we will define a new equivalence relation.
For this we need to use Spin structures on manifolds.

Recall that a Spin structure on a manifold X means the homotopy
class of a trivialization of TX⊕ εN over the 2-skeleton X(2) of X , where
TX denotes the tangent bundle and εN is a trivial vector bundle of
dimension N sufficiently large. Note that X admits a Spin structure if
and only if its second Stiefel-Whitney class w2(X) ∈ H2(X ;Z2) vanishes
and that if it admits, then the set of all Spin structures on X is in one-
to-one correspondence with H1(X ;Z2).

Let K be an oriented 3-knot, with a Seifert manifold V , embedded
in S5. Then K has a natural normal 2-framing ν = (ν1, ν2) in S5 such
that the first normal vector field ν1 is obtained as the inward normal
vector field of K = ∂V in V . The homotopy class of this 2-framing does

4In the following, all 3-knots will be oriented.



22 V. Blanlœil and O. Saeki

not depend on the choice of the Seifert manifold V . Then K carries a
tangent 3-framing on its 2-skeleton K(2) such that the juxtaposition with
the above 2-framing gives the standard framing of S5 restricted to K(2)

up to homotopy. This means that K carries a natural Spin structure,
which is determined uniquely up to homotopy. Furthermore, this Spin
structure coincides with that induced from the Seifert manifold V , which
is endowed with the natural Spin structure induced from S5.

In the case of 3-knots, Spin structures must be considered as the
following example shows.

Example 6.1. Let K0 and K1 be the simple fibered 3-knots which
are abstractly diffeomorphic to S1 × Σg, constructed in [S4, Proposi-
tion 3.8], where Σg is the closed connected orientable surface of genus
g ≥ 2. They have the property that their Seifert forms are isomor-
phic, but that there exists no diffeomorphism between K0 and K1 which
preserves their Spin structures. Consequently they are not isotopic.

In order to study cobordisms of 3-knots, we will use some results
valid only for 3-dimensional manifolds without torsion on the first ho-
mology group. Hence, we define

Definition 6.2 ([BS1]). We say that a 3-knot K is free if H1(K)
is torsion free over Z.

Moreover, for free knots we do not need to consider condition (c2)
in the definition of the algebraic cobordism (see Definition 5.6), which
simplifies the argument.

Definition 6.3 ([BS1]). Consider two simple 3-knots K0 and K1.
Let A0 and A1 be the Seifert forms of K0 and K1 respectively with
respect to 1-connected Seifert manifolds. We say that the pairs (K0, A0)
and (K1, A1) are Spin cobordant (for simplicity, we also say that the
Seifert forms A0 and A1 are Spin cobordant) if there exists an orientation
preserving diffeomorphism h : K0 → K1 such that

(1) h preserves their Spin structures,
(2) A0 and A1 are algebraically cobordant with respect to h∗:H2(K0)

→ H2(K1) and h∗|Tors H1(K0) : TorsH1(K0) → TorsH1(K1),
where we identify H2(Ki) and H1(Ki) with KerS∗

i and CokerS∗
i

respectively (see the exact sequence (2.1)) and Si = Ai + AT
i ,

i = 0, 1.
Note that if K0 and K1 are free 3-knots, then we do not need to consider
condition (c2) of Definition 5.6 and hence the isomorphism h∗|Tors H1(K0)

in the above definition.

In [BS1] we proved the following.
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Theorem 6.4. Two simple fibered free 3-knots are cobordant if
and only if their Seifert forms with respect to 1-connected fibers are Spin
cobordant.

Remark 6.5. Note that in the case of homology 3-spheres embed-
ded in S5, the corresponding result had been obtained in [S3].

Since the cobordism for knots is an equivalence relation, the Spin
cobordism is an equivalence relation on the set of Seifert forms of simple
fibered free 3-knots with respect to 1-connected Seifert manifolds.

Let us show that the Spin cobordism is a necessary condition for
the existence of a knot cobordism between given two simple fibered 3-
knots. Let K0 and K1 be two cobordant simple fibered 3-knots with
fibers F0 and F1 respectively. Denote by X ∼= K0 × [0, 1] a submanifold
of S5 × [0, 1] which gives a cobordism between K0 and K1, and set
N = F0 ∪X ∪ (−F1). By classical obstruction theory as described in §2,
we see that the closed oriented 4-manifold N ⊂ S5×[0, 1] is the boundary
of a compact oriented 5-dimensional submanifold W of S5× [0, 1]. Using
a normal 2-framing of X in S5 × [0, 1] induced from the inward normal
vector field along N = ∂W in W , we see that the diffeomorphism h
between K0 and K1 induced by X preserves their Spin structures.

Moreover, in [BM], it has been shown that the two forms A0 and
A1, associated with the fibers, are algebraically cobordant with re-
spect to h∗ : H2(K0) → H2(K1) and h∗|Tors H1(K0) : TorsH1(K0) →
TorsH1(K1).

Finally we get the following result, in which the knots may not
necessarily be free.

Proposition 6.6 ([BS1]). If two simple fibered 3-knots are cobor-
dant, then their Seifert forms with respect to 1-connected fibers are Spin
cobordant.

Remark 6.7. In Example 6.1 above, the Seifert forms of K0 and
K1 are algebraically cobordant, but are not Spin cobordant. Hence they
cannot be cobordant by Proposition 6.6 (or Theorem 6.4). Example 6.1
shows that Spin structures are essential in the theory of cobordism of
3-knots as well.

We have another example as follows.

Example 6.8. Let P be a non-trivial orientable S1-bundle over
the closed connected orientable surface of genus g ≥ 2. Note that
H1(P ) is not torsion free in general. For every positive integer n, let
K1, K2, . . . , Kn be the simple fibered 3-knots constructed in [S4, The-
orem 3.1] which are all abstractly diffeomorphic to P . They have the
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property that their fibers are all diffeomorphic and their Seifert forms
are isomorphic to each other, but any such isomorphism restricted to
H2(Ki) cannot be realized by a diffeomorphism. Thus, the Seifert forms
of Ki, i = 1, 2, . . . , n, are algebraically cobordant to each other, but are
not Spin cobordant. Hence they are not cobordant by Proposition 6.6,
which is valid also for non-free simple fibered 3-knots.

Using the 5-dimensional stable h-cobordism theorem due to Lawson
[La] and Quinn [Q] together with Boyer’s work [Bo], we also have the
following theorem, in which the 3-knots are simple and free, but may
not be fibered.

Theorem 6.9 ([BS1]). Consider two simple free 3-knots in S5. If
their Seifert forms with respect to 1-connected Seifert manifolds are Spin
cobordant, then they are cobordant.

The proof of the above theorem is very technical and complicated,
and we refer to [BS1] for details. Finally Proposition 6.6 and Theo-
rem 6.9 imply Theorem 6.4.

Remark 6.10. Some of the results in [BS1] depend on the possibly
erroneous hypothesis that the algebraic cobordism is an equivalence re-
lation on the whole set of integral bilinear forms. However, all the results
are valid if we replace the algebraic cobordism with the weak algebraic
cobordism as introduced in Remark 5.9 and the Spin cobordism with
the equivalence relation generated by the Spin cobordism.

§7. Fox-Milnor type relation

In [FM2] Fox and Milnor showed that the Alexander polynomials
of two cobordant 1-knots should satisfy a certain property. In this sec-
tion, we explain this property for odd dimensional knots and present an
application to the cobordism classes of spherical fibered knots.

In the following, for a polynomial f(t) ∈ Z[t], we set

f∗(t) = tdf(t−1),

where d is the degree of f(t). We say that a polynomial f(t) ∈ Z[t] is
symmetric if f∗(t) = ±taf(t) for some a ∈ Z.

Let K be either a spherical (2n− 1)-knot or a simple (2n− 1)-knot
with Seifert matrix A. As mentioned before, we still assume that A is
associated with an (n−1)-connected Seifert manifold when K is simple.
Then the polynomial

∆K(t) = det(tA + (−1)nAT )
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is called the Alexander polynomial of K (see [Al, L1]). It is known to
be an isotopy invariant of K up to a multiple of ±ta, a ∈ Z. For fibered
knots, we use (unimodular) Seifert matrices with respect to fibers so
that the Alexander polynomial is well-defined up to a multiple of ±1
and has leading coefficient ±1. Note that the Alexander polynomial of
a knot is always symmetric.

The following relation is called the Fox-Milnor type relation (for
proofs, see [L2, BM], for example).

Proposition 7.1. Let K0 and K1 be two (2n−1)-knots which are
both spherical or both simple. If they are cobordant, then there exists a
polynomial f(t) ∈ Z[t] such that

∆K0(t)∆K1(t) = ±taf(t)f∗(t)(7.1)

for some a ∈ Z.

For example, in [DM], Du Bois and Michel showed that the algebraic
knots constructed in [Sz] are in fact not cobordant by exploiting the Fox-
Milnor type relation.

Let us show that the above relation, although very simple, gives us
a lot of information on the cobordism of knots.

Let us recall that Cn denotes the cobordism group of spherical n-
knots. Let us denote by Fn the subgroup of Cn generated by the cobor-
dism classes of fibered knots. Note that Fn coincides with the set of all
cobordism classes which contain a fibered knot.

Then we can prove the following proposition by using the Fox-Milnor
type relation. Although it might be implicit in the works of Levine
[L2, L3], Kervaire [K2] and Stoltzfus [Sf], here we give a detailed proof
in order to clarify how to apply the Fox-Milnor type relation.

Proposition 7.2. The group Cn/Fn is infinitely generated if n is
odd.

Proof. Set n = 2k − 1. We have only to prove that (Cn/Fn) ⊗ Z2

contains Z∞
2 .

First we consider the case where k is odd. For each positive integer
p, set ∆p(t) = pt2 + (1− 2p)t + p. Note that ∆p(t) is irreducible over Z.
According to Levine (see [L2]), there exists a simple spherical (2k − 1)-
knot Kp in S2k+1 whose Alexander polynomial ∆Kp(t) is equal to ∆p(t).
Let [Kp] denote the class in (Cn/Fn) ⊗ Z2 = (Cn/Fn)/2(Cn/Fn) =
Cn/(Fn + 2Cn) represented by Kp. In order to show that (Cn/Fn)⊗Z2

contains Z∞
2 , we have only to show that {[Kp]}p≥2 are linearly indepen-

dent over Z2.
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Suppose that Kp1�Kp2� · · · �Kp�
is cobordant to L�L�L′, where p1, p2,

. . . , p� are distinct positive integers with pi ≥ 2, L is a spherical (2k−1)-
knot, and L′ is a spherical fibered (2k−1)-knot. Then by Proposition 7.1
we have

∆Kp1
(t)∆Kp2

(t) · · ·∆Kp�
(t)∆L(t)2∆L′(t) = ±taf(t)f∗(t)

for some a ∈ Z and f(t) ∈ Z[t].
Since ∆Kpi

(t) are irreducible and symmetric, each ∆Kpi
(t) should

appear an even number of times in the irreducible decomposition
of f(t)f∗(t). Therefore, ∆Kpi

(t) should divide ∆L′(t), since ∆Kp1
(t),

∆Kp2
(t), . . . , ∆Kp�

(t) are pairwise relatively prime.
On the other hand, since L′ is fibered, its Seifert matrix is unimodu-

lar and hence ∆L′(t) has leading coefficient ±1. This is a contradiction,
since the leading coefficient of ∆Kpi

(t) is equal to pi ≥ 2.
Therefore, {[Kp]}p≥2 ⊂ (Cn/Fn)⊗Z2 are linearly independent over

Z2.
When k is even, by considering the polynomial ∆̃p(t) = pt4 − (2p−

1)t2 + p, p ≥ 2, instead of ∆p(t) in the above argument, we get the
desired conclusion. This completes the proof. Q.E.D.

Remark 7.3. The above polynomials ∆p(t) and ∆̃p(t) were used
by Kervaire in [K1, Théorème III.12] for showing that C2k−1 is infinitely
generated.

Remark 7.4. When k is even, every degree two symmetric poly-
nomial which arises as the Alexander polynomial of a (2k − 1)-knot is
reducible. In fact, in [L2], it is mentioned that such a polynomial should
be of the form

a(a + 1)t2 − (2a(a + 1) + 1)t + a(a + 1) = (at − (a + 1))((a + 1)t − a).

The degree two symmetric polynomial constructed in [L3, p. 109] for
ε = 1 is also reducible, and it seems that the proof of Theorem 3.7 (or
[L3, Theorem, p. 108]) given there should appropriately be modified.

§8. Examples

In this section, we review some examples constructed in [B2, BMS,
BS1].

First we construct non-spherical 3-knots which are cobordant but
are not isotopic.

Example 8.1 ([BS1]). A stabilizer is a simple fibered spherical 3-
knot whose fiber F is diffeomorphic to (S2 × S2)�(S2 × S2) � IntD4.
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Such a stabilizer does exist (see [S2, §4]). Moreover, we denote by KS a
stabilizer with Seifert matrix

A =

⎛
⎜⎜⎝

0 1 0 1
0 0 1 0
0 −1 0 0

−1 0 1 0

⎞
⎟⎟⎠

with respect to a basis of H2(F ) denoted by a1, a2, a3, a4 (see [S1,
p. 600] or [S4, §10]).

Since A is not congruent to the zero form, KS is a non-trivial 3-knot.
Moreover, the submodule generated by a1 and a3 is a metabolizer

for A, and one can perform embedded surgeries on the two cycles a1

and a3, represented by two embedded 2-spheres in F . The result of this
embedded surgery in D6 is a 4-dimensional disk properly embedded in
D6 with KS as boundary. Thus KS is null-cobordant, i.e., it is cobordant
to the trivial spherical 3-knot.

Then consider any simple fibered 3-knot K which is not spherical.
The two simple fibered 3-knots K�KS and K are not isotopic, since
the ranks of the second homology groups of their fibers are distinct.
However, these knots are cobordant.

In the following example, we construct non-spherical simple fibered
(2n − 1)-knots with n ≥ 3 which are cobordant but are not isotopic.
These knots are constructed using algebraic knots.

Example 8.2 ([B2]). Let Ki, with i = 0, 1, be the spherical alge-
braic (2n − 1)-knots, n ≥ 3, associated with the isolated singularity at
0 of the polynomial functions hi : (Cn+1, 0) → (C, 0) defined by

hi(x0, x1, . . . , xn) = gi(x0, x1) + xp
2 + xq

3 +
n∑

k=4

x2
k

with

g0(x0, x1) = (x0 − x1)
(
(x2

1 − x3
0)

2 − xs+6
0 − 4x1x

(s+9)/2
0

)
(
(x2

0 − x5
1)

2 − xr+10
1 − 4x0x

(r+15)/2
1

)
,

and

g1(x0, x1) = (x0 − x1)
(
(x2

1 − x3
0)

2 − xr+14
0 − 4x1x

(r+17)/2
0

)
(
(x2

0 − x5
1)

2 − xs+2
1 − 4x0x

(s+7)/2
1

)
,
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where s ≥ 11, s �= r + 8, s and r are odd, and p and q are distinct
prime numbers which do not divide the product 330(30+ r)(22+ s) (see
[DM, p. 166]). Note that the algebraic knots Ki associated with hi are
spherical for i = 0, 1. It has been shown in [DM] that the algebraic
knots K0 and K1 are cobordant but are not isotopic.

Now let L be the algebraic (2n − 1)-knot associated with the iso-
lated singularity at 0 of the polynomial function f : (Cn+1, 0) → (C, 0)
defined by

f(x0, x1, . . . , xn) =
n∑

k=0

x2
k.

Note that L is not spherical.
Let us consider the connected sums Li = Ki�L, i = 0, 1, which are

simple fibered (2n − 1)-knots. Then in [B2] it has been shown that L0

and L1 are cobordant but are not isotopic.
Note that according to [A, Theorem 4, p. 117], the knots L0 and L1,

which are connected sums of two algebraic knots, are not algebraic.

Let K be a knot. A stabilization of K is the operation of taking
the connected sum K�KS for some null-cobordant spherical knot KS.
As the above examples show, stabilization is a natural way to construct
knots that are cobordant but are not isotopic. We have other types of
constructions as follows.

Example 8.3. The matrices given in Example 5.10 (2) give two
spherical simple (2n−1)-knots with n ≥ 3 odd which are cobordant but
are not isotopic. Similarly, the matrices given in Example 5.10 (3) give
two simple fibered non-spherical (2n − 1)-knots with n ≥ 3 odd which
are cobordant but are not isotopic.

§9. Pull back relation for knots

For cobordisms of non-spherical knots, Yukio Matsumoto asked the
following question.

(Q) If two non-spherical knots (of sufficiently high dimension) are
simple homotopy equivalent as abstract manifolds, then are they cobor-
dant after taking connected sums with some spherical knots? In other
words, consider the action of the spherical knot cobordism group on the
set of cobordism classes of codimension two embeddings of manifolds of a
fixed simple homotopy type into a sphere. Then, is the action transitive?

According to the codimension two surgery theory [Mt2], the answer
to the above question is affirmative provided that the two non-spherical
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knots satisfy some connectivity conditions and that one of them is ob-
tained as the inverse image of the other one by a certain degree one map
between the ambient spheres. This motivates the following definition.

Definition 9.1 ([BMS]). Let K0 and K1 be oriented m-knots in
Sm+2. We say that K0 is a pull back of K1 if there exists a degree one
smooth map g : Sm+2 → Sm+2 with the following properties:

(1) g is transverse to K1,
(2) g−1(K1) = K0,
(3) g|K0 : K0 → K1 is an orientation preserving simple homotopy

equivalence.

In this case, we write K0 
 K1. We say that two m-knots are pull back
equivalent if they are equivalent with respect to the equivalence relation
generated by the pull back relation.

The following properties are direct consequences of the previous def-
inition.

(1) K 
 K for any m-knot K.
(2) K0 
 K1 and K1 
 K2 imply K0 
 K2 for any m-knots K0, K1

and K2.
(3) K0 
 K1 and K ′

0 
 K ′
1 imply K0�K

′
0 
 K1�K

′
1 for any m-knots

K0, K ′
0, K1 and K ′

1.

Furthermore, if we restrict ourselves to spherical m-knots, then it is
not difficult to see that the trivial m-knot KU is the minimal element,
i.e., K 
 KU for every spherical m-knot K, where KU is defined to
be the isotopy class of the boundary of an (m + 1)-dimensional disk
embedded in Sm+2.

Here are some basic results on the pull back relation for simple
fibered (2n − 1)-knots, n ≥ 3.

Theorem 9.2 ([BMS]). Let K0 and K1 be simple fibered (2n−1)-
knots in S2n+1 with n ≥ 3. If K0 
 K1 and K1 
 K0, then K0 is
isotopic to K1. In other words, the relation “
” defines a partial order
for simple fibered (2n − 1)-knots in S2n+1 for n ≥ 3.

Theorem 9.3 ([BMS]). Let K0 and K1 be simple fibered (2n−1)-
knots in S2n+1 with n ≥ 3. Then K0 
 K1 if and only if there exists a
spherical simple fibered (2n−1)-knot Σ in S2n+1 such that K0 is isotopic
to the connected sum K1�Σ.
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Remark 9.4. For n = 1, Theorem 9.3 does not hold5. Let K1 be
a non-trivial spherical prime fibered 1-knot in S3 and K0 a spherical
prime satellite fibered 1-knot with companion K1, where their fibering
structures are compatible. Then we can show that K0 
 K1. However,
K0 is not isotopic to the connected sum K1�Σ for any non-trivial 1-knot
Σ. Note that such a construction does not give a counter example to
Theorem 9.3 for n ≥ 3, since such a satellite knot in higher dimensions
is always a connected sum by virtue of Theorem 5.1.

Let K0 and K1 be two simple fibered (2n−1)-knots with n ≥ 3. By
Theorem 9.3 if K0 is pull back equivalent to K1, then they are cobordant
after taking connected sums with some spherical knots. In the following
proposition, we show that the converse is not true in general.

Proposition 9.5 ([BMS]). For every odd integer n ≥ 3, there ex-
ists a pair (K0, K1) of simple fibered (2n − 1)-knots with the following
properties:

(1) the knots K0 and K1 are cobordant, but
(2) the knots K0 and K1 are not pull back equivalent.

Proof. Let us consider the two matrices A0 and A1 given in Exam-
ple 5.10 (3).

By Theorem 5.1, there exists a simple fibered (2n − 1)-knot Ki

which realizes Ai as its Seifert form with respect to the fiber, i = 0, 1.
By Theorem 5.5, K0 and K1 are cobordant.

Let us now show that K0 and K1 are not pull back equivalent. By
Theorem 9.3, we have only to show that for any spherical simple fibered
(2n − 1)-knots Σ0 and Σ1 in S2n+1, K0�Σ0 is never isotopic to K1�Σ1.

Since Ki�Σi is a fibered knot, we can consider the monodromy on
the n-th homology group of the fiber, i = 0, 1. Let us denote by Hi the
monodromy matrix of Ki�Σi and by Ãi its Seifert matrix with respect
to the same basis. Here, we choose a basis which is the union of a basis
of the homology of the fiber for Ki and that for Σi. It is known that
Hi = (−1)n+1Ã−1

i ÃT
i (for example, see [D]). Therefore, we have

H0 =
(
−1 0
2p2 −1

)
⊕ H ′

0 and H1 =
(
−1 0
2q2 −1

)
⊕ H ′

1,

where H ′
i is the monodromy matrix of Σi, i = 0, 1.

Let us consider Ker ((I + Hi)2), where I is the unit matrix, i = 0, 1.
Since Σi are spherical knots, the monodromy matrices H ′

i cannot have

5The authors are indebted to Shicheng Wang for the construction in this
remark.
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eigenvalue −1. Therefore, Ker ((I + Hi)2) corresponds exactly to the
homology of the fiber of Ki.

Suppose that K0�Σ0 is isotopic to K1�Σ1. Then the Seifert form
of K0�Σ0 restricted to Ker ((I + H0)2) should be isomorphic to that of
K1�Σ1 restricted to Ker ((I + H1)2). This means that A0 should be
congruent to A1. However, as we saw in Example 5.10 (3), this is a
contradiction. Thus, we conclude that K0 and K1 are not pull back
equivalent. Q.E.D.

Let us now give some examples of pairs of knots which are diffeo-
morphic but not cobordant even after taking connected sums with (not
necessarily simple or fibered) spherical knots. For this, we use the fol-
lowing proposition (see [BMS, V2]).

Proposition 9.6. Let K0 and K1 be simple fibered (2n−1)-knots
with fibers F0 and F1 respectively, n ≥ 3. For i = 0, 1, we denote by
I(Ki) the image of the homomorphism Hn(Ki) → Hn(Fi) induced by the
inclusion. If K0�Σ0 and K1�Σ1 are cobordant for some spherical knots
Σ0 and Σ1, then the Seifert forms of K0 and K1 restricted to I(K0) and
I(K1), respectively, are isomorphic to each other.

In the following example we give a pair of diffeomorphic knots for
which their connected sums with any spherical knots are never cobor-
dant. This answers question (Q) mentioned at the beginning of this
section negatively.

Example 9.7 ([BMS]). Let us consider the following unimodular
matrices:

A0 =
(

0 1
(−1)n+1 0

)
and A1 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

(−1)n+1 0 0 1
0 (−1)n+1 0 0

⎞
⎟⎟⎠ .

Then, for every integer n ≥ 3, there exist simple fibered (2n − 1)-knots
Ki in S2n+1 whose Seifert matrices are given by Ai, i = 0, 1. Note that if
we denote their fibers by Fi, i = 0, 1, then F1 is orientation preservingly
diffeomorphic to F0�(Sn×Sn). In particular, K0 and K1 are orientation
preservingly diffeomorphic to each other.

It is easy to verify that the Seifert form restricted to I(K1) is the
zero form, while it is not zero for K0. Hence, by Proposition 9.6, K0�Σ0

is never cobordant to K1�Σ1 for any spherical (not necessarily simple or
fibered) knots Σ0, Σ1.

Note that for this example, we have Hn−1(Ki) ∼= Z⊕ Z, i = 0, 1.
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Let us give another kind of an example together with an argument
using the Alexander polynomial.

Example 9.8 ([BMS]). Let us consider the unimodular matrices

A0 =
(

1 1
0 1

)
and A1 =

⎛
⎜⎜⎝

1 1 1 1
0 1 0 0

−1 0 0 1
−1 0 0 0

⎞
⎟⎟⎠

and their associated simple fibered (2n − 1)-knots Ki, i = 0, 1, with
n ≥ 4 even. As in Example 9.7 we see that K0 and K1 are orientation
preservingly diffeomorphic to each other.

Now, suppose that for some spherical (2n − 1)-knots Σi, i = 0, 1,
K0�Σ0 is cobordant to K1�Σ1. We may assume that Σ0 and Σ1 are
simple. The Alexander polynomials of K0 and K1 are given by

∆K0(t) = det(tA0 + AT
0 ) = t2 + t + 1

and

∆K1(t) = det(tA1 + AT
1 ) = −(t4 + t3 − t2 + t + 1)

respectively. Both of these polynomials are irreducible over Z. If K0�Σ0

is cobordant to K1�Σ1, then by Proposition 7.1, we must have a Fox-
Milnor type relation

∆K0(t)∆Σ0 (t)∆K1(t)∆Σ1 (t) = ±taf(t)f∗(t)(9.1)

for some a ∈ Z and f(t) ∈ Z[t], where ∆Σi(t) denotes the Alexander
polynomial of Σi, i = 0, 1.

Note that we have |∆K0(1)| = |∆K1(1)| = 3 and |∆Σ0(1)| = |∆Σ1(1)|
= 1. Since ∆K0(t) is irreducible of degree 2, and ∆K1(t) is irreducible
of degree 4, the relation (9.1) leads to a contradiction.

Hence, K0�Σ0 is not cobordant to K1�Σ1 for any spherical (not
necessarily simple or fibered) (2n− 1)-knots Σ0, Σ1. In this example we
have Hn−1(Ki) ∼= Z3, for i = 0, 1.

§10. Even dimensional knots

In this section, we study cobordism classes of non-spherical 2n-knots
for n = 1, 2.

Recall that in [K1] Kervaire showed that C2n, the cobordism group
of spherical 2n-knots in S2n+2, is trivial for all n ≥ 1. In particular,
any two such knots are cobordant. For n ≥ 3, Vogt [V1, V2] showed
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that two 2n-knots in S2n+2 are cobordant if and only if they have the
same n-th Betti number. Note that the technics used by Vogt are only
available for 2n ≥ 6, since it is difficult to perform embedded surgeries
in low dimensions, and the h-cobordism theorem is not available for low
dimensions.

10.1. Cobordism of surfaces in S4

In [K1] Kervaire proved that a 2n-sphere embedded in S2n+2 =
∂(D2n+3) is the boundary of a (2n+1)-disk properly embedded in D2n+3.
This implies that C2n is trivial.

Although there is no group structure on the set of cobordism classes
of non-spherical 2-knots, we have a similar result. In fact we show
that any connected, closed and orientable surface embedded in S4 is
the boundary of an orientable handlebody properly embedded in the
disk D5. When the surface is non-orientable, it is the boundary of a
non-orientable handlebody properly embedded in D5 if and only if the
Euler number of the normal bundle vanishes.

Recall that the normal Euler number of an orientable surface embed-
ded in S4 always vanishes (see [MS]). Let us recall the definition of the
normal Euler number of a closed non-orientable surface M embedded in
S4, where S4 is considered to be oriented. (Throughout this section, we
use the letter “M” for 2n-knots rather than “K”, since the letter “K”
will be used for another purpose.) The tubular neighborhood N of M

may be regarded as a normal disk bundle over M . Let p : M̃ → M be
the orientation double cover of M . Consider the induced bundle Ñ over
M̃ so that we have the commutative diagram

Ñ
ep−−−−→ N⏐⏐� ⏐⏐�

M̃
p−−−−→ M.

We orient Ñ so that the induced map p̃ : Ñ → N preserves the orienta-
tions. The normal Euler number e(M) of the surface M is then defined
by e(M) = (M̃ ·M̃)/2, where M̃ ·M̃ denotes the self-intersection number
of M̃ in Ñ , which is always even.

Let us denote by Ng the closed connected non-orientable surface of
non-orientable genus g. For a closed connected non-orientable surface
M ∼= Ng embedded in S4, it is known that e(M) ∈ {−2g, 4 − 2g, 8 −
2g, . . . , 2g}. Furthermore, all the values in the set can be realized as the
normal Euler number of some Ng embedded in S4 (see [W1, Ms, Km]).
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In [BS2] we characterized those closed connected surfaces embedded
in S4 which are the boundary of a handlebody properly embedded in
D5. For this purpose, we need to use Pin− structures on manifolds.

A Pin− structure on a manifold X is the homotopy class of a trivi-
alization of TX⊕detTX⊕εN over the 2-skeleton X(2) of X , where TX
denotes the tangent bundle, detTX denotes the orientation line bundle,
and εN is a trivial vector bundle of dimension N sufficiently large. A
Pin− structure is equivalent to a Spin structure when X is orientable.

When M is a closed surface embedded in S4, there is a canonical
Pin− structure defined on M . More precisely, since M is characteristic,
i.e., as a submanifold of S4 it represents the Z2 homology class dual
to the second Stiefel-Whitney class of S4, there exists a unique Spin
structure on S4

� M which cannot be extended to any normal 2-disk of
M . This Spin structure on S4

� M induces a unique Pin− structure on
M (see [KT1]).

We denote by Hg the orientable handlebody of dimension three
which is obtained by gluing g orientable 1-handles to a 0-handle. The
boundary of Hg is the closed connected orientable surface of genus g,
denoted by Σg. Furthermore, we denote by Ig the non-orientable han-
dlebody of dimension three which is obtained by gluing g non-orientable
1-handles to a 0-handle. Then the boundary of Ig is identified with N2g.
In the following we will denote by Kg the handlebody Hg or Ig.

Definition 10.1 ([BS2]). Let M be a closed connected surface
embedded in S4. Suppose that M has genus g if M is orientable and 2g
if M is non-orientable. Let ψ : ∂Kg → M be a diffeomorphism. We say
that ψ is Pin− compatible if the Pin− structure on ∂Kg induced by ψ
extends through Kg.

When M is oriented, there always exists a compact oriented 3-
dimensional submanifold V of S4 such that ∂V = M as oriented mani-
folds (see, for example, [E]). Such a manifold V is again called a Seifert
manifold associated with M (see the definition of Seifert manifolds asso-
ciated with odd dimensional knots in §2). When M is non-orientable, a
compact 3-dimensional submanifold V of S4 with ∂V = M is also called
a Seifert manifold. Such a (non-orientable) Seifert manifold exists for
M if and only if e(M) = 0 (see [GL, Km]). When a surface M admits
a Seifert manifold V , the unique Spin structure on S4 induces a Pin−

structure on V and this induces a Pin− structure on M , which coincides
with the Pin− structure described above (see [Fi]).

In [BS2] we proved the following theorem.

Theorem 10.2. Let M be a closed connected surface embedded
in S4 = ∂D5, and ψ : ∂Kg → M a diffeomorphism, where Kg denotes
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the 3-dimensional handlebody with g 1-handles. Then, there exists an
embedding ψ̃ : Kg → D5 with ψ̃|∂Kg = ψ if and only if e(M) = 0 and ψ

is Pin− compatible.

Remark 10.3. Since every closed connected 3-dimensional mani-
fold admits a Heegaard splitting of genus g ≥ 0, as a consequence of
Theorem 10.2 we have a new proof of Rohlin’s theorem [Rh2] on the ex-
istence of an embedding of an arbitrary closed 3-dimensional manifold
into R5 (see also [Wl, WZ] and [GM, p. 90]). For details, see [BS2].

Let us give a sketch of a proof of Theorem 10.2. First, it is easy
to see that the vanishing of e(M) and the Pin− compatibility of ψ are
necessary conditions. The proof of the sufficiency is based on embedded
surgeries inside the disk D5 on a Seifert manifold V of M . To do that
we start with the abstract closed 3-manifold V ′ = V ∪ψ Kg obtained
by attaching V and Kg along their boundaries by using ψ. Since the
3-dimensional cobordism group ΩSpin

3 (resp. ΩPin−

3 ) of Spin (resp. Pin−)
manifolds is trivial (see [M1], [K1, Lemme III.7, p. 265], [GM, p. 91],
[MK] or [Ki] for ΩSpin

3 , and [ABP, KT1, KT2] for ΩPin−

3 ), there exists a
compact (oriented if so is M) Pin− 4-manifold W such that ∂W = V ′

as (oriented) Pin− manifolds. Let f be a Morse function f : W → [0, 1]
which extends the projection to the second factor ∂W = (V × {0}) ∪ψ

(∂Kg × [0, 1]) ∪ (Kg × {1}) → [0, 1]. Note that f can be chosen so that
all its critical values lie in the interval (ε, 1− ε) for ε > 0 small enough.
Moreover, we may assume that the critical points have index 1, 2 or 3.

Consider the handlebody decomposition of W associated with this
Morse function. We can remove handles of index 1 and 3 using mod-
ifications described by Wallace in [Wc], respecting the Pin− structure.
Then we get a new (oriented) Pin− manifold W ′ such that ∂W = ∂W ′.
Since the handlebody decomposition of the manifold W ′ has only han-
dles of index 2, we can attach the handles to V × [0, 1] inside D5 to get
an embedding of W ′ into D5. Finally we have a proper embedding of
Kg

∼= (∂Kg × [0, 1]) ∪ (Kg × {1}) ⊂ ∂W ′ into the disk D5 such that
∂Kg = M .

As a corollary to Theorem 10.2 we have

Corollary 10.4 ([BS2]). Let M be a closed connected surface em-
bedded in S4 = ∂D5. Then there exists a 3-dimensional handlebody em-
bedded in D5 such that its boundary coincides with M if and only if
e(M) = 0.

Using Theorem 10.2, we can characterize cobordism classes of closed
connected surfaces embedded in S4 as follows.



36 V. Blanlœil and O. Saeki

Theorem 10.5 ([BS2]). Let M0 and M1 be two closed connected
surfaces embedded in S4. Then they are cobordant if and only if they are
diffeomorphic as abstract manifolds and have the same normal Euler
number.

Remark 10.6. The above theorem in the orientable case is proved
by Ogasa [O], although his proof is slightly different from ours explained
below.

When two closed connected surfaces embedded in S4 are cobordant,
it is clear that they are diffeomorphic as abstract manifolds and have
the same normal Euler number (for details, see [BS2]). Thus we have
the necessity in Theorem 10.5.

For the sufficiency, start with two closed connected surfaces M0

and M1 in S4 which are diffeomorphic as abstract manifolds and have
the same normal Euler number. In the following, we consider the case
where M0 and M1 are non-orientable of non-orientable genus g. (For
the orientable case, the proof is similar. For details, see [BS2].)

By changing M0 and M1 by isotopies, we may assume that for a
4-disk D4 in S4, we have M0∩D4 = M1∩D4 = D2 and (D4, D2) is the
standard disk pair. Set ∆ = (S4

� IntD4) × [0, 1] ∼= D5 and

M̃ = (M0 � IntD2) ∪ (∂D2 × [0, 1]) ∪ (M1 � IntD2) = M !
0�M1 ⊂ ∂∆,

where M !
0 denotes the mirror image of M0. Since e(M0) = e(M1), we

have e(M̃) = 0. Furthermore, one can prove that there exists a Pin−

compatible diffeomorphism between ∂((Ng � IntD2)× [0, 1]) ∼= ∂Ig and
M̃ which sends (Ng � IntD2)×{i} diffeomorphically onto Mi � IntD2.

According to Theorem 10.2 we can embed Ig in ∆ so that M !
0�M1 =

∂Ig. The cobordism between M0 and M1 is then obtained by gluing
back D4 × [0, 1] to ∆ and by replacing Ig

∼= (Ng � IntD2) × [0, 1] by
Ng × [0, 1].

As a consequence of Theorem 10.5 we have that two closed con-
nected orientable surfaces embedded in S4 are cobordant if and only if
they have the same genus. Hence, the monoid of cobordism classes of
closed connected orientable surfaces embedded in S4 is isomorphic to
the monoid of non-negative integers Z≥0.

Let us consider non-orientable surfaces. First note that by adding
the cobordism class of an embedding of S2 into S4 to the associative
groupoid (or the associative magma or the semigroup) of cobordism
classes of closed connected non-orientable surfaces embedded in S4, we
get a monoid denoted by N. We can also describe the monoid structure
of N as follows. Let RP 2

+ (resp. RP 2
−) be the projective plane standardly
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embedded in S4 with normal Euler number being equal to +2 (resp. −2)
(see [HK]). For a pair of non-negative integers (k, l) such that k + l ≥
1, let Mk, l be the non-orientable surface embedded in S4 obtained by
taking the connected sum of k copies of RP 2

+ and l copies of RP 2
−. Then

we have e(Mk, l) = 2(k−l) and the genus of Mk, l is equal to k+l. Hence,
the set of non-orientable surfaces {Mk,l : k, l ∈ Z, k, l ≥ 0, k + l ≥ 1}
constitutes a complete set of representatives of the cobordism classes of
closed connected non-orientable surfaces embedded in S4. Therefore, N

is isomorphic to the monoid of pairs of non-negative integers Z≥0×Z≥0.
If we denote by [M ] the cobordism class of a closed connected non-
orientable surface M embedded in S4, and by g(M) the genus of M ,
then the isomorphism N → Z≥0 × Z≥0 is given by mapping [M ] to(

2g(M) + e(M)
4

,
2g(M) − e(M)

4

)
.

10.2. Concordance of embeddings of a surface
In this subsection, we consider the concordance classification of em-

beddings of closed connected surfaces into S4. For the definition of the
concordance, see Definition 2.10.

Examining the proof of Theorem 10.5 carefully, we see that the
following characterization of concordant embeddings of surfaces into S4

holds.

Theorem 10.7 ([BS2]). Let Σ be a closed connected surface. Two
embeddings of Σ into S4 are concordant if and only if the Pin− structures
induced by these embeddings coincide and the normal Euler numbers of
these embeddings coincide.

When the knots are spherical of dimension two, the notions of cobor-
dism and concordance coincide with each other, since every diffeomor-
phism of S2 which preserves the orientation is isotopic to the identity
[Sm1]. However, when g ≥ 1, for an arbitrary embedding f : Σg → S4

there exists an orientation preserving diffeomorphism h : Σg → Σg which
does not preserve the Pin− structure induced by f . Therefore, the em-
beddings f ◦ h and f are not concordant. This means that contrary to
the spherical case, the notions of cobordism and concordance differ for
orientable surfaces of genus g ≥ 1.

The group of orientation preserving diffeomorphisms of a closed con-
nected oriented surface acts transitively on the set of Pin− structures
with trivial Brown invariant (see, for example, [BS2]). This set is nat-
urally identified with the set of Spin structures with trivial Arf invari-
ant, since the surface is assumed to be orientable. This implies that
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β g: odd g: even

0 0 2(g−2)/2(2(g−2)/2 + 1)

1 2(g−3)/2(2(g−1)/2 + 1) 0

2 0 2g−2

3 2(g−3)/2(2(g−1)/2 − 1) 0

4 0 2(g−2)/2(2(g−2)/2 − 1)

5 2(g−3)/2(2(g−1)/2 − 1) 0

6 0 2g−2

7 2(g−3)/2(2(g−1)/2 + 1) 0

Table 1. Number of Pin−structures on the non-orientable
surface Ng with Brown invariant β ∈ Z8

the number of concordance classes of embeddings of a closed connected
oriented surface is equal to the number of Spin structures with trivial
Arf invariant on this surface. According to [J] this number is equal to
2g−1(2g + 1), where g is the genus of the surface. If we denote by ωg

the number of concordance classes of embeddings of Σg, then we have
ωg = 2g−1(2g + 1).

Let us denote by νg the number of concordance classes of embeddings
of the closed connected non-orientable surface Ng of non-orientable genus
g. According to [Ms, Km], the set of possible normal Euler numbers for
such embeddings coincides with {−2g, 4 − 2g, 8 − 2g, . . . , 2g}. Hence,
we have

νg =
g∑

i=0

νg, −2g+4i,

where νg, −2g+4i denotes the number of concordance classes of embed-
dings of Ng into S4 with normal Euler number equal to −2g+4i. More-
over, according to [KT1, Theorem 6.3], νg, −2g+4i is equal to the number
of Pin− structures with Brown invariant equal to −g + 2i modulo 8.
Such numbers can be calculated as in Table 1 (see [DP]).

Using the values given in Table 1, we get

νg =
{

2g−2(g + 1) if g is odd,

2g−2(g + 1) + 2(g−2)/2 if g is even.
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10.3. Cobordism of 4-knots
In the study of cobordism of embeddings of even dimensional man-

ifolds, the only case which remains to be studied is the case of 4-
dimensional manifolds embedded in S6. In [BS3] we proved the following

Theorem 10.8. Let M be a closed simply connected 4-dimen-
sional manifold. Then all the embeddings of M into S6 are concordant.

In particular, two 4-knots in S6, i.e., two closed simply connected
4-dimensional manifolds embedded in S6, are (oriented) cobordant if
and only if they are abstractly (orientation preservingly) diffeomorphic
to each other.

One can prove Theorem 10.8 by imitating the proofs of Theorems
10.2 and 10.5, and the proof is based essentially on Kervaire’s original
idea [K1].

Remark 10.9. It is known that a closed connected orientable 4-
dimensional manifold M can be embedded in S6 if and only if it is Spin
and its signature vanishes (see [CS2]). If in addition M is simply con-
nected, then it can be embedded in S6 if and only if it is homeomorphic
to a connected sum of some copies of S2 × S2 by the homeomorphism
classification of closed simply connected 4-dimensional manifolds due to
Freedman [Fr].

Remark 10.10. By Park [P], for any sufficiently large odd integer
m, there exist infinitely many smooth manifolds which are all homeo-
morphic to the connected sum of m copies of S2 × S2 but which are
not diffeomorphic to each other. Let us denote by O4 the monoid of
(oriented) cobordism classes of closed simply connected 4-manifolds em-
bedded in S6, and by Z≥0 the monoid of non-negative integers. Then the
homomorphism O4 → Z≥0 which associates to a 4-knot one half of its
second Betti number is an epimorphism. The above result of Park shows
that this homomorphism is far from being an isomorphism. Compare
this with the result of Vogt [V1, V2]: the corresponding homomorphism
O2n → Z≥0 for n ≥ 3 is an isomorphism, where O2n denotes the monoid
of (oriented) cobordism classes of 2n-knots in S2n+2.

Remark 10.11. When n �= 2, for an arbitrary 2n-knot M , its orien-
tation reversal −M is oriented cobordant to M . For n = 2, there exists
a closed 4-dimensional manifold N homeomorphic to a connected sum
of some copies of S2 × S2 such that N is not oriented diffeomorphic to
−N . In fact, by Kotschick [Ko2], every simply connected compact com-
plex surface of general type which is Spin and has vanishing signature
gives such an example. Such a complex surface has been constructed
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by Moishezon and Teicher [MT1, MT2, Ko1]. Hence, there exists a
closed simply connected oriented 4-dimensional manifold embedded in
S6 which is not oriented cobordant to its orientation reversal.

§11. Open problems

To conclude this survey article, we would like to list some open
problems.

Problem 11.1. In Definition 2.1, if we remove the connectivity con-
dition on the embedded manifolds, then is it still possible to characterize
their isotopy and cobordism classes?

Problem 11.2. Construct efficient invariants of algebraic cobor-
dism.

Problem 11.3. Is the algebraic cobordism an equivalence relation
on the whole set of integral bilinear forms?

See Theorem 5.7, Example 5.8, Remarks 5.9 and 6.10 for the above
problem.

Problem 11.4. Is it true that two simple (2n − 1)-knots, n ≥ 3,
are cobordant if and only if their Seifert forms associated with (n −
1)-connected Seifert manifolds are weakly algebraically cobordant? In
particular, is there a pair of two simple (2n − 1)-knots, n ≥ 3, which
are cobordant, but whose Seifert forms are not (weakly) algebraically
cobordant?

Note that for C-algebraically fibered simple knots, the above equiv-
alence is true (see Remark 5.9).

Problem 11.5. Is the Spin cobordism of Seifert forms associated
with non-free 3-knots a sufficient condition of cobordism?

Problem 11.6. Does Theorem 9.3 (a characterization of the pull
back relation for simple fibered (2n − 1)-knots) hold for n = 2?

As noted in Remark 9.4, the above characterization does not hold
for n = 1.

Problem 11.7. Let us fix an oriented simple homotopy type (or an
oriented diffeomorphism type) of manifolds, and consider the set of all
embeddings of such manifolds into a sphere in codimension two. Then,
does there exist a minimal element with respect to the pull back relation?

As mentioned in §9, for spheres, the trivial knot is such a minimal
element.
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Problem 11.8. Is Cn/Fn isomorphic to Z∞
2 ⊕Z∞

4 ⊕Z∞ for odd n?
Determine the group structure of Fn for odd n. Is Fn a direct summand
of Cn?

Problem 11.9. Is the multiplicity of a complex holomorphic func-
tion germ at an isolated singular point a cobordism invariant of the
associated algebraic knot?

This is known to be true for the case of algebraic 1-knots. See also
[Z2].

Problem 11.10. Let us consider Brieskorn type polynomials of the
form

za1
1 + za2

2 + · · · + z
an+1
n+1 .

If two algebraic knots associated with Brieskorn type polynomials are
cobordant, then do their exponents coincide?

A related result is obtained in [S3]. Note that the associated Seifert
matrix has been explicitly determined (for example, see [Sk]). It is also
known that two algebraic (2n−1)-knots associated with Brieskorn poly-
nomials with the same Alexander polynomial have the same exponents
[YS].

Problem 11.11. Two fibered n-knots in Sn+2 are said to be fibered
cobordant if there exists a cobordism X ⊂ Sn+2 × [0, 1] between them
whose complement Sn+2

� X fibers over the circle in a sense similar to
Definition 2.4. Is there a pair of two fibered knots which are cobordant
but are not fibered cobordant?
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§0. Introduction

M.-H. Schwartz in [20, 21] introduced the technique of radial ex-
tension of stratified vector fields and frames on singular varieties, and
used this to construct cocycles representing classes in the cohomology
H∗(M, M \ V ), where V is a singular variety embedded in a complex
manifold M ; these are now called the Schwartz classes of V . A ba-
sic property of radial extension is that the index of the vector fields (or
frames) constructed in this way is the same when measured in the strata
or in the ambient space; this is called the Schwartz index of the vector
field (or frame). MacPherson in [15] introduced the notion of local Euler
obstruction, an invariant defined at each point of a singular variety using
an index of an appropriate radial 1-form, and used this (among other
things) to construct the homology Chern classes of singular varieties.
Brasselet and Schwartz in [3] proved that the Alexander isomorphism
H∗(M, M \V ) ∼= H∗(V ) carries the Schwartz classes into the MacPher-
son classes; a key ingredient for this proof is their proportionality theorem
relating the Schwartz index and the local Euler obstruction.

These were the first indices of vector fields and 1-forms on singular
spaces, in the literature. Later in [8] was introduced another index for
vector fields on isolated hypersurface singularities, and this definition
was extended in [23] to vector fields on complete intersection germs.
This is known as the GSV-index and one of its main properties is that it
is invariant under perturbations of both, the vector field and the func-
tions that define the singular variety. The definition of this index was
recently extended in [4] for vector fields with isolated singularities on
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hypersurface germs with non-isolated singularities, and it was proved
that this index satisfies a proportionality property analogous to the one
proved in [3] for the Schwartz index and the local Euler obstruction, the
proportionality factor being now the Euler-Poincaré characteristic of a
local Milnor fiber.

In [5] Ebeling and Gusein-Zade observed that when dealing with
singular varieties, 1-forms have certain advantages over vector fields, as
for instance the fact that for a vector field on the ambient space the con-
dition of being tangent to a (stratified) singular variety is very stringent,
while every 1-form on the ambient space defines, by restriction, one on
the singular variety. They adapted the definition of the GSV-index to
1-forms on complete intersection germs with isolated singularities, and
proved a very nice formula for it in the case when the form is holomor-
phic, generalizing the well-known formula of Lê-Greuel for the Milnor
number of a function.

This article is about 1-forms on complex analytic varieties and it is
particularly relevant when the variety has non-isolated singularities. We
show in Section 2 how the radial extension technique of M.-H. Schwartz
can be adapted to 1-forms, allowing us to define the Schwartz index of
1-forms with isolated singularities on singular varieties. Then we see
(Section 3) how MacPherson’s local Euler obstruction, adapted to 1-
forms in general, relates to the Schwartz index, thus obtaining a propor-
tionality theorem for these indices analogous to the one in [3] for vector
fields. We then extend (in Section 4) the definition of the GSV-index to
1-forms with isolated singularities on (local) complete intersections with
non-isolated singularities that satisfy the Thom af -condition (which is
always satisfied if the variety is a hypersurface), and we prove the corre-
sponding proportionality theorem for this index. When the form is the
differential of a holomorphic function h, this index measures the number
of critical points of a generic perturbation of h on a local Milnor fiber,
so it is analogous to invariants studied by a number of authors (see for
instance [9, 11, 22]). Section 1 is a review of well-known facts about real
and complex valued 1-forms.

The radial extension of 1-forms can be made global on compact
varieties, and it can also be made for frames of differential 1-forms. One
gets in this way the dual Schwartz classes of singular varieties, which
equal the usual ones up to sign. One also has the dual Chern-Mather
classes of V , already envisaged in [17], and the proportionality formula
3.3 can be used as in [3] to express the dual Chern-Mather classes as
“weighted” dual Schwartz classes, the weights been given by the local
Euler obstruction. Similarly, in analogy with Theorem 1.1 in [4], the
corresponding GSV-index and the proportionality Theorem 4.4 extend
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to frames and can be used to express the dual Fulton-Johnson classes of
singular hypersurfaces embedded with trivial normal bundle in compact
complex manifolds, as “weighted” dual Schwartz classes, the weights
been now given by the Euler-Poincaré characteristic of the local Milnor
fiber.

This work was done while the second and third named authors were
visiting the “Institut de Mathématiques de Luminy”, France; they ac-
knowledge the support of the CNRS, France and the “Université de la
Méditerranée”.

The authors thank J. Schürmann for his comments and suggestions
on the first version of the paper. In particular, he gave us an alternative
proof of Theorem 3.3 in the case of the differential form associated to a
Morse function, using stratified Morse theory and the micro-local index
formula in [19].

§1. Some basic facts about 1-forms

In this section we study some basic facts about the geometry of
1-forms and the relation between real and complex valued 1-forms on
(almost) complex manifolds, which plays an important role in the sequel.
The material here is all contained in the literature; we include it for
completeness and to set up our notation with no possible ambiguities.
We give precise references when appropriate.

Let M be an almost complex manifold of real dimension 2m > 0. Let
TM be its complex tangent bundle. We denote by T ∗M the cotangent
bundle of M , dual of TM ; each fiber (T ∗M)x consists of the C-linear
maps TMx → C. Similarly, we denote by TRM the underlying real
tangent bundle of M ; it is a real vector bundle of fiber dimension 2m,
endowed with a canonical orientation. Its dual T ∗

R
M has as fiber the

R-linear maps (TRM)x → R.

1.1 Definition. Let A be a subset of M . By a real (valued) 1-
form η on A we mean the restriction to A of a continuous section of the
bundle T ∗

R
M , i.e., for each x ∈ A, ηx is an R-linear map (TRM)x → R.

We usually drop the word “valued” and say simply real 1-forms on A.
Similarly, a complex 1-form ω on A means the restriction to A of a
continuous section of the bundle T ∗M , i.e., for each x ∈ A, ωx is a
C-linear map (TM)x → C.

Notice that the kernel of a real form η at a point x is either the
whole fiber (TRM)x or a real hyperplane in it. In the first case we say
that x is a singular point (or zero) of η. In the second case the kernel
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ker ηx splits (TRM)x in two half spaces (TRM±)x; in one of these the
form takes positive values and negative in the other.

We recall that a vector field v in RN is radial at a point xo if it
is transverse to every sufficiently small sphere around xo in RN . The
duality between real 1-forms and vector fields assigns to each tangent
vector ∂/∂xi the form dxi (extending it by linearity to all tangent vec-
tors). This refines the classical duality that assigns to each hyperplane
in RN the line orthogonal to it and motivates the following definition
(c.f. [5, 6]):

1.2 Definition. A real 1-form η on M is radial (outwards-point-
ing) at a point xo ∈ M if, locally, it is dual over R to a radial outwards-
pointing vector field at xo. Inwards-pointing radial vector fields are
defined similarly.

In other words, η is radial at a point xo if it is everywhere positive
when evaluated in some radial vector field at xo.

Thus, for instance, if for a fixed xo ∈ M we let ρxo(x) be the function
‖x−xo‖2 (for some Riemmanian metric), then its differential is a radial
form.

1.3 Remark. The concept of radial forms was introduced in [5].
In [6] radial forms are defined using more relaxed conditions than we do
here. However this is a concept inspired by the corresponding notion of
radial vector fields, so we use Definition 1.2.

A complex 1-form ω on A ⊂ M can be written in terms of its real
and imaginary parts:

ω = Re(ω) + i Im(ω).

Both Re(ω) and Im(ω) are real 1-forms, and the linearity of ω implies
that for each tangent vector one has:

Im(ω)(v) = −Re(ω)(iv),

thus

ω(v) = Re(ω)(v) − i Re(ω)(iv).

In other words the form ω is determined by its real part and one has a 1-
to-1 correspondence between real and complex forms, assigning to each
complex form its real part, and conversely, to a real 1-form η corresponds
the complex form ω defined by:

ω(v) = η(v) − iη(iv).
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This statement (noted in [6]) refines the obvious fact that a complex
hyperplane P in C

m, say defined by a linear form H , is the intersection
of the real hyperplanes Ĥ := {ReH = 0} and iĤ . This justifies the
following definition:

1.4 Definition. A complex 1-form ω is radial at a point x ∈ M
if its real part is radial at x.

Recall that the Euler class of an oriented vector bundle is the pri-
mary obstruction to constructing a non-zero section [24]. In the case
of the bundle T ∗

R
M , this class equals the Euler class Eu(M) of the un-

derlying real tangent bundle TRM , since they are isomorphic. Thus, if
M is compact then its Euler class evaluated on the orientation cycle
of M gives the Euler-Poincaré characteristic χ(M). We can say this in
different words: let η be a real 1-form on M with isolated (hence finitely
many) singularities x1, . . . , xr. At each xi this 1-form defines a map,

Sε
η/‖η‖−→ S

2m−1, from a small sphere in M around xi into the unit sphere
in the fiber (T ∗

R
M)x. The degree of this map is the Poincaré-Hopf

local index of η at xi, that we may denote by IndPH(η, xi). Then the
total index of η in M is by definition the sum of its local indices at the
xi and it equals χ(M). Its Poincaré dual class in H2m(M) is the Euler
class of T ∗

R
M ∼= TRM .

More generally, if M is a compact, C∞ manifold of real dimen-
sion 2m with non-empty boundary ∂M and a complex structure in its
tangent bundle, one can speak of real and complex valued 1-forms as
above. Elementary obstruction theory (see [24]) implies that one can
always find real and complex 1-forms on M with isolated singularities,
all contained in the interior of M . In fact, if a real 1-form η is defined
in a neighborhood of ∂M in M and it is non-singular there, then we can
always extend it to the interior of M with finitely many singularities,
and its total index in M does not depend on the choice of the extension.

1.5 Definition. Let M be an almost complex manifold with
boundary ∂M and let ω be a (real or complex) 1-form on M , non-
singular on a neighborhood of ∂M ; let Re ω be its real part if ω is a
complex form, otherwise Re ω = ω for real forms. The form ω is radial
at the boundary if for each vector v(x) ∈ TM , x ∈ ∂M , which is normal
to the boundary (for some metric), pointing outwards of M , one has
Re ω(v(x)) > 0.

By the theorem of Poincaré-Hopf for manifolds with boundary, if a
real 1-form η is radial at the boundary and M is compact, then the total
index of η is χ(M).
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We now make similar considerations for complex 1-forms. We let
M be a compact, C∞ manifold of real dimension 2m (with or without
boundary ∂M), with a complex structure in its tangent bundle TM . Let
T ∗M be as before, the cotangent bundle of M , i.e., the bundle of complex
valued continuous 1-forms. The top Chern class cm(T ∗M) is the primary
obstruction to constructing a section of this bundle, i.e., if M has empty
boundary, then cm(T ∗M) is the number of points, counted with their
local indices, of the zeroes of a section ω of T ∗M (i.e., a complex 1-
form) with isolated singularities (i.e., points where it vanishes). It is
well known (see for instance [16]) that one has:

cm(T ∗M) = (−1)mcm(TM).

This corresponds to the fact that at each isolated singularity xi of ω
one has two local indices: one of them is the index of its real part
defined as above, IndPH(Re ω, xi); the other is the degree of the map

Sε
ω/‖ω‖−→ S2m−1, that we denote by IndPH(ω, xi). These two indices are

related by the equality:

IndPH(ω, xi) = (−1)m IndPH(Re ω, xi),

and the index on the right corresponds to the local Poincaré-Hopf index
of the vector field defined by duality near xi. For instance, the form
ω =

∑
zidzi in Cm has index 1 at 0, while its real part

∑
(xidxi−yidyi)

has index (−1)m.
If we take M as above, compact and with possibly non-empty bound-

ary, and ω is a complex 1-form with isolated singularities in the interior
of M and radial on the boundary, then (by the previous considerations)
the total index of ω in M is (−1)mχ(M). We summarize some of the
previous discussion in the following theorem (c.f. [5, 6]):

1.6 Theorem. Let M be a compact, C∞ manifold of real dimen-
sion 2m (with or without boundary ∂M), with a complex structure in its
tangent bundle TM . Let T ∗

R
M and T ∗M be as before, the bundles of

real and complex valued continuous 1-forms on M , respectively. Then:
i) Every real 1-form η on M determines a complex 1-form ω by the
formula

ω(v) = η(v) − iη(iv);

so the real part of ω is η.
ii) The local Poincaré-Hopf indices at an isolated singularity of a com-
plex 1-form and its real part are related by:

IndPH(ω, xi) = (−1)m IndPH(Re ω, xi).
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iii) If a real 1-form on M is radial at the boundary ∂M , then its total
Poincaré-Hopf index in M is χ(M). In particular, a radial real 1-form
has local index 1.
vi) If a complex 1-form on M is radial at the boundary ∂M , then its
total Poincaré-Hopf index in M is (−1)mχ(M).

1.7 Remark. One may consider frames of complex 1-forms on
M instead of a single 1-form. This means considering sets of k complex
1-forms, whose singularities are the points where these forms become
linearly dependent over C. By definition (see [24]) the primary obstruc-
tion to constructing such a frame is the Chern class cm−k+1(T ∗M), so
these classes also have an expression similar to 1.6 but using indices of
frames of 1-forms. One always has ci(T ∗M) = (−1)ici(TM). Thus the
Chern classes, and all the Chern numbers of M , can be computed using
indices of either vector fields or 1-forms.

§2. Radial extension and the Schwartz index

In the sequel we will be interested in considering forms defined on
singular varieties in a complex manifold, so we introduce some standard
notation. Let V be a reduced, equidimensional complex analytic space
of dimension n in a complex manifold M of dimension m, endowed with
a Whitney stratification {Vα} adapted to V , i.e., V is a union of strata.

The following definition is an immediate extension for 1-forms of the
corresponding (standard) definition for functions on stratified spaces in
terms of its differential (c.f. [6, 7, 12]).

2.1 Definition. Let ω be a (real or complex) 1-form on V , i.e., a
continuous section of either T ∗

R
M |V or T ∗M |V . A singularity of ω with

respect to the Whitney stratification {Vα} means a point x where the
kernel of ω contains the tangent space of the corresponding stratum.

This means that the pull back of the form to Vα vanishes at x.
In Section 1 we introduced the notion of radial forms, which is dual

to the “radiality” for vector fields. We now extend this notion relaxing
the condition of radiality in the directions tangent to the strata. From
now on, unless it is otherwise stated explicitely, by a singularity of a
1-form on V we mean a singularity in the stratified sense, i.e., in the
sense of 2.1.

2.2 Definition. Let ω be a (real or complex) 1-form on V . The
form is normally radial at a point xo ∈ Vα ⊂ V if it is radial when
restricted to vectors which are not tangent to the stratum Vα that con-
tains xo. In other words, for every vector v(x) tangent to M at a point
x /∈ Vα, x sufficiently close to xo and v(x) pointing outwards a tubular
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neighborhood of the stratum Vα, one has Re ω(v) > 0 (or Re ω(v) < 0
for all such vectors; if ω is real then it equals Re ω).

Obviously a radial 1-form is also normally radial, since it is radial
in all directions.

For each point x in a stratum Vα, one has a neighborhood Ux of x in
M which is diffeomorphic to the product Uα ×Dα, where Uα = Ux ∩ Vα

and Dα is a small disc in M transverse to Vα. Let π be the projection
π : Ux → Uα and p the projection p : Ux → Dα. One has an isomorphism:

T ∗Ux
∼= π∗T ∗Uα ⊕ p∗T ∗

Dα.

That a (real or complex) 1-form ω be normally radial at x means
that up to a local change of coordinates in M , ω is the direct sum of the
pull back of a (real or complex) form on Uα, i.e., a section of the (real or
complex) cotangent bundle T ∗Uα, and a section of the (real or complex)
cotangent bundle T ∗Dα which is a (real or complex) radial form in the
disc.

It is possible to make for 1-forms the classical construction of radial
extension introduced by M.-H. Schwartz in [20, 21] for stratified vector
fields and frames. Locally, the construction can be described as follows.
We consider first real 1-forms. Let η be a 1-form on Uα, denote by η̂
its pull back to a section of π∗T ∗

R
Uα. This corresponds to the parallel

extension of stratified vector fields done by Schwartz. Now look at the
function ρ given by the square of the distance to the origin in Dα. The
form p∗dρ on Ux vanishes on Uα and away from Uα its kernel is transverse
to the strata of V by Whitney conditions. The sum η′ = η̂+p∗dρ defines
a normally radial 1-form on Ux which coincides with η on Uα; away from
Uα its kernel is transverse to the strata of V . Thus, if η is non-singular
at x, then η′ is non-singular everywhere on Ux. If η has an isolated
singularity at x ∈ Vα, then η′ also has an isolated singularity there. In
particular, if the dimension of the stratum Vα is zero then η′ is a radial
form in the sense of Section 1.

Following the terminology of [20, 21] we say that the form η′ is ob-
tained from η by radial extension. Since the index in M of a normally
radial form is its index in the stratum times the index of a radial form
in the disc Dα, we obtain the following important property of forms
constructed by radial extension.

2.3 Proposition. Let η be a real 1-form on the stratum Vα with
an isolated singularity at a point x with local Poincaré-Hopf index
IndPH(η, Vα; x). Let η′ the 1-form on a neighborhood of x in M ob-
tained by radial extension. Then the index of η in the stratum equals the
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index of η′ in M :

IndPH(η, Vα; x) = IndPH(η′, M ; x).

2.4 Definition. The Schwartz index of the continuous real 1-
form η at an isolated singularity x ∈ Vα ⊂ V , denoted IndSch(η, V ; x),
is the Poincaré-Hopf index of the 1-form η′ obtained from η by radial
extension; or equivalently, if the stratum of x has dimension more than
0, IndSch(η, V ; x) is the Poincaré-Hopf index at x of η in the stratum
Vα.

If x is an isolated singularity of V then every 1-form on V must be
singular at x since its kernel contains the “tangent space” of the stratum.
In this case the index of the form in the stratum is defined to be 1, and
this is consistent with the previous definition since in this case the radial
extension of η is actually radial at x, so it has index 1 in the ambient
space.

The previous process is easily adapted to give radial extension for
complex 1-forms. Let ω be such a form on Vα; let η be its real part.
We extend η as above, by radial extension, to obtain a real 1-form η′

which is normally radial at x. Then we use statement i) in Theorem
1.6 above to obtain a complex 1-form ω′ on Ux that extends ω and is
also normally radial at x. If we prefer, we can make this process in a
different but equivalent way: first make a parallel extension of ω to Ux

as above, using the projection π; denote by ω̂ this complex 1-form. Now
use 1.6.i) to define a complex 1-form d̂ρ on Ux whose real part is dρ, and
take the direct sum of ω̂ and d̂ρ at each point to obtain the extension
ω′. We say that ω′ is obtained from ω by radial extension.

We have the equivalent of Proposition 2.3 for complex forms, mod-
ified with the appropriate signs:

(−1)s IndPH(ω, Vα; x) = (−1)m IndPH(ω′, M ; x),

where 2s is the real dimension of Vα and 2m that of M .

2.5 Definition. The Schwartz index of the continuous complex
1-form ω at an isolated singularity x ∈ Vα ⊂ V , denoted IndSch(ω, V ; x),
is (−1)n-times the index of its real part:

IndSch(ω, V ; x) = (−1)n IndSch(Re ω, V ; x).

§3. Local Euler obstruction and the Proportionality Theorem

We are now concerned only with a local situation, so we take V to
be embedded in an open ball B ⊂ Cm centered at the origin 0. On
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the regular part of V one has the map σ : Vreg → Gn, m into the Grass-
mannian of n(= dim V )-planes in C

m, that assigns to each point the
corresponding tangent space of Vreg. The Nash blow up Ṽ

ν→ V of V is
by definition the closure in B × Gn, m of the graph of the map σ. One
also has the Nash bundle T̃

p→ Ṽ , restriction to Ṽ of the tautological
bundle over B × Gn, m.

The corresponding dual bundles of complex and real 1-forms are
denoted by T̃ ∗ p→ Ṽ and T̃ ∗

R

p→ Ṽ , respectively. Observe that a point in
T̃ ∗ is a triple (x, P, ω) where x is in V , P is an n-plane in the tangent
space TxB which is limit of a sequence {(TVreg)xi}, where the xi are
points in the regular part of V converging to x, and ω is a C-linear map
P → C. (Similarly for T̃ ∗

R
.)

Let us denote by ρ the function given by the square of the distance
to 0. We recall that MacPherson in [15] observed that the Whitney
condition (a) implies that the pull-back of the differential dρ defines a
never-zero section d̃ρ of T̃ ∗

R
over ν−1(Sε∩V ) ⊂ Ṽ , where Sε is the bound-

ary of a small ball Bε in B centered at 0. The obstruction to extending
d̃ρ as a never-zero section of T̃ ∗

R
over ν−1(Bε ∩ V ) ⊂ Ṽ is a cohomology

class in H2n(ν−1(Bε∩V ), ν−1(Sε∩V ); Z), and MacPherson defined the
local Euler obstruction EuV (0) of V at 0 to be the integer obtained by
evaluating this class on the orientation cycle [ν−1(Bε ∩V ), ν−1(Sε ∩V )].

More generally, given a section η of T ∗
R
B|A, A ⊂ V , there is a canoni-

cal way of constructing a section η̃ of T̃ ∗
R
|Ã, Ã = ν−1A, which is described

in the following. The same construction works for complex forms. First,
taking the pull-back ν∗η, we get a section of ν∗T ∗

R
B|V . Then η̃ is ob-

tained by projecting ν∗η to a section of T̃ ∗
R

by the canonical bundle
homomorphism

ν∗T ∗
RB|V −→ T̃ ∗

R .

Thus the value of η̃ at a point (x, P ) is simply the restriction of the
linear map η(x) : (TRB)x → R to P . We call η̃ the canonical lifting of
η.

By the Whitney condition (a), if a ∈ Vα is the limit point of the
sequence {xi} ∈ Vreg such that P = lim(TVreg)xi and if the kernel of η
is transverse to Vα, then the linear form η̃ will be non-vanishing on P .
Thus, if η has an isolated singularity at the point 0 ∈ V (in the stratified
sense), then we have a never-zero section η̃ of the dual Nash bundle T̃ ∗

R

over ν−1(Sε ∩ V ) ⊂ Ṽ . Let o(η) ∈ H2n(ν−1(Bε ∩ V ), ν−1(Sε ∩ V ); Z) be
the cohomology class of the obstruction cycle to extend this to a section
of T̃ ∗

R
over ν−1(Bε ∩ V ). Then define (c.f. [2, 6]):
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3.1 Definition. The local Euler obstruction of the real differ-
ential form η at an isolated singularity is the integer EuV (η, 0) obtained
by evaluating the obstruction cohomology class o(η) on the orientation
cycle [ν−1(Bε ∩ V ), ν−1(Sε ∩ V )].

The local Euler obstruction EuV (0) of MacPherson corresponds to tak-
ing the differential of the squared function distance to 0. In the complex
case, one can perform the same construction, using the corresponding
complex bundles. If ω is a complex differential form, section of T ∗B|A
with an isolated singularity, one can define the local Euler obstruction
EuV (ω, 0). Notice that it is equal to that of its real part up to sign:

EuV (ω, 0) = (−1)n EuV (Re ω, 0).(3.2)

This is an immediate consequence of the relation between the Chern
classes of a complex vector bundle and those of its dual (see for instance
[16]).

We note that the idea to consider the (complex) dual Nash bun-
dle was already present in [17], where Sabbah introduces a local Euler
obstruction EǔV (0) that satisfies EǔV (0) = (−1)n EuV (0). See also
Schürmann [18], sec. 5.2.

Just as for vector fields (see [3]), one has in this situation the fol-
lowing:

3.3 Theorem. Let Vα ⊂ V be the stratum containing 0, EuV (0)
the local Euler obstruction of V at 0 and ω a (real or complex) 1-form on
Vα with an isolated singularity at 0. Then the local Euler obstruction of
the radial extension ω′ of ω and the Schwartz index of ω at 0 are related
by the following proportionality formula:

EuV (ω′, 0) = EuV (0) · IndSch(ω, V ; 0).

Proof. By 3.2 and Theorem 1.6 above, it is enough to prove 3.3 for
either real or complex 1-forms, each case implying the other. We prove
it for real forms.

Let ω and ω′ be as above. Also, let ηrad denote a real radial form
at 0.

By construction and definition, we have

IndPH(ω, Vα; 0) = IndPH(ω′, B; 0) = IndSch(ω, V ; 0).(3.4)

By definition of IndPH(ω′, B; 0), there is a homotopy

Ψ: [0, 1] × Sε −→ T ∗
R

B|Sε
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such that its image satisfies:

∂ Im Ψ = ω′(Sε) − IndPH(ω′, B; 0) · ηrad(Sε)(3.5)

as chains in T ∗
R
B|Sε . The restriction of Ψ gives a homotopy

ψ : [0, 1] × (Sε ∩ V ) −→ T ∗
RB|Sε∩V

such that (c.f. (3.4))

∂ Im ψ = ω′(Sε ∩ V ) − IndSch(ω, V ; 0) · ηrad(Sε ∩ V ).

Now we can lift ψ, ω′ and ηrad to sections ν∗ψ, ν∗ω′ and ν∗ηrad of
ν∗T ∗

R
B to get a homotopy

ν∗ψ : [0, 1] × ν−1(Sε ∩ V ) −→ ν∗T ∗
R

B|ν−1(Sε∩V )

and, since ν is an isomorphism away from the singularity of V , we still
have

∂ Im ν∗ψ = ν∗ω′(ν−1(Sε ∩ V )) − IndSch(ω, V ; 0) · ν∗ηrad(ν−1(Sε ∩ V ))

as chains in ν∗T ∗
R
B|ν−1(Sε∩V ). Recall that we get the canonical liftings

ψ̃, ω̃′ and η̃rad of ψ, ω′ and ηrad by taking the images of ν∗ψ, ν∗ω′ and
ν∗ηrad by the canonical bundle homomorphism ν∗T ∗

R
B −→ T̃ ∗

R
. Thus we

have

∂ Im ψ̃ = ω̃′(ν−1(Sε ∩ V )) − IndSch(ω, V ; 0) · η̃rad(ν−1(Sε ∩ V ))

as chains in T̃ ∗
R
|ν−1(Sε∩V ). The sections ω̃′ and η̃rad are non-vanishing on

ν−1(Sε ∩ V ), by the Whitney condition, and by definition of the Euler
obstructions, we have the theorem by the Whitney condition, and by
definition of the Euler obstructions, we have the theorem. Q.E.D.

§4. The GSV-index

We recall ([8, 23]) that the GSV-index of a vector field v on an
isolated complete intersection germ V can be defined to be the Poincaré-
Hopf index of an extension of v to a Milnor fiber F . Similarly, the GSV-
index of a 1-form ω on V can be defined to be the Poincaré-Hopf index
of the form on F , i.e., the number of singularities of ω in F counted
with multiplicities [5]. When V has non-isolated singularities one may
not have a Milnor fibration in general, but one does if V has a Whitney
stratification with Thom’s af -condition, f = (f1, . . . , fk) being the
functions that define V (c.f. [13, 14, 4]).
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Let (V, 0) be a complete intersection of complex dimension n defined
in a ball B in C

n+k by functions f = (f1, . . . , fk), and assume 0 is a
singular point of V (not necessarily an isolated singularity). As before,
we endow B with a Whitney stratification adapted to V , and we assume
that we can choose {Vα} so that it satisfies the af -condition of Thom
(see for instance [14]). In particular one always has such a stratification
if k = 1, by [10].

Let ω be as before, a (real or complex) 1-form on B, and assume its
restriction to V has an isolated singularity at 0. This means that the
kernel of ω(0) contains the tangent space of the stratum Vα containing
0, but everywhere else it is transverse to each stratum Vα ⊂ V . Now
let F = Ft be a Milnor fiber of V , i.e., F = f−1(t) ∩ Bε, where Bε is a
sufficiently small ball in B around 0 and t ∈ C

k is a regular value of f
with ‖t‖ sufficiently small with respect to ε. Notice that the af -condition
implies that for every sequence tn of regular values converging to 0, and
for every sequence {xn} of points in the corresponding Milnor fibers
converging to a point xo ∈ V so that the sequence of tangent spaces
{(TF )xn} has a limit T , one has that T contains the space (TVα)xo ,
tangent to the stratum that contains xo. By transversality this implies
that choosing the regular value t sufficiently close to 0 we can assure
that the kernel of ω is transverse to the Milnor fiber at every point in
its boundary ∂F . Thus its pull-back to F is a 1-form on this smooth
manifold, and it is never-zero on its boundary, thus ω has a well defined
Poincaré-Hopf index in F as in Section 1. This index is well-defined and
depends only on the restriction of ω to V and the topology of the Milnor
fiber F , which is well-defined once we fix the defining function f (which
is assumed to satisfy the af -condition for some Whitney stratification).

4.1 Definition. The GSV-index of ω at 0 ∈ V relative to f ,
IndGSV(ω, 0), is the Poincaré-Hopf index of ω in F .

In other words this index measures the number of points (counted
with signs) in which a generic perturbation of ω is tangent to F . In
fact the inclusion F

i→ M pulls the form ω to a section of the (real or
complex, as the case may be) cotangent bundle of F , which is never-zero
near the boundary because ω has an isolated singularity at 0 and, by
hypothesis, the map f satisfies the af -condition of Thom. If the form ω
is real then

IndGSV(ω, 0) = Eu(F ; ω)[F ],(4.2)

where Eu(F ; ω) ∈ H2n(F, ∂F ) is the Euler class of the real cotangent
bundle T ∗

R
F relative to the section defined by ω on the boundary, and
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[F ] is the orientation cycle of the pair (F, ∂F ). If ω is a complex form,
then one has:

IndGSV(ω, 0) = cn(T ∗F ; ω)[F ],(4.3.i)

where cn(T ∗F ; ω) is the top Chern class of the cotangent bundle of F
relative to the form ω on its boundary. In this case one can, alternatively,
express this index as the relative Chern class:

IndGSV(ω, 0) = cn(T ∗M |F ; Ω)[F ],(4.3.ii)

where Ω is the frame of k + 1 complex 1-forms on the boundary of F
given by

Ω = (ω, df1, df2, . . . , dfk),

since the forms (df1, . . . , dfk) are linearly independent everywhere on F .
Notice that if the form ω is holomorphic, then this index is necessarily
non-negative because it can be regarded as an intersection number of
complex submanifolds. For every complex 1-form one has:

IndGSV(ω, 0) = (−1)n IndGSV(Re ω, 0).

We remark that if V has an isolated singularity at 0, this is the index
envisaged in [5], i.e., the degree of the map from the link K of V into
the Stiefel manifold of complex (k + 1)-frames in the dual Cn+k given
by the map (ω, df1, . . . , dfk). Also notice that this index is somehow
dual to the index defined in [4] for vector fields, which is related to the
top Fulton-Johnson class of singular hypersurfaces.

So, given the (non-isolated) complete intersection singularity (V, 0)
and a (real or complex) 1-form ω on V with an isolated singularity at
0, one has three different indices: the Euler obstruction (Section 2), the
GSV-index just defined and the index of its pull back to a 1-form on
the stratum of 0. One also has the index of the form in the ambient
manifold M . For forms obtained by radial extension, the index in the
stratum equals its index in M , and this is by definition the Schwartz
index. The following proportionality theorem is analogous to the one in
[4] for vector fields.

4.4 Theorem. Let ω be a (real or complex) 1-form on the stratum
Vα of 0 with an isolated singularity at 0. Then the GSV index of its radial
extension ω′ is proportional to the Schwartz index, the proportionality
factor being the Euler-Poincaré characteristic of the Milnor fiber F :

IndGSV(ω′, 0) = χ(F ) · IndSch(ω, V ; 0).
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Proof. It is enough to prove 4.4 either for complex forms or for real
forms, each one implying the other. The proof is similar to that of 3.3.
Let ω′ and ηrad be as in the proof of Theorem 3.3. Then 4.4 is proved by
taking the retriction to F of each section in (3.5) as a differential form,
noting that IndGSV(ηrad, 0) = χ(F ). Q.E.D.

4.5 Remark. We notice that 4.4 and 3.3 can also be proved using
the stability of the index under perturbations; this works for vector fields
too. More precisely, one can easily show that the Euler obstruction
EuV (ω, x) and the GSV-index are stable when we perturb the 1-form
(or the vector field) in the stratum and then extend it radially; then the
sum of the indices at the singularities of the new 1-form (vector field)
give the corresponding index for the original singularity. This implies
the proportionality of the indices.
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Motivic sheaves and intersection cohomology

Masaki Hanamura

We propose a motivic refinement of a result in [BBFGK]. The for-
mulation involves the notion of intersection Chow group, introduced by
A. Corti and the author.

We are very grateful to the referee for useful suggestions.

§1. Intersection Chow groups and lifting theorems

We consider quasi-projective varieties over k = C. For a quasi-
projective variety Z, CHs(Z) denotes the Chow group of s-cycles on
Z tensored with Q; if Z is smooth, CHr(Z) := CHdim Z−r(Z). We
consider only constructible sheaves of Q-vector spaces. The singular
(co-)homology, Borel-Moore homology, and intersection cohomology are
those with Q-coefficients.

Relative canonical filtration.
The study of filtration on the Chow group of a smooth projective

variety was started by Bloch and continued by several people; of most
relevance to us now are the works of Beilinson, Murre and Shuji Saito.
Beilinson explained the filtration in terms of the conjectural framework
of mixed motives. Murre proposed a set of conjectures, Murre’s con-
jectures, on a decomposition of the diagonal class in the Chow ring of
self-correspondences; he relates the decomposition to the filtration of
Chow groups.

For X a smooth projective variety, its Chow group of codimen-
sion r cycles CHr(X) should have a filtration F • such that CHr(X) =
F 0 CHr(X), F 1 CHr(X) is the homologically trivial part, F 2 CHr(X)
is perhaps the kernel of Abel-Jacobi map, and so on. The subquo-
tient Grν

F CHr(X) should in some way be determined by cohomology
H2r−ν(X, Q).

Received April 1, 2005
Revised August 25, 2005
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A candidate for the filtration was proposed by S. Saito, see [Sa 1]
[Sa 2]. We extend his definition as follows. If S = Spec k, it coincides
with Saito’s filtration.

Let S be a quasi-projective variety, and X a smooth variety with a
projective map p : X → S. For another smooth variety W with a pro-
jective map q : W → S, an element Γ ∈ CHdim X−s(W ×S X) induces a
map Γ∗ : CHr−s(W ) → CHr(X), see [CH]. The cycle class of Γ in Borel-
Moore homology gives a map Γ∗ : Rq∗QW [−2s] → Rp∗QX ; passing to
perverse cohomology one has a map (for each ν)

pH2r−νΓ∗ : pH2r−2s−νRq∗QW → pH2r−νRp∗QX .

(Here pH∗ stands for perverse cohomology.)
We define a filtration F •

S on CHr(X) as follows. Let CHr(X) =
F− dim S

S CHr(X). Assume F ν
S has been defined. Define

F ν+1
S CHr(X) :=

∑
Image[Γ∗ : F ν

S CHr−s(W ) → CHr(X) ]

where the sum is over (q : W → S, Γ ∈ CHdim X−s(W ×S X)) satisfy-
ing the following condition: the map pH2r−νΓ∗ : pH2r−2s−νRq∗QW →
pH2r−νRp∗QX is zero. One can show:

Proposition 1.1. The filtration F •
S on CHr(X) has the following

properties.
(1) CHr(X) = F− dim S

S CHr(X). For any Γ ∈ CHdim X−s(W ×S

X), the induced map Γ∗ : CHr−s(W ) → CHr(X) respects F •
S .

(2) If pH2r−νΓ∗ : pH2r−2s−νRq∗QW → pH2r−νRp∗QX is zero,
then Γ∗ sends F ν

S CHr−s(W ) to F ν+1
S CHr(X).

(3) The filtration is the smallest one with properties (1) and (2).

Intersection Chow group.
We refer to a forthcoming paper with A. Corti for details on inter-

section Chow groups.
Let S be a quasi-projective variety, X a smooth variety, and p : X →

S a projective map. There is an algebraic Whitney stratification

S = S0 ⊃ S1 ⊃ · · · ⊃ Sα ⊃ · · · ⊃ Sdim S

of S, so that Sα − Sα+1 is smooth of codimension α, satisfying the
following condition.
( i ) p is smooth projective over S0 := S − S1, and
(ii) there is an algebraic stratification of X such that p is a stratified
fiber bundle over each stratum S0

α := Sα − Sα+1.
We then say p : X → S is a stratified map with respect to {Sα}. The
stratification can be chosen to satisfy a stronger condition as follows.



Motivic sheaves and intersection cohomology 69

Let Xα = p−1Sα. There exist resolutions X̃α → Xα (with X̃0 = X)
such that
( i ) the induced map p̃α : X̃α → Sα is smooth over S0

α, and
(ii) there is a stratificaton on X̃α such that p̃α is a stratified fiber
bundle over S0

β for β ≥ α. (In other words, p̃α is a stratified map with
respect to {Sβ}β≥α.)
In this case we say the data (p : X → S, {X̃α → Xα}) is stratified with
respect to {Sα}.

X̃α

↙
⏐⏐�

X ←↩ Xα⏐⏐�p
⏐⏐�

S ←↩ Sα

Let ια : X̃α → X be the induced map.
We now restrict ourselves to the birational case: let S be a quasi-

projective variety and p : X → S a resolution of singularities. One has
maps (d = dimS)

CHd−r(X̃α)
ια∗−−−−→CHr(X) ια

∗
−−−−→CHr(X̃α)

Each group has filtration F •
S .

Define the intersection Chow group as a subquotient of the Chow
group of X given by:

ICHr(S) :=
∩α≥1(ι∗α)−1F 2r−d+1

S CHr(X̃α)
∑

α≥1 ια∗F
2r−d+1
S CHd−r(X̃α)

Theorem 1.2. ICHr(S) is well-defined (independent of the choice
of stratification and resolution).

Denote by IHi(S) the intersection cohomology with middle perver-
sity and with Q-coefficients.

Proposition 1.3. There is a natural map

ICHr(S) → IH2r(S).

The Conjectures.
We recall three well-known conjectures concerning cohomology,

Chow group, and higher Chow group of a smooth projective variety over
a field. In this paper we refer to them as Conjectures. The addition of
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the third conjecture is needed to prove the existence of a t-structure on
the triangulated category of mixed motives. See [Ha].

1. Grothendieck’s Standard conjecture.
This concerns the functorial behavior of cycle classes in (singular or

étale) cohomology. It has two components, the Lefschetz type conjec-
ture and the Hodge type conjecture. For k = C, the latter holds true
(Hodge index theorem). The Lefschetz type conjecture itself consists
of three statements, Conjecture (A), (B) and (C). Conjecture (C) says:
the Künneth components of the diagonal class of a smooth projective
variety are algebraic.

The standard conjecture implies the semi-simplicity of the category
of pure homological motives (Grothendieck).

2. Murre’s conjecture (Bloch-Beilinson-Murre conjecture)
One of the formulation of the conjectural filtration on Chow group is

due to Murre, and stated as the existence of a orthogonal decomposition
to projectors of the diagonal class ∆X in CH(X × X). To be precise,
the conjecture states:

(A) Let X be a smooth projective variety. There exists a decompo-
sition ∆X =

∑
Πi to orthogonal projectors in the Chow ring such that

the cohomology class of Πi is the Künneth component ∆(2 dimX− i, i).
The decomposition is called the Chow-Künneth decomposition.

(B) Πi with i = 0, . . . , r− 1 or i = 2d, . . . , 2r + 1 acts as zero on
CHr(X).

(C) Put F 0 = CHr(X), F 1 = KerΠ2r, F 2 = Ker(Π2r−1|F 1), . . . ,
F r = Ker(Πr+1|F r−1), F r+1 = 0. This is independent of the choice of
the decomposition in (A).

(D) F 1 = CHr(X)hom, the homologically trivial part.
Note a Chow-Künneth decomposition gives a decomposition in the

category of Chow motives over k h(X) =
⊕

hi(X), where hi(X) carries
cohomology in degree i only. For the category of Chow motives, see §2.

3. Variant of Beilinson-Soulé vanishing conjecture: Let (X, 0, P )
be an object of the category of Chow motives CHM(k) whose realization
is of cohomological degree ≥ 2r − n if n > 0 and > 2r if n = 0. Then
P∗ CHr(X, n) = 0.

When we give results that hold under the three Conjectures, we will
always say so; some of them require only the first two. For example,

Proposition 1.4 (Under Conjectures). F ν
S CHr(X) = 0 for ν

large enough.

We have:
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Theorem 1.5 (Under Conjectures). The map

p∗ : CHr(X) → CHd−r(S)

induces a surjective map ICHr(S) → CHd−r(S).

Under Conjectures, one has (1.5), which immediately implies the
following Theorem (1.6) in [BBFGK]. One has the cycle class map
cl : CHd−r(S) → HBM

2(d−r)(S) (the latter is the Borel-Moore homology).
There is a natural map IH2r(S) → HBM

2(d−r)(S).

Theorem 1.6. For any z ∈CHd−r(S), its class cl(z)∈HBM
2(d−r)(S)

can be (non-canonically) lifted to an element of intersection cohomology.

Indeed, we can show (1.6) without assuming Conjectures, but still
using the same ideas as for the proof of (1.5).

§2. Motivic categories and decompositions of motives

Theory of Chow motives.
Let S be a quasi-projective variety over k = C. Let CHM(S) be the

pseudo-abelian category of Chow motives over S. It has the following
properties (for details see [CH]).

• An object of CHM(S) is of the form

(X, r, P ) = (X/S, r, P )

where X is a smooth variety over k with a projective (not necessarily
smooth) map p : X → S, r ∈ Z, and if X has connected components Xi,

P ∈
⊕

i CHdim Xi(X ×S Xi)

such that P ◦P = P . Here ◦ denotes composition of relative correspon-
dences defined in [CH], which makes

⊕
i CHdim Xi(X ×S Xi) a ring with

the diagonal ∆X as the identity element. If (Y, s, Q) is another object,
Yj the components of Y , then

Hom((X, r, P ), (Y, s, Q)) = Q ◦ (
⊕

j CHdim Yj−s+r(X ×S Yj)) ◦ P.

Composition of morphisms is induced from the composition of relative
correspondences.

• Let h(X/S) = (X, 0, ip) and h(X/S)(r) = (X, r, ip). More
generally, Tate twist is defined to be the functor (t ∈ Z)

K = (X, r, P ) 	→ K(t) = (X, r + t, P )
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on objects.
• One has a functor

CHt : CHM(S) → V ectQ, CHt((X, r, P )) = P∗ CHr+t(X).

Note CHt(K) = CH0(K(t)) and CHr(h(X/S)) = CH0(h(X/S)(r)) =
CHr(X).

• If X and Y are smooth varieties with projective maps to S and
f : X → Y a map over S, there corresponds a morphism

f∗ : h(Y/S) → h(X/S).

If X , Y are equidimensional, there corresponds

f∗ : h(X/S) → h(Y/S)(dim Y − dimX).

It is of use to define the homological motive of X/S: if X has components
Xi,

h′(X/S) :=
⊕

h(Xi/S)(dimXi).

Then a map f : X → Y induces a morphism f∗ : h′(X/S) → h′(Y/S).
• Let Db

c(S) = Db
c(S, Q) be the derived category of sheaves of

Q-vector spaces on S with constructible cohomology. There is the real-
ization functor

ρ : CHM(S) → Db
c(S)

such that on objects

(X, r, P ) 	→ P∗Rp∗QX [2r],

(P∗ ∈ EndDb
c(S)(Rp∗QX) is a projector, and P∗Rp∗QX is its image,

which exists since Db
c(S) is pseudo-abelian.) Note ρ(h(X/S)(r)) =

Rp∗QX [2r] and

ρ(h′(X/S)(r)) = Rp∗DX [2r],

where DX is the dualizing complex of X . Recall DX = QX [2 dimX ] if
X is smooth.

Theory of Grothendieck motives.
We also have the pseudo-abelian category of Grothendieck motives

over S. The main properties are the following.
Denote by Perv(S) be the abelian category of perverse sheaves of Q-

vector spaces on S. There is a canonical full functor cano: CHM(S) →



Motivic sheaves and intersection cohomology 73

M(S) and a faithful realization functor ρ : M(S) → Perv(S). The fol-
lowing diagram commutes.

CHM(S) cano−−−−→ M(S)⏐⏐�ρ
⏐⏐�ρ

Db
c(S)

pH∗
−−−−→ Perv(S)

Here pH∗ =
⊕

i
pHi is the total perverse cohomology functor.

Relative decomposition of motives.
The following is in [CH] (for this, we only need the first two of the

three Conjectures). This is a motivic analogue of the decomposition
theorem for the total direct image in [BBD].

Theorem 2.1 (Under Conjectures). Let p : X → S be as before.
Let {Sα} be a Whitney stratification of S, and X̃α → Xα resolutions
such that (p : X → S, {X̃α → Xα}) is stratified with respect to {Sα}.
Then:

(1) There are local systems Vj
α on Sα −Sα+1, non-canonical direct

sum decomposition in CHM(S)

h(X/S) =
⊕

j, α hj
α(X/S)

and isomorphisms

ρ(hj
α(X/S)) ∼= ICSα(Vj

α)[−j + dim Sα]

in Db
c(S).
(2) For each i, the sum

⊕
j≤i, α hj

α(X/S) is a well-defined subobject
of h(X/S) (independent of the decomposition).

(3) The category M(S) is semi-simple abelian, and the functor
ρ : M(S) → Perv(S) is exact and faithful.

Relative canonical filtration and motives.
For a projective map p : X → S with X smooth, the filtration on

CHr(X) can be interpreted in terms of motives as follows. Keeping the
notation in the above theorem, define subobjects of h(X/S) by

pτ≤ih(X/S) :=
⊕

j≤i, α hj
α(X/S)

(the sum over (j, α) with j ≤ i) and subquotients

pHih(X/S) :=
⊕

α hi
α(X/S).

More generally for r ∈ Z, subobjects of h(X/S)(r)

pτ≤i

(
h(X/S)(r)

)
:=

⊕
j≤i+2r, α hj

α(X/S)(r)
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and subquotients

pHi
(
h(X/S)(r)

)
:=

⊕
α hi+2r

α (X/S)(r)

are defined. Then we have

CHr(X) = CH0(h(X/S)(r))

= CH0(
⊕

α, ν h2r−ν
α (X/S)(r)),

F ν
S CHr(X) = CH0

(
pτ≤−ν(h(X/S)(r))

)

= CH0
(⊕

µ≤2r−ν, α hµ
α(X/S)(r)

)
,

and

Grν
FS

CHr(X) = CH0
(
pH−ν(h(X/S)(r))

)

= CH0
(⊕

h2r−ν
α (X/S)(r)

)
.

§3. Outline of the proof of (1.5)

We start with a result on perverse cohomology. Let X be smooth,
p : X → S a projective map, and assume (p : X → S, {X̃α → Xα}) is
stratified with respect to {Sα}. There are local systems Vi

α on S0
α such

that Rp∗QX
∼=

⊕
ICSα(Vj

α)[−j + dimSα]. Let d = dimX .

Proposition 3.1. (1) Let ι∗α : Rp∗Q → iα∗Rp̃α∗QX̃α
be the nat-

ural map ια induces, and

pHi(ι∗α) : pRip∗Q → iα∗
pRip̃α∗QX̃α

the induced map on perverse cohomology of degree i. The restriction to
the direct summand ICSα(Vi

α)[dimSα]

pHi(ι∗α) : ICSα(Vi
α)[dim Sα] → iα∗

pRip̃α∗QX̃α

is a split injection.
(2) Let ια∗ : ια∗Rp̃α∗DX̃α

(−d)[−2d] → Rp∗Q be the natural map,
and

pHiια∗ : ια∗
pHiRp̃α∗DX̃α

(−d)[−2d] → pRip∗Q

the induced map on perverse cohomology; here DX̃α
is the dualizing com-

plex. This map factors through a split surjection

pHiια∗ : ια∗
pHiRp̃α∗DX̃α

(−d)[−2d] → ICSα(Vi
α)[dim Sα]

to the direct summand of the target.
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We can extend the definition of the filtration F •
S as follows. For any

quasi-projective (possibly singular) variety Z with a quasi-projective
map to S, one can define a filtration F •

S on the Chow group CHs(Z).
This was done in [CH, §5] in the case S = Spec k, and the general case is
similar. For a projective map of varieties over S, f : X → Y , the induced
map f∗ : CHs(X) → CHs(Y ) respects the filtrations F •

S . If S → S′ is
a closed immersion, and Z → S, then the filtrations F •

S and F •
S′ on

CHs(Z) coincide.
For a quasi-projective variety T , viewing it as a variety over T , one

has filtration F •
T on CHs(T ). For this filtration, one has the following

result. The proof uses the triangulated category of mixed motives over
a base, the perverse t-structure on it, and the interpretation of the fil-
tration F •

S on CHs(Z) in terms of the perverse truncation (similar to
the interpretation in §2). See [Ha] for the case where the base is Spec k.

Lemma 3.2 (Under Conjectures). For an irreducible quasi-pro-
jective variety T , F−2s+dim T+1

T CHs(T ) = 0.

From now on we assume the Conjectures throughout.
Let p : X → S be a desingularization. We have a decomposition

h(X/S) =
⊕

hj
α(X/S) as in (2.1). In this case hν

0 = 0 for ν �= d, and it
can be shown CHr(hd

0) = ICHr(S) as a subquotient of CHr(X).
Lemma (3.2) implies that p∗ : CHr(X) → CHd−r(S) passes to a

map ICHr(S) → CHd−r(S).
For the surjectivity we must show: For any a ∈ CHd−r(S), there is

an element b ∈ CHr(X) such that
( i ) p∗(b) = a, and
(ii) ι∗α(b) ∈ F 2r−d+1

S CHr(X̃α) for each α ≥ 1.
Let a ∈ CHd−r(S) and ν ≤ 2r−d+1. Consider the following Claim

(I)ν .
Claim (I)ν .
(1) (Case ν ≤ 2r − d) there is an element bν ∈ CHr(X) with (i)

p∗(bν) = a, and (ii) bν ∈ F ν
S CHr(X).

(2) (Case ν = 2r − d + 1) there is an element b2r−d+1 ∈ CHr(X)
satisfying the following (let b = b2r−d+1 for short): (i) p∗(b) = a, and
(ii) b ∈ F 2r−d

S CHr(X) (not F 2r−d+1
S CHr(X) !), and b mod F 2r−d+1

S ∈
Gr2r−d

FS
CHr(X) =

⊕
α≥0 CHr(hd

α(X/S)) is contained in the first sum-
mand ICHr(S) = CHr(hd

0(X/S)).
For ν small enough (I)ν obviously holds: one can take any element

satisfying (i). The larger ν is, the stronger (I)ν is. What we must show
is (I)2r−d+1.

Proposition 3.3. Let ν ≤ 2r − d. We have (I)ν ⇒ (I)ν+1.
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The proof of Proposition (3.3) is achieved by an argument that uses
Proposition (3.1), the motivic interpretation of the filtration in §2, the
two Lemmas (3.2) and (3.4), and semi-simplicity of the category M(S).

Lemma 3.4. If ν < 2r − 2 dim X̃α + dim Sα, then h2r−ν
α (X/S) is

zero.

Indeed using (3.1) one shows the realization of h2r−ν
α (X/S) is zero.

Since ρ : M(S) → Perv(S) is exact and faithful, it follows h2r−ν
α (X/S)

itself is zero.
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Relèvement de cycles algébriques et homomorphismes associés
en homologie d’intersection, Ann. Math., 141 (1995), 147–179.

[BBD] A. Beilinson, J. Bernstein and P. Deligne, Faisceaux Pervers,
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On hyperbolic perturbations
of algebraic links and small Mahler measure

Eriko Hironaka

Abstract.

This paper surveys some results surrounding Lehmer’s problem
in the context of fibered links and Hopf plumbing. Topics addressed
here are Mahler measures of fibered links, the relation between it-
erated Hopf plumbings and Salem-Boyd polynomials, and the ques-
tion of when monotone growth occurs under iterated plumbing. Ex-
plicit calculations for certain “perturbations” of links associated to
the ADE singularities are computed.

§1. Introduction

The Mahler measure of a monic integer polynomial is the absolute
value of the product of roots with norm greater than one. Lehmer’s
problem [Leh] asks whether the Mahler measure of a monic integer poly-
nomial can be made arbitrarily close to but greater than one. So far,
there is no known monic integer polynomial with Mahler measure greater
than one but less than Lehmer’s number αL = 1.17628 . . . , which is the
Mahler measure of the polynomial

fL(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1.

To solve Lehmer’ s problem it is enough to answer the question for
Alexander polynomials of fibered links. A polynomial f(t) is reciprocal if
f(t) = tdf(1/t), where d = deg(f). Smyth [Smy] showed that the Mahler
measures of irreducible non-reciprocal polynomials not vanishing at zero
are bounded below by θ0 = 1.32472 . . . , a number greater than Lehmer’s
number. Thus, it remains to search among reciprocal polynomials. Any
monic reciprocal polynomial occurs as the Alexander polynomial of a
fibered link K ⊂ S3 up to cyclotomic factors [Kan]. Lehmer’s number
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αL appears in this context as the Mahler measure of the Alexander
polynomial of the (−2, 3, 7)-pretzel knot.

The Mahler measure of a fibered link (K, Σ) can be considered to
be a weak measure of ”hyperbolicity” of the link in the following sense.
Let K ⊂ S3 be a fibered link with monodromy h : Σ → Σ. Define the
Mahler measure M(K, Σ) to be the Mahler measure of ∆(K, Σ), where
∆(K, Σ) is the characteristic polynomial of the automorphism on the first
singular homology group of Σ

h∗ : H1(Σ; R) → H1(Σ; R)

induced by h. The Mahler measure M(K, Σ) is bounded from below by
the leading eigenvalue λ(K, Σ) of h∗, known as the homological dilatation
of the monodromy h. If h is isotopic to a pseudo-Anosov map, then
λ(K, Σ) is also a lower bound for the (geometric) dilatation of h. In
particular, if λ(K, Σ) > 1, and h is irreducible, then h is isotopic to a
pseudo-Anosov homeomorphism [Thu] (see also [FLP], [CB]).

As a first guess, it seems natural to expect small Mahler measures
to be attained by “small perturbations” of non-hyperbolic links, for ex-
ample, algebraic links. Here, we will take small perturbations to mean
Hopf or trefoil plumbing along a suitable path on the fibering surface.
For example, the smallest Mahler measures of degrees 2,4,6,8,10 (listed
by Lehmer in [Leh]) all arise from Hopf or trefoil plumbings of torus
links (see Section 4).

Two problems arise in this approach. The first is that the Alexander
polynomial is only a weak indicator of geometric properties of the fibered
link; a hyperbolic fibered link (K, Σ) may have M(K, Σ) = λ(K, Σ) =
1. The second is that Mahler measure and homological dilatation are
not always monotone increasing or decreasing under iterations of Hopf
plumbing. Useful connections between Mahler measure and geometry
do hold, however, when we restrict our attention to certain subfamilies
of fibered links.

We begin by defining and stating properties of Hopf plumbings in
Section 2. In particular, we give a formula for the Alexander polynomials
of fibered links obtained by iterated Hopf plumbing. These have the
form of Salem-Boyd polynomials introduced in [Sal], developed further
in [Boyd], and applied to Hopf plumbings in [Hir2].

In Section 3 we present two families of fibered links with the mono-
tonicity property. The first example is the family of Coxeter links stud-
ied in [Hir1]. For Coxeter links, the homological dilatations grow or
decrease monotonically with iterations of Hopf plumbing. If the un-
derlying Coxeter graph is a star graph, then the homological dilatation
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equals the Mahler measure for any associated Coxeter link. Further-
more, Leininger [Lei] showed that for pseudo-Anosov Coxeter links as-
sociated to a bi-colored graph, the monodromy is orientable. It follows
that the homological and geometric dilatations are equal for these exam-
ples [Ryk]. The second example is the family of Salem links. These are
fibered links whose homological dilatation is equal to the Mahler mea-
sure of the Alexander polynomial. The Coxeter links associated to star
graphs are either cyclotomic or Salem links. We give a criterion for a
sequence of fibered links obtained by iterated Hopf plumbing to be even-
tually Salem, and show that for such Salem sequences, the dilatations
grow or decrease monotonically.

Section 4 contains examples and speculations.

§2. Iterated Hopf plumbings

In this section, we review some basic definitions and properties of
fibered links, and their monodromy. Any fibered link can be converted
to any other by a finite sequence of Hopf plumbings and deplumbings
[Gir]. We recall the definition of Hopf plumbing, and give a formula
for the Alexander polynomial of the fibered link for sequences of links
obtained by iterated Hopf plumbing.

A link K ⊂ S3 is fibered, with fiber Σ, if for a regular neighborhood
U(K) of K in S3, there is a fibration

S3 \ U(K) → S1

of the complement U(K) in S3, where Σ is a general fiber, and the
boundary of Σ equals K. Let (K, Σ) denote the fibered link. There is
a homeomorphism h : Σ → Σ, so that S3 \ U(K) can be identified with
the mapping torus for Σ with respect to h. The map h is called the
(geometric) monodromy of the fibered link (K, Σ).

Let h∗ be the restriction of h to the first homology group H1(Σ; R).
The transformation h∗ is the homological monodromy of (K, Σ), and
its characteristic polynomial is the Alexander polynomial ∆(K, Σ)(t) of
(K, Σ). This definition of Alexander polynomial is associated to the
pair (K, Σ) and not to the link itself; if K has more than one compo-
nent, the fibering structure is not in general unique, and each fibering
structure gives rise to a different Alexander polynomial. The homologi-
cal dilatation of (K, Σ) is the maximum among absolute values of roots
of ∆(K, Σ)(t), or eigenvalues of h∗.

Let τ be a properly embedded path on Σ. The positive (negative)
Hopf plumbing on (K, Σ) along τ is obtained by gluing a positive (neg-
ative) Hopf band onto Σ along a thickening of τ . Fig. 1 shows the result
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Fig. 1. Positive Hopf plumbing.

of a positive Hopf plumbing. The n-th iterated Hopf plumbing on (K, Σ)
based at τ is shown in Fig. 2. We will write (K±

n , Σ±
n ) for the result of the

n-th iterated Hopf plumbing. By this convention, (K, Σ) = (K±
1 , Σ±

1 ).
If (K, Σ) is a fibered link, so is the result of any Hopf plumbing [Sta].
Thus, (K±

n , Σ±
n ) is fibered for all n.

Fig. 2. Fourth iterated Hopf plumbing.

As we will show, the Alexander polynomials of links resulting via
iterated Hopf plumbings from a fixed (K, Σ) based at a path τ satisfy
a simple formula. Before stating the result, we give some definitions.

Given two integer polynomials f and g, we write f
.= g if there

exists cyclotomic polynomials c1, . . . , ck, d1, . . . , d�, and an integer r
such that

f(t)c1(t) · · · ck(t) = ±trg(t)d1(t) · · · d�(t).
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If f(t) is a polynomial of degree d, define its reciprocal

f∗(t) = tdf(1/t).

A polynomial f(t) is said to be a reciprocal polynomial if f = f∗, and
anti-reciprocal if f = −f∗. If f(t) is anti-reciprocal, then f

.= g, where
g is reciprocal. This is because, if f(t) is anti-reciprocal, then (t − 1)
divides f(t) and f(t)/(t − 1) is reciprocal.

The following theorem is proved in [Hir2].

Theorem 1. Let (K, Σ) be a fibered link, and τ a properly em-
bedded path on Σ. Then there is a polynomial P = P±

(Σ, τ) depending
on Σ, τ and the orientation of the plumbings, such that the Alexander
polynomials ∆n(t) = ∆(Kn,Σn)(t) satisfy

∆n(t) .= tnP (t) + (−1)n+rP ∗(t),(1)

where r is the number of components of K.

Polynomials of the form given in Equation (1) were studied by Salem
[Sal], and Boyd [Boyd] in their investigations of Salem and P-V numbers.
We will call Equation (1), the Salem-Boyd form of the polynomial ∆n.
Given a polynomial f , let N(f) be the number of roots outside the unit
circle, λ(f) (called the radius of f) the maximum among absolute values
of roots of f , and M(f) the Mahler measure of f . The following is proved
in [Boyd] (see also, [Hir2]).

Theorem 2. Let P (t) be a monic integer polynomial and

Qn(t) = tnP (t) ± P ∗(t).

Then Qn is reciprocal or anti-reciprocal for all n, and furthermore

(1) N(Qn) ≤ N(P ) for all n;
(2) limn→∞ λ(Qn) = λ(P ); and
(3) limn→∞ M(Qn) = M(P ).

Analogously define, for a fibered link (K, Σ), N(K, Σ) (respectively,
λ(K, Σ), and M(K, Σ)), to be N(∆(K, Σ)) (respectively, λ(∆(K, Σ)),
M(∆(K, Σ))). Then Theorem 3 below follows immediately from The-
orem 2.

Theorem 3. Let (Kn, Σn) be fibered links obtained from (K, Σ)
by iterated Hopf plumbing. Then N(Kn, Σn) is eventually constant, and
λ(Kn, Σn) and M(Kn, Σn) are convergent sequences.
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We give two explicit formulae for P(Σ, τ). Before doing this, recall
that for any link K and Seifert surface Σ, there is an associated Seifert
matrix S with respect to some choice of basis for H1(Σ; R) (see, for
example, [Rolf] for terminology). Then the Alexander polynomial of K
with respect to Σ is given by ∆(K, Σ)(t) = |tS−Str| up to multiplies of ±t,
where |A| denotes the determinant of A and Atr the transpose of A. This
definition specializes to our previous definition of Alexander polynomials
for fibered links. For an invertible matrix A, let s(A) be the sign of the
determinant of A. For example, if K is a fibered knot with fiber Σ, and S
is any invertible Seifert matrix for K, then s(S) = ∆(K, Σ)(1). Since s(S)
doesn’t depend on the choice of basis, we will define s(K, Σ) = s(S). If
(K, Σ) is fibered and S is a Seifert matrix with respect to some choice of
basis for H1(Σ; R), then S−1St represents the homological monodromy
h∗ with respect to this basis.

Let (K, Σ) be a fibered link, and let τ be a properly embedded path
in Σ. Let Στ be the surface in S3 obtained by taking Σ and removing
a regular neighborhood of τ . Let Kτ be the boundary of Στ . The first
formula is reminiscent of the skein relations, where one keeps track of
the associated Seifert surfaces.

P(Σ, τ)(t) = ∆(K, Σ)(t) ± s(Σ)s(Στ )∆(Kτ , Στ )(t).(2)

The second formula is given as a determinant:

P(Σ, τ)(t) = |tS − (Str ∓ vvtr)|,(3)

where v ∈ H1(Σ; R) is the dual vector to τ considered as an element of
H1(Σ, ∂Σ; R).

Remark. Silver and Williams proved the following related result
[SW].

Theorem 4. Let K be any link, and let � be an unknot disjoint
from K, whose linking number with K is nonzero. Let K(n) be obtained
by 1/n surgery on a tubular neighborhood of �, and let ∆̃K(n) be the
multi-variable Alexander polynomial of K(n). Then the multi-variable
Mahler measures of ∆̃K(n) converge to the multi-variable Mahler measure
of ∆̃K∪�.

If K is a knot, then K(n) is a knot for all n, and we have ∆̃K(n) = ∆K(n) .
If (K, Σ) is a fibered knot, and (K±

n , Σ±
n ) is obtained from (K, Σ) by

iterated Hopf plumbing, then K(n) = K±
2n is a sequence satisfying the

conditions of Theorem 4.
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§3. Monotone sequences

In general, the sequences described in Theorem 2 are not monotone.
This section contains two large families of examples where monotonicity
does hold.

3.1. Coxeter links
Let (K, Σ) be the fibered link obtained by positive Hopf plumbing

along an ordered system of chords �1, . . . , �k on an oriented disk in S3.
Let Γ be the dual graph. We say that (K, Σ) is a Coxeter link for Γ, if

(1) all plumbings are positive; and
(2) whenever i < j, the intersection of �i with �j on the disk is

negative with respect to the skew-symmetric intersection form
on the disk.

Recall that for any ordered finite graph Γ with no self-or double-
edges, there is an associated simply-laced Coxeter system (see for exam-
ple, [Hum]). Let c(Γ) be the associated Coxeter element.

The Coxeter element gives important information about the Coxeter
link. For example, an irreducible Coxeter system is spherical or affine if
and only if λ(c(Γ)) = 1, where λ(c(Γ)) is the leading eigenvalue of c(Γ)
[Hum], [A’C]. It follows that the Coxeter links whose Mahler measure
equals one are those associated to disjoint unions of spherical and affine
Coxeter diagrams. In the irreducible case, these are just An, Dn, E6,
E7, and E8, and their affine extensions. For the irreducible spherical
cases, the graphs are trees, and it follows that the Coxeter links are
uniquely determined (see [Hir1]), and are the algebraic links associated
to the A-D-E plane curve singularities.

For a graph Γ, let µ(Γ) be the leading eigenvalue of the adjacency
matrix for Γ, known as the radius of the graph Γ. Let λ(Γ) be the leading
eigenvalue of c(Γ). Let µ = µ(Γ), and consider the equation

λ + λ−1 = µ2 − 2

The solutions λ are roots of unity if and only if µ ≤ 2, and we set
λ(Γ) = 1. Otherwise the solutions are real and positive, and we set λ(Γ)
to be the larger (real) solution.

An ordered bi-colored graph is a graph with ordered vertices ν1, . . . ,
νk such that for some s with 1 ≤ s ≤ k, νi and νj are not connected by an
edge whenever i, j ≤ s or i, j > s. In the following theorem, McMullen
shows that λ(c(Γ)) is bounded from below by λ(Γ) ([Mc] Theorem 1.3).

Theorem 5. Let Γ be any Coxeter graph. Then

λ(Γ) ≤ λ(c(Γ)),
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and equality holds if Γ is bi-colored.

Since µ(Γ) �→ λ(Γ) is order preserving, one can get information about
the smallest possible values of λ(c(Γ)) using properties of graph radii.

An arm of Γ, is a chain of edges ξ1, . . . , ξn and vertices ν0, . . . , νn,
so that

(1) deg(ν0) = 1;
(2) deg(νi) = 2 for i = 1, . . . , n − 1; and
(3) The end vertices of ξi are νi−1 and νi for each i = 1, . . . , n.
Choose an edge ξ on Γ connecting vertices γ1 and γ2. A graph

Γξ, n is obtained from Γ by extending the edge ξ if Γξ, n is obtained by
replacing ξ on Γ with n edges ξ1, . . . , ξn and vertices ν1, . . . , νn−1 so
that

(1) ξ1 connects γ1 and ν1;
(2) ξi connects νi and νi+1 for i = 2, . . . , n − 1; and
(3) ξn−1 connects νn−1 with γ2.

Fig. 3 gives an illustration.

Fig. 3. Extending an edge of a graph.

Hoffman proves the following theorem about monotonicty of µ(Γ)
and hence of λ(Γ) with respect to extending edges [Hof].

Theorem 6. Let ξ be an edge of a graph Γ, and let Γξ, n be ob-
tained by extending Γ along ξ. There exists N such that

µ(Γξ, n) ≤ 2

if and only if n < N . For n ≥ N , µ(Γξ, n) is monotone increasing if ξ
lies on a free arm of Γ, and µ(Γξ, n) is monotone decreasing otherwise.

The following property is proved in [Hir1].

Theorem 7. If (K, Σ) is a Coxeter link associated to Γ, then after
a natural identification of underlying vector spaces,

h∗ = −c(Γ).
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It follows that in this case λ(K, Σ) = λ(c(Γ)).

Let (K, Σ) be a Coxeter link associated to a graph Γ. Then extend-
ing an edge of Γ corresponds to performing an iterated Hopf plumbing
on (K, Σ). Thus, Hoffman’s theorem implies the following.

Theorem 8. Let Γ be a Coxeter graph that is not the union of
spherical and affine Coxeter graphs. Let (K, Σ) be an associated Cox-
eter link, and let (Kn, Σn) be obtained by an iterated Hopf plumbing
on (K, Σ) associated to extending an edge Γ. Then, for some N , the
sequence λ(Kn, Σn), n > N , is monotone.

Lehmer’s number αL occurs as the Mahler measure of the E10 Cox-
eter graph, which is also known as the (2, 3, 7) star-like graph (cf.
[MRS]). The following theorem was proved in greater generality for
all Coxeter systems in [Mc], but we give a simpler version here that
applies to Coxeter links.

Theorem 9. If Γ is any connected Coxeter graph, then either Γ
is spherical or affine, or

M(E10) = λ(E10) ≤ λ(Γ) ≤ M(Γ).

The (−2, 3, 7)-pretzel knot K2, 3, 7 is a Coxeter link associated to
E10 (see [Hir1]). Thus, we have the following corollary to Theorem 9.

Theorem 10. If (K, Σ) is a Coxeter link, then either M(K, Σ) =
1, or

M(K, Σ) ≥ M(∆K2, 3, 7).

If Γ is bi-colored, the monodromy of the Coxeter link is pseudo-
Anosov if and only if Γ is connected and the simply-laced Coxeter system
associated to Γ is not spherical or affine [Lei]. Furthermore, the invariant
stable and unstable foliations are orientable, and hence the homological
and geometric dilatations are equal. By Rykken’s result [Ryk], we have
the following.

Theorem 11. If (K, Σ) is a Coxeter link associated to a con-
nected bi-colored graph which is not spherical or affine, then the homo-
logical and geometric dilatations of (K, Σ) are equal.

Theorem 12. Let (K, Σ) be a Coxeter link associated to a non-
spherical or affine connected Coxeter graph Γ. Let (Kn, Σn) be obtained
by iterated Hopf plumbing on (K, Σ) associated to extending an edge
of Γ. Then for some N > 0, the sequence of geometric dilatations of
(Kn, Σn) is monotone.
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3.2. Salem sequences

A Salem number is a real algebraic integer α > 1 such that all
other algebraic conjugates lie on or within the unit circle C with at
least one on C. The minimal polynomial of a Salem number is always
reciprocal. For convenience, we will also include among Salem numbers
real quadratic integers α > 1 whose other algebraic conjugate equals
α−1. With this addition, α is a Salem number if and only if it is the
Mahler measure of a reciprocal monic integer polynomial f and satisfies
N(f) = 1 (see notation in Section 2). Lehmer’s problem is still open
for Salem numbers, for example, it is not known if there is a Salem
number smaller than Lehmer’s number. Furthermore, it is not known
whether the minimization problem for Salem numbers is equivalent to
the minimization problem for Mahler measures greater than one.

Closely related to Salem numbers are P-V numbers, or Pisot
-Vijayaraghavan numbers. These are algebraic integers θ > 1 all of
whose other algebraic conjugates lie strictly within the unit circle. For
our purposes we will redefine P-V numbers to be the Mahler measure
of a monic integer polynomial f such that f �= f∗, f �= −f∗, and
N(f) = 1. The set of P-V numbers is closed [Sal] and its smallest
element is θ0 = 1.32472 . . . [Sie].

If (K, Σ) is a fibered link whose homological dilatation is a Salem
number, we say that (K, Σ) is a Salem (fibered) link. If (Kn, Σn) is a
sequence obtained from (K, Σ) by an iteration of Hopf plumbings, and
if (Kn, Σn) is a Salem link for large enough n, we call (Kn, Σn) a Salem
sequence.

The minimal polynomial of a P-V number will be called a P-V poly-
nomial, and the minimal polynomial of a Salem number will be called a
Salem polynomial. Theorem 2 has a stronger form when restricting to
the case when P (t) is a P-V polynomial (see [Sal], [Boyd]).

Theorem 13. If P (t) is a P-V polynomial, then there exist con-
stants N± such that M(Q±

n ) = 1 for n < N±, and N(Q±
n ) = 1 for

n ≥ N±. Furthermore, M(Q±
n ) converges monotonically to M(P ) from

below (respectively, above) if and only if ±P (0) > 0 (respectively < 0).

From Theorem 13 it follows that to each Salem sequence (Kn, Σn)
there corresponds a P-V number θ(Σ, τ) ≥ θ0 to which the Salem num-
bers converge. Furthermore, one has an effective way to find the smallest
Salem number occurring in the sequence, as seen in the following corol-
lary.

Corollary 14. If (Kn, Σn) is a Salem sequence associated to a P-
V polynomial P , then the values greater than one attained by M(Kn, Σn)
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are bounded from below by the minimum of θ0, and the first nontrivial
terms in the sequences M(K2n, Σ2n) and M(K2n+1, Σ2n+1).

Remark. The role of Salem links in studying Mahler measures
of fibered links is still mysterious. For Salem links, the homological
dilatation and the Mahler measure of ∆(K, Σ) are equal. While both
geometric and homological dilatation can be made arbitrarily close to
one, a lower bound greater than one for Salem numbers would imply a
lower bound greater than one for dilatations for Salem links. This leads
to the following problem, which we leave for further research.

Problem 15. Give a geometric interpretation for the algebraic
conjugates of the dilatation of a fibered link, and characterize the Salem
links.

§4. Small perturbations of A-D-E singularities

We make use of the Salem-Boyd equations given in Section 3 to
find the minimal Mahler measures greater than one occuring in certain
families.

The fibered links in this section are obtained by positive or negative
Hopf plumbings along an ordered system of chords arranged on a disk in
S3. Let Γ be the dual graph of the chord arrangement. The polynomials
P±

Σ,τ of Theorem 1 are easy to compute from the combinatorics of Γ
using Equation 2, especially in the case when Γ is a tree, and the locus
of plumbing is one of its nodes. A filled (unfilled) vertex ν corresponds
to positive (negative) Hopf plumbing, as shown in Fig. 4. We will refer
to Γ as the plumbing graph for the associated link.

Fig. 4. Graphs and plumbing.

If Γ is a tree, then the fibered link associated to any realization is
an arborescent link with underlying graph Γ. If Γ is a tree and has no
vertices of degree greater than 3, then the link is determined by Γ.
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It is not hard to see that for fixed degree, there is a positive gap
between 1 and the next smallest Mahler measure. In [Leh], Lehmer
lists polynomials with the smallest Mahler measures for non-cyclotomic
polynomials in all even degrees up to 10. For degree 2 the minimal
Mahler measure is attained by the Fig. 8 knot, which can also be thought
of a (2, 3, 1)-pretzel link. This appears in the sequence described in
Section 4.3. For degrees 4,6,8 and 10, the minimal Mahler measures can
be obtained by Coxeter links of star graphs (see Section 4.1).

We end by giving an application of Theorem 1, Theorem 2, and
Theorem 13, by computing the minimum Salem number occurring for
certain positive (Section 4.2) and negative (Section 4.3) perturbations
of the algebraic links associated to An.

4.1. Coxeter links and pretzel links from star graphs

The (−2, m, n)-pretzel links K−2, m, n and more generally the (p1,
. . . , pk, −1, . . . , −1)-pretzel links, where the number of-1’s is k−2, are
Coxeter links associated to (p1, . . . , pk)-star graphs [Hir1].

The star graphs are defined as follows. Let Ap be the graph con-
sisting of p nodes ν0, . . . , νp and edges between νi and νi+1 for i =
1, . . . , p − 1. The vertex ν0 will be called the base of the Ap. A
(p1, . . . , pk)-star graph is a connected tree Γ that is the union of sub-
graphs isomorphic to Ap1 , . . . , Apk

with their bases identified as in
Fig. 5.

Fig. 5. The (2, 3, 4)-star graph.

For star graphs with less than or equal to 3 branches, the Coxeter
link is an arborescent link completely determined by the graph. If the
star graph is one of An, Dn, E6, E7 or E8, or their affine extensions,
then the links are iterated torus links, and the geometric and homo-
logical monodromy equal 1. In all other cases, the fibered links have
pseudo-Anosov monodromy with orientable stable and unstable invari-
ant foliations [Lei], and hence the homological and geometric dilatations
are also equal [Ryk]. Furthermore, the dilatations are Salem numbers
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and hence are equal to the Mahler measures of the Alexander polyno-
mials [MRS].

The minimal hyperbolic extensions of D4, E6, E7 and E8 are re-
spectively the (2, 2, 2, 3), (3, 3, 4), (2, 4, 5), and (2, 3, 7) star links.
The Mahler measures for the characteristic polynomials of these links
are the minimal ones greater than one in degrees 4,6, 8 and 10 (cf. [Mc],
Proposition 7.3 and page 175).

4.2. Positive perturbations of An

For the calculations in this Section, and the next, we will make use
of the following Lemma. Let C denote the unit circle |z| = 1. Let θG,
known as the golden mean, be the sole root of t2 − t − 1 that is greater
than one.

Lemma 16. Consider the polynomials

f±
m(t) = tm(t2 − t − 1) ± 1.

Then f−
m has exactly one root θ−m outside C for all m ≥ 1, and the

sequences θ−m converge to θG monotonically from above. The roots of
f+

m are roots of unity for m = 1, 2, and for m ≥ 3, they have exactly
one root θ+

m outside C. The sequences θ+
m converge to θG monotonically

from below.

Proof. To show that f−
m has at most one root outside C, we will use

an argument similar to that of Boyd in [Boyd]. Consider the polynomials

F±
m(t, s) = tm(t2 − t − 1) ± s

where s is a variable ranging in the interval [0, 1]. Let α(s) be any
branch of F±

m(t, s) = 0 considered as curve lying over [0, 1]. Then α(s)
can never lie on C as long as 0 ≤ s < 1, since, on C, |t2 − t − 1| is
bounded from below by 1. If such an α = α(s) existed, we would have

|α2 − α − 1| > s = |α2 − α − 1|

yielding a contradiction. It follows that the number of roots of f±
m(t)

outside C is bounded from above by N(t2 − t − 1) = 1.
The cases for small m can be checked by hand. Monotonicity follows

from the fact that as soon as f±
m(t) has a root α outside C, then f±

m+1(t)
is forced to have a root strictly between α and θG. Q.E.D.

The Coxeter link KAn associated to An is the torus link T (2, n+1),
and the Alexander polynomial is

∆An =
tn+1 + (−1)n

t + 1
= tn − tn−1 + · · · + (−1)n.(4)
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The (−2, m, n)-pretzel links K−2, m, n are obtained by positive iterated
Hopf plumbing on KAm+1 along τ , where [τ ]dual = [0, 1, 0, . . . , 0]. The
link K−2, m, 1 has one component if m is odd and two components if m
is even. Thus, the Alexander polynomial for K−2, m, n is given by

∆K−2,m,n(t) = tnPm(t) + (−1)m+n(Pm)∗(t),

where

Pm(t) = ∆Am+1(t) + ∆A1(t)∆Am−1 (t)

= (tm+1 − tm + · · · + (−1)m+1)
+ (t − 1)(tm−1 − tm−2 + · · · + (−1)m−1)

= tm+1 − tm−1 + tm−2 − · · · + (−1)mt.

The polynomials Pm(t) satisfy

Pm(t) + Pm+1(t) = tm+2 + tm+1 − tm = tm(t2 + t − 1).

Thus

Pm(t) + (−1)mP1(t) =
m−1∑
i=1

(−1)m−i−1(Pi(t) + Pi+1(t))

= (tm−1 − tm−2 + · · · + (−1)mt)(t2 + t − 1)

and

Pm(t) =
(tm−1 + (−1)m)t(t2 + t − 1) + (−1)m+1t2(t + 1)

t + 1

=
tm(t2 + t − 1) + (−1)m+1t

t + 1

Let (Pm)(t) = Pm(−t). Then

Pm(t) =
(−1)m

[
tm(t2 − t − 1) + t

]
t + 1

,

and

(P m)∗(t) =
−(Pm)∗(−t)

t + 1
.

By Lemma 16, Pm(−t) is cyclotomic for m = 1, 2, and is a P-V poly-
nomial for θm, for m ≥ 3 where θm converges monotonically to θG from
below.
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Replacing t by −t in the formula for ∆K−2,m,n , we have

∆K−2,m,n(−t) .= tnPm(t) + (Pm)∗(t)
= tnPm(−t) − (Pm)∗(−t).

By Theorem 13, all the Salem sequences arising from (2, m, n)-stars are
monotone increasing. The minimal elements in this family are listed
below.

pretzel type Salem number
(−2, 3, 7) ≈ 1.17628
(−2, 4, 5) ≈ 1.36

Thus, the (−2, 3, 7)-pretzel is minimal in this family.
For the particular case when m = 3, we have

P3(t) = t4 − t2 + t = t(t3 − t + 1) = tg(−t),

where g is the minimal polynomial for the smallest P-V number θ0.
Lehmer’s polynomial fL(t) can thus be written as

fL(t) = t8(g(t)) − g∗(t) = ∆K−2, 3, 7(−t).

4.3. Negative perturbations of An

We now consider the positive (2, m, n)-pretzel links. These are not
Coxeter links, since they have a negative twist in their plumbing graph
as in Fig. 6. Just as in the previous example, these links are arborescent
links, and the Alexander polynomials are independent of the choice of
directions on the plumbing graphs.

Fig. 6. Plumbing graph for the (2, 3, 4)-pretzel.

We begin with the (2, m, 1)-pretzel links. These have plumbing
graph as in Fig. 7.

Let Km be the (2, m, 1)-pretzel link. When m = 1, 3, 5, 7 these
links are, respectively, denoted by 42, 62, 82, and 102 in Rolfsen’s knot
table ([Rolf] p. 391–429). The knot 42 is more commonly known as the
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Fig. 7. Plumbing graph for the (2, 3, 1)-pretzel.

figure eight knot. By Theorem 1, the Alexander polynomials of Kn are
given by

∆Km(t) =
tm+1P (t) + (−1)m+1P ∗(t)

t + 1
,

where

P (t) = ∆K1 + ∆K0

= (t2 − 3t + 1) + (t − 1)
= t2 − 2t = t(t − 2).

It follows that

∆Km(t) = tm+1 − 3tm + 3tm−1 − · · · (−1)m(3t − 1).

Since P (t) has one root outside C, the Km are eventually Salem links.
Looking at the even and odd subsequences, we see that the only cyclo-
tomic link that occurs is K2. Thus, the minimal elements in this family
are the figure eight knot K1, and K4. The sequences are decreasing for n
odd and increasing for n even. Thus, the smallest Salem number arising
in this sequence is 1.8832 · · · = α(K4).

Let Km, n be the (2, m, n)-pretzel link. Then this is an iterated Hopf
sequence using the index n, and starting with the (2, m, 1)-pretzel. We
find Pm(t) as follows.

Pm(t) = ∆Km(t) + ∆A1(t)∆Am−1(t)

= ∆Km(t) + (t − 1)(tm−1 − tm−2 + · · · + (−1)m−1)
= tm+1 − 2tm + tm−1 − tm−2 + · · · + (−1)mt

Adding consecutive functions, yields the formula

Pm(t) + Pm+1(t) = tm(t2 − t − 1).

Thus,

Pm(t) + (−1)m−1P1(t) =
m−1∑
i=1

(−1)m−i−1(Pi(t) + Pi+1(t))

=
m−1∑
i=1

(−1)m−i−1ti(t2 − t − 1).
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Isolating Pm(t), we get

Pm(t) =
(tm−1 + (−1)m)t(t2 − t − 1) + (−1)m−1t(t − 2)(t + 1)

t + 1

=
tm(t2 − t − 1) + (−1)mt

t + 1
.

By Lemma 16, Pm(t) has exactly one root θm outside C for m = 1 and
m ≥ 3, and θm tends to the root θG of PG(t) = t2 − t − 1 from above
(for odd m) and below (for even m).

The number r of components of Km is 1 if m is odd and 2 if m is
even. We thus have,

∆Km,n(t) .= Pm(t) + (−1)m+n(Pm)∗(t).

and the leading coefficient of (−1)m+nPm(t) is (−1)n. It follows from an
argument similar to that in the proof of Lemma 16 that M(Km, 2n+1) is
monotone decreasing and M(Km, 2n) is monotone increasing.

Since the (2, 4, 4)-and all (2, 2, n)-pretzel links are cyclotomic, the
minimal elements of (2, m, n)-pretzel knots with respect to trefoil plumb-
ing are those listed below.

pretzel type Salem number
(2, 1, 1) ≈ 2.61803
(2, 1, 4) ≈ 1.8832
(2, 4, 6) ≈ 1.36

Of these only the (2, 4, 6)-pretzel gives Salem number smaller than θG.
Thus, M(K4, 6) ≈ 1.36 is the minimal Mahler measure greater than one
among the (2, m, n)-pretzel links.
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Stably hyperbolic polynomials

Vladimir Petrov Kostov

Abstract.

A real polynomial in one real variable is hyperbolic if all its roots
are real. Denote the set of monic hyperbolic polynomials of degree
n by Πn. Suppose that for a real polynomial P (x) of degree n there
exists k ∈ N and a polynomial Q(x) of degree ≤ k−1 such that xkP +
Q ∈ Πn+k. Denote the set of such polynomials P by Πn(k). Call the

set Πn(∞) = ∪∞
k=0Πn(k) the domain of stably hyperbolic polynomials

of degree n. In the present paper we explore the geometric properties
of the set Π4(∞).

§1. Introduction

Consider the family of polynomials P (x, a) = xn+a1x
n−1+· · ·+an,

ai, x ∈ R.

Definition 1. Call a polynomial from the family P hyperbolic
(resp. strictly hyperbolic) if it has only real (resp. real and distinct) roots.
Denote by Πn the hyperbolicity domain of the family P , i.e. the subset
of Rn consisting of the values of the n-tuple of coefficients (a1, . . . , an)
for which P is hyperbolic. Geometric properties of the hyperbolicity
domain are given in papers [Ko1], [Ko2], [Me1] and [Me2]. In the proofs
in the first two of them the results of the papers [Ar] and [Gi] are used.

Notice that Πn ∩ {a1 = 0, a2 > 0} = ∅ and Πn ∩ {a1 = 0, a2 =
0} = 0 ∈ Rn. Indeed, if a polynomial is hyperbolic, then such are its
nonconstant derivatives as well. For a1 = 0 one has P (n−2) = (n!/2)x2+
(n − 2)!a2 which is hyperbolic only if a2 ≤ 0. If one has a1 = a2 = 0,
then one has P (n−3) = (n!/6)x3 + (n − 3)!a3 which is hyperbolic only if
a3 = 0, and in a similar way one must have a4 = · · · = an = 0. Therefore
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2000 Mathematics Subject Classification. 12D10.
Key words and phrases. (stably) hyperbolic polynomial, multiplicity vec-

tor, hyperbolicity domain.
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in what follows we set once for all a1 = 0 (this can be achieved by the
shift x �→ x − a1/n) and a2 = −1 (recall that Πn is invariant for the
one-parameter group of stretchings aj �→ ejtaj).

Notation 2. Set Πn(0) = Πn. Denote for k ∈ N by Πn(k) the set
of polynomials P for which there exist polynomials Q of degree ≤ k − 1
such that R(x) := xkP + Q ∈ Πn+k. Hence, one has Πn(k + 1) ⊃ Πn(k)
because if P ∈ Πn+k, then xP ∈ Πn+k+1. Set Πn(∞) = ∪∞

k=0Πn(k).
Notice that for a polynomial from ∂Πn(∞), the boundary of Πn(∞),
one cannot find k and Q as above.

Definition 3. We call the set Πn(∞) the domain of stably hyper-
bolic polynomials of degree n.

Proposition 4. For any n ∈ N, n ≥ 2, the set Πn(∞) (with
a1 = 0, a2 = −1) is bounded.

Proof. Denote by x1 ≥ · · · ≥ xn+k the roots of the polynomial R,
see the above notation. One has x1+· · ·+xn+k = 0,

∑
1≤i<j≤n+k xixj =

−1, hence,
∑n+k

i=1 x2
i = 2. This means that one can have |xi| ≥ 1 only

for one value of i, say, for i = n + k.
Hence, for each n ∈ N∗, n ≥ 2, and for k ≥ 0 one has |

∑n+k
i=1 xm

i | ≤
2m/2 +2. Indeed, one has |xn+k| ≤

√
2 and |xm

n+k| ≤ 2m/2. For i �= n+k

one has |xm
i | ≤ |x2

i | = x2
i , hence, |

∑n+k−1
i=1 xm

i | ≤
∑n+k−1

i=1 x2
i ≤ 2.

The Vieta symmetric functions σl of x1, . . . , xn+k (where σl =∑
1≤i1<···<il≤n+k xi1 · · ·xil

) can be expressed as polynomials of the New-

ton symmetric functions ϕl =
∑n+k

i=1 xl
i. Recall that there exist polyno-

mials Mν , M∗
ν such that

ϕl = (−1)l−1lσl + Ml(σ1, . . . , σl−1),

(−1)l−1lσl = ϕl + M∗
l (ϕ1, . . . , ϕl−1)

(1)

i.e. the passage from the Newton to the Vieta functions and its inverse
are described by “triangular” formulas.

Hence, the first n Vieta functions, i.e. the first n coefficients am up
to a sign of the polynomial R, are bounded by constants not depending
on k (but only on n). Q.E.D.

Notation 5. In what follows we set a3 = a, a4 = b, and we denote
by Π′

n the projections of the sets Πn on the space of the variables (a, b).
Notice that one has Π′

n = Π4(n − 4) ∩ {a1 = 0, a2 = −1}.
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Remarks 6. 1) Proposition 4 and Theorem 14 can be given
shorter proofs if one uses the results of papers [Ko3] and [Ko4] con-
cerning the so-called very hyperbolic1 polynomials. We prefer to make
the present text self-contained, therefore we do not use these results and
we give direct proofs instead. Moreover, the proofs contain an explicit
parametrization of the set ∂Π′

n, the boundary of Π′
n.

2) It is shown in [Ko3] that the mapping

τ : aj �→ βjaj where βj = (n(n − 1))j/2/n(n − 1) · · · (n − j + 1)

defines a diffeomorphism between the set Πn(∞) and the set V Πn of
very hyperbolic polynomials. Set βj = ((n(n−1))n/2/n!)((n−j)!/(n(n−
1))(n−j)/2. This allows one to view the mapping τ as a superposition
of the mappings Φ: aj �→ ((n(n − 1))n/2/n!)aj (multiplication with a
non-zero constant), Ψ: aj �→ aj/(n(n − 1))(n−j)/2 (change of the scale
of the x-axis) and Ξ: aj �→ (n − j)!aj .

The latter mapping is related to the Laplace transform which trans-
forms the monomial xk into

∫ ∞
0 tke−ξtdt = k!/ξk+1 (the formula is mean-

ingful for Re ξ > 0). Therefore the mapping Ξ is the Laplace transform
followed by ξ �→ 1/x and by a division by x.

The mapping Ξ−1 results from the Borel transform which maps the
formal power series

∑
akxk into the series

∑
akxk/k! (this accelerates

the convergence). We call its inverse the anti-Borel transform. Thus
the Borel (the anti-Borel) transform maps stably hyperbolic (very hy-
perbolic) polynomials into very hyperbolic (into stably hyperbolic) ones.

Comments 7. The following lines were communicated to the au-
thor by B.Z. Shapiro and J. Borcea. Stably hyperbolic polynomials are
interesting to study for the following reasons. Consider a linear opera-
tor T acting on the space of polynomials of degree ≤ n which does not
increase the degree of the polynomials. More exactly, suppose that it
is “triangular”: T (xk) = xk + Rk where Rk is a polynomial of degree
≤ k − 1, k = 0, 1, . . . , n. A theorem of Carnicer, Peña and Pinkus (see
[CaPePi]) states that if the operator T preserves hyperbolicity, then it
is a differential one, i.e. of the form 1 + c1D + · · · + cnDn (∗), cj ∈ C,
D := d/dx. This result has been recently generalized in [BoSh]. It is
shown in [Bo] (see also [BoSh]) that an operator of the form (∗) (with
ci ∈ R) preserves hyperbolicity if and only if the polynomial T (xn) is
hyperbolic. In this case a partially proved conjecture due to J. Borcea
and B.Z. Shapiro claims that the polynomial 1+c1x+· · ·+cnxn is stably
hyperbolic.

1i.e. hyperbolic and having hyperbolic primitives of all orders.
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§2. Properties of the set of stably hyperbolic polynomials

Definition 8. We stratify the sets Πn and Π′
n the strata being

defined by the multiplicity vectors (MVs) of the polynomials. A MV is
a vector whose components are the multiplicities of the distinct roots of
the polynomial given in decreasing order. Example: if n = 4 and if one
has x1 = x2 > x3 > x4, then the MV of the polynomial is (2, 1, 1). We
identify the strata with their MVs.

Comments 9. Recall that (see [Ko2]) the sets Π′
n look as shown

on Fig. 1. The picture is symmetric w.r.t. Ob, the tangent lines and
their limits at the strata of the form (k, n − k) are nowhere vertical.

O

a

b

(1,n−2,1)

(1,n−3,1)

(1,n−1) (n−1,1)

(1,n−2)

(1,1,n−2)

(2,n−2)

(2,1,n−3)

(3,n−3)

(1,1,n−3)

(2,n−3)

(2,1,n−4)

(n−2,1)

(n−2,1,1)

(n−2,2)

(n−3,1,2)

(n−3,3)

(n−3,1,1)

(n−3,2)

(n−4,1,2)

Fig. 1.

Hence, the sets Π′
n and Π′

n−1 together look as shown on Fig. 1.
First of all, it is clear that Π′

n ⊃ Π′
n−1 because if P ∈ Πn−1, then

xP ∈ Πn. The set ∂Π′
n consists of the closures of all strata with MVs

of the form (l, 1, n − l − 1) and (1, n − 2, 1). No point X of a stratum
S = (l, 1, n− l− 2) ⊂ Π′

n−1 lies on the boundary ∂Π′
n of Π′

n. Indeed, if
the middle root (which is a simple one) of a polynomial P ∈ S is not 0,
then the MV of the polynomial xP would be of the form (l, 1, 1, n−l−2)
(the left or the right root of P is not 0 because one has a1 = 0). This is
not the MV of a stratum of ∂Π′

n. If the middle root of P is 0, then the
MV of xP must be (l, 2, n− l− 2) which is not the MV of a stratum of
∂Π′

n either.
On the other hand, there exists a single point from the stratum

(s, 1, n − s − 1) ⊂ ∂Π′
n or (1, n − 2, 1) ⊂ ∂Π′

n for which the middle
root equals 0 (we leave the proof for the reader). Hence, this point is



Stably hyperbolic polynomials 99

the stratum (s, n − s − 1) ⊂ ∂Π′
n−1 (resp. a point from the stratum

(1, n − 3, 1) ⊂ ∂Π′
n−1; clearly, this must be the point (0, 0) ∈ Oab).

Using the above comments one can draw the sets Π′
n for n = 4, 5, . . .

together, see Fig. 2.

5

6

4

O

a

b

C

A
1

A2

A3

B
1

B 2

B 3

Π

Π

Π

’

’

’

D

Fig. 2.

Proposition 10. The limits of the strata (n − s − 1, 1, s) and
(s, 1, n − s − 1) of ∂Π′

n exist (for s fixed and n → ∞) as well as the
limit for n → ∞ of the stratum (1, n− 2, 1). These limits are algebraic
arcs (denoted by As, Bs and C, see Fig. 2).

Proof. The closure of the stratum (n− s− 1, 1, s) can be parame-
trized by the three roots ξ ≥ η ≥ ζ for which one has

(n − s − 1)ξ + η + sζ = 0, (n − s − 1)ξ2 + η2 + sζ2 = 2(2)



100 V. P. Kostov

These two equations define an ellipse in R3. Adding the inequalities
ξ ≥ η ≥ ζ means cutting off an arc of the ellipse. Hence, Vieta’s formulas
imply

−a = C3
n−s−1ξ

3 + C2
n−s−1ξ

2η + C2
n−s−1sξ

2ζ + (n − s − 1)sξηζ

+ (n − s − 1)C2
s ξζ2 + C2

s ηζ2 + C3
s ζ3

b = C4
n−s−1ξ

4 + · · ·

Set ξ = ϕ/n. Hence, for n → ∞ equations (2) look like this:

ϕ + η + sζ = 0, η2 + sζ2 = 2(3)

Indeed, the second of equations (2) implies that the quantities η and ζ
are uniformly bounded in n ∈ N. The first of these equations implies
that then ϕ is uniformly bounded as well. Hence, the term (n−s−1)ξ2 =
(n− s−1)ϕ2/n2 in the second of equations (2) tends to 0 when n → ∞.

Equations (3) are again a couple of equations defining an ellipse in
R3. If η > 0, then for n → ∞ the inequality ϕ ≥ nη implies that ϕ
cannot be chosen such that (ϕ, η, ζ) belong to the ellipse. Hence, one
must have 0 ≥ η ≥ ζ (and there is no restriction upon ϕ other than the
first of equations (3)). For n → ∞ one has

−a =
ϕ3

6
+

ϕ2η

2
+

sϕ2ζ

2
+ sϕηζ + C2

s ϕζ2 + C2
s ηζ2 + C3

s ζ3 + O
( 1

n

)
,

i.e. for n → ∞ the limit of the quantity a is a homogeneous polynomial of
degree 3 in ϕ, η and ζ which satisfy conditions (3) and the inequalities
0 ≥ η ≥ ζ. In the same way one shows that the limit of b is such a
polynomial of degree 4. This proves the proposition for the arcs As,
for the arcs Bs and C the proof is analogous. The reader can find the
parametrization of the arc C in 70 of the proof of Theorem 14. Q.E.D.

Remark 11. One checks directly that neither of the arcs As, Bs

and C is a line segment. As each stratum (n− s− 1, 1, s), (1, n− 2, 1)
and (s, 1, n− s− 1) of ∂Π′

n has a curvature of constant sign (see [Me1]
or [Ko2]) such that the concavity is towards the interior of Π′

n, this is
also the case of the arcs As, Bs and C w.r.t. Π4(∞).

Notation 12. Denote by D the point from Π4(∞) lying on the
b-axis and with greatest b-coordinate.

Remark 13. The point D is the common limit of the right end-
points of the arcs As or of the left endpoints of the arcs Bs when s → ∞.
It can be computed also as the limit of the strata (k, k) ⊂ Π′

2k for
k → ∞. The computation gives D = (0, 1/2).
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Theorem 14. 1) The tangent lines to the arcs As, Bs and C
are never vertical. Their limits at the endpoints of these arcs exist and
are not vertical either.

2) The slopes of these tangent lines (together with their limits at
the endpoints) are uniformly bounded. These slopes (and their limits at
the endpoints) are positive for the arcs As and negative for the arcs Bs.

3) At the common endpoint of two arcs As, As+1 or Bs, Bs+1 the
slopes of the two limits of tangent lines (from left and right) are different.

4) At the common endpoints of the arcs A1 and C and of B1 and
C the two limits of tangent lines are the same.

5) The limit of the slope of the tangent lines exists when the point
from ∂Π4(∞) tends to D; this limit equals 0.

Remarks 15. 1) The boundary of the set Π4(∞) consists of
countably many arcs whose endpoints accumulate towards the point
D. These points are singular points for Π4(∞), see 3) of the theorem.
Hence, the set Π4(∞) is not semi-algebraic.

2) It is decidable whether a point U = (a0, b0) ∈ Oab represents
a polynomial from Π4(∞) (in particular, from ∂Π4(∞)) or not. This
follows from the fact that one knows explicit parametrizations of the
arcs As, Bs and C and the coordinates of the point D.

Indeed, denote by (αs, βs) (resp. by (α∗
s , β∗

s )) the left (resp. the
right) endpoint of the arc As (resp. Bs). By 20 of the proof of Theo-
rem 14, see below, one has (αs, βs) = ((−2/3)

√
2/s, 1/2−1/s). One has

first to check whether a0 ∈ [α1, α∗
1] or not. If not, then U �∈ Π4(∞). If

yes, then one has to check whether a0 = 0 or not. If yes, then U ∈ Π4(∞)
if and only if b0 ∈ [0, 1/2]. If a0 �= 0, then one checks for which s one has
a0 ∈ [αs, αs+1) or a0 ∈ (α∗

s+1, α∗
s] (and which of these two conditions

holds). After this one has to compare b0 with the b-coordinate of the
points of the arcs As, C or Bs, C whose a-coordinates equal a0.

Proof of Theorem 14.
10. We use the notation from the proof of Proposition 10. Our

first aim is to give explicit parametrization of the arc As. The one of
the arc Bs is given by analogy and the one of the arc C is given in 70.
Consider first the stratum (n− s− 1, 1, s) ⊂ ∂Π′

n. Instead of operating
with Vieta’s functions aj (in the variables ξ ≥ η ≥ ζ, of multiplicities
n−s−1, 1 and s), we use the sums bj of the j-th powers of these variables
(taking their multiplicities into account). Recall that (see formulas (1))

b3 = 3a3 + αa1a2 + βa3
1, b4 = −4a4 + γa4

1 + δa2
1a2 + εa2

2 + θa1a3

for some α, β, γ, δ, ε, θ ∈ R. As a1 = 0, a2 = −1, we have b3 = 3a3,
b4 = −4a4 + ε. By computing the values of the symmetric functions for
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the quadruple 1/
√

2, 1/
√

2, −1/
√

2, −1/
√

2 one finds that ε = 2. Thus
the stratum (n− s− 1, 1, s) is parametrized (in the variables ϕ, η, ζ) in
the following form:

ϕ + η + sζ + O(1/n) = 0

η2 + sζ2 + O(1/n) = 2

a = a3 = (1/3)(η3 + sζ3 + O(1/n))

b = a4 = (−1/4)(η4 + sζ4) + 1/2 + O(1/n)

(see (2)) and after deleting the terms O(1/n) one obtains a parametriza-
tion of the arc As.

20. Set η =
√

2 cos t, ζ =
√

2/s sin t. Recall that 0 ≥ η ≥ ζ (see the
proof of Proposition 10). The endpoints of the arc As are such that either
(η, ζ) = (0, −

√
2/s) (and one has (a3, a4) = ((−2/3)

√
2/s, 1/2− 1/s),

this is the left endpoint of As) or η = ζ = −
√

2/(s + 1) (and one has
(a3, a4) = ((−2/3)

√
2/(s + 1), 1/2−1/(s+1)), this is the right endpoint

of As).
In the new parametrization of the arc As one has

a = a3 = (2/3)
√

2 cos3 t + (2/3)
√

2/s sin3 t,

b = a4 = 1/2 − cos4 t + (−1/s) sin4 t .

One has

db/da = (db/dt)/(da/dt) = −(
√

2 cos t +
√

2/s sin t) = −η − ζ(4)

This expression depends continuously on t and is uniformly bounded
(both in s and t). In the case of arcs As we have 0 ≥ η ≥ ζ (and one
cannot have both equalities at the same time), hence, db/da > 0. This
proves parts 1) and 2) of the theorem for the arcs As (for the arcs Bs

the proof is analogous).
30. Recall that one has 0 ≥ η ≥ −

√
2/(s + 1), −

√
2/(s + 1) ≥

ζ ≥ −
√

2/s. Hence, for s → ∞ the sum −η − ζ (see (4)) tends to 0
uniformly in t. This proves part 5) of the theorem for the arcs As (in
the same way one proves it for the arcs Bs).

40. To prove part 3) of the theorem it suffices to compute the two
values of db/da obtained for η, ζ corresponding to the right endpoint of
As and to the left endpoint of As+1, see 20. These values are 2/

√
s + 1

and 2/
√

s + 2. Hence, they are different. For the arcs Bs the proof is
analogous.

50. Part 4) of the theorem can be proved either by direct compu-
tation or by observing that the common endpoints in question are the
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limits of the strata (n − 1, 1) and (1, n − 1) of the sets Π′
n where the

limits of the tangent lines to the strata (n − 2, 1, 1), (1, n − 2, 1) and
(1, 1, n − 2), (1, n − 2, 1) coincide, see [Ko2]. We leave the details for
the reader.

60. To extend the proof of parts 1) and 2) of the theorem to the
arc C it suffices to observe that the slope of the tangent line to this arc
is comprised between its limit values at the common endpoints with A1

and B1 due to the constant sign of the curvature, see Remark 11.
70. Give the parametrization of the arc C. For a point of the

closure of the stratum (1, n−2, 1) ⊂ ∂Π′
n defined by the roots ξ ≥ η ≥ ζ,

of multiplicities 1, n − 2, 1, one has

ξ + (n − 2)η + ζ = 0

ξ2 + (n − 2)η2 + ζ2 = 2

− a = (n − 2)ξηζ + C2
n−2(ξη

2 + ζη2) + C3
n−2η

3

b = C2
n−2ξη

2ζ + C3
n−2η

3(ξ + ζ) + C4
n−2η

4

Set η = ψ/n. Hence, when n → ∞ (and the given point tends to a point
from C) one has ξ ≥ 0 ≥ ζ and

ξ + ψ + ζ = 0

ξ2 + ζ2 = 2

− a = ξψζ + (ξψ2 + ζψ2)/2 + ψ3/6

b = ξψ2ζ/2 + (ξ + ζ)ψ3/6 + ψ4/24

These formulas provide the parametrization of the arc C. Q.E.D.
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On weighted-degrees

for algebraic local cohomologies associated
with semiquasihomogeneous singularities

Yayoi Nakamura and Shinichi Tajima

Abstract.

In this paper, a notion of a weighted-degree is introduced to
algebraic local cohomology classes associated with a semiquasihomo-
geneous function. Utilizing weighted-degrees, computations of a dual
basis of Milnor algebra and membership problems are considered as
applications.

§1. Introduction

Let X be a neighbourhood of the origin O of n-dimensional affine
space Cn. Let f be a holomorphic function on X and S the hypersurface
defined by the function f , i.e., S = {x ∈ X | f(x) = 0}. We assume
that the function f has an isolated singularity at the origin, i.e.,

{x ∈ X | fx1(x) = · · · = fxn(x) = 0} ∩ S = {O},

where fxj = ∂f/∂xj and x = (x1, . . . , xn). Let J be Jacobi ideal in
OX, O of the function f , and Hf the set of algebraic local cohomology
classes annihilated by J , i.e.,

J = OX, O〈fx1 , . . . , fxn〉 ⊂ OX, O,

Hf = {η ∈ Hn
[O](OX) | gη = 0, ∀g ∈ J }

where OX, O is the stalk at O of the sheaf OX of germs of holomorphic
functions and Hn

[O](OX) is the sheaf of n-th algebraic local cohomology
groups, supported at the origin. Then, Hf and OX, O/J are finite di-
mensional vector spaces of the same dimension, i.e., Milnor number. Hf
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is isomorphic to ExtnOX, O
(OX, O/J , OX, O) and thus there exists non-

degenerate pairing,

resO( · , · ) : OX, O/J ×Hf → C(1.1)

between them defined by Grothendieck local residues ([3], [4]).
As Hf is the dual space of OX, O/J , the space Hf reflects proper-

ties of a given singularity. Furthermore, these algebraic local cohomol-
ogy classes in Hf and the associated holonomic systems exhibit some
characteristic features of the singularity ([5], [6]). This indicates there-
fore that further studies of Hf in the context of D-modules would be
of interest. In this paper, we study basic properties of Hf for semi-
quasihomogeneous function and give a method for constructing a basis
of Hf . As applications, we consider a membership problem and a com-
putation of standard basis. We show that Grothendieck local duality
provides us with an effective method for these problem. Note that the
approach and the results presented in this paper have applications to the
study of holonomic systems attached to semiquasihomogeneous isolated
singularities.

In Section 2, we define a notion of weighted-degrees of algebraic local
cohomologies and study their properties. For semiquasihomogeneous
functions f , we clarify relations of these properties for Hf to Poincaré
polynomial. In Section 3, by combining Grothendieck duality (1.1) and
the notion of the weighted-degree with respect to the weight vector of the
function f , we derive a method for constructing a basis of the space Hf

that gives rise to a dual basis of OX,O/J . In Section 4, as applications,
we study a membership problem for the ideal J and a computation of a
standard basis of J . By making the most of the dual basis, we give an
effective method for solving a membership problem for the ideal J and
illustrate a method for computing a standard basis of J with examples.

§2. Algebraic local cohomologies

We introduce a notion of weighted-degrees for algebraic local coho-
mology classes and study the dual space of OX, O/J associated with
semiquasihomogeneous singularities.

2.1. Definition of weighted-degrees

Let us fix a weight vector w = (w1, . . . , wn) ∈ Nn
+ for a fixed

coordinate system x = (x1, . . . , xn) ∈ X . Put |w| = w1 + · · ·+ wn and
〈w, λ〉 = λ1w1 + · · · + λnwn for λ = (λ1, . . . , λn) ∈ Nn.
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Any algebraic local cohomology class η in Hn
[O](OX) can be ex-

pressed in terms of a relative Čech cohomology.

η =

⎡
⎣ ∑

λ∈Λη

cλ
1
xλ

⎤
⎦

where cλ ∈ C, xλ = xλ1
1 · · ·xλn

n with λ = (λ1, . . . , λn) ∈ Λη, Λη is a
finite subset of Nn

+. Then, we define the weighted-degree of an alge-
braic local cohomology class [1/xλ] to be −〈w, λ〉. We call algebraic
local cohomology classes, represented by a single term, monomials. An
algebraic local cohomology class η ∈ Hn

[O](OX) can be written in the
form

η =

⎡
⎣ ∑

λ∈Λη

cλ
1
xλ

⎤
⎦ where cλ ∈ C, xλ = xλ1

1 · · ·xλn
n

with λ = (λ1, . . . , λn) ∈ Λη,

Λη is a finite subset of Nn
+ and [ · ] stands for a relative Čech cohomology.

Definition. We define the weighted-degree degw(η) of a cohomol-
ogy class

η =

⎡
⎣ ∑

λ∈Λη

cλ
1
xλ

⎤
⎦(2.1)

by the smallest degree of monomials [1/xλ] for λ ∈ Λη:

degw(η) = min{−〈w, λ〉 | λ ∈ Λη},

where Λη is a set of all exponents λ = (λ1, . . . , λn) ∈ Nn
+ with non-zero

coefficients cλ in the above expression (2.1) of the cohomology class η.

2.2. Basic properties
Let w = (w1, . . . , wn) ∈ Nn

+ be a weight vector. A polynomial f(x)
is said to be weighted homogeneous of degree d with weight w if f(x) is
a sum of weighted homogeneous monomials of weighted degree d, i.e.,

f(x) =
∑

〈w, κ〉=d

cκxκ

where cκ ∈ C, xκ = xk1
1 · · ·xkn

n and 〈w, κ〉 = w1k1 + · · · + wnkn for
κ = (k1, . . . , kn) ∈ Nn. We define a weighted degree of a holomorphic
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function h(x) to be the smallest degree of monomials xκ constituting
h(x);

degw(h) = min{〈w, κ〉 | h(x) =
∑
cκ �=0

cκxκ, cκ �= 0}.

Definition. A polynomial f is said to be semiquasihomogeneous
of weighted degree d if f is of the form f = f0 +g where f0 is a weighted
homogeneous polynomial of weighted degree d defining an isolated sin-
gularity at the origin and g is a function of weighted degree strictly
greater than d.

Let f be a semiquasihomogeneous function with respect to a weight
vector w = (w1, . . . , wn) ∈ Nn

+. Let J0 denote Jacobi ideal of the
weighted homogeneous part of the function f and E0 the canonical
monomial basis of OX, O/J0. It is known ([1]) that E0 also gives a
monomial basis of OX, O/J . We use the notation E when we regard E0

as a monomial basis of OX, O/J .
Let us recall the following result (see [1]):

Lemma 2.1. There exists exactly one basis monomial in E of de-
gree n ·degw(f)− 2|w|. Monomials xκ belong to the ideal J if 〈w, κ〉 >
n · degw(f) − 2|w|.

Based on these results, we have the following:

Proposition 2.1. Any cohomology class η ∈ Hf \{0} satisfies the
following inequality:

−n · degw(f) + |w| ≤ degw(η) ≤ −|w|.

And there exist cohomology classes in Hf of degree −|w| and −n ·
degw(f) + |w|.

Proof. Since the set Λη of exponents for the cohomology class η
is a subset of Nn

+, we have degw(η) ≤ −〈w, 1〉 = −|w| where 1 =
(1, . . . , 1) ∈ Nn

+. The equality holds if and only if Λη = {1} which
corresponds to Dirac’s delta function δ = [1/(x1 · · ·xn)]. It is evident
that δ is in Hf .

Assume, for the moment, that there exists a cohomology class η ∈
Hf satisfying degw(η) < −n · degw(f) + |w|. Put degw(η) = −n ·
degw(f) + |w| − r for some positive integer r ∈ N+. Then there exists
λ = (λ1, . . . , λn) ∈ Λη such that 〈w, λ〉 = n · degw(f)− |w|+ r. Then,
for an exponent κ = λ−1 = (λ1−1, . . . , λn−1) ∈ Nn, we have xκη = cδ
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where c is a non-zero constant. On the other hand, since

degw(xκ) = 〈w, κ〉
= 〈w, λ〉 − 〈w, 1〉
= n · degw(f) − |w| + r − |w|
= n · degw(f) − 2|w| + r > n · degw(f) − 2|w|,

we have xκ ∈ J , i.e., xκη = 0, which is a contradiction.
Let e ∈ E be a monomial with the weighted-degree n·degw(f)−2|w|.

There exists a cohomology class τ ∈ Hf such that eτ ∈ Hf \ {0}. Then
we have

degw(e) + degw(τ) = n · degw(f) − 2|w| + degw(τ)
≤ degw(eτ)
≤ −|w|.

Thus degw(τ) ≤ −n · degw(f) + |w|. On the other hand, since τ ∈ Hf ,
degw(τ) ≥ −n · degw(f) + |w|. Therefore we have degw(τ) = −n ·
degw(f) + |w|. Q.E.D.

Proposition 2.2. Let η be an algebraic local cohomology class be-
longing to Hf . Then the following conditions are equivalent:

(1) degw(η) = −n · degw(f) + |w|.
(2) η generates Hf over OX, O.

Proof. It is obvious that a generator of Hf over OX, O has a degree
−n · degw(f) + |w| since a degree of any holomorphic function in OX, O

is greater than or equal to 0 and the smallest degree of classes in Hf is
−n · degw(f)+ |w|. Let σ be a generator of Hf . There exists a function
h = h(z) ∈ OX, O satisfying η = hσ. Since both η and σ are of degree
−n · degw(f) + |w|, we have degw(h) = 0 equivalently h(0) �= 0. Thus,
the function 1/h is in OX, O and σ can be represented by σ = (1/h)η.
This completes the proof. Q.E.D.

Corollary 2.1. For any basis monomial e ∈ E, there exists a
cohomology class η ∈ Hf satisfying the following condition:

( i ) eη = cδ, where δ is the delta function with support at the origin
and c is a non zero constant.

(ii) degw(η) = −|w| − degw(e).

Proof. Put d = n · degw(f) − 2|w|. Let e ∈ E be a monomial
with the weighted-degree w. It is known that the number of the basis
monomial of weighted-degree w is the same with that of d − w. Let
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e′ ∈ E be a monomial with weighted-degree d − w. Then a monomial
ee′ is in OX, 0/J . For a generator σ of Hf over OX, O, we have

degw(ee′σ) = d + degw(σ)
= (n · degw(f) − 2|w|) + (−n · degw(f) + |w|)
= −|w|.

Since the only element in Hf with the weighted-degree −|w| is the delta
function δ, we have ee′σ = cδ with some non-zero constant c. Thus the
algebraic local cohomology class η = e′σ satisfies the conditions (i) and
(ii). Q.E.D.

The next corollary is obvious from Corollary 2.1.

Corollary 2.2. Let χJ (t) =
∑p

j=1 µdj t
dj be Poincaré polynomial

of J0 where µdj ∈ N, j = 1, . . . , 	. There is a basis of Hf consisting of
µdj classes of the degree −dj − |w|.
For instance, for any generator σ over OX, O of Hf , the set {e1σ, . . . ,
eµσ} with ej ∈ E gives a basis of Hf enjoying Corollary 2.2.

In general, weighted-degrees of basis monomials of OX, O/J depend
on representatives and thus some monomial bases do not meet the con-
dition of Poincaré polynomial. In contrast, the semiquasihomogeneity of
f always warrants the existence of a basis of Hf as claimed in Corollary
2.2.

§3. Computation of the dual basis

In this section, we give a method for constructing relative Čech coho-
mologies that constitute the dual basis of E with respect to Grothendieck
local residues.

Let f0 be the quasihomogeneous part of the semiquasihomogeneous
function f ∈ OX, O. Let K0 be the set of exponents κ of basis monomials
in E0;

K0 = {κ ∈ N
n | xκ ∈ E0}.

For an exponent κ ∈ Nn, let Γκ be a set of multi indices λ ∈ Nn
+ satisfying

λ − 1 �∈ K0 and 〈w, λ〉 = 〈w, κ〉 + |w|;

Γκ = {λ ∈ N
n
+ | λ − 1 �∈ K0, 〈w, λ〉 = 〈w, κ〉 + |w|}.

We have the following:
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Proposition 3.1.
(1) For every exponent κ ∈ K0, there exists an algebraic local coho-

mology class η0, κ in Hf0 of the form

η0,κ =
[ 1
xκ+1

+
∑

λ∈Γκ

cλ
1
xλ

]
.(3.1)

(2) For K0 = {κ1, . . . , κµ}, algebraic local cohomology classes η0,κ1 ,
. . . , η0, κµ in (3.1) constitute the dual basis of E0 with respect
to Grothendieck local duality between OX, O/J0 and Hf0 .

Let H0 = {η0, κ1 , . . . , η0, κµ} be the dual basis given in Proposition
3.1 of E0. Since the basis E0 for OX, O/J0 also gives a basis E of
OX, O/J , we have the following:

Proposition 3.2. For each η0, κ ∈ H0, there exists algebraic local
cohomology class τκ satisfying Λτκ ∩Γκ = ∅ and degw(τκ) > degw(η0, κ)
or τκ = 0 such that the algebraic local cohomology class

ηκ = η0,κ + τκ(3.2)

belongs to Hf .

Let us discuss a method for constructing algebraic local cohomology
classes ηκ based on the above proposition.

There are monomials ηκ in Hf that are determined by the conditions
fxj ηκ = 0 for all j = 1, . . . , n. Note that such monomials also belong
to H0. Denote the set of these monomials ηκ in H0 by HM :

HM =
{[

1
xλ

]
∈ H0

∣∣∣∣ fxj

[
1
xλ

]
= 0, ∀j = 1, . . . , n

}
.

Let Λ0 be the set of multi indices defined by {λ ∈ Nn
+ | λ−1 ∈ K0}.

Let Lη = {λ ∈ Nn
+ | λ �∈ Λ0, 〈w, λ〉 ≤ − degw(η)} for an algebraic

local cohomology class η ∈ H0. Then, in order for ηκ given in (3.2) to
constitute the dual basis of E, we may take τκ for η0, κ ∈ H0 \HM by a
linear combination of monomials [1/xλ] with λ ∈ Lη0, κ .

We give a procedure for constructing the dual basis of E with respect
to Grothendieck duality among OX, O/J and Hf . Put Λη, xj = Λfxj

η.
Let Rη denote a set of multi indices defined by

Rη = {ν ∈ N | ∃j ∈ {1, . . . , n}, s.t., Λη,xj ∩ Λ[1/xν ], xj
�= ∅}

where N is a given set of multi indices.
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Procedure 1. Put H = HM . For each η0 = η0, k ∈ H0 \ HM ,
(1) Put η = η0 and N = Lη0 .
(2) Until Rη = ∅,

compute Rη,
put η := η +

∑
ν∈Rη

cν [1/xν ] with undetermined coeffi-
cients cν and
put N := N \ Rη.

(3) Determine coefficients cν in η by the condition
fxjη = 0 for all j = 1, . . . , n.

(4) Put H = H ∪ {η}.

Theorem 3.1. The set H of algebraic local cohomology classes
constructed by Procedure 1 gives rise to the dual basis of E.

Proof. It is obvious that each ηκj constructed by the above proce-
dure satisfies the condition

res0(ηκj , xκi) =
{

1, i = j,
0, i �= j.

It completes the proof. Q.E.D.

Example 1. Let f = x3y + y6 + axy5 with a parameter a. This
is a normal form of Z13 type semiquasihomogeneous function with the
weighted-degree degw(f) = 18 with respect to the weight vector w =
(5, 3) ∈ N2

+. The quasihomogeneous part of the function f is f0 =
x3y + y6 and thus

E = {1, y, x, y2, xy, y3, x2, xy2, xy3, y5, xy4, xy5}.

We have
[ 1
xy

]
,
[ 1
xy2

]
,
[ 1
x2y

]
,
[ 1
xy3

]
,
[ 1
x2y2

]
,
[ 1
xy4

]
,
[ 1
x3y

]
,
[ 1
x2y3

]
,

[ 1
xy5

]
,
[ 1
x2y4

]
,
[ 1
xy6

− 6
1

x4y

]
,
[ 1
x2y5

]
,
[ 1
x2y6

− 6
1

x5y

]
∈ Hf0 .

The partial derivatives of the function f are fx = 3x2y + ay5 and fy =
x3 + 6y5 + 5axy4. Then, the set HM is given by the following ten
monomials:

[ 1
xy

]
,
[ 1
xy2

]
,
[ 1
x2y

]
,
[ 1
xy3

]
,
[ 1
x2y2

]
,
[ 1
xy4

]
,

[ 1
x3y

]
,
[ 1
x2y3

]
,
[ 1
xy5

]
,
[ 1
x2y4

]
.
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Thus, in order to construct the dual basis of E, it suffices to compute
other three cohomology classes in Hf with quasihomogeneous parts

[ 1
xy6

− 6
1

x4y

]
,
[ 1
x2y5

]
,
[ 1
x2y6

− 6
1

x5y

]
.

(1) Let η0 = [(1/xy6) − 6(1/x4y)]. Then Lη0 = {(3, 2), (4, 1)}.
Put η = η0. Then Λη, x = Λη, y = {(1, 1)}.
Put N = {(3, 2), (4, 1)}.
Since Rη = {(3, 2)}, put η = η0 + c[1/x3y2].
By the condition fxη = fyη = 0, we have c = −(1/3)a.

(2) Let η0 = [1/x2y5]. Then Lη0 = {(3, 2), (4, 1), (3, 3)}.
Put η = η0. Then Λη, x = ∅ and Λη, y = {(1, 1)}.
Put N = {(3, 2), (4, 1), (3, 3)}.
Since Rη = {(4, 1)}, put η = η0 + c[1/x4y].
By the condition fxη = fyη = 0, we have c = −5a.

(3) Let η0 = [(1/x2y6) − 6(1/x5y)]. Then

Lη0 = {(3, 2), (4, 1), (3, 3), (1, 7), (4, 2), (3, 4), (5, 1)}.

Put η = η0. Then Λη, x = {(2, 1)}, Λη, y = {(2, 1), (1, 2)}.
Put N = Lη0 .
Since Rη = {(1, 7), (4, 2), (3, 3)}, put

η = η0 + s[1/xy7] + t[1/x4y2] + u[1/x3y3].

Then Λη, x = {(2, 1), (1, 2)} and Λη, y = {(2, 1), (1, 2)}.
Put N = {(3, 2), (4, 1), (3, 4), (5, 1)}.
Then, Rη = ∅.
Now, η = [(1/x2y6)−6(1/x5y)+s(1/xy7)+t(1/x4y2)+u(1/x3y3)].
By the condition fxη = fyη = 0, we have s = −(7/9)a,
t = −(1/3)a and u = (7/27)a2.

Thus, the dual basis of E with respect to Grothendieck pairing between
OX, O/J and Hf is given by

{[ 1
xy

]
,
[ 1
xy2

]
,
[ 1
x2y

]
,
[ 1
xy3

]
,
[ 1
x2y2

]
,
[ 1
xy4

]
,
[ 1
x3y

]
,
[ 1
x2y3

]
,

[ 1
xy5

]
,
[ 1
x2y4

]
,
[ 1
xy6

− 6
1

x4y
− 1

3
a

1
x3y2

]
,
[ 1
x2y5

− 5a
1

x4y

]
,

[ 1
x2y6

− 6
1

x5y
− 7

9
a

1
xy7

− 1
3
a

1
x4y2

+
7
27

a2 1
x3y3

]}
.
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§4. Applications

We give two applications of results in Section 3; one is a method for
solving a membership problem for Jacobi ideal J , the other is a method
for computing a standard basis of J .

4.1. A membership problem
Let us recall the following result which immediately follows from

Grothendieck local duality (1.1):

Proposition 4.1. Let p(x) ∈ OX, O. Then, resO(p(x), η) = 0 for
all η ∈ Hf is a necessary and sufficient condition for p(x) to be in the
ideal J .

By using the dual basis H of E constructed by Procedure 1, we can
find whether a given p(x) is in J based on Proposition 4.1. For the dual
basis H of E, let

K = ∪η∈H{κ ∈ N
n | κ + 1 ∈ Λη}

and KM = {κ ∈ K | [1/xκ+1] ∈ HM}. Then,
(1) if there are monomials xκ in p(x) with κ ∈ KM , p(x) does not

belong to the ideal J .
On the other hand, Proposition 4.1 assures that

(2) linear combinations of monomials xκ with exponents κ satisfying
κ �∈ K belong to J .

Let K(p) = {κ ∈ Nn | p(x) =
∑

aκxκ, aκ �= 0} for a function p(x)
and K ′ = K \ KM . Then, after testing the above two conditions (1)
and (2), it suffices to find if the part q(x) of a given function satisfying
K(q) ⊂ K ′ belongs to J or not. By following the procedure below, one
can solve the membership problem for the ideal J .

Procedure 2. For a given function p(x),
If K(p) ∩ KM �= ∅, then p(x) �∈ J .
Else, let q(x) be the part of p(x) given by the linear combination
of monomials xκ with κ ∈ K ′, i.e., p(x) = q(x) +

∑
κ �∈K′ cκxκ.

if q(x) satisfies resO(q(x), η) = 0 for all η ∈ H \HM , then
p(x) ∈ J .
else, p(x) �∈ J .

4.2. A standard basis
Making use of the dual basis of E constructed by the above proce-

dure, we can compute a standard basis of the ideal J . Note that the
method described below is also applicable to the case where the given
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function f contains parameters. Let us illustrate a procedure for com-
puting a standard basis of J by using examples. Following notations
will be used in examples,

Kη = {κ ∈ N
n | κ + 1 ∈ Λη}, ∆ =

∑
η∈H\HM

Kη.

Let � be the lexicographical ordering, and �w defined by

xα �w xβ ⇔ (〈w, α〉 < 〈w, β〉) or (〈w, α〉 = 〈w, β〉 and xα � xβ).

Example 2. Let us compute a standard basis of J for the same
function f with Example 1. As seen in Example 1, three algebraic local
cohomology classes

η1 =
[ 1
xy6

− 6
1

x4y
− 1

3
a

1
x3y2

]
, η2 =

[ 1
x2y5

− 5a
1

x4y

]

and

η3 =
[ 1
x2y6

− 6
1

x5y
− 7

9
a

1
xy7

− 1
3
a

1
x4y2

+
7
27

a2 1
x3y3

]

together with HM constitute the dual basis of E. Then,

Kη1 = {(2, 1), (3, 0), (0, 5)}, Kη2 = {(3, 0), (1, 4)},
Kη3 = {(2, 2), (3, 1), (4, 0), (0, 6), (1, 5)}

and

∆ = {(2, 1), (3, 0), (2, 2), (3, 1), (4, 0), (0, 5), (1, 4), (0, 6), (1, 5)}.

Put G = ∆.
(1) The exponent (2, 1) is the smallest one in ∆ with respect to �w.

Since (2, 1) is only in Kη1 , take the biggest one (0, 5) from (Kη1∩
G) \ {(2, 1)}.
Since (2, 1) �w (0, 5), put p(x, y) = x2y + sy5.
By the conditions res0(p(x, y), η1) = 0, we have p(x, y) = x2y +
(1/3)ay5 ∈ J .
Put G = G \ (G ∩ {(i, j) | i ≥ 2, j ≥ 1})

= {(3, 0), (4, 0), (0, 5), (1, 4), (0, 6), (1, 5)}.

(2) The exponent (3, 0) appears both in Kη1 and Kη2 .
Take the biggest ones (1, 4) from (Kη1 ∩ G) \ {(3, 0)} and (0, 5)
from (Kη2 ∩ G) \ {(3, 0)} respectively.
Since x3 �w y5 �w xy4, put q(x, y) = x3 + sy5 + txy4.
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By the conditions res0(q(x, y), η1) = res0(q(x, y), η2) = 0, we
have q(x, y) = x3 + 6y5 + 5axy4 ∈ J .
Put G = G \ (G ∩ {(i, j) | i ≥ 3, j ≥ 0})

= {(0, 5), (1, 4), (0, 6), (1, 5)}.

(3) While the exponent (0, 5) ∈ Kη1 is the smallest one in G, y5 can
not become the leading term of any generator of J because (Kη1∩
G) \ {(0, 5)} = ∅.
Put G = G \ {(0, 5)} = {(1, 4), (0, 6), (1, 5)}.

(4) While the exponent (1, 4) ∈ Kη2 is the smallest one in G, xy4

can not become the leading term of any generator of J because
(Kη2 ∩ G) \ {(1, 4)} = ∅.
Put G = G \ {(1, 4)} = {(0, 6), (1, 5)}.

(5) The exponent (0, 6) ∈ Kη3 is the smallest one in ∆ and the other
exponent (1, 5) in G is also belong to Kη3 .
Since (0, 6) �w (1, 5), put r(x, y) = y6 + sxy5.
By the condition res0(r(x, y), η3) = 0, we have r(x, y) = y6 +
(7/9)ax5.

By the condition of the weighted-degrees, we have y7 ∈ J . Then, we
have constructed a standard basis

{y7, y6 + (7/9)axy5, x3 + 6y5 + 5axy4, x2y + (1/3)ay5}

of the ideal J with respect to �w.

Example 3. Let us consider a plane curve defined by x = t5 and
y = t16 + t54. The defining equation of this curve is

f(x, y) = x16 − y5 + 5x14y3 − 5x28y + x54.

This is a semiquasihomogeneous function with a weighted homo-
geneous part f0(x, y) = x16 − y5 of the weighted-degree 80 with re-
spect to the weight vector w = (5, 16). Then, the dual basis Hf0

of E0 = {xiyj | 0 ≤ i ≤ 14, 0 ≤ j ≤ 3} is given by monomials
{[1/xkyl] | 1 ≤ k ≤ 15, 1 ≤ l ≤ 4}.

Since, HM = Hf0 \{[1/x15y3], [1/x14y4], [1/x15y4]}, in order to con-
struct the dual basis of E(= E0), it suffices to find cohomology classes
with terms [1/x15y3], [1/x14y4], [1/x15y4] respectively. By direct com-
putations, we obtain algebraic local cohomology classes [(1/x15y3) +
3(1/xy5)] and [(1/x14y4)− (35/8)(1/x16y)] that belong to Hf . It is easy
to verify that [(1/x15y4) − (35/8)(1/x17y) + 3(1/xy6)] belongs to Hf .
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Then, cohomology classes

η1 =
[ 1
x15y3

+ 3
1

xy5

]
, η2 =

[ 1
x14y4

− 35
8

1
x16y

]
,

η3 =
[ 1
x15y4

− 35
8

1
x17y

+ 3
1

xy6

]

together with HM constitute the dual basis of E.
In order to construct a standard basis of J , it suffices to use η1 and

η2. It is easy to see that 35x13y3 + 8x15 and 3x14y2 − y4 constitute a
standard basis of J with respect to the total lexicographic ordering.
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Abstract.

We survey the use of continued fraction expansions in the alge-
braical and topological study of complex analytic singularities. We
also prove new results, firstly concerning a geometric duality with
respect to a lattice between plane supplementary cones and secondly
concerning the existence of a canonical plumbing structure on the
abstract boundaries (also called links) of normal surface singulari-
ties. The duality between supplementary cones gives in particular
a geometric interpretation of a duality discovered by Hirzebruch be-
tween the continued fraction expansions of two numbers λ > 1 and
λ/(λ − 1).
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§1. Introduction

Continued fraction expansions appear naturally when one resolves
germs of plane curves by sequences of plane blowing-ups, or Hirzebruch-
Jung (that is, cyclic quotient) surface singularities by toric modifications.

They also appear when one passes from the natural plumbing de-
composition of the abstract boundary of a normal surface singularity to
its minimal JSJ decomposition. In this case it is very important to keep
track of natural orientations. In general, as was shown by Neumann [57],
if one changes the orientation of the boundary, the resulting 3-manifold
is no more orientation-preserving diffeomorphic to the boundary of an
isolated surface singularity. The only exceptions are Hirzebruch-Jung
singularities and cusp-singularities. This last class of singularities got



Continued fractions and surface singularities 121

its name from its appearance in Hirzebruch’s work [37] as germs at the
compactified cusps of Hilbert modular surfaces. For both classes of sin-
gularities, one gets an involution on the set of analytical isomorphism
types of the singularities in the class, by changing the orientation of the
boundary. From the viewpoint of computations, Hirzebruch saw that
both types of singularities have structures which can be encoded in con-
tinued fraction expansions of positive integers, and that the previous
involution manifests itself in a duality between such expansions.

In the computations with continued fractions alluded to before, there
appear in fact two kinds of continued fraction expansions. Some are
constructed using only additions - we call them in the sequel Euclidean
continued fractions - and the others using only subtractions - we call
them Hirzebruch-Jung continued fractions. There is a simple formula,
also attributed to Hirzebruch, which allows to pass from one type of
continued fraction expansion of a number to the other one. Both types
of expansions have geometric interpretations in terms of polygonal lines
P (σ). If (L, σ) is a pair consisting of a 2-dimensional lattice L and a
strictly convex cone σ in the associated real vector space, P (σ) denotes
the boundary of the convex hull of the set of lattice points situated inside
σ and different from the origin.

For Euclidean continued fractions this interpretation is attributed
to Klein [45], while for the Hirzebruch-Jung ones it is attributed to Cohn
[12].

It is natural to try to understand how both geometric interpretations
fit together. By superimposing the corresponding drawings, we were led
to consider two supplementary cones in a real plane, in the presence of
a lattice. By supplementary cones we mean two closed strictly convex
cones which have a common edge and whose union is a half-plane.

Playing with examples made us understand that the algebraic du-
ality between continued fractions alluded to before has as geometric
counterpart a duality between two supplementary cones in the plane
with respect to a lattice. This duality is easiest to express in the case
where the edges of the cones are irrational:

Suppose that the edges of the supplementary cones σ and σ′ are irra-
tional. Then the edges of each polygonal line P (σ) and P (σ′) correspond
bijectively in a natural way to the vertices of the other one.

When at least one of the edges is rational, the correspondence is
slightly more complicated (there is a defect of bijectivity near the in-
tersection points of the polygonal lines with the edges of the cones), as
explained in Proposition 5.3. In this duality, points correspond to lines
and conversely, as in the classical polarity relation between points and
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lines with respect to a conic. But the duality relation described in this
paper is more elementary, in the sense that it uses only parallel trans-
port in the plane. For this reason it can be explained very simply by
drawing on a piece of cross-ruled paper.

The duality between supplementary cones gives a simple way to
think about the relation between the pair (L, σ) and its dual pair (Ľ, σ̌)
and in particular about the relations between various invariants of toric
surfaces (see Section 6). Indeed (see Proposition 5.11):

The supplementary cone of σ is canonically isomorphic over the
integers with the dual cone σ̌, once an orientation of L is fixed.

As stated at the beginning of the introduction, computations with
continued fractions appear also when one passes from the canonical
plumbing structure on the boundary of a normal surface singularity to its
minimal JSJ structure. Using this, Neumann [57] showed that the topo-
logical type of the minimal good resolution of the germ is determined by
the topological type of the link. In fact all continued fractions appearing
in Neumann’s work are the algebraic counterpart of pairs (L, σ) canon-
ically determined by the topology of the boundary. Using this remark,
we prove the stronger statement (see Theorem 9.7):

The plumbing structure on the boundary of a normal surface sin-
gularity associated to the minimal normal crossings resolution is deter-
mined up to isotopy by the oriented ambient manifold. In particular,
it is invariant up to isotopy under the group of orientation-preserving
self-diffeomorphisms of the boundary.

In order to prove this theorem we have to treat separately the bound-
aries of Hirzebruch-Jung and cusp singularities. In both cases, we show
that the oriented boundary determines naturally a pair (L, σ) as before.
If one changes the orientation of the boundary, one gets a supplementary
cone. In this way, the involution defined before on both sets of singular-
ities is a manifestation of the geometric duality between supplementary
cones (see Propositions 9.3 and 9.6).

For us, the moral of the story we tell in this paper is the following
one:

If one meets computations with either Euclidean or Hirzebruch-Jung
continued fractions in a geometrical problem, it means that somewhere
behind is present a natural 2-dimensional lattice L and a couple of lines
in the associated real vector space. One has first to choose one of the
two pairs of opposite cones determined by the four lines and secondly
an ordering of the edges of those cones. These choices may be dictated
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by choices of orientations of the manifolds which led to the construction
of the lattice and the cones. So, in order to think geometrically at the
computations with continued fractions, recognize the lattice, the lines and
the orientation choices.

Let us outline now the content of the paper.
Someone who is interested only in the algebraic relations between

the Euclidean and the Hirzebruch-Jung continued fraction expansions
of a number can consult only Section 2. If one is also interested in their
geometric interpretation, one can read Sections 3 and 4.

In Section 5 we prove geometrically the relations between the two
kinds of continued fractions using the duality between supplementary
cones described before. We introduce also a new kind of graphical rep-
resentation which we call the zigzag diagram, allowing to visualize at
the same time the algebra and the geometry of the continued fraction
expansions of a number.

In Section 6 we give applications of zigzag diagrams to the algebraic
description of special curve and surface singularities, defined using toric
geometry.

Sections 8 and 9 are dedicated to the study of topological aspects of
the links of normal surface singularities, after having recalled in Section 7
general facts about Seifert, graph, plumbing and JSJ-structures on 3-
manifolds.

We think that the new results of the paper are Proposition 5.3, The-
orem 9.1 and Theorem 9.7, as well as the very easy Proposition 5.11,
which is nevertheless essential in order to understand the relation be-
tween dual cones in terms of parallelism, using Proposition 5.3.

We wrote this paper having in mind as a potential reader a grad-
uate student who wants to be initiated either to the algebra of surface
singularities or to their topology. That is why we tried to communicate
basic intuitions, often referring to the references for complete proofs.

Acknowledgments. We are very grateful to Friedrich Hirzebruch
for the historical comments he sent us, as well as to Paolo Lisca, Andras
Némethi, Bernard Teissier, Terry Wall and the anonymous referee for
their pertinent remarks and suggestions.

§2. Algebraic comparison of Euclidean and Hirzebruch-Jung
continued fractions

Definition 2.1. If x1, . . . , xn are variables, we consider two kinds
of continued fractions associated to them:
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[x1, . . . , xn]+ := x1 +
1

x2 +
1

· · · +
1
xn

[x1, . . . , xn]− := x1 −
1

x2 −
1

· · · −
1
xn

We call [x1, . . . , xn]+ a Euclidean continued fraction (abbrevi-
ated E-continued fraction) and [x1, . . . , xn]− a Hirzebruch-Jung
continued fraction (abbreviated HJ-continued fraction).

The first name is motivated by the fact that E-continued fractions
are tightly related to the Euclidean algorithm: if one applies this algo-
rithm to a couple of positive integers (a, b) and the successive quotients
are q1, . . . , qn, then a/b = [q1, . . . , qn]+. See Hardy & Wright [32],
Davenport [15] for an introduction to their arithmetics and Fowler [22]
for the relation with the Greek theories of proportions. An extended bib-
liography on their applications can be found in Brezinski [7] and Shallit
[72].

The second name is motivated by the fact that HJ-continued frac-
tions appear naturally in the Hirzebruch-Jung method of resolution of
singularities, originating in Jung [42] and Hirzebruch [35], as explained
after Definition 6.4 below.

Define two sequences (Z±(x1, . . . , xn))n≥1 of polynomials with in-
teger coefficients, by the initial data

Z±(∅) = 1, Z±(x) = x

and the recurrence relations:

Z±(x1, . . . , xn)(1)
= x1Z

±(x2, . . . , xn) ± Z±(x3, . . . , xn), ∀n ≥ 2.

Then one proves immediately by induction on n the following equal-
ity of rational fractions:

[x1, . . . , xn]± =
Z±(x1, . . . , xn)
Z±(x2, . . . , xn)

, ∀n ≥ 1.(2)
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Also by induction on n, one proves the following twin of relation (1):

Z±(x1, . . . , xn)(3)
= Z±(x1, . . . , xn−1)xn ± Z±(x1, . . . , xn−2), ∀n ≥ 2.

which, combined with (1), proves the following symmetry property:

Z±(x1, . . . , xn) = Z±(xn, . . . , x1), ∀n ≥ 1.(4)

If (y1, . . . , yk) is a finite sequence of numbers or variables and m ∈
N ∪ {+∞}, we denote by

(y1, . . . , yk)m

the sequence obtained by repeating m times the sequence (y1, . . . , yk).
By convention, when m = 0, the result is the empty sequence.

Each number λ ∈ R can be expanded as (possibly infinite) Euclidean
and Hirzebruch-Jung continued fractions:

λ = [a1, a2, . . . ]+ = [α1, α2, . . . ]−

with the conditions:

a1 ∈ Z, an ∈ N− {0}, ∀n ≥ 1(5)
α1 ∈ Z, αn ∈ N− {0, 1}, ∀n ≥ 1(6)

Of course, we consider only indices n effectively present. For an in-
finite number of terms, these conditions ensure the existence of the
limits [a1, a2, . . . ]+ := limn→+∞[a1, . . . , an]+ and [α1, α2, . . . ]− :=
limn→+∞[α1, . . . , αn]−.

Any sequence (an)n≥1 which verifies the restrictions (5) can appear
and the only ambiguity in the expansion of a number as a E-continued
fraction comes from the identity:

[a1, . . . , an, 1]+ = [a1, . . . , an−1, an + 1]+(7)

We deduce that any real number λ �= 1 admits a unique expansion
as a E-continued fraction such that condition (5) is satisfied and in the
case that the sequence (an)n is finite, its last term is different from 1.
When we speak in the sequel about the E-continued fraction expansion
of a number λ �= 1, it will be about this one. By analogy with the
vocabulary of the Euclidean algorithm, we say that the numbers (an)n≥1

are the E-partial quotients of λ.
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Similarly, any sequence (αn)n≥1 which verifies the restrictions (6)
can appear and the only ambiguity in the expansion of a number as a
HJ-continued fraction comes from the identity:

[α1, . . . , αn, (2)∞]− = [α1, . . . , αn−1, αn − 1]−(8)

We see that any real number λ admits a unique expansion as a HJ-
continued fraction such that condition (6) is satisfied and the sequence
(αn)n is not infinite and ultimately constant equal to 2. When we speak
in the sequel about the HJ-continued fraction expansion of a number λ,
it will be about this one. We call the numbers (αn)n≥1 the HJ-partial
quotients of λ.

The following lemma (see Hirzebruch [37, page 257]) can be easily
proved by induction on the integer b ≥ 1.

Lemma 2.2. If a ∈ Z, b ∈ N− {0} and x is a variable, then:

[a, b, x]+ = [a + 1, (2)b−1, x + 1]−

Using this lemma one sees how to pass from the E-continued fraction
expansion of a real number λ to its HJ-continued fraction expansion:

Proposition 2.3. If (an)n≥1 is a (finite or infinite) sequence of
positive integers, then:

[a1, . . . , a2n]+

= [a1 + 1, (2)a2−1, a3 + 2, (2)a4−1, . . . , (2)a2n−1]−

[a1, . . . , a2n+1]+

= [a1 + 1, (2)a2−1, a3 + 2, (2)a4−1, . . . , (2)a2n−1, a2n+1 + 1]−

[a1, a2, a3, a4, . . . ]+

= [a1 + 1, (2)a2−1, a3 + 2, (2)a4−1, a5 + 2, (2)a6−1, . . . ]−

(recall that, by convention, (2)0 denotes the empty sequence).

Example 2.4. 11/7 = [(1)3, 3]+ = [2, 3, (2)2]−.

Notice that this procedure can be inverted. In particular, an im-
mediate consequence of the previous proposition is that a number has
bounded E-partial quotients if and only if it has bounded HJ-partial quo-
tients. Similarly, it has ultimately periodic E-continued fraction (which
happens if and only if it is a quadratic number, see Davenport [15]) if
and only if it has ultimately periodic HJ-continued fraction. In this case,
Proposition 2.3 explains how to pass from its E-period to its HJ-period.
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The continued fraction expansions of two numbers which differ by
an integer are related in an evident and simple way. For this reason,
from now on we restrict our attention to real numbers λ > 1. The map

λ −→ λ

λ − 1
(9)

is an involution of the interval (1, +∞) on itself. The E-continued frac-
tion expansions of the numbers in the same orbit of this involution are
related in a very simple way:

Lemma 2.5. If λ ∈ (1, +∞) and λ = [a1, a2, . . . ]+ is its expan-
sion as a (finite or infinite) continued fraction, then:

λ

λ − 1
=

{
[1 + a2, a3, a4, . . . ]+, if a1 = 1,
[1, a1 − 1, a2, a3, . . . ]+, if a1 ≥ 2

The proof is immediate, once one notices that λ/(λ−1) = [1, λ−1]+.
Notice also that the involutivity of the map (9) shows that the first
equality in the previous lemma is equivalent to the second one.

Example 2.6. If λ = 11/7 = [(1)3, 3]+, then 11/4 = λ/(λ − 1) =
[2, 1, 3]+.

By combining Proposition 2.3 and Lemma 2.5, we get the following
relation between the HJ-continued fraction expansions of the numbers
in the same orbit of the involution (9):

Proposition 2.7. If λ ∈ R is greater than 1 and

λ = [(2)m1 , n1 + 3, (2)m2 , n2 + 3, . . . ]−

is its expression as a (finite or infinite) continued fraction, with mi, ni ∈
N, ∀i ≥ 1, then:

λ

λ − 1
= [m1 + 2, (2)n1 , m2 + 3, (2)n2 , m3 + 3, . . . ]−

For λ rational, this was proved in a different way by Neumann [57,
Lemma 7.2]. It reads then:

λ = [(2)m1 , n1 + 3, (2)m2 , . . . , ns + 3, (2)ms+1 ]− =⇒
λ

λ − 1
= [m1 + 2, (2)n1 , m2 + 3, . . . , (2)ns , ms+1 + 2]−

The important point here is that even a value ms+1 = 0 contributes
to the number of partial quotients in the HJ-continued fraction expan-
sion of λ/(λ − 1).
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The next proposition is equivalent to the previous one, as an easy
inspection shows. Its advantage is that it gives a graphical way to pass
from the HJ-continued fraction expansion of a number λ > 1 to the
analogous expansion of λ/(λ − 1) > 1.

Proposition 2.8. Consider a number λ ∈ R greater than 1 and
let

λ = [α1, α2, . . . ]−,
λ

λ − 1
= [β1, β2, . . . ]−

be the expressions of λ and λ/(λ−1) as (finite or infinite) HJ-continued
fractions. Construct a diagram made of points organized in lines and
columns in the following way:

• its lines are numbered by the positive integers;
• the line numbered k ≥ 1 contains αk − 1 points;
• the first point in the line numbered k + 1 is placed under the last

point of the line numbered k.
Then the k-th column contains βk − 1 points.

This graphical construction seems to have been first noticed by Rie-
menschneider in [66] when λ ∈ Q+. Nowadays one usually speaks about
Riemenschneider’s point diagram or staircase diagram.

Example 2.9. If λ = 11/7 = [2, 3, (2)2]−, the associated point
diagram is:

•
• •

•
•

One deduces from it that λ/(λ − 1) = [3, 4]−.

§3. Klein’s geometric interpretation of Euclidean continued
fractions

We let Klein [46] himself speak about his interpretation, in order to
emphasize his poetical style:

Let us now enliven these considerations with geometric pic-

tures. Confining our attention to positive numbers, let us mark

all those points in the positive quadrant of the xy plane which

have integral coordinates, forming thus a so-called point lattice.

Let us examine this lattice, I am tempted to say this “firma-

ment” of points, with our point of view at the origin. [. . . ]
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Looking from 0, then, one sees points of the lattice in all ra-

tional directions and only in such directions. The field of view

is everywhere “densely” but not completely and continuously

filled with “stars”. One might be inclined to compare this

view with that of the milky way. With the exception of 0 it-

self there is not a single integral point lying upon an irrational

ray x/y = ω, where ω is irrational, which is very remark-

able. If we recall Dedekind’s definition of irrational number,

it becomes obvious that such a ray makes a cut in the field

of integral points by separating the points into two point sets,

one lying to the right of the ray and one to the left. If we

inquire how these point sets converge toward our ray x/y = ω,

we shall find a very simple relation to the continued fraction

for ω. By marking each point (x = pν , y = qν), corresponding

to the convergent pν/qν , we see that the rays to these points

approximate to the ray x/y = ω better and better, alternately

from the left and from the right, just as the numbers pν/qν

approximate to the number ω. Moreover, if one makes use of

the known number-theoretic properties of pν , qν , one finds the

following theorem: Imagine pegs or needles affixed at all the in-

tegral points, and wrap a tightly drawn string about the sets of

pegs to the right and to the left of the ω-ray, then the vertices of

the two convex string-polygons which bound our two point sets

will be precisely the points (pν , qν) whose coordinates are the

numerators and denominators of the successive convergents to

ω, the left polygon having the even convergents, the right one

the odd. This gives a new and, one may well say, an extremely

graphical definition of a continued fraction.

In the original article [45], one finds moreover the following inter-
pretation of the E-partial quotients:

Each edge of the polygons [. . . ] may contain integral points.

The number of parts in which the edge is decomposed by such

points is exactly equal to a partial quotient.

Before Klein, Smith expressed a related idea in [73]:

If with a pair of rectangular axes in a plane we construct a

system of unit points (i.e. a system of points of which the

coordinates are integral numbers), and draw the line y = θx,

we learn from that theorem that if (x, y) be a unit point lying

nearer to that line than any other unit point having a less

abscissa (or, which comes to the same thing, lying at a less

distance from the origin), y/x is a convergent to θ; and, vice
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versa, if y/x is a convergent, (x, y) is one of the ‘nearest points’.

Thus the ‘nearest points’ lie alternately on opposite sides of the

line, and the double area of the triangle, formed by the origin

and any two consecutive ‘nearest points’, is unity.

Proofs of the preceding properties can be found in Stark [75]. Here
we only sketch the reason of Klein’s interpretation. For explanations
about our vocabulary, read next section.

Let λ > 1 be a real number. In the first quadrant σ0, consider
the half-line Lλ of slope λ (see Fig. 1). It is defined by the equation
y = λx, which shows that λ = ω−1 = θ, where ω is Klein’s notation and
θ is Smith’s. It subdivides the quadrant σ0 into two closed cones with
vertex the origin, σx(λ) adjacent to the axis of the variable x and σy(λ)
adjacent to the axis of the variable y.

Lemma 3.1. The segment which joins the lattice points of coor-
dinates (1, 0) and (1, a1) is a compact edge of the convex hull of the set
of lattice points different from the origin contained in the cone σx(λ),
where λ = [a1, a2, . . . ]+ is the E-continued fraction expansion of λ.

Proof. Indeed, the half-line starting from (1, 0) and directed to-
wards (1, a1) cuts the half-line Lλ inside the segment [(1, [λ]), (1, [λ] +
1)), where [λ] is the integral part of λ. But [λ] = a1, which finishes the
proof. Q.E.D.

(1, a1)

\/

(0,1)

(1,0)

L

x

y

Fig. 1. Figure illustrating the proof of Lemma 3.1

Replace now the initial basis of the lattice by (0, 1), (1, a1). With
respect to this new basis, the slope of the half-line Lλ is (λ − a1)−1 =
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[a2, a3, . . . ]+. This allows one to prove Klein’s interpretation by induc-
tion.

If one considers all lattice points on the compact edges of the bound-
aries of the two previous convex hulls instead of only the vertices, and
then one looks at the slopes of the lines which join them to the origin,
one obtains the so-called slow approximating sequence of λ. This kind
of sequence appears naturally when one desingularizes germs of complex
analytic plane curves by successively blowing up points (see Enriques &
Chisini [19], Michel & Weber [53] and Lê, Michel & Weber [51]). We
leave as an exercise for the interested reader to interpret this geometri-
cally (first, read Section 6.3).

As explained by Klein himself in [45], his interpretation suggests
to generalize the notion of continued fraction to higher dimensions by
taking the boundaries of convex hulls of lattice points situated inside
convex cones. For references about recent research in this area, see
Arnold [1] and Moussafir [54].

§4. Cohn’s geometric interpretation of Hirzebruch-Jung con-
tinued fractions

A geometric interpretation of HJ-continued fractions analogous to
Klein’s interpretation of Euclidean ones was given by Cohn [12] (see
the comment on his work in Hirzebruch [37, 2.3]). It seems to have
soon become folklore among people doing toric geometry (see Section 6).
Before describing this interpretation, let us introduce some vocabulary
in order to speak with more precision about convex hulls of lattice points
in the plane.

Let L be a lattice of rank 2, that is, a free abelian group of rank 2. It
embeds canonically into the associated real vector space LR = L ⊗Z R.
When we picture the elements of L as points in the affine plane LR, we
call them the integral points of the plane. When A and B are points
of the affine plane LR, we denote by AB the element of the vector
space LR which translates A into B, by [AB] the closed segment in
LR of extremities A, B and by [AB the closed half-line having A as an
extremity and directed towards B.

If (u, v) is an ordered basis of LR and l is a line of LR, its slope is
the quotient β/α ∈ R ∪ {∞}, where αu + βv generates l.

Definition 4.1. A (closed convex) triangle ABC in LR is called
elementary if its vertices are integral and they are the only intersections
of the triangle with the lattice L.
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If the triangle ABC is elementary, then each pair of vectors (AB,AC),
(BC, BA), (CA, CB) is a basis of the lattice L. Conversely, if one of
these pairs is a basis of the lattice, then the triangle is elementary.

We call a line or a half-line in LR rational if it contains at least two
integral points. If so, then it contains an infinity of them. If A and B
are two integral points, the integral length lZ[AB] of the segment [AB] is
the number of subsegments in which it is divided by the integral points
it contains. A vector OA of L is called primitive if lZ[OA] = 1.

Let σ be a closed strictly convex 2-dimensional cone in the plane
LR, that is, the convex “angle” (in the language of plane elementary
geometry) delimited by two non-opposing half-lines originating from 0.
These half-lines are called the edges of σ. The cone σ is called rational if
its edges are rational. A cone is called regular if its edges contain points
A, B such that the triangle OAB is elementary. The name is motivated
by the fact that the associated toric surface Z(L, σ) is smooth (that is,
all its local rings are regular) if and only if σ is regular (see Section 6.1).

Let K(σ) be the convex hull of the set of lattice points situated
inside σ, with the exception of the origin, that is:

K(σ) := Conv(σ ∩ (L − {0})).

The closed convex set K(σ) is unbounded. Denote by P (σ) its boundary:
it is a connected polygonal line. It has two ends (in the topological
sense), each one being asymptotic to (or contained inside) an edge of σ
(see Fig. 2). An edge of σ intersects P (σ) if and only if it is rational.

Denote by V(σ) the set of vertices of P (σ) and by E(σ) the set
of its (closed) edges. For example, in Fig. 3 the vertices are the points
A0, A2, A5 and the edges are the segments [A0A2], [A2A5] and two half-
lines contained in l−, l+, starting from A0, respectively A5.

Now order arbitrarily the edges of σ. Denote by l− the first one
and by l+ the second one. This orients the plane LR, by deciding to
turn from l− towards l+ inside σ. If we orient P (σ) from the end which
is asymptotic to l− towards the end which is asymptotic to l+, we get
induced orientations of its edges.

Suppose now that the edge l− of σ is rational. Denote then by
A− �= 0 the integral point of the half-line l− which lies nearest to 0, and
by V− �= A− the vertex of P (σ) which lies nearest to A−. Define in the
same way A+ and V+ whenever l+ is rational. Denote by (An)n≥0 the
sequence of integral points on P (σ), enumerated as they appear when
one travels on this polygonal line in the positive direction, starting from
A0 = A−. If l+ is a rational half-line, then we stop this sequence when
we arrive at the point A+. If l+ is irrational, then this sequence is
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Fig. 2. The polygonal line associated to a convex cone

infinite. Define r ≥ 0 such that Ar+1 = A+. So, r = +∞ if and only if
l+ is irrational.

Example 4.2. We consider the lattice Z2 ⊂ R2 and the cone
σ with rational edges, generated by the vectors (1, 0) and (4, 11) (see
Fig. 3). The small dots represent integral points in the plane and the
bigger ones represent integral points on the polygonal lines P (σ). In this
example we have V+ = V− = A2.
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Fig. 3. An illustration of Example 4.2

Each triangle OAnAn+1 is elementary, by the construction of the
convex hull K(σ), which implies that all the couples (OAn, OAn+1) are
bases of L. This shows that for any n ∈ {1, . . . , r}, one has a relation
of the type:

OAn+1 + OAn−1 = αn · OAn(10)
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with αn ∈ Z, and the convexity of K(σ) shows that:

αn ≥ 2, ∀n ∈ {1, . . . , r}(11)

Conversely:

Proposition 4.3. Suppose that (OAn)n≥0 is a (finite or infinite)
sequence of primitive vectors of L, related by relations of the form (10).
Then we have

OAn = Z−(α1, . . . , αn−1)OA1 − Z−(α2, . . . , αn−1)OA0, ∀n ≥ 1

and the slope of the half-line l+ = limn→∞[OAn) in the base
(−OA0, OA1) is equal to [α1, α2, . . . ]−.

Proof. Recall that the polynomials Z− were defined by the recur-
sion formula (1). The first assertion can be easily proved by induc-
tion, using the relations (10). The second one is a consequence of for-
mula (2), which shows that the slope of the half-line [OAn in the base
(−OA0, OA1) is equal to [α1, . . . , αn−1]−. Q.E.D.

Proposition 4.4. Let σ be the closure of the convex hull of the
union of the half-lines ([OAn)n≥0. Then σ is strictly convex and the
points {An}n≥1 are precisely the integral points on the compact edges of
the polygonal line P (σ) if and only if the conditions (11) are satisfied
and the sequence (αn)n≥1 is not infinite and ultimately constant equal
to 2.

Proof. • What remains to be proved about the necessity is that if
the sequence (αn)n≥1 is infinite, then it cannot be ultimately constant
equal to 2. If this was the case, by relation (8) we would deduce that
[α1, α2, . . . ]− is rational, and Proposition 4.3 would imply that l+ is
rational. Then P (σ) would contain a finite number of integral points on
its compact edges, which would contradict the infinity of the sequence
(αn)n≥1.

• Let us prove now the sufficiency. As αn ≥ 2, ∀n ∈ {1, . . . , r}, we
see that the triangles (OAnAn+1)n≥0 turn in the same sense. Moreover,
Proposition 4.3 shows that σ is a strictly convex cone. The vertices of
the polygonal line P = A0A1A2 . . . are precisely those points An for
which αn ≥ 3. As all the triangles OAnAn+1 are elementary, we see
that the origin O is the only integral point of the connected component
of σ − P which contains it. Moreover, conditions (11) show that the
other component is convex. So, P ⊂ P (σ).

The proposition is proved. Q.E.D.
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§5. Geometric comparison of Euclidean and HJ-continued
fractions

In Section 5.1 we relate the two preceding interpretations, by de-
scribing a duality between two supplementary cones in the plane, an
underlying lattice being fixed (see Proposition 5.3). In Section 5.2 we
introduce a so-called zigzag diagram based on this duality, which makes
it very easy to visualize the various relations between continued fractions
proved algebraically in Section 2. In Section 5.3 we give a proof of the
isomorphism between the supplementary cone (L, σ′) and the dual cone
(Ľ, σ̌) of a given cone (L, σ).

5.1. A geometric duality between supplementary cones

Suppose again that σ is any strictly convex cone in LR, whose edge
l− is not necessarily rational. Let l′− be the half-line opposite to l− and
σ′ be the closed convex cone bounded by l+ and l′−. So, σ and σ′ are
supplementary cones:

Definition 5.1. Two strictly convex cones in a real plane are
called supplementary if they have a common edge and if their union
is a half-plane.

By analogy with what we did in the previous section for σ, orient
the polygonal line P (σ′) from l′− towards l+. If l− is rational, define
the point A′

− and the sequence (A′
n)n≥0, with A′

0 = A′
−. They are

the analogs for σ′ of the points A− and (An)n≥0 for σ. In particular,
OA− + OA′

− = 0.

Example 5.2. Consider the same cone as in Example 4.2. Then
the polygonal lines P (σ) and P (σ′) are represented in Fig. 4 using heavy
segments.

The basis for our geometric comparison of Euclidean and Hirzebruch-
Jung continued fractions is the observation that the polygonal line P (σ′)
can be constructed in a very simple way once one knows P (σ). Namely,
starting from the origin, one draws the half-lines parallel to the oriented
edges of P (σ). On each half-line, one considers the integer point which
is nearest to the origin. Then the polygonal line which joins those points
is the union of the compact edges of P (σ′).

Now we describe this with more precision. If e ∈ E(σ) is an edge of
P (σ), denote by I(e) ∈ L the integral point such that OI(e) is a primi-
tive vector of L positively parallel to e (where e is oriented according to
the chosen orientation of P (σ)). Then it is an easy exercise to see that
I(e) ∈ σ′ (use the fact that the line containing e intersects l− and l+ in
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Fig. 4. An illustration of Example 5.2

interior points). We can define a map:

I : E(σ) −→ σ′ ∩ L
e −→ I(e)(12)

As the edges of P (σ) always turn in the same direction, one sees that
the map I is injective.

Proposition 5.3. The map I respects the orientations and the
image of I verifies the double inclusion

V(σ′) ⊂ Im(I) ⊂ P (σ′) ∩ L.

The difference Im(I) − V(σ′) contains at most the points I[A−V−],
I[V+A+]. Such a point is a vertex of P (σ′) if and only if the inte-
gral length of the corresponding edge of P (σ) is ≥ 2. In particular,
one has the equality V(σ′) = Im(I) if and only if lZ[A−V−] ≥ 2 and
lZ[V+A+] ≥ 2, whenever these segments exist.

Proof. Denote by (Vj)j∈J the vertices of P (σ), enumerated in the
positive direction. The indices form a set of consecutive integers, well-
defined only up to translations.

For any j ∈ J , denote by V −
j and V +

j respectively the integral
points of P (σ) which precede and follow Vj . If Vj is an interior point of
σ, denote by Wj ∈ L the point such that OWj = OV −

j + OV +
j , and by

W−
j its nearest integral point in the interior of the segment [OWj ] (see

Fig. 5).
As OV −

j Vj and OVjV
+
j are elementary triangles, it implies that both

(OV −
j , OVj) and (OVj , OV +

j ) are bases of L. So, there exists an integer
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Fig. 5. The first illustration for the proof of Proposition 5.3

nj such that

OV −
j + OV +

j = (nj + 3)OVj .(13)

As Vj is a vertex of P (σ), we see that nj ≥ 0. We deduce that the points
O, Vj , W−

j , Wj are aligned in this order, that VjV
−
j + VjV

+
j = VjW

−
j

and that lZ[VjW
−
j ] = nj + 1.

Let us join each one of the nj interior points of [VjW
−
j ] to V −

j . This
gives a decomposition of the triangle V −

j VjW
−
j into (nj + 1) triangles.

These are necessarily elementary, because the triangle OV −
j Vj is. Denote

V ′
j = I[Vj−1Vj ] and V ′

j+1 = I[VjVj+1].

By the definition of the map I, we see that OV ′
j = V −

j Vj and OV ′
j+1 =

VjV
+
j = V −

j W−
j . This implies that the triangle OV ′

j V ′
j+1 is the trans-

lated image by the vector V −
j O of the triangle V −

j VjW
−
j . The preceding

arguments show that its only integral points are its vertices and nj other
points in the interior of the segment [V ′

j V ′
j+1]. Indeed:

V ′
j V ′

j+1 = VjW
−
j = (nj + 1)OVj(14)

Moreover, the triangle OV ′
j V ′

j+1 is included in the cone σ′ and the couple
of vectors (OV ′

j , OV ′
j+1) has the same orientation as (l′−, l+).
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This shows that the triangles (OV ′
j V ′

j+1)j∈J are pairwise disjoint
and that their union does not contain integral points in its interior.

• If both edges of σ are irrational, then the closure of the union
of the cones R+OV ′

j + R+OV ′
j+1 is the cone σ′, as the edges l− and

l+ are asymptotic to P (σ). We deduce from relation (14) that the se-
quence (λj)j∈J of slopes of the vectors (V ′

j V ′
j+1)j∈J , expressed in a base

(u−, u+) of LR which verifies l± = R+u± is strictly increasing, and that
limj→−∞ λj = 0, limj→+∞ λj = +∞. This shows that the closure of the
connected component of σ′ −

⋃
j∈J [V ′

j V ′
j+1] which does not contain the

origin is convex. As a consequence,⋃
j∈J

[V ′
j V ′

j+1] = P (σ′).

Moreover, as nj ≥ 0, the strict monotonicity of the sequence (λj)j∈J

implies that the points (V ′
j )j∈J are precisely the vertices of P (σ′). The

proposition is proved in this case.
• Suppose now that l− is rational. Then choose the index set J such

that V0 = A− and V1 = V−. By the construction of the map I, the
triangle OV ′

0V ′
1 is the translated image of V0OV +

0 by the vector V0O (see
Fig. 6).
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Fig. 6. The second illustration for the proof of Proposi-
tion 5.3

In particular, V ′
0V ′

1 = OV +
0 . But V ′

1V ′
2 = (n1 + 1)OV1 by relation

(14), which shows that the vectors V ′
0V ′

1 and V ′
1V ′

2 are proportional if
and only if V +

0 = V1, which is equivalent to lZ[A−V−] = 1. Moreover,
the property of monotonicity for the slopes of the vectors (V ′

j V ′
j+1)j∈J

is true as before, if one starts from j = 0.
• An analogous reasoning is valid for l+ if this edge of σ is rational.

By combining all this, the proposition is proved. Q.E.D.
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The previous proposition explains a geometric duality between the
supplementary cones σ, σ′ with respect to the lattice L. We see that,
with possible exceptions for the compact edges which intersect the edges
of σ and σ′, the compact edges of P (σ) correspond to the vertices of
P (σ′) interior to σ′ and conversely (by permuting the roles of σ and σ′),
which is a kind of point-line polarity relation.

The next corollary shows that the involution (9) studied algebraically
in Section 2 is closely related to the previous duality.

Corollary 5.4. Suppose that l− is rational and that σ is not reg-
ular. If (OA′

0, U) is a basis of L with respect to which the slope of l+
is greater than 1, then U = OA1. If λ > 1 denotes the slope of the
half-line l+ in the base (OA′

0, OA1), then λ/(λ − 1) is its slope in the
base (OA0, OA′

1).

Proof. We leave the first affirmation to the reader (look at Fig. 6).
As the triangles OA0A1 and OA′

0A
′
1 are elementary, we see that

(OA0, OA1) and (OA′
0, OA′

1) are indeed two bases of the lattice L.
Proposition 5.3 shows that OA′

0 = A0A1, which allows us to relate the
two bases: {

OA′
0 = −OA0

OA′
1 = OA1 − OA0

(15)

Let v ∈ LR be a vector which generates the half-line l+. We want
to express it in these two bases. As l+ lies between the half-lines [OA′

0

and [OA1, we see that:

v = −qOA0 + pOA1, with p, q ∈ R∗
+(16)

The equations (15) imply then that:

v = −(p − q)OA′
0 + pOA′

1(17)

which shows that p − q > 0, as l+ lies between the half-lines [OA′
1 and

[OA0. This implies that λ := p/q > 1. We then deduce the corollary
from equation (17). Q.E.D.

The previous corollary shows that the number λ > 1 can be canon-
ically attached to the pair (L, σ), once a rational edge of σ is chosen as
the first edge l−. This motivates the following definition:

Definition 5.5. Suppose that l− is rational and that the cone σ
is not regular. We say that the pair (L, σ) with the chosen ordering of
sides is of type λ > 1 if λ is the slope of the half-line l+ in the base
(OA′

0, OA1).
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Proposition 4.3 shows that, if (L, σ) is of type λ > 1, then λ =
[α1, α2, . . . ]−, where the sequence (αn)n≥1 was defined using relation
(10).

Suppose now that both edges of σ are rational. Then one can choose
p, q ∈ N∗ with gcd(p, q) = 1 in relation (16), condition which determines
them uniquely. So, λ = p/q. The following proposition describes the
type of (L, σ) after changing the ordering of the sides.

Proposition 5.6. If (L, σ) is of type p/q with respect to the or-
dering l−, l+, then it is of type p/q with respect to the ordering l+, l−,
where qq ≡ 1(mod p).

Proof. By relation (16), we have OA+ = −qOA−+pOA1. Multiply
both sides by q. By the definition of q, there exists k ∈ N such that
qq = 1 + kp. We deduce that OA− = −qOA+ + p(qOA1 − kOA−).
So, (−OA+, qOA1 − kOA−) is a base of L in which the slope of l− is
p/q > 1. By the first affirmation of Corollary 5.4, the proposition is
proved. Q.E.D.

By combining the previous proposition with Proposition 4.3, we
deduce the following classical fact (see [4, section III.5]):

Corollary 5.7. If p/q = [α1, α2, . . . , αr]−, then
p/q = [αr, αr−1, . . . , α1]−.

Another immediate consequence of Corollary 5.4 is:

Proposition 5.8. If (L, σ) is of type p/q with respect to the or-
dering l−, l+, then (L, σ′) is of type p/(p−q) with respect to the ordering
l′−, l+.

The previous proposition describes the relation between the types
of two supplementary cones. In Section 5.2, we describe more precisely
the relation between numerical invariants attached to the edges and the
vertices of P (σ) and P (σ′).

5.2. A diagram relating Euclidean and HJ-continued frac-
tions

We introduce now a diagram which allows one to “see” the duality
between P (σ) and P (σ′), as well as the relations between the various
numerical invariants attached to these polygonal lines.

• Suppose first that both l− and l+ are irrational. Consider two
consecutive vertices Vj , Vj+1 of P (σ). Let us attach the weight nj +3 to
the vertex Vj , where nj ≥ 0 was defined by relation (13). Introduce also
the integer mj+1 ≥ 0 such that lZ[VjVj+1] = mj+1+1. The relation (14)
shows that lZ[V ′

j V ′
j+1] = nj + 1. By reversing the roles of the polygonal
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lines P (σ′) and P (σ), we deduce that the weight of the vertex V ′
j+1 of

P (σ′) is mj+1 + 3.
We can visualize the relations between the vertices Vj , Vj+1, V

′
j , V ′

j+1

as well as the numbers associated to them and to the segments [VjVj+1],
[V ′

j V ′
j+1] by using a diagram, in which the heavy lines represent the

polygonal lines P (σ), P (σ′), and each vertex Vj is joined to V ′
j and V ′

j+1

(see Fig. 7). In this way, the region contained between the two curves
representing P (σ) and P (σ′) is subdivided into triangles. Each edge E
of P (σ), P (σ′) is contained in only one of those triangles. Look at its
opposite vertex. We say that E is the opposite edge of that vertex in
the zigzag diagram. We see that the weight of a vertex is equal to the
length of the opposite edge augmented by 2.

P ( )o− P ( )o−

Vj+1

V
m +

n +1
V

n + 3

n

V

m

j

j

j

jj

j

j

j

m +j+1 3

3

+1

+1

+1

+ 3

+1

Fig. 7. Local aspect of the zigzag diagram

As an edge and its opposite vertex are dual through the morphism
I (see Proposition 5.3) and its analog I ′ attached to the cone σ′, the
triangles appearing in the zigzag diagram are a convenient graphical
representation of the duality explained in Section 5.1.

• When l− is rational and l+ is irrational, we draw a little differ-
ently the diagram (see Fig. 8). The curves representing P (σ) and P (σ′)
start from points V0 and V ′

0 of a horizontal line representing the line
which contains l−. We represent the integral point V ′

1 differently from
the points V ′

2 , V ′
3 , . . . , because it may not be a vertex of P (σ′), as ex-

plained in Proposition 5.3. The length of [V ′
0V ′

1 ] is always 1. The relation
between the length of an edge and the weight of the opposite vertex is
the same as before, with the exception of the triangle V ′

1V0V1, where the
weight of V ′

1 is equal to lZ[V0V1] + 1.
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Fig. 8. The zigzag diagram when l− is rational

• When both l− and l+ are rational and there is at least one vertex
on P (σ) lying strictly between A− and A+ (that is, s ≥ 1), the curves
representing P (σ) and P (σ′) start again from a horizontal line, but now
they join in a point A+ (see Fig. 9).
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Fig. 9. The zigzag diagram when both l− and l+ are ratio-
nal
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• When both l− and l+ are rational and [A−A+] is an edge of P (σ)
(that is, s = 0), the diagram is represented in Fig. 10.

V0= A − V0=A−

V1

−P ( )o P ( )o−

l−l −

A+

m1+ 1m1+1

1

O

1

Fig. 10. The zigzag diagram when P (σ) has only one com-
pact edge

To summarize, we have the following procedure for constructing and
decorating the diagram when l− is rational:

Procedure. Suppose that l− is rational. Then draw a horizontal
line with three marked points V ′

0 = A′
−, O, V0 = A− in this order, V ′

0 on
the left and V0 on the right. Starting from V ′

0 and V0, draw in the upper
half-plane two curves P (σ′), respectively P (σ), concave towards 0 and
coming closer and closer from one another. If l+ is rational, join them in
a point A+. Draw a zigzag line starting from V0 and going alternatively
from P (σ) to P (σ′). Denote its successive vertices by V ′

1 , V1, V ′
2 , . . .

and stop at the point V ′
s+1. Decorate the edges V ′

0V ′
1 and V ′

s+1A+ by
1. The other edges and vertices will be decorated using the initial data
(discussed in the sequel), by respecting the following rule:

Rule. The weight of a vertex is equal to the length of the opposite
edge augmented by the number of its vertices distinct from the points
A−, A′

−, A+.

Initial data. If σ is of type λ, write the HJ-continued fraction
expansion of λ in the form:

λ = [(2)m1 , n1 + 3, (2)m2 , n2 + 3, . . . ]−(18)

Then decorate the edges of P (σ) with the numbers m1 + 1, m2 + 1, . . .
and the vertices with the numbers n1 + 3, n2 + 3, . . . .
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Definition 5.9. We call the previous diagram the zigzag dia-
gram associated to the pair (L, σ) and to the chosen ordering of the
edges of σ, or to the number λ > 1, where (L, σ) is of type λ with
respect to this ordering. We denote it by ZZ(λ).

The zigzag diagrams allow one to visualize the relations between
Euclidean and Hirzebruch-Jung continued fractions, proved algebraically
in Section 2. Indeed, one can read the HJ-continued fraction expansion
of λ > 1 on the right-hand curved line of ZZ(λ). By Corollary 5.4, we
can read the HJ-continued fraction expansion of λ/(λ − 1) on the left-
hand curved line P (σ) of ZZ(λ). So, by looking at Fig. 9, which can be
easily constructed from the initial data by respecting the rule, we get:

λ

λ − 1
= [m1 + 2, (2)n1 , m2 + 3, (2)n2 , m3 + 3, . . . ]−(19)

which gives a geometric proof of Proposition 2.7.
Now, by Klein’s geometric interpretation of E-continued fractions

(see Section 3), we see that the E-continued fraction expansion of λ/(λ−
1) can be obtained by writing alternatively the integral lengths of the
edges of the polygonal lines P (σ) and P (σ′)− [V ′

0V ′
1 ] (indeed, λ/(λ− 1)

is the slope of l+ in the base (OV0, OV ′
1 )):

λ

λ − 1
= [m1 + 1, n1 + 1, m2 + 1, n2 + 1, m3 + 1, . . . ]+.(20)

This proves geometrically Proposition 2.3.
In order to read the E-continued fraction expansion of λ on the

diagram, one has to look at ZZ(λ) from left to right instead of from
right to left and draw a new zigzag line starting from V ′

0 . The important
point here is that one has to discuss according to the alternative m1 = 0
or m1 > 0. In the first case, the zigzag line joins V ′

0 to V1 and V1 to V ′
2 .

In the second case, it joins V ′
0 to a new point representing A1 and A1 to

V ′
1 . Compare this with Lemma 2.5.

Example 5.10. Take λ = 11/7. After computing λ = [2, 3, 2, 2]−,
we can construct the associated zigzag diagram ZZ(11/7). We see that
the extreme points V ′

1 , V ′
2 are vertices of P (σ′). One can read on it the

results of the Examples 2.4, 2.6, 2.9.
If one had starts instead from λ = 11/4 = [3, 4]−, the corresponding

diagram would be ZZ(11/4). In this case the extreme points are not
vertices of P (σ′), because their weights are equal to 2.
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Fig. 11. The first illustration for Example 5.10: ZZ(11/7)
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Fig. 12. The second illustration for Example 5.10:
ZZ(11/4)

5.3. Relation with the dual cone
Denote by Ľ := Hom(L, Z) the dual lattice of L. Inside the associ-

ated vector space ĽR lives the dual cone σ̌ of σ, defined by:

σ̌ := {ǔ ∈ ĽR | ǔ.u ≥ 0, ∀u ∈ σ}.

Let ω be the volume form on LR which verifies ω(u1, u2) = 1 for
any basis (u1, u2) of L defining the opposite orientation to (l−, l+). It
is a symplectic form, that is, a non-degenerate alternating bilinear form
on LR. But we prefer to look at it as a morphism (obtained by making
interior products with the elements of L):

ω : L −→ Ľ.

Proposition 5.11. The mapping ω realizes an isomorphism be-
tween the pairs (L, σ′) and (Ľ, σ̌).

Proof. Indeed we have:

ω−1(σ̌) = {u ∈ L | ω(u) ∈ σ̌} = {u ∈ L | ω(u, v) ≥ 0, ∀v ∈ L} = σ′.
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While writing the last equality, we used our convention on the orientation
of ω. Notice that the dual cone σ̌ can be defined without the help of
any orientation, in contrast with the morphism ω. Q.E.D.

The previous proposition shows that the construction of the polyg-
onal line P (σ′) explained in Proposition 5.3 describes also the polygonal
line P (σ̌). This observation is crucial when one wants to use zigzag dia-
grams for understanding computations with invariants of toric surfaces
(see next section).

It also helps to understand geometrically the duality between the
convex polygons K(σ) and K(σ̌) explained in Gonzalez-Sprinberg [30]
and in Oda [60, pages 27-29]. As Dimitrios Dais kindly informed us after
seeing a version of this paper on ArXiv, a better algebraic understanding
of that duality is explained in Dais, Haus & Henk [14, Section 3]. In
particular, modulo Proposition 5.11, the Theorem 3.16 in the previous
reference leads easily to an algebraic proof of our Proposition 5.3.

(Added in proof) Emmanuel Giroux has informed us that he had
realized the existence of a duality between supplementary cones (see
[25, section 1.G]).

§6. Relations with toric geometry

First we introduce elementary notions of toric geometry (see Sec-
tion 6.1). In Section 6.2 we explain how to get combinatorially vari-
ous invariants of a normal affine toric surface and of the corresponding
Hirzebruch-Jung analytic surface singularities. In Section 6.3 we explain
how to read the combinatorics of the minimal embedded resolution of a
plane monomial curve on an associated zigzag diagram.

The basics about resolutions of surface singularities needed in order
to understand this section are recalled in Section 8.1.

6.1. Elementary notions of toric geometry
For details about toric geometry, general references are the books

of Oda [60] and Fulton [23], as well as the first survey of it by Kempf,
Knudson, Mumford & St. Donat [44].

In the previous section, our fundamental object of study was a pair
(L, σ), where L is a lattice of rank 2 and σ is a strictly convex cone in
the 2-dimensional vector space LR.

Suppose now that the lattice L has arbitrary finite rank d ≥ 1 and
that σ is a strictly convex rational cone in LR. The pair (L, σ) gives
rise canonically to an affine algebraic variety:

Z(L, σ) := SpecC[σ̌ ∩ Ľ].
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This means that the algebra of regular functions on Z(L, σ) is gen-
erated by the monomials whose exponents are elements of the semigroup
σ̌ ∩ Ľ of integral points in the dual cone of σ. If v ∈ σ̌ ∩ Ľ, we formally
write such a monomial as Xv. One can show that the variety Z(L, σ)
is normal (see the definition at the beginning of Section 8.1).

The closed points of Z(L, σ) are the morphisms of semigroups (σ̌ ∩
Ľ, +) → (C, · ). Among them, those whose image is contained in C∗

form a d-dimensional algebraic torus TL = SpecC[Ľ], that is, a complex
algebraic group isomorphic to (C∗)d. The elements of L correspond to
the 1-parameter subgroups of TL, that is, the group morphisms (C∗, · ) →
(TL, · ). The action of TL on itself by multiplication extends canonically
to an algebraic action on Z(L, σ), such that TL is the unique open
orbit. If (L, σ) is a second pair and φ : L → L is a morphism such that
φ(σ) ⊂ σ, one gets an associated toric morphism:

φ∗ : Z(L, σ) → Z(L, σ)

It is birational if and only if φ realizes an isomorphism between L and L.
In this case φ∗ identifies the tori contained inside Z(L, σ) and Z(L, σ).

In general:

Definition 6.1. Given an algebraic torus T , a toric variety Z
is an algebraic variety containing T as a dense Zariski open set and en-
dowed with an action T ×Z → Z which extends the group multiplication
of T .

Oda [60] and Fulton [23] study mainly the normal toric varieties. For
an introduction to the study of non-necessarily normal toric varieties,
one can consult Sturmfels [76] and González Pérez & Teissier [29].

A normal toric variety can be described combinatorially using fans,
that is finite families of rational strictly convex cones, closed under the
operations of taking faces or intersections. If L is a lattice and F is a
fan in LR, we denote by Z(L, F) the associated normal toric variety. It
is obtained by glueing the various affine toric varieties Z(L, σ) when σ
varies among the cones of the fan F . As glueing maps, one uses the toric
birational maps Z(L, σ) → Z(L, σ) induced by the inclusion morphisms
(L, σ) → (L, σ), for each pair σ ⊂ σ of cones of F .

The variety Z(L, F) is smooth if and only if each cone of the fan F
is regular, that is, generated by a subset of a basis of the lattice L.

6.2. Toric surfaces
We restrict now to the case of surfaces. Consider a 2-dimensional

normal toric surface Z(L, σ), where σ is a strictly convex cone with
non-empty interior. There is a unique 0-dimensional orbit O, whose
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maximal ideal is generated by the monomials with exponents in the
semigroup σ̌ ∩ Ľ − O. The surface is smooth outside O, and O is a
smooth point of it if and only if σ is a regular cone. Supposing that σ
is not regular, we explain how to describe combinatorially the minimal
resolution morphism of Z(L, σ) and the effect of blowing-up the point
O. We also give a formula for the embedding dimension of the germ
(Z(L, σ), O), which is a so-called Hirzebruch-Jung singularity.

With the notations of Section 4, let us subdivide σ by drawing the
half-lines starting from O and passing through the points Ak, ∀k ∈
{1, . . . , r}. In this way we decompose σ in a finite number of regular
subcones. They form the minimal regular subdivision of σ, in the sense
that any subdivision of σ by regular cones is necessarily a refinement of
the preceding one.

The family consisting of the 2-dimensional cones in the subdivision,
of their edges and of the origin form a fan F(σ). For each such subcone
σ′ of σ, there is a canonical birational morphism Z(L, σ′) → Z(L, σ),
which realizes an isomorphism of the tori. Using these morphisms, one
can glue canonically the tori contained in the surfaces Z(L, σ′) when
σ′ varies, and obtain a new toric surface Z(L, F(σ)), endowed with a
morphism:

Z(L, F(σ))
pσ−→ Z(L, σ)

Proposition 6.2. The morphism pσ is the minimal resolution of
singularities of the surface Z(L, σ). Moreover, its exceptional locus Eσ

is a normal crossings divisor and the dual graph of Eσ is topologically a
segment.

Proof. For details, see [23]. Here we outline only the main steps.
The morphism pσ is proper, birational and realizes an isomorphism over
Z(L, σ) − O. As Z(L, F(σ)) is smooth, pσ is a a resolution of sin-
gularities of Z(L, σ) (see Definition 8.2). There is a canonical bijec-
tion between the irreducible components Ek of the exceptional divisor
Eσ = p−1

σ (0) and the half-lines [OAk, for k ∈ {1, . . . , r}. Moreover, Ek

is a smooth compact rational curve and

E2
k = −αk, ∀k ∈ {1, . . . , r}(21)

where the numbers αk were introduced in relation (10).
Using the inequality (11), we deduce that no component of Eσ is

exceptional of the first kind (see the comments which follow Definition
8.2). This implies that pσ is the minimal resolution of singularities of
Z(L, σ). The proposition is proved. Q.E.D.
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Notice that relation (21) gives an intersection-theoretical interpreta-
tion of the weights attached through relation (10) to the integral points
situated on P (σ) which are interior to σ.

Conversely (see [4] and [64]):

Proposition 6.3. Suppose that a smooth surface R contains a
compact normal crossings divisor E whose components are smooth ra-
tional curves of self-intersection ≤ −2 and whose dual graph is topolog-
ically a segment. Denote by α1, . . . , αr the self-intersection numbers
read orderly along the segment. Then E can be contracted by a map
p : (R, E) → (S, 0) to a normal surface S and the germ (S, 0) is ana-
lytically isomorphic to a germ of the form (Z(L, σ), O), where σ is of
type λ := [α1, . . . , αr]−.

This motivates:

Definition 6.4. A normal surface singularity (S, 0) isomorphic
to a germ of the form (Z(L, σ), O) is called a Hirzebruch-Jung sin-
gularity.

Hirzebruch-Jung singularities can also be defined as cyclic quotient
singularities (see [4] and [64]). They appear naturally in the so-called
Hirzebruch-Jung method of studying an arbitrary surface singularity.
Namely, one projects the given singularity by a finite morphism on a
smooth surface, then one makes an embedded resolution of the dis-
criminant curve and takes the pull-back of the initial surface by this
morphism. In this case, the normalization of the new surface has only
Hirzebruch-Jung singularities (see Laufer [47], Lipman [52], Brieskorn
[8] for details and Popescu-Pampu [64] for a generalization to higher
dimensions).

The proof of Proposition 6.2 shows that the germs (Z(L, σ), O) and
(Z(L, σ), O) are analytically isomorphic if and only if there exists an
isomorphism of the lattices L and L sending σ onto σ. The same is true
for strictly convex cones in arbitrary dimensions, as proved by González
Pérez & Gonzalez-Sprinberg [28]. Previously we had proved this for
simplicial cones in [64].

A Hirzebruch-Jung singularity isomorphic to (Z(L, σ), O) is said to
be of type Ap,q, with 1 ≤ q < p and gcd(p, q) = 1 if (using Definition
5.5) the pair (L, σ) is of type p/q with respect to one of the orderings of
the sides of σ. Then, by Proposition 4.3, we have p/q = [α1, . . . , αr]−.
By Proposition 5.6, one has Ap, q � Ap′, q′ if and only if p = p′ and
q′ ∈ {q, q}, where qq ≡ 1 (mod p).

The singularities of type An+1, n are also called of type An. They
are those for which the polygonal line P (σ) has only one compact edge,
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as (n + 1)/n = [(2)n]− (a case emphasized in Section 5.2), and also
the only Hirzebruch-Jung singularities of embedding dimension 3 (more
precisely, they can be defined by the equation zn+1 = xy). Indeed:

Proposition 6.5. If p/q = [α1, . . . , αr]− = [(2)m1 , n1 + 3, . . . ,
ns + 3, (2)ms+1 ]−, then:

embdim(Ap, q) = 3 +
r∑

i=1

(αi − 2) = 3 + s +
s∑

k=1

nk.

Proof. If S is a generating system of the semigroup Ľ ∩ σ̌ − O,
then the monomials (Xv)v∈S form a generating system of the Zariski
cotangent space M/M2 of the germ at the singular point, where M is
the maximal ideal of the local algebra of the singularity Ap, q. By taking
a minimal generating system, one gets a basis of this cotangent space.
But such a minimal generating system is unique, and consists precisely
of the integral points of P (σ̌) interior to σ̌. By Propositions 5.11 and
2.7, we see that this number is as given in the Proposition. Q.E.D.

Hirzebruch-Jung singularities are particular cases of rational singu-
larities, introduced by M. Artin [2], [3] in the 60’s (see also [4]). In [79],
Tjurina proved that the blow-up of a rational surface singularity is a
normal surface which has again only rational singularities (see also the
comments of Lê [50, 4.1]). As any surface can be desingularized by a
sequence of blow-ups of its singular points followed by normalizations
(Zariski [87], see also Cossart [13] and the references therein), this shows
that a rational singularity can be desingularized by a sequence of blow-
ups of closed points. In particular this is true for a Hirzebruch-Jung
singularity. As the operation of blow-up is analytically invariant, we
can describe the blow-up of O in the model surface Z(L, σ). We use
notations introduced at the beginning of the proof of Proposition 5.3.

Proposition 6.6. Suppose that the cone σ is not regular. Subdi-
vide it by drawing the half-lines starting from O and passing through the
points A1, V1, V2, . . . , Vs, Ar. Denote by F0(σ) the fan obtained in this
way. Then the natural toric morphism Z(L, F0(σ))

p0−→ Z(L, σ) is the
blow-up of O in Z(L, σ).

Proof. A proof is sketched by Lipman in [52]. Here we give more
details.

Let (S, 0) be any germ of normal surface. Consider its minimal res-
olution pmin : (Rmin, Emin) → (S, 0) and its exceptional divisor Emin =∑r

k=1 Ek. The divisors Z ∈
∑r

k=1 ZEk which satisfy Z · Ek ≤ 0, ∀k ∈
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{1, . . . , r} form an additive semigroup with a unique minimal element
Ztop, called the fundamental cycle of the singularity. It verifies

Ztop ≥
r∑

k=1

Ek(22)

for the componentwise order on the set of cycles with integral coefficients.
In the case of a rational singularity, Tjurina [79] showed that the divisors
Ek which appear in the blow-up of 0 on S can be characterized using
the fundamental cycle: they are precisely those for which Ztop ·Ek < 0.

In our case, where (S, 0) = (Z(L, σ), O), Proposition 6.2 shows
that pmin = pσ. Using the relations (21) and (22), we see that Ztop =∑r

k=1 Ek. Again using relation (21), we get:

Ztop · Ek < 0 ⇐⇒ either k ∈ {1, r} or αk ≥ 3.

This shows that the components of Eσ which appear when one blows-
up the origin, are precisely those which correspond to the half-lines
[OA1, [OV1, [OV2, . . . , [OVs, [OAr . But the surface obtained by blow-
ing-up the origin is again normal, by Tjurina’s theorem, which shows
that it coincides with Z(L, F0(σ)). Q.E.D.

One sees that after the first blow-up, the new surface has only sin-
gularities of type An, where n varies in a finite set of positive numbers.
The singular points are contained in the set of 0-dimensional orbits of
the toric surface Z(L, F0(σ)), which in turn correspond bijectively to
the 2-dimensional cones of the fan F0(σ). The germs of the surface at
those points are Hirzebruch-Jung singularities of types An0 , . . . , Ans ,
where n0 = lZ[A1V1], n1 = lZ[V1V2], . . . , ns = lZ[VsAr].

We have spoken until now of algebraic aspects of Hirzebruch-Jung
singularities. We discuss their topology in Section 8.3.

6.3. Monomial plane curves
Suppose that (S, 0) is a germ of smooth surface and that (C, 0) ⊂

(S, 0) is a germ of reduced curve. A proper birational morphism p : R →
S is called an embedded resolution of the germ (C, 0) if R is smooth, p
is an isomorphism above S − 0 and the total transform p−1(C) of C is a
divisor with normal crossings on R in a neighborhood of the exceptional
divisor E := p−1(0). The closure in R of the difference p−1(C)− p−1(0)
is called the strict transform of C by the morphism p.

It is known since the XIX-th century that any germ of plane curve
can be resolved in an embedded way by a sequence of blow-ups of points
(see Enriques & Chisini [19], Laufer [47], Brieskorn & Knörrer [9]). The
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combinatorics of the exceptional divisor of the resolution can be deter-
mined starting from the Newton-Puiseux exponents of the irreducible
components of the curve and from their intersection numbers using E-
continued fraction expansions. We explain here how to read the sequence
of self-intersection numbers of the components of the exceptional divi-
sor of the minimal embedded resolution of a monomial plane curve by
using a zigzag diagram, instead of just doing blindly computations with
continued fractions.

If p, q ∈ N∗, 1 ≤ q < p and gcd(p, q) = 1, consider the plane curve
Cp/q defined by the equation:

xp − yq = 0(23)

It can be parametrized by:
{

x = tq

y = tp
(24)

As p and q are relatively prime, one sees that (24) describes the
normalization morphism for Cp/q (see its definition at the beginning
of Section 8.1). As tp and tq are monomials, one says that Cp/q is a
monomial curve. There is a natural generalization to higher dimensions
(see Teissier [77]).

If one identifies the plane C2 of coordinates (x, y) with the toric
surface Z(L0, σ0), where L0 = Z2 and σ0 is the first quadrant, then it is
easy to see (look at equation (24)) that Cp/q is the closure in C2 of the
image of the 1-parameter subgroup of the complex torus TL0 = (C∗)2

corresponding to the point (q, p).
Consider again the notations introduced before Lemma 3.1. Let

l− := [O(1, 0) and l+ := [O(q, p) be the edges of the cone σx(p/q).
We leave to the reader the proof of the following lemma, which is very
similar to the proof of Lemma 3.1. Recall that the type of a cone was
introduced in Definition 5.5.

Lemma 6.7. With respect to the chosen ordering of its edges, the
cone σx(p/q) is of type p/(p−q). Moreover, with the notations of Section
5, A1 = (1, 1), A′

1 = (0, 1) and A+ = (q, p).

Even if the proof is very easy, it is important to be conscious of this
result, as it allows to apply the study done in Section 5 to our context.

Given the pair (p, q), we want to describe the process of embedded
resolution of the curve Cp/q by blow-ups, as well as the final excep-
tional divisor, the self-intersections of its components and their orders
of appearance during the process.
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Lemma 6.8. The blow-up π0 : R0 → C2 of 0 in C2 is a toric
morphism corresponding to the subdivision of σ0 obtained by joining
O to A1 = (1, 1). The strict transform of Cp/q passes through the 0-
dimensional orbit of R0 associated to the cone R+OA1 + R+OA′

1.

Proof. With the notations of Section 3, we consider the fan F0

subdividing σ0 which consists of the cones σx(1), σy(1), their edges and
the origin. Let πF0 : Z(L, F0) → Z(L, σ0) be the associated toric mor-
phism. It is obtained by gluing the maps πx : Z(L, σx(1)) → Z(L, σ0)
and πy : Z(L, σy(1)) → Z(L, σ0) over (C∗)2. With respect to the coor-
dinates given by the monomials associated to the primitive vectors of L
situated on the edges of the cones σ0, σx(1), σy(1), the maps πx and πy

are respectively described by:{
x = x1y1

y = y1
and

{
x = x2

y = x2y2

One recognizes the blow-up of 0 in C2. Now, in order to compute the
strict transform of Cp/q, one has to make the previous changes of vari-
ables in equation (19). The lemma follows immediately. Q.E.D.

Starting from Lemma 6.7 and using the previous lemma as an in-
duction step, we get:

Proposition 6.9. The following procedure constructs the dual
graph of the total transform of Cp/q by the minimal embedded resolu-
tion morphism, starting from the zigzag diagram ZZ(p/(p− q)):

• On each edge of integral length l ≥ 1, add (l−1) vertices of weight
2. Then erase the weights of the edges (that is, their integral length).

• Attach the weight 1 to the vertex A+. Then change the signs of
all the weights of the vertices.

• Label the vertices by the symbols E1, E2, E3, . . . starting from A1

on P (σ) till arriving at V1, continuing from the first vertex which follows
V ′

1 on P (σ′) till arriving at V ′
2 , coming then back to P (σ) at the first

vertex which follows V1 and so on, till labelling the vertex A+.
• Erase the horizontal line, the zigzag line and the curved segment

between V ′
0 and the first vertex which follows V ′

1 .
• Add an arrow to the vertex A+ and keep only the weights of the

vertices and their labels En.
The arrowhead vertex represents the strict transform of the curve

Cp/q and the indices of the components Ei correspond to the orders of
appearance during the process of blow-ups.

It is essential to remark that in the previous construction one starts
from ZZ(p/(p − q)) and not from ZZ(p/q) (look again at Lemma 6.7).
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Example 6.10. Consider the curve x11 − y4 = 0. Then λ =
11/(11 − 4) = 11/7. Its zigzag diagram ZZ(11/7) was constructed in
Example 5.10. So, the dual graph of the total transform of C11/4 by
the minimal embedded resolution morphism has 6 vertices, of easy com-
putable weights (see Fig. 13).

−2 −3 −2

E E E E E E

−4 −1 −2

2 14563

Fig. 13. The dual graph of the total transform of C11, 4

Proposition 6.9 endows us with an easy way of remembering the
following classical description of the minimal embedded resolution of a
monomial plane curve (see Jurkiewicz [43], who attributes it to Hirze-
bruch; Spivakovsky [74] extends it to the case of monomial-type valua-
tions on function-fields of surfaces):

Proposition 6.11. If p/q = [m1 + 1, n1 + 1, m2 + 1, . . . , ns +
1, ms+1+1]+, then the dual graph of the total transform of the monomial
curve Cp/q is the one which appears in Fig. 14.

Proof. Combine formulae (20) and (18) with Fig. 9 and Proposition
6.9. Q.E.D.

In Fig. 14 we have indicated only the orders of appearance of the
components of the exceptional divisor corresponding to the extremities
of the graph. We leave as an exercise for the reader to complete the
diagram with the sequence (Ek)k≥1.

Notice that in the E-continued fraction expansion of p/q used in
the previous proposition, there is the possibility that ms+1 = 0. In
this case, the canonical expansion is obtained using relation (7). But
in order to express in a unified form the result of the application of
the algorithm, it was important for us to use an expansion of p

q with
an odd number of partial quotients (which is always possible, precisely
according to formula (7)).

One can use the combinatorics of the embedded resolution of mono-
mial plane curves as building blocks for the description of the combina-
torics of the resolution of any germ of plane curve. A detailed descrip-
tion of the passage between the Eggers tree, which encodes the Newton-
Puiseux exponents of the components of the curve, and the dual graph
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Fig. 14. The dual graph of the total transform of Cp/q

of the total transform of the curve by its embedded resolution morphism
can be found in Garćıa Barroso [24] (see also Brieskorn & Knörrer [9,
section 8.4] and Wall [85]). A topological interpretation of the trees ap-
pearing in these two encodings was given in Popescu-Pampu [62, chapter
4].

In higher dimensions, González Pérez [27] used toric geometry in
order to describe embedded resolutions of quasi-ordinary hypersurface
singularities. Again, the building blocks are monomial varieties. A pro-
totype for his study is the method of resolution of an irreducible germ of
plane curve by only one toric morphism, developed by Goldin & Teissier
[26].

In the classical treatise of Enriques & Chisini [19], resolutions of
curves by blow-ups of points are not studied using combinatorics of
divisors, but instead using the infinitely near points through which the
strict transforms of the curve pass during the process of blowing ups.
Those combinatorics were also encoded in a diagram, called nowadays
Enriques diagram (see Casas-Alvero [10]). Enriques diagrams are very
easily constructed using the knowledge of the orders of appearance of
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the divisors during the process of blowing ups. For this reason, zigzag
diagrams combined with Proposition 6.9 give an easy way to draw them
for a monomial plane curve. We leave the details to the interested reader.
Then one uses this again as building blocks for the analysis of general
plane curve singularities (see [10]).

§7. Graph structures and plumbing structures on 3-manifolds

This section contains preparatory material for the topological study
of the 3-manifolds appearing as abstract boundaries of normal surface
singularities, done in sections 8 and 9.

We recall general facts about Seifert, graph and plumbing structures
on 3-manifolds, as well as about JSJ theory. We also define particular
classes of plumbing structures on thick tori and solid tori, starting from
naturally arising pairs (L, σ), where L is a 2-dimensional lattice and σ
is a rational strictly convex cone in LR. Namely, given a pair of essential
curves on the boundary of a thick torus M , their classes generate two
lines in the lattice L := H1(M,Z). A choice of orientations of these lines
distinguishes one of the four cones in which the lines divide the plane...

7.1. Generalities on manifolds and their splittings

We denote by I the interval [0, 1], by D the closed disc of dimen-
sion 2 and by Sn the sphere of dimension n. An annulus is a surface
diffeomorphic to I × S1.

A simple closed curve on a 2-dimensional torus is called essential if
it is non-contractible. It is classical that an oriented essential curve on
a torus T is determined up to isotopy by its image in H1(T, Z) (see [21,
Section 2.3]). Moreover, the vectors of H1(T, Z) which are homology
classes of essential curves are precisely the primitive ones.

We say that a manifold is closed if it is compact and without bound-
ary. If M is a manifold with boundary, we denote by

◦
M its interior and

by ∂M its boundary. If moreover M is oriented, we orient ∂M in such
a way that at a point of ∂M , an outward pointing tangent vector to
M , followed by a basis of the tangent space to ∂M , gives a basis of the
tangent space to M (this is the convention which makes Stokes’ theorem∫

M
dω =

∫
∂M

ω true). We say then that ∂M is oriented compatibly with
M .

If M is an oriented manifold, we denote by −M the same manifold
with reversed orientation. If M is a closed oriented surface, then −M is
orientation-preserving diffeomorphic to M . This fact is no longer true in
dimension 3, that is why it is important to describe carefully the choice
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of orientation. In this sense, see Theorem 8.11, as well as Propositions
9.3 and 9.6.

We denote by Diff(M) the group of self-diffeomorphisms of M , by
Diff◦(M) the subgroup of self-diffeomorphisms which are isotopic to the
identity and by Diff+(M) the subgroup of diffeomorphisms which pre-
serve the orientation of M (when M is orientable).

Definition 7.1. Let M be a 3-manifold with boundary. We say
that M is a thick torus if it is diffeomorphic to S1 × S1 × I. We say
that M is a solid torus if it is diffeomorphic to D × S1. We say that
M is a thick Klein bottle if it is diffeomorphic to a unit tangent circle
bundle to the Möbius band.

In the definition of a thick Klein bottle M we use an arbitrary rie-
mannian metric on a Möbius band. The manifold obtained like this
is independent of the choices up to diffeomorphism. Moreover, it is
orientable, because any tangent bundle is orientable and the manifold
we define appears as the boundary of a unit tangent disc bundle. The
preimage of a central circle of the Möbius band by the fibration map is
a Klein bottle, and the manifold M appears then as a tubular neighbor-
hood of it, which explains the name. For details, see [82, Section 3] and
[21, Section 10.11].

On the boundary of a solid torus M there exists an essential curve
which is contractible in M . Such a curve, which is unique up to isotopy
(see [21]), is called a meridian of M . A 3-manifold M is called irreducible
if any embedded sphere bounds a ball. A surface embedded in M is
called incompressible if its π1 injects in π1(M). Two tori embedded in
M are called parallel if they are disjoint and they cobound a thick torus
embedded in M . The manifold M is called atoroidal if any embedded
incompressible torus is parallel to a component of ∂M .

Definition 7.2. Let M be an orientable manifold and S be an
orientable closed (not necessarily connected) hypersurface of M . A man-
ifold with boundary MS endowed with a map MS

rM, S−→ M is called a
splitting of M along S if:

• rM, S is a local embedding;
• ∂MS = (rM, S)−1(S) and the restriction rM, S |∂MS is a trivial

double covering of S;
• the restriction (rM, S)| ◦

MS

:
◦

MS−→ M − S is a diffeomorphism.
If this is the case, the map rM,S is called the reconstruction map

associated to the splitting. We say that S splits M into MS and that
the connected components of MS are the pieces of the splitting. If N
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is a piece of MS and P ⊂ M is a set, we say that P contains N if
rM, S(N) ⊂ P .

It can be shown easily that splittings of M along S exist and are
unique up to unique isomorphism. The idea is very intuitive, one simply
thinks at M being split open along each connected component of S. A
way to realize this is to take the complement of an open tubular neigh-
borhood of S in M and to deform the inclusion mapping in an arbitrarily
small neighborhood of the boundary in order to push it towards S (see
Waldhausen [83] and Jaco [39]).

If φ ∈ Diff+(M), one can also canonically split φ and get a dif-
feomorphism φS of manifolds with boundary (we leave the axiomatic
definition of φS to the reader):

φS : MS −→ Mφ(S)

Among closed 3-manifolds, two particular classes will be especially
important for us, the lens spaces and the torus fibrations. The reason
why we treat them simultaneously will appear clearly in Section 8.3.

Definition 7.3. Let M be an orientable 3-manifold. We say that
M is a lens space if it contains an embedded torus T such that MT

is the disjoint union of two solid tori whose meridians have non-isotopic
images on T . We say that M is a torus fibration if it contains an
embedded torus T such that MT is a thick torus.

Lens spaces can also be defined as quotients of S3 by linear free
cyclic actions or - and this explains the name - as manifolds obtained
by gluing in a special way the faces of a lens-shaped polyhedron (see
[71] or [21, Section 4.3]). We impose the condition on the meridians in
order to avoid the manifold S1 × S2, which can also be split into two
solid tori, but whose universal cover is not the 3-dimensional sphere, a
difference which makes it to be excluded from the set of lens spaces by
most authors. There exists a classical encoding of oriented lens spaces by
positive integers. We recall it at the end of Section 9.1 (see Proposition
9.4).

If M is a torus fibration and T ⊂ M splits it into a thick torus, then
a trivial foliation of MT by tori parallel to the boundary components is
projected by rM, T onto a foliation by pairwise parallel tori. The space of
leaves is topologically a circle and the projection π : M → S1 is a locally
trivial fibre bundle whose fibres are tori, which explains the name.

Definition 7.4. Let π : M → S1 be a locally trivial fibre bundle
whose fibres are tori. Fix a fibre of π (for example the initial torus T ) and
also an orientation of the base space S1. The algebraic monodromy



Continued fractions and surface singularities 159

operator m is by definition the first return map of the natural parallel
transport on the first homology fibration over S1, when one travels in
the positive direction.

The map m is a well-defined linear automorphism m∈SL(H1(T,Z)),
once an orientation of S1 was chosen. Its conjugacy class in SL(2, Z)
is independent of the choice of the fibre. If one changes the orientation
of S1, then m is replaced by m−1. This shows that the trace of m is
independent of the choice of T and of the orientation of S1. Remark
that no choice of orientation of M is needed in order to define it.

For more information about torus fibrations, see Neumann [57] and
Hatcher [33]. We come back to them in Section 9.2, with special empha-
sis on subtleties related to their orientations.

7.2. Seifert structures
Seifert manifolds are special 3-manifolds whose study can be reduced

in some way to the study of lower-dimensional spaces.

Definition 7.5. A Seifert structure on a 3-manifold M is a
foliation by circles such that any leaf has a compact orientable saturated
neighborhood. A leaf with trivial holonomy is called a regular fibre.
A leaf which is not regular is called an exceptional fibre. The space of
leaves is called the base of the Seifert structure. We say that a Seifert
structure is orientable if there is a continuous orientation of all the
leaves of the foliation. If such an orientation is fixed, one says that the
Seifert structure is oriented. If there exists a Seifert structure on M ,
we say that M is a Seifert manifold.

The condition on the leaves to have compact saturated neighbor-
hoods is superfluous if the ambient manifold M is compact, it is enough
then to ask that any leaf be orientation-preserving, as was shown by
Epstein [20]. This is no longer true on non-compact manifolds, as was
shown by Vogt [81].

The initial definition of Seifert [70] was slightly different:
a) He did not speak of “foliation”, but of “fibration”.
b) He gave models for the possible neighborhoods of the leaves.
In what concerns point a), Seifert’s definition is one of the historical

sources of the concept of fibration and fibre bundle. For him a fibration
is a decomposition of a manifold into “fibres”; only in a second phase
can one try to construct the associated “orbit space”, or the “base” with
our vocabulary. This shows that his definition is closer to the present
notion of foliation; in fact his “fibration” is a foliation, but this can
be seen only by using the required condition on model neighborhoods.
We prefer to speak about “Seifert structure” and not “Seifert fibration”
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precisely because what is important to us is to see the structure as living
inside the manifold, which makes possible to speak about isotopies. For
details about the historical development of different notions of fibrations,
see Zisman [88].

In what concerns point b), the possible orientable saturated neigh-
borhoods of foliations by circles coincide up to a leaf-preserving diffeo-
morphism with Seifert’s model neighborhoods. If one drops the ori-
entability condition, appears a new model which was not considered by
Seifert, but which is very useful in the classification of non-orientable 3-
manifolds (see Scott [69], Bonahon [6]). Some general references about
Seifert manifolds are Orlik [61], Neumann & Raymond [58] (where the
base was defined as an orbifold), Scott [69], Fomenko & Matveev [21]
and Bonahon [6].

In the sequel, we are interested in Seifert structures only up to iso-
topy.

Definition 7.6. Two Seifert structures F1 and F2 on M are called
isotopic if there exists φ ∈ Diff◦(M) such that φ(F1) = F2.

The following proposition is proved in Jaco [39] and Fomenko &
Matveev [21].

Proposition 7.7. The only orientable compact connected 3-mani-
folds with non-empty boundary which admit more than one Seifert struc-
ture up to isotopy are the thick torus, the solid torus and the thick Klein
bottle.

a) If M is a thick torus, any essential curve on one of its boundary
components is the fibre of a Seifert structure on M , unique up to isotopy,
and devoid of exceptional fibres. Moreover, M appears like this as the
total space of a trivial circle bundle over an annulus.

b) If M is a solid torus and γ is a meridian of it, an essential curve
c on its boundary is a fibre of a Seifert structure on M if and only if
their homological intersection number [c] · [γ] (once they are arbitrarily
oriented) is non-zero. In this case, the associated structure is unique up
to isotopy and has at most one exceptional fibre. All fibres are regular if
and only if [c] · [γ] = ±1. In this last case, M appears as the total space
of a trivial circle bundle over a disc.

c) If M is a thick Klein bottle, it admits up to isotopy two Seifert
structures. One of them is devoid of exceptional fibres and its space of
orbits is a Möbius band. The other one has two exceptional fibres with
holonomy of order 2 and its space of orbits is topologically a disc.
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The closed orientable 3-manifolds which admit more than one Seifert
structure up to isotopy are also classified (see Bonahon [6] and the ref-
erences therein). In this paper we need only the following less general
result, which can be deduced by combining [6] with [57] (see Definition
8.1):

Proposition 7.8. The only 3-manifolds which are diffeomorphic
to abstract boundaries of normal surface singularities and which admit
non-isotopic Seifert structures are the lens spaces.

7.3. Graph structures and JSJ decomposition theory
If one glues various Seifert manifolds along components of their

boundaries, one obtains so-called graph-manifolds:

Definition 7.9. A graph structure on a 3-manifold M is a pair
(T , F), where T is an embedded surface in M whose connected compo-
nents are tori and where F is a Seifert structure on MT (see Definition
7.2). We say that a graph structure is orientable if F is an orientable
Seifert structure on MT . If there exists a graph structure on M , we say
that M is a graph manifold.

Notice that no particular graph structure is specified when one
speaks about a graph manifold. One only supposes that there exists
one. In the sequel we are interested in graph structures on a given
manifold only up to isotopy:

Definition 7.10. Two graph structures (T1, F1), (T2, F2) on M
are called isotopic if there exists φ ∈ Diff◦(M) such that φ(T1) = T2

and φT1(F1) is isotopic to F2.

Graph manifolds were introduced by Waldhausen [82], generalizing
von Randow’s tree manifolds (see their definition in the next paragraph)
studied in [65]. Following Mumford [55] who proved Poincaré conjecture
for the abstract boundaries of normal surface singularities (see Definition
8.1), von Randow proved it for tree manifolds; his proof contained a gap
which was later filled by Scharf [68].

Waldhausen’s definition was different from Definition 7.9. On one
side he did not allow exceptional fibres in the Seifert structure on MT
and on another side he did not fix (up to isotopy) a precise fibration by
circles, but only supposed that such a fibration existed. He represented
a graph structure by a finite graph with decorated vertices and edges
(corresponding respectively to the pieces of MT and to the components
of T ), which explains the name. Tree manifolds are then the graph
manifolds which admit a graph structure (T , F) such that the corre-
sponding graph is a tree and the base of the Seifert structure on F has
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genus 0. With our definition, graph structures can also be encoded by
graphs. One has only to add more decorations to the vertices, in order
to keep in memory the exceptional fibres of the corresponding Seifert
fibred pieces.

With his definition, Waldhausen solved the homeomorphism prob-
lem for graph-manifolds, by giving normal forms for the graph struc-
tures on a given manifold and by showing that with exceptions in a
finite explicit list, any irreducible graph-manifold has a graph-structure
in normal form which is unique up to isotopy.

Later, Jaco & Shalen [40] and Johannson [41] showed that there
remains no exception in the classification up to isotopy if one modifies
the notion of graph-structure by allowing exceptional fibres, that is,
when one works with Definition 7.9. More generally, they proved:

Theorem 7.11. Let M be a compact, connected, orientable and
irreducible 3-manifold (with possible non-empty boundary). Then M
contains an embedded surface T whose connected components are in-
compressible tori and such that any piece of MT is either a Seifert man-
ifold or is atoroidal. Moreover, if T is minimal for the inclusion among
surfaces with this property, then it is well-defined up to isotopy.

We say that a minimal family T as in the previous theorem is a JSJ
family of tori in M .

A variant of the previous theorem considers also embedded annuli.
These various theorems of canonical decomposition are called nowadays
Jaco-Shalen-Johannson (JSJ) decomposition theory, and were the start-
ing point of Thurston’s geometrization program, as well as of the theory
of JSJ decompositions for groups. For details about JSJ decomposi-
tions, in addition to the previously quoted books one can consult Jaco
[39], Neumann & Swarup [59], Hatcher [33] and Bonahon [6]. In [62] and
[63], we showed that also knot theory inside an irreducible 3-manifold
reflects the ambient JSJ decomposition.

We define now a notion of minimality for graph structures on a given
manifold.

Definition 7.12. Suppose that (T , F) is a graph structure on M .
We say that it is minimal if the following conditions are verified:

• No piece of MT is a thick torus or a solid torus.
• One cannot find a Seifert structure F ′ on MT such that the im-

ages of its leaves by the reconstruction mapping rM, T coincide on a
component of T .
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As a corollary of Theorem 7.11, if (T , F) is a minimal graph struc-
ture on M , then T is the minimal JSJ system of tori in M . But one can
prove more:

Theorem 7.13. Each closed orientable irreducible graph manifold
which is not a torus fibration with | tr m| ≥ 3 admits a minimal graph
structure. Moreover, the family T of tori associated to a minimal graph
structure coincides with the JSJ family of tori. In particular, it is unique
up to an isotopy.

Suppose that (T , F) is a given graph structure without thick tori
and solid tori among its pieces. In view of Proposition 7.7, its only
pieces which can have non-isotopic Seifert structures are the thick Klein
bottles. This shows that, in order to check whether (T , F) is minimal
or not, one has only to consider the possible choices of Seifert structures
on them up to isotopy (that is 2n possibilities, where n is the number of
such pieces).

Suppose that M is a graph manifold which is neither a torus fibration
with | tr m| ≥ 3, nor a Seifert manifold which admits non-isotopic Seifert
structures. Then, if T is a family of tori associated to a minimal graph
structure, there is a unique Seifert structure on MT up to isotopy, such
that each piece which is a thick Klein bottle has an orientable base.

Definition 7.14. Suppose that M is an orientable graph manifold
which is neither a torus fibration with | tr m| ≥ 3 nor a Seifert manifold
which admits non-isotopic Seifert structures. We say that a minimal
graph structure is the canonical graph structure on M if each piece
which is a thick Klein bottle has an orientable base.

7.4. Plumbing structures
Plumbing structures are special types of graph structures:

Definition 7.15. A plumbing structure on a 3-manifold M is
a graph structure without exceptional fibres (T , F) on M , such that for
any component T of T , the homological intersection number on T of
two fibres of F coming from opposite sides is equal to ±1.

Plumbing structures are the ancestors of graph structures. They
were introduced by Mumford [55] in the study of singularities of com-
plex analytic surfaces (see Hirzebruch [36], Hirzebruch, Neumann & Koh
[38], as well as our explanations in Section 8.2). In fact Mumford does
not speak about “plumbing structure”. Instead, he describes a way to
construct the abstract boundary of a normal surface singularity (see
Definition 8.1) by gluing total spaces of circle-bundles over real surfaces
using “plumbing fixtures”.
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Later on, “plumbing” was more used as a verb than as a noun.
That is, one concentrated more on the operations needed to construct
a new object from elementary pieces, than on the structure obtained
on the manifold resulting from the construction. The fact that we are
interested precisely in this structure up to isotopy and not on the graph
which encodes it, is a difference with Neumann [57] for example.

In [57], Neumann describes an algorithm for deciding if two mani-
folds obtained by plumbing are diffeomorphic. He uses as an essential
ingredient Waldhausen’s classification theorem of graph manifolds (ac-
cording to the definition which does not allow exceptional fibres, see the
comments made in Section 7.3). In fact, by using the uniqueness up
to isotopy of the JSJ-tori, we can deduce the uniqueness up to isotopy
for special plumbing structures on singularity boundaries. This is the
subject of Section 9.

Even if Definition 7.15 seems to suggest the opposite, the class of
graph manifolds is the same as the class of manifolds which admit a
plumbing structure. A way to see this is to use the construction of
plumbing structures on thick tori and solid tori described in Section 7.5.
For a detailed comparison of graph structures and plumbing structures,
as well as for a study of the elementary operations on them, one can
consult Popescu-Pampu [62, Chapter 4].

7.5. Hirzebruch-Jung plumbing structures on thick tori
and solid tori

In this section we define special classes of plumbing structures on
thick tori and solid tori, which will be used in Section 9. The starting
point is in both cases a pair (L, σ) of a 2-dimensional lattice and a
rational strictly convex cone σ ⊂ LR, naturally attached to essential
curves on the boundary of the 3-manifold.

• Suppose first that M is an oriented thick torus.
On each component of its boundary, we consider an essential curve.

Denote by γ, δ these curves. We suppose that their homology classes
(once they are arbitrarily oriented) in H1(M, R) � R2 are non-propor-
tional. So, we are in presence of a 2-dimensional lattice L = H1(M, Z)
and of two distinct rational lines in it, generated by the homology classes
[γ], [δ].

Orient ∂M compatibly with M . Then order in an arbitrary way the
components of ∂M : call the first one T− and the second one T+. Denote
by γ− the simple closed curve drawn on T− and by γ+ the one drawn
on T+. Then orient γ− and γ+. By hypothesis, their homology classes
[γ−], [γ+] are non-proportional primitive vectors in the 2-dimensional
lattice L = H1(M, Z). This shows that ([γ−], [γ+]) is a basis of LR =
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H1(M, R) which induces an orientation of this vector space. As T+ is
a deformation retract of M , one has canonically H1(T+, Z) = L, and so
the ordered pair (γ−, γ+) induces an orientation of T+.

Definition 7.16. We say that γ− and γ+ are oriented compati-
bly with the orientation of M if, when taken in the order (γ−, γ+),
they induce on T+ an orientation which coincides with its orientation as
a component of ∂M .

Of course, a priori there is no reason for choosing this notion of
compatibility rather than the opposite one. Our choice was done in
order to get a more pleasant formulation for Lemma 8.5.

Let σ be the cone generated by [γ−] and [γ+] in LR. As these
homology classes were supposed non-proportional, the cone σ is strictly
convex and has non-empty interior. Denote by l± the edge of σ which
contains the integral point [γ±]. Then, with the notations of Section 4,
A± = [γ±]. Indeed, as γ± is an essential curve of T±, its homology class
is a primitive vector of L.

Let (An)0≤n≤r+1 be the integral points on the compact edges of
P (σ), defined in Section 4. So, OA0 = [γ−] and OAr+1 = [γ+]. Let
(Tn)0≤n≤r+2 be a sequence of pairwise parallel tori in M , such that
T0 = T− and Tr+2 = T+. Moreover, we number them in the order in
which they appear between T− and T+. Denote T :=

⊔r+1
n=1 Tn. If Mn

denotes the piece of MT whose boundary components are Tn and Tn+1,
where n ∈ {0, . . . , r+1}, we consider on it a Seifert structure such that
the homology class of its fibres in L is OAn.

Fig. 15. Hirzebruch-Jung plumbing structures on thick tori

We get like this a plumbing structure on M , well-defined up to iso-
topy, and depending only on the triple (M, γ−, γ+). We see that the
simultaneous change of the orientations of γ− and γ+ or the change of
their ordering (in order to respect the compatibility condition of Defini-
tion 7.16) leads to the same (unoriented) plumbing structure.
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Definition 7.17. We say that the previous unoriented plumb-
ing structure on the oriented thick torus M is the Hirzebruch-Jung
plumbing structure associated to (γ, δ) and we denote it by P(M,γ, δ).

• Suppose now that M is an oriented solid torus.

Fig. 16. Hirzebruch-Jung plumbing structures on solid tori

We consider an essential curve γ on ∂M which is not a meridian.
Take a torus T embedded in

◦
M and parallel to ∂M . Denote by N

the thick torus contained between ∂M and T . Put T− = ∂M , T+ = T ,
γ− = γ and let γ+ be an essential curve on T+ which is a meridian of the

solid torus M−
◦
N (see Fig. 16). Consider the Hirzebruch-Jung plumbing

structure P(N, γ−, γ+). With the notations of the construction done
for thick tori, denote T (M, γ) :=

⊔r
n=1 Tn. Then the pieces of MT (M, γ)

are the thick tori M0, M1, . . . , Mr−1 and a solid torus which is the

“union” of Mr, Mr+1 and M−
◦
N . On M0, . . . , Mr−1 we keep the

Seifert structure of P(N, γ−, γ+). On the solid torus we extend the
Seifert structure of Mr. By Proposition 7.7 b), we see that this Seifert
structure has no exceptional fibres. This shows that we have constructed
a plumbing structure on M . It is obviously well-defined up to isotopy,
once the isotopy class of γ is fixed.

Definition 7.18. We say that the previous unoriented plumb-
ing structure on the oriented solid torus M is the Hirzebruch-Jung
plumbing structure associated to γ and we denote it by P(M, γ).

§8. Generalities on the topology of surface singularities

In this section we look at the boundaries M(S) of normal surface
singularities (S, 0). We explain how to associate to any normal crossings
resolution p of (S, 0) a plumbing structure on M(S). Then we explain
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how to pass from the plumbing structure associated to the minimal
normal crossings resolution of (S, 0) to the canonical graph structure on
M(S) (see Definition 7.14).

We recommend the survey articles of Némethi [56] and Wall [84] for
an introduction to the classification of normal surface singularities.

8.1. Resolutions of normal surface singularities and their
dual graphs

First we recall basic facts about normal analytic spaces. Let V be
a reduced analytic space. It is called normal if for any point P ∈ V ,
the germ (V , P ) is irreducible and its local algebra is integrally closed
in its field of fractions. If V is not normal, then there exists a finite
map ν : Ṽ → V which is an isomorphism over a dense open set of V
and such that Ṽ is normal. Such a map, which is unique up to unique
isomorphism, is called a normalization map of V .

A reduced analytic curve is normal if and only if it is smooth. If a
germ (S, 0) of reduced surface is normal, then there exists a represen-
tative of it, which we keep calling S, such that S − 0 is smooth. The
converse is not true.

Let (S, 0) be a germ of normal complex analytic surface. We say also
that (S, 0) is a normal surface singularity (even if the point 0 is regular
on S). In the sequel, we use the same notation (S, 0) for the germ and
for a sufficiently small representative of it. If e : (S, 0) → (CN , 0) is any
local embedding, denote by Se, r the intersection of S with a euclidean
ball of CN of radius r � 1 and by Me, r(S) the boundary of Se, r.

By general transversality theorems due to Whitney, when r > 0
is small enough, Me, r(S) is a smooth manifold, naturally oriented as
the boundary of the complex manifold Se, r. It does not depend on the
choices of embedding e and radius r � 1 made to define it (see Durfee
[16]).

Definition 8.1. An oriented 3-manifold M(S) orientation-pre-
serving diffeomorphic with the manifolds Me, r(S), where r > 0 is small
enough, is called the (abstract) boundary or the link of the singularity
(S, 0).

It is important to keep in mind that in the sequel M(S) is supposed
naturally oriented as explained before. In order to understand better this
remark, look at Theorem 8.11.

The easiest way to describe the topological type of the manifold
M(S) is (as first done by Mumford [55]) by retracting it to the excep-
tional divisor of a resolution of (S, 0). Let us first define this last notion.
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Definition 8.2. An analytic map p : (R, E) → (S, 0) is called a
resolution of the singularity (S, 0) with exceptional divisor E =
p−1(0) if the following conditions are simultaneously satisfied:

• R is a smooth surface;
• p is a proper morphism;
• the restriction of p to R−E = R−f−1(0) is an isomorphism onto

S − 0.
We say that p : (R, E) → (S, 0) is a normal crossings resolution

if one has moreover:
• E is a divisor with normal crossings.

Recall that, by definition, a divisor on a smooth complex surface has
normal crossings if in the neighborhood of any of its points, its support
is either smooth, or the union of transverse smooth curves.

Normal crossings resolutions always exist (see Laufer [47] and Lip-
man [52] for a careful presentation of the Hirzebruch-Jung method of
resolution, as well as Cossart [13] for Zariski’s method of resolution by
normalized blow-ups).

There is a unique minimal resolution, which we denote
pmin : (Rmin, Emin) → (S, 0). The minimality property means that any
other resolution p : (R, E) → (S, 0) can be factorized as p = pmin ◦ q,
where q : R → Rmin is a proper bimeromorphic map. The minimal reso-
lution pmin is characterized by the fact that Emin contains no component
Ei which is smooth, rational and of self-intersection −1 (classically called
an exceptional curve of the first kind).

Analogously, there is a unique resolution which is minimal among
normal crossings ones. We denote it:

pmnc : (Rmnc, Emnc) → (S, 0)

It is characterized by the fact that Emnc has normal crossings and each
component Ei of Emnc which is an exceptional curve of the first kind
contains at least 3 points which are singular on Emnc.

If a normal crossings resolution has moreover only smooth compo-
nents, one says usually that the resolution is good ; there exists also a
unique minimal good resolution, but in this paper we don’t consider it.

The following criterion allows one to recognize the divisors which
are exceptional with respect to some resolution of a normal surface sin-
gularity.

Theorem 8.3. Let E be a reduced compact connected divisor in a
smooth surface R. Denote by (Ei)1≤i≤n its components. Then E is the
exceptional divisor of a resolution of a normal surface singularity if and
only if the intersection matrix (Ei · Ej)i, j is negative definite.
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The necessity is classical (see [38, Section 9], where is presented
Mumford’s proof of [55] and where the oldest reference is to Du Val
[80]). The sufficiency was proved by Grauert [31] (see also Laufer [47]).
If E verifies the conditions which are stated to be equivalent in the
theorem, one also says that E can be contracted on R.

From now on we suppose that p : (R, E) → (S, 0) is a normal cross-
ings resolution of (S, 0).

Denote by Γ(p) its weighted dual graph. Its set of vertices V(p) is
in bijection with the irreducible components of E. Depending on the
context, we think about Ei as a curve on R or a vertex of Γ(p). The
vertices which represent the components Ei and Ej are joined by as
many edges as Ei and Ej have intersection points on R. In particular,
there are as many loops based at the vertex Ei as singular points (that
is, self-intersections) on the curve Ei (see Fig. 17). Each vertex Ei is
decorated by two weights, the geometric genus gi of the curve Ei (that is,
the genus of its normalization) and its self-intersection number ei ≤ −1
in R. Denote also by δi the valency of the vertex Ei, that is, the number
of edges starting from it (where each loop counts for 2). For example,
in Fig. 17 one has δ1 = 9, δ2 = 5, etc.
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Fig. 17. A normal crossings divisor and its dual graph

8.2. The plumbing structure associated to a normal cross-
ings resolution

By Definition 8.1, M(S) is diffeomorphic to Me, r(S), where e : (S, 0)
→ (CN , 0) is an embedding and r � 1. But Me, r(S) is the level-set at
level r of the function ρe : (S, 0) → (R+, 0), the restriction to e(S) of
the distance-function to the origin in CN .
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As the resolution p realizes by definition an isomorphism between
R − E and S − 0, it means that Me, r(S) = ρ−1

e (r) is diffeomorphic to
ψ−1

e (r), where ψe := ρe ◦ p. The advantage of this changed viewpoint
on M(S) is that it appears now orientation-preserving diffeomorphic
to the boundary of a “tubular neighborhood” of the curve E in the
smooth manifold R. As in general E has singularities, one has to discuss
the precise meaning of the notion of tubular neighborhood. We quote
Mumford [55, pages 230–231]:

Now the general problem, given a complex K ⊂ En, Euclidean

n-space, to define a tubular neighborhood, has been attacked

by topologists in several ways although it does not appear to

have been treated definitively as yet. J.H.C. Whitehead [86],

when K is a subcomplex in a triangulation of En, has defined

it as the boundary of the star of K in the second barycentric

subdivision of the given triangulation. I am informed that

Thom [78] has considered it more from our point of view: for

a suitably restricted class of positive C∞ fcns. f such that

f(P ) = 0 if and only if P ∈ K, define the tubular neighborhood

of K to be the level manifolds f = ε, small ε. The catch is how

to suitably restrict f ; here the archtype for f−1 may be thought

of as the potential distribution due to a uniform charge on K.

In [34] M. W. Hirsch has constructed a theory of tubular neighbor-
hoods well-adapted to complexes K appearing in analytic singularity
theory.

Let us come back to the normal crossings divisor E in the smooth
surface R.

If E is smooth, then one can construct a diffeomorphism between a
tubular neighborhood U(E) of E in R and of E in the total space NRE
of its normal bundle in R. As NRE is naturally fibred by discs, this is
also true for U(E). The fibration of U(E) can be chosen in such a way
that the levels ψ−1

e (r) are transversal to the fibres for r � 1. In this way
one gets a Seifert structure without singular fibres on ψ−1

e (r) � M(S).
Suppose now that E is not smooth, but that its irreducible compo-

nents are so. One can also define in this situation a notion of tubular
neighborhood U(E) of E in R. One way to do it is to take the union
of conveniently chosen tubular neighborhoods U(Ei) of E’s components
Ei. Abstractly, one has to glue the 4-manifolds with boundary U(Ei) by
identifying well-chosen neighborhoods of the points which get identified
on E. This procedure is what is called the “plumbing” of disc-bundles
over surfaces (see Hirzebruch [36], Hirzebruch & Neumann & Koh [38],
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Brieskorn [8]). Its effect on the boundaries ∂U(Ei) is to take out sat-
urated filled tori and to identify their boundaries, by a diffeomorphism
which permutes fibres and meridians in an orientation-preserving way.
This is the 3-dimensional “plumbing” operation introduced by Mumford
[55], alluded to in Section 7.4.

In order to understand what happens near a singular point of E, it is
convenient to choose local coordinates (x, y) on E in the neighborhood
of the singular point, such that E is defined by the equation xy = 0.
So, y = 0 defines locally an irreducible component Ei of E and similarly
x = 0 defines Ej . It is possible that Ei = Ej , a situation excluded
in the previous paragraph for pedagogical reasons. If this equality is
true, then the same plumbing procedure can be applied, this time by
identifying well-chosen neighborhoods of points of the same 4-manifold
with boundary U(Ei).

At this point appears a subtlety: the 4-manifold U(Ei) to be consid-
ered is no longer a tubular neighborhood of Ei in R, but instead of the
normalization Ẽi of Ei inside the modified normal bundle ν∗

i TR/T Ẽi.
Here νi : Ẽi → R denotes the normalization map of Ei and TR,

respectively T Ẽi denote the holomorphic tangent bundles to the smooth
complex manifolds R and Ẽi. As a real differentiable bundle of rank 2,
this vector bundle over Ẽi is characterized by its Euler number ẽi, which
is equal to the self-intersection number of Ẽi inside the total space of
the bundle. This number is related to the self-intersection of Ei inside
R in the following way (see Neumann [57, page 333]):

Lemma 8.4. If ẽi is the Euler number of the real bundle
ν∗

i TR/T Ẽi over Ẽi, where νi : Ẽi → R is the normalization map of Ei,
then ẽi = ei − δi.

Proof. In order to understand this formula, just think at the effect
of a small isotopy of Ei inside R. Near each self-crossing point of Ei,
the intersection point of one branch of Ei with the image of the other
branch after the isotopy is not counted when one computes ẽi. Q.E.D.

Notice that Theorem 8.3 is true if one takes as diagonal entries
of the matrix the numbers ei = E2

i , but is false if one takes instead
the numbers ẽi. The easiest example is given by an irreducible divisor
E = E1, with e1 = 1 > 0 and δ1 = 2 which, by Lemma 8.4 implies that
ẽ1 = −1 < 0.

In Fig. 18 we represent in two ways the local situation near the
chosen singular point of E. On the left we simply draw the union of
the two neighborhoods U(Ei) and U(Ej). On the right, “the corners
are smoothed”. This is precisely what happens when we look at the
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levels of the function ψe. Moreover, we represent by interrupted lines
the real analytic set defined by the equation |x| = |y|. Its intersection
with ψ−1

e (r) � ∂U(E) � M(S) is a two-dimensional torus T . This is
the way in which such tori appear naturally as structural elements of the
3-manifolds M(S). One also sees how the complement of T in ∂U(E) is
fibred by boundaries of discs transversal to Ei or Ej .

By considering model neighborhoods of the singular points of E
structured as in the right-hand side of Fig. 18 and conveniently extending
them to a tubular neighborhood of all of E, one gets a retraction

Φ: U(E) → E

which restricts to a locally trivial disc-fibration over the smooth locus
of E and whose fibre over each singular point of E is a cone over a 2-
dimensional torus. By considering the restriction Φ|∂U(E), we see that
the fibres over the singular points of E are embedded tori, and that their
complement gets fibred by circles.

As ∂U(E) is orientation-preserving diffeomorphic to M(S), we see
that M(S) gets endowed with a graph structure (T (p), F(p)) well-
defined up to isotopy. It is a good test of the understanding of the com-
plexifications of Fig. 18 to show that (T (p), F(p)) is in fact a plumbing
structure (see Definition 7.15).

E E

E E

T T

j

i i

j

Fig. 18. The local configuration which leads to plumbing

The pieces of M(S)T (p) correspond to the irreducible components
of E, that is to the vertices of Γ(p). Denote by M(Ei) the piece which
corresponds to Ei. The fibres of M(Ei) are obtained up to isotopy by
cutting the boundary of the chosen sufficiently small tubular neighbor-
hood of E with smooth holomorphic curves transversal to E at smooth
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points of Ei. So, the plumbing structure (T (p), F(p)) is naturally ori-
ented.

Lemma 8.5. With their natural orientations, the fibres on both
sides of any component of T (p) are oriented compatibly with the orien-
tation of M(S).

Proof. The notion of compatibility we speak about is the one of
Definition 7.16. We mean that, if we take an arbitrary component T
of T (p), and a tubular neighborhood N(T ) such that its preimage in
M(S)T (p) is saturated by the leaves of the foliation F(p), then two fibres,
one in each boundary component of N(T ), are oriented compatibly with
the orientation of N(T ). Now, this is an instructive exercise on the
geometrical understanding of the relations between the orientations of
various objects in the neighborhood of a normal crossing on a smooth
surface. Just think of the complexification of Fig. 18. Q.E.D.

Corollary 8.6. The orientation of the fibres of (T (p), F(p)) is
determined by the associated unoriented plumbing structure up to a si-
multaneous change of orientation of all the fibres.

Proof. Consider the unoriented plumbing structure. Start from an
arbitrary piece M(Ei), and choose one of the two continuous orienta-
tions of its fibres. Then propagate this orientations farther and farther
through the components of T (p), by respecting the compatibility con-
dition on the neighboring orientations. As M(S) is connected, we know
that after a finite number of steps one has oriented the fibres of all the
pieces. As one orientation exists which is compatible in the neighbor-
hood of all the tori, we see that our process cannot arrive at a contra-
diction (that is, a non-trivial monodromy around a loop of Γ(p) in the
choice of orientations). Q.E.D.

The following lemma is a particular case of the study done in Mum-
ford [55, page 11] and Hirzebruch [36, page 250-03].

Lemma 8.7. Suppose that Ei is a component of E which is smooth,
rational and whose valency in the graph Γ(p) is 2. In the thick torus
M(Ei) which corresponds to it in the plumbing structure (T (p), F(p)),
consider an oriented fibre f of M(Ei), as well as oriented fibres f ′, f ′′ of
the two (possibly coinciding) adjacent pieces. Then one has the following
relation in the homology group H1(M(Ei), Z):

[f ′] + [f ′′] = |ei| · [f ].
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8.3. The topological characterization of HJ and cusp sin-
gularities

We want now to understand how to pass from the plumbing struc-
ture (T (p), F(p)) on M(S) to the canonical graph structure on it (see
Definition 7.14). We see that the pieces of M(S)T (p) which are thick tori
correspond to components Ei which are smooth and rational with δi = 2,
and those which are solid tori correspond to components Ei which are
smooth and rational with δi = 1. It is then natural to introduce the
following:

Definition 8.8. We say that a vertex Ei of Γ(p) is a chain vertex
if Ei is smooth, gi = 0 and δi ≤ 2. If moreover δi = 2, we call it an
interior chain vertex, otherwise we call it a terminal chain vertex.
We say that a vertex of Γ(p) is a node if it is not a chain vertex.

In [51], Lê, Michel & Weber used the name “rupture vertex” for a
node in the dual graph associated to the minimal embedded resolution
of a plane curve singularity. In their situation, where all the vertices
represent smooth rational curves, nodes are simply those of valency ≥ 3.
In our case this is no longer true, as one can have also vertices of valency
≤ 2, if they correspond to curves Ei which are either not smooth or of
genus gi ≥ 1.

Denote by N (p) the set of nodes of Γ(p). It is an empty set if and
only if Γ(p) is topologically a segment or a circle and all the components
Ei are smooth rational curves. The first situation occurs precisely for
the Hirzebruch-Jung singularities, defined in Section 6.2 (see Proposition
6.2), and the second one for cusp singularities, introduced by Hirzebruch
[37] in the number-theoretical context of the study of Hilbert modular
surfaces.

Definition 8.9. A germ (S, 0) of normal surface singularity is
called a cusp singularity if it has a resolution p such that Γ(p) is
topologically a circle and N (p) = ∅.

For other definitions and details about them, see Hirzebruch [37],
Laufer [49] (where they appear as special cases of minimally elliptic
singularities), Ebeling & Wall [17] (where they appear as special cases of
Kodaira singularities), Oda [60], Wall [84] and Némethi [56]. They were
generalized to higher dimensions by Tsuchihashi (see Oda [60, Chapter
4]).

In the previous definition it is not possible to replace the resolution
p by the minimal normal crossings one. Indeed:
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Lemma 8.10. If (S, 0) is a cusp singularity, then Γ(pmnc) is topo-
logically a circle and either N (pmnc) = ∅, or Emnc is irreducible, ratio-
nal, with one singular point where it has normal crossings.

Proof. One passes from p to pmnc by successively contracting com-
ponents F which are smooth, rational and verify F 2 = −1 (that is,
exceptional curves of the first kind, by a remark which follows Defini-
tion 8.2). The new exceptional divisor verifies the same hypothesis as
the one of p, except when one passes from a divisor with 2 components
to a divisor with one component. In this last situation, this second ir-
reducible divisor is rational, as its strict transform F is so. Moreover,
it has one singular point with normal crossing branches passing through
it, as by hypothesis F cuts transversely the other component of the first
divisor in exactly two points. Q.E.D.

We would like to emphasize the following theorem due to Neumann
[57, Theorem 3], which characterizes Hirzebruch-Jung and cusp singu-
larities among normal surface singularities.

Theorem 8.11. Let (S, 0) be a normal surface singularity. The
manifold −M(S) is orientation-preserving diffeomorphic to the abstract
boundary of a normal surface singularity if and only if (S, 0) is either a
Hirzebruch-Jung singularity or a cusp-singularity.

Recall that −M(S) denotes the manifold M(S) with reversed ori-
entation.

We will bring more light on this theorem with Propositions 9.3 and
9.6, which show that for both Hirzebruch-Jung and cusp singularities,
the involutions M(S) � −M(S) are manifestations of the duality de-
scribed in Section 5.

As Hirzebruch-Jung singularities, cusp singularities can also be de-
fined using toric geometry (see Oda [60, Chapter 4]). In the same spirit,
as a particular case of Laufer’s [48] classification of taut singularities, we
have:

Theorem 8.12. Hirzebruch-Jung and cusp singularities are taut,
that is, their analytical type is determined by their topological type.

For this reason, it is natural to ask which 3-manifolds are obtained
as abstract boundaries of Hirzebruch-Jung singularities and cusp singu-
larities. This question is answered by:

Proposition 8.13. 1) (S, 0) is a Hirzebruch-Jung singularity if
and only if M(S) is a lens space. Moreover, each oriented lens space
appears like this.
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2) (S, 0) is a cusp singularity if and only if M(S) is a torus fibration
with algebraic monodromy of trace ≥ 3. Moreover, each oriented torus
fibration of this type appears like this.

Proof. This proposition is a particular case of Neumann [57, Corol-
lary 8.3]. Here we sketch the proofs of the necessities, in order to develop
tools for sections 9.1 and 9.2.

Let p : (R, E) → (S, 0) be the minimal normal crossings resolution
of (S, 0) (for notational convenience, we drop the index “mnc”). Denote
by U(E) a (closed) tubular neighborhood of E in R and by Φ: U(E) →
E a preferred retraction, as defined in Section 8.2. Denote also by

Ψ: ∂U(E) → E

the restriction of Φ to ∂U(E) � M(S).
1) Suppose that (S, 0) is a Hirzebruch-Jung singularity.
Orient the segment Γ(p). Denote then by E1, . . . , Er the compo-

nents of E in the order in which they appear along Γ(p) in the positive
direction. For each i ∈ {1, . . . , r − 1}, denote by Ai, i+1 the intersec-
tion point of Ei and Ei+1. Consider also two other points A0, 1 ∈ E1,
Ar, r+1 ∈ Er which are smooth points of E. Then consider on each
component Ei a Morse function

Πi : Ei →
[ i − 1

r
,

i

r

]

having as its only critical points Ai−1,i (where Πi attains its mini-
mum) and Ai, i+1 (where Πi attains its maximum). As Πi(Ai, i+1) =
Πi+1(Ai, i+1) for all i ∈ {1, . . . , r − 1}, we see that the maps Πi can be
glued together in a continuous map

Π: E → [0, 1].

Consider the composed continuous map Π ◦ Ψ: M(S) → [0, 1] (see
Fig. 19).

Our construction shows that its fibres over 0 and 1 are circles and
that those over interior points of [0, 1] are tori. Moreover, each such
torus splits M into two solid tori. By Definition 7.3, we see that M is a
lens space.

It remains now to prove that each oriented lens space appears like
this.

Denote L := H1(M(S) − (Π ◦ Ψ)−1{0, 1}, Z). As M(S) − (Π ◦
Ψ)−1{0, 1} is the interior of a thick torus foliated by the tori (Π◦Ψ)−1(c),
where c ∈ (0, 1), we see that L is a 2-dimensional lattice. With the
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A A Ar, r+11,20,1

0 1

M(S)

M(E ) M(E )M(E )

1/r 2/r (r−1)/r

r1 2

Fig. 19. The maps Π and Ψ for a Hirzebruch-Jung singu-
larity

notations of Section 8.2, let fi be an oriented fibre in the piece M(Ei) of
the plumbing structure (T (p), F(p)) which corresponds to Ei. Consider
also f0 and fr+1, canonically oriented meridians on the boundaries of
tubular neighborhoods of (Π ◦ Ψ)−1(0), respectively (Π ◦ Ψ)−1(1).

For each i ∈ {0, . . . , r + 1}, denote by vi := [fi] ∈ L the homology
class of fi. Recall that ei := E2

i . By Lemma 8.7, we see that

vi+1 = |ei| · vi − vi−1, ∀i ∈ {0, . . . , r}.(25)

By Proposition 6.2, p is also the minimal resolution of (S, 0), which
shows that |ei| ≥ 2, ∀i ∈ {1, . . . , r}. Now apply Proposition 4.4. We
deduce that the numbers ei are determined by the oriented topological
type of the lens space M(S), once the isotopy class of the tori (Π◦Ψ)−1(c)
is fixed.

This shows that, starting from any oriented lens space M and torus
T ⊂M which splits M into two solid tori, one can construct a Hirzebruch-
Jung singularity (S, 0) such that M(S) � M only by looking at the
classes of the meridians of the two solid tori in the lattice L = H1(T, Z).
One has only to be careful to orient them compatibly with the orienta-
tion of M (as explained at the beginning of the proof of Lemma 8.5).

2) Suppose that (S, 0) is a cusp singularity.
• Consider first the case where r ≥ 2. Orient the circle Γ(p) and

choose one of its vertices. Denote then by E1, . . . , Er the components
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of E in the order in which they appear along Γ(p) in the positive di-
rection, starting from E1. For each i ∈ {1, . . . , r}, denote by Ai, i+1

the intersection point of Ei and Ei+1, where Er+1 = E1. Consider then
functions Πi : Ei → [(i−1)/r, i/r] with the same properties as in the case
of Hirzebruch-Jung singularities. By passing to the quotient R → R/Z,
we can glue the previous maps into a continuous map:

Π: E → R/Z.

Consider then the map Π ◦ Ψ: M(S) → R/Z (see Fig. 20).

T

TT AA

A

r−1,r

r,1

r−1,r

r,1

1,2
1,2

N(T)

M(S)

E

E

E 1

2

r

Fig. 20. The maps Π and Ψ for a cusp singularity

Our construction shows that Π realizes M(S) as the total space of
a torus fibration over R/Z.

Denote by Ti, i+1 := Ψ−1(Ai, i+1) the torus of T (p) which corre-
sponds to the intersection point of Ei and Ei+1. Denote T := Tr, 1

and let N(T ) be a (closed) tubular neighborhood of T , which does not
intersect any other torus Ti, i+1, for i ∈ {1, . . . , r − 1} (see Fig. 20).

Denote L := H1(M(S)−N(T ), Z). As M(S)−N(T ) is the interior
of a thick torus, we see that L is a 2-dimensional lattice. With the
notations of Section 8.2, let fi be an oriented fibre in the piece M(Ei).
We suppose moreover that f1 and fr are situated on the boundary of
N(T ). Consider two other circles f0 and fr+1 on ∂N(T ), such that f0, fr

are isotopic inside N(T ) and situated on distinct boundary components
and such that the same is true for the pair f1, fr+1.

For each i ∈ {0, . . . , r + 1}, denote by vi := [fi] ∈ L the homology
class of fi. By Lemma 8.7, we see that:

vi+1 = |ei| · vi − vi−1 = −ei · vi − vi−1, ∀i ∈ {0, . . . , r},(26)
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where E0 := Er .
Denote by n ∈ GL(L) the automorphism which sends the basis

(v0, v1) of L into the basis (vr, vr+1). The relations (26) show that its
matrix in the basis (v0, v1) is:(

0 −1
1 e1

) (
0 −1
1 e2

)
· · ·

(
0 −1
1 er

)

A little thinking shows that n is the inverse of the algebraic monodromy
m ∈ GL(L) in the positive direction along R/Z. So, the matrix of m in
the basis (v0, v1) is:(

er 1
−1 0

) (
er−1 1
−1 0

)
· · ·

(
e1 1
−1 0

)

We have reproved like this Theorem 6.1 IV in Neumann [57]. We deduce
by induction the following expression for its trace, where the polynomials
Z− were defined by formula (1):

trm = Z−(|e1|, . . . , |er|) − Z−(|e2|, . . . , |er−1|).(27)

The negative definiteness of the intersection matrix of E (see The-
orem 8.3) shows that there exists i ∈ {1, . . . , r} such that |ei| ≥ 3.
As p is supposed to be the minimal resolution of (S, 0), we have also
ej ≥ 2, ∀j ∈ {1, . . . , r}. Using equation (27), we deduce then easily by
induction on r that trm ≥ 3.

• Consider now the case r = 1. Then, by Lemma 8.10, E is a
rational curve with one singular point P , where E has normal cross-
ings. Let p′ : (R′, E′) → (S, 0) be the resolution of (S, 0) obtained
by blowing up P ∈ R. Then E′ is a normal crossings resolution with
smooth components E1, E2, where E2

1 = −1 and E2 is the strict trans-
form of E. As (p′)∗E = 2E1 + E2 and ((p′)∗E)2 = E2, we deduce that
E2

2 = E2 − 4 ≤ −5. Now we apply the same argument as in the case
r ≥ 2, but for the resolution p′.

An alternative proof could use Lemma 8.4.
The fact that each oriented torus fibration with tr m ≥ 3 appears

like this is a consequence of the study done in Section 9.2. Indeed, there
we show how to extract the numbers (e1, . . . , er) from the oriented
topological type of M(S). Q.E.D.

By Neumann [57], there exist also abstract boundaries M(S) which
are torus fibrations with algebraic monodromy of trace 2. But in that
case the exceptional divisor of the minimal resolution is an elliptic curve
(then, following Saito [67], one speaks about simple elliptic singularities,
which are other particular cases of minimally elliptic ones).
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8.4. Construction of the canonical graph structure

Consider again an arbitrary normal surface singularity (S, 0) and a
normal crossings resolution p of it.

Definition 8.14. Suppose that the set of nodes N (p) is non-
empty. Conceive the graph Γ(p) as a 1-dimensional CW-complex and
take the complement Γ(p)−N (p). This complement is the disjoint union
of segments, which we call chains. If a chain is open at both extremities
we call it an interior chain. If it is half-open we call it a terminal
chain.

In Fig. 20 we represent the chains of Fig. 17, with the hypoth-
esis that E4, E5, E7 /∈ N (p) and E6 ∈ N (p). That is, we suppose
that E4, E5, E6, E7 are smooth and that g(E4) = g(E5) = g(E7) = 0,
g(E6) ≥ 1. There is only one terminal chain, which contains the terminal
chain vertex E7.

Denote by C(p) the set of chains. This set can be written as a disjoint
union

C(p) = Ci(p) � Ct(p)

where Ci(p) denotes the set of interior chains and Ct(p) the set of terminal
chains. The edges of Γ(p) contained in a chain C ∈ C(p) correspond to
a set of parallel tori in M(S). Choose one torus TC among them and
define:

T ′(p) :=
⊔

C∈Ci(p)

TC .

E

E

E

E

E

E
2

3

7

4

5

6
E1

Fig. 21. The chains of Fig. 17 when E6 is a node
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By construction, each piece of M(S)T ′(p) contains a unique piece
M(Ei) of M(S)T (p) such that Ei is a node of Γ(p). If Ei ∈ N (p),
denote by M ′(Ei) the piece of M(S)T ′(p) which contains M(Ei). One
can extend in a unique way up to isotopy the natural Seifert structure
without exceptional fibres on M(Ei) to a Seifert structure on M ′(Ei).
One obtains like this a graph structure (T ′(p), F ′(p)) on M(S).

Till now we have worked with any normal crossings resolution p.
We consider now a special one, the minimal normal crossings resolution
pmnc.

Proposition 8.15. Suppose that (S, 0) is neither a Hirzebruch-
Jung singularity, nor a cusp singularity. Then the graph structure
(T ′(pmnc), F ′(pmnc)) is the canonical graph structure on M(S).

Proof. If T ′(pmnc) is empty, as (S, 0) is not a cusp singularity we
deduce that (T ′(pmnc), F ′(pmnc)) is a Seifert structure. By Proposition
7.8, we see that it is the canonical graph structure on M(S).

Suppose now that T ′(pmnc) is non-empty. One has to verify two
facts (see Definition 7.14):

• first, that all the fibrations induced by F ′(pmnc) on the pieces
which are thick Klein bottles have orientable basis;

• second, that by taking the various choices of Seifert structures on
the pieces of M(S)T ′(pmnc), one does not obtain isotopic fibres coming
from different sides on one of the tori of T ′(pmnc).

The first fact is immediate, as one starts from Seifert structures with
orientable basis on the pieces of M(S)T (pmnc) before eliminating tori of
T (pmnc) in order to remain with T ′(pmnc).

In what concerns the second fact, the idea is to look at the fibres
corresponding to the chain vertices of any interior chain C. The union
of the pieces of M(S)T (pmnc) which are associated to those vertices is
a thick torus NR. Take a fibre in each piece (remember that they are
naturally oriented as boundaries of holomorphic discs) and look at their
images in L = H1(NR, Z). One gets like this a sequence of vectors
v1, . . . , vs ∈ L. Consider also the images v0 and vs+1 of the fibres
coming from the nodes of Γ(pmnc) to which C is adjacent, the order of
the indices respecting the order of the vertices along the chain.

By Lemma 8.7, vk+1 = αkvk − vk−1 for any k ∈ {1, . . . , s}, where
αk is the absolute value of the self-intersection of the component Ei of
Γ(pmnc) which gave rise to the vector vk. Here plays the hypothesis that
pmnc is minimal : this implies that αk ≥ 2. Then one can conclude by
using Proposition 7.7.

The analysis of thick Klein bottles is similar. It is based on the
fact that a thick Klein bottle can appear only from a portion of the
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graph Γ(p) as in Fig. 21, where E1, E2, E3 are smooth rational curves
of self-intersections −2, −2, respectively −n (see Neumann [57, pages
305, 334]). The important point is that n ≥ 2. Otherwise the complete
sub-graph of Γ(p) with vertices E1, E2, E3 would have a non-definite
intersection matrix, which contradicts Theorem 8.3. Q.E.D.

E3

E1

E2−2

−2

−n

Fig. 22. The appearance of a thick Klein bottle

The plumbing structure (T (pmnc), F(pmnc)) on N(S) is associated
to the resolution pmnc of (S, 0). One can wonder if the canonical graph
structure (T ′(pmnc), F ′(pmnc)) is also associated to some analytic mor-
phism with target (S, 0).

This is indeed the case. In order to see it, start from pmnc and its
exceptional divisor E. Then contract all the components of E which
correspond to chain vertices. One gets like this a normal surface with
only Hirzebruch-Jung singularities. The image of E on it is a divisor F
with again only normal crossings when seen as an abstract curve. Take
then as a representative of M(S) the boundary of a tubular neighbor-
hood of F in the new surface and split it into pieces which project into
the various components of F . The splitting is done using tori which are
associated bijectively to the singular points of F . Namely, in a system
of (toric) local coordinates (x, y) such that F is defined by xy = 0, one
proceeds as for the definition of the plumbing structure associated to a
normal crossings resolution (see Section 8.2). Then this system of tori
is isotopic to T ′(pmnc).

§9. Invariance of the canonical plumbing structure on the
boundary of a normal surface singularity

In this section we describe how to reconstruct the plumbing struc-
ture (T (pmnc), F(pmnc)) on M(S) associated to the minimal normal
crossings resolution of (S, 0), only from the abstract oriented manifold
M(S). Namely, using the classes of plumbing structures on thick tori de-
fined in Section 7.5, we define a plumbing structure P(M(S)) on M(S)
and we prove:
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Theorem 9.1. 1) When considered as an unoriented structure,
the plumbing structure P(M(S)) depends up to isotopy only on the nat-
ural orientation of M(S). We call it the canonical plumbing structure
on M(S).

2) The plumbing structure (T (pmnc), F(pmnc)) associated to the min-
imal normal crossings resolution of (S, 0) is isotopic to the canonical
plumbing structure P(M(S)).

As a corollary we get the theorem of invariance of the plumbing
structure (T (pmnc), F(pmnc)) announced in the introduction (see Theo-
rem 9.7). We also explain how the orientation reversal on the boundary
of a Hirzebruch-Jung or cusp singularity reflects the duality between
supplementary cones explained in Section 5.1 (see Propositions 9.4 and
9.6).

In order to prove Theorem 9.1, we consider three cases, according
to the nature of M(S). In the first one it is supposed to be a lens space,
in the second one a torus fibration with algebraic monodromy of trace
≥ 3 and in the last one none of the two (so, by Proposition 8.13, this
corresponds to the trichotomy: (S, 0) is a Hirzebruch-Jung singularity/
a cusp singularity/ none of the two).

The idea is to start from some structure on M(S) which is well-
defined up to isotopy, and to enrich it by canonical constructions of
Hirzebruch-Jung plumbing structures (defined in Section 7.5). When
M(S) is neither a lens space nor a torus fibration with algebraic mon-
odromy of trace ≥ 3, this starting structure will be the canonical graph
structure (see Definition 7.14). Otherwise we need some special theo-
rems of structure (Theorems 9.2 and 9.5).

9.1. The case of lens spaces
Notice that by Proposition 8.13 1), M(S) is a lens space if and only

if (S, 0) is a Hirzebruch-Jung singularity.
The following theorem was proved by Bonahon [5]:

Theorem 9.2. Up to isotopy, a lens space contains a unique torus
which splits it into two solid tori.

We say that a torus embedded in a lens space and splitting it into
two solid tori is a central torus. By the previous theorem, a central torus
is well-defined up to isotopy.

Let M be an oriented lens space and T a central torus in M . Con-
sider a tubular neighborhood N(T ) of T in M , whose boundary com-
ponents we denote by T− and T+, ordered in an arbitrary way. Then
MT−	T+ has three pieces, one being sent diffeomorphically by the recon-
struction map rM, T−	T+ on N(T ) - by a slight abuse of notations, we
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keep calling it N(T ) - and the others, M− and M+, having boundaries
sent by rM, T−	T+ on T−, respectively T+ (see Fig. 33). The manifolds
M− and M+ are solid tori, as T was supposed to be a central torus.
Let γ− and γ+ be meridians of M−, respectively M+, oriented compat-
ibly with the orientation of N(T ) (see Definition 7.16). Consider the
Hirzebruch-Jung plumbing structure P(N(T ), γ−, γ+) on N(T ), whose
tori are denoted by T0 = T−, T1, . . . , Tr+2 = T+, as explained in Section
7.5.

Fig. 23. Construction of the canonical plumbing structure
on a lens space

Denote TM := T2 � · · · � Tr. Then MTM contains four pieces less
than the manifold MT−	TM	T+ . Denote by M ′

− and M ′
+ the piece which

“contains” M−, respectively M+. On M ′
− we consider the Seifert struc-

ture which extends the Seifert structure of M1 and on M ′
+ the one which

extends the Seifert structure of Mr. By applying the intersection theo-
retical criterion of Proposition 7.7 b), we see that those Seifert structures
have no exceptional fibres (we used a similar argument to construct in
Section 7.5 the Hirzebruch-Jung plumbing structure on solid tori). On
the other pieces of MTM we consider the Seifert structure coming from
the plumbing structure P(M, γ−, γ+). Denote by P(M) the plumbing
structure constructed like this on the oriented manifold M .

Proof of Theorem 9.1.
1) This is obvious by construction (we use Theorem 9.2).
2) In the construction of P(M(S)), one can take as central torus T

any torus (Π ◦ Ψ)−1(c), with c ∈ (0, 1), in the notations of the proof of
Proposition 8.13, 1). Then one sees that [γ−] = [f0] and [γ+] = [fr+1]
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in the lattice L = H1(M(S) − (Π ◦ Ψ)−1{0, 1}, Z) = H1(T, Z). Us-
ing the relations (25) and the definition of a Hirzebruch-Jung plumbing
structure on a thick torus (see Section 7.5), we deduce that the images
of the fibres fi in L are equal to the images of the fibres of P(M(S))
(see also Proposition 4.4). The proposition follows by the fact that on a
2-torus, any oriented essential curve is well-defined up to isotopy by its
homology class. Q.E.D.

Let σ be the strictly convex cone of LR whose edges are generated by
[γ−] and [γ+]. If one changes the ordering of the components of ∂N(T ),
then one gets the same cone σ, and if one changes simultaneously the
orientations of γ− and γ+, then one gets the opposite cone. But if
one changes the orientation of M , then the cone σ is replaced by a
supplementary cone. So, in view of Section 5.3, the two cones are in
duality. In this sense, the canonical plumbing structure P(−M(S)) is
dual to P(M(S)). We get:

Proposition 9.3. Let (S, 0) be a Hirzebruch-Jung singularity.
Then the canonical plumbing structures with respect to the two possi-
ble orientations of M(S) are dual to each other. More precisely, if
(S, 0) � (Z(L, σ), 0) � Ap, q, then −M(S) is orientation preserv-
ing diffeomorphic to M(Š), where, with the notations of Section 4,
(Š, 0) � (Z(Ľ, σ̌), 0) � Ap, p−q.

Let λ := p/q be the type of the cone (L, σ) in the sense of Definition
5.5, where 0 < q < p and gcd(p, q) = 1. The oriented lens space M(S),
where (S, 0) � (Z(L, σ), 0) � Ap, q, is said classically to be of type
L(p, q). By Propositions 5.6 and 5.8, combined with Theorem 9.2, we
get the following classical fact:

Proposition 9.4. 1) The lens spaces L(p, q) and L(p, q′) are ori-
entation-preserving diffeomorphic if and only if p = p′ and q′ ∈ {q, q},
where 0 < q < p, qq ≡ 1(mod p).

2) The lens spaces L(p, q) and L(p, q′) are orientation-reversing
diffeomorphic if and only if p = p′ and q′ ∈ {p − q, p − q}.

9.2. The case of torus fibrations with tr m ≥ 3
Notice that by Proposition 8.13 2), M(S) is a torus fibration whose

algebraic monodromy verifies trm ≥ 3 if and only if (S, 0) is a cusp
singularity. First we study with a little more detail torus fibrations.

Let M be an orientable torus fibration. Take a fibre torus T . Then
consider the lattice L = H1(T, Z) and the algebraic monodromy op-
erator m ∈ SL(L) (see Definition 7.4) associated with one of the two
possible orientations of the base.
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The following theorem is a consequence of Waldhausen [83, section
3] (see also Hatcher [33, section 5]):

Theorem 9.5. Up to isotopy, an orientable torus fibration M
such that trm ≥ 3 contains a unique torus which splits it into a thick
torus (see Definition 7.2).

We say that a torus embedded in an orientable torus fibration whose
algebraic monodromy m verifies tr m ≥ 3 and which splits it into a thick
torus is a fibre torus. By the previous theorem, a fibre torus is well-
defined up to isotopy.

From now on, we suppose that indeed trm ≥ 3 (see Proposition
8.13, 2)). As M is orientable, m preserves the orientation of L, which
shows that detm = 1. This implies that the characteristic polynomial
of m is X2 − (tr m)X + 1. We deduce that m has two strictly positive
eigenvalues with product 1, and so the eigenspaces are two distinct real
lines in LR.

But the most important point is that these lines are irrational. In-
deed, the eigenvalues are ν± := (1/2)(trm±

√
(tr m)2 − 4) and (trm)2−

4 is never a square if tr m ≥ 3.
Denote by d− and d+ the eigenspaces corresponding to ν−, respec-

tively ν+. Then m is strictly contracting when restricted to d− and
strictly expanding when restricted to d+. Choose arbitrarily one of the
two half-lines in which 0 divides the line d−, and call it l−.

At this point we have not used any orientation of M . Suppose now
that M is oriented. Then the chosen orientation on the basis of the torus
fibration induces an orientation of the fibre torus T , by deciding that
this orientation, followed by the transversal orientation which projects
on the orientation of the base induces the ambient orientation on M .

Denote by l+ the half-line bounded by 0 on d+ into which l− arrives
first when turned in the negative direction. Let σ be the strictly convex
cone bounded by these two half-lines (see Fig. 24).

We arrive like this at a pair (L, σ) where both edges of σ are ir-
rational. As m preserves L and σ, it preserves also the polygonal line
P (σ).

Let P1 be an arbitrary integral point of P (σ). Consider the sequence
(Pn)n≥1 of integral points of P (σ) read in the positive direction along
P (σ), starting from P1. There exists an index t ≥ 1 such that Pt+1 =
m(P1). It is the period of the action of m on the linearly ordered set of
integral points of P (σ).

Consider t parallel tori T1, . . . , Tt inside M , where T1 = T and the
indices form an increasing function of the orders of appearance of the
tori when one turns in the positive direction. Denote T :=

⊔
1≤k≤t Tk
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m

l+

l−

P1
p+1P

o

orientation 
of L

Fig. 24. The case of torus bundles with tr m ≥ 3

and Tt+1 := T1. For each k ∈ {1, . . . , t}, denote by Mk the piece of
MT whose boundary components project by rM, T on Tk and Tk+1 (see
Fig. 25). Then look at the thick torus MT . Let T− be its boundary
component through which one “enters inside” MT when one turns in
the positive direction, and T+ be the one by which one “leaves” MT .
Identify then H1(MT , Z) with H1(T−, Z) through the inclusion T− ⊂
MT1 and H1(T−, Z) with H1(T, Z) = L through the reconstruction
mapping rM, T |T− : T− → T .

T

T

M M

M

1

2

2

T=T1

3

pTp

Fig. 25. Construction of the canonical plumbing structure
on a torus fibration with tr m ≥ 3

Consider now on each piece Mk an oriented Seifert fibration Fk such
that the class of a fibre in L (after projection in MT and identification
of H1(MT , Z) with L, as explained before) is equal to OPk. Denote
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by F the Seifert structure on MT obtained by taking the union of the
structures Fk. We get like this a plumbing structure on M . Denote it
by P(M).

This plumbing structure does not depend, up to isotopy, on the
choice of the initial integral point on P (σ). Indeed, by lifting to M a
vector field of the form ∂/∂θ on the base of the torus fibration and by
considering its flow, one sees that one gets isotopic torus fibrations by
starting from any integral point of P (σ).

Notice that it does neither depend on the choice of the half-line l−.
An opposite choice would lead to the choice of an opposite cone, that is
to the same unoriented plumbing structure.

Proof of Theorem 9.1.
1) This is obvious by construction (we use Theorem 9.5).
2) In the construction of P(M(S)), one can take as fibre torus T the

torus Tr, 1, with the notations of the proof of Proposition 8.13, 2). Using
the relations (26) and Proposition 4.4, we get the Proposition. Q.E.D.

By Theorem 8.12, cusp singularities are determined up to analytic
isomorphism by the topological type of the oriented manifold M(S). By
Theorem 9.5, this manifold can be encoded by a pair (T, µ), where T is
an oriented fibre and µ is a geometric monodromy diffeomorphism of T
obtained by turning in the positive direction determined by the chosen
orientation of T (recall that this is precisely the point were we use the
given orientation of M(S)). But it is known that µ can be reconstructed
up to isotopy by its action on L = H1(T, Z), that is, by the algebraic
monodromy operator m ∈ SL(L). Moreover, to fix an orientation of T is
the same as to fix an orientation of L. As explained in Section 5.3, such
an orientation can be encoded in a symplectic isomorphism ω : L → Ľ.

Denote by C(L, ω, m) the cusp singularity associated to an oriented
lattice (L, ω) and an algebraic monodromy operator m ∈ SL(L) with
tr m ≥ 3. If one changes the orientation of the base of the torus fibration,
one gets the triple (L, −ω, m−1). This shows that:

C(L, ω, m) � C(L, −ω, m−1).

When one changes the orientation of M(S), we see that the cone
(L, σ) is replaced by a supplemetary one. In view of Section 5.3, we
deduce that the two cones are dual to each other. In this sense, we get
the following analog of Proposition 9.3:

Proposition 9.6. Let (S, 0) be a cusp singularity. Then the ca-
nonical plumbing structures with respect to the two possible orienta-
tions of M(S) are dual to each other. More precisely, if (S, 0) �
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(C(L, ω, m), 0), then −M(S) is orientation preserving diffeomorphic to
M(Š), where (Š, 0) � (C(L, −ω, m), 0).

9.3. The other singularity boundaries

As in the two previous cases, we first define the plumbing structure
P(M(S)).

Consider the canonical graph structure (Tcan, Fcan) on M(S). We
do our construction starting from the neighborhoods of the JSJ tori (the
elements of Tcan) and the exceptional fibres in Fcan.

• For each component T of Tcan, consider a saturated tubular neigh-
borhood N(T ). We choose them pairwise disjoint. So, each manifold
N(T ) is a thick torus. We consider on each one of its boundary compo-
nents a fibre of Fcan. Denote these fibres by γ(T ), δ(T ). We consider
on N(T ) the restriction of the orientation of M(S). Consider the as-
sociated Hirzebruch-Jung plumbing structure P(N(T ), γ(T ), δ(T )) (see
Definition 7.17). Replace the Seifert structure on N(T ) induced from
Fcan with this plumbing structure. Then eliminate the boundary com-
ponents of N(T ) from the tori present in M(S) (by construction, the
fibrations coming from both sides agree on them up to isotopy).

• For each exceptional fibre F , consider a solid torus N(F ), which
is a saturated tubular neighborhood of F . Choose those neighbor-
hoods pairwise disjoint. On the boundary of N(F ), take a fiber γ(F )
of Fcan. Consider the associated Hirzebruch-Jung plumbing structure
P(N(F ), γ(F )) (see Definition 7.18). Replace the Seifert structure on
N(F ) induced from Fcan with this plumbing structure. Then eliminate
the boundary component of N(F ) from the tori present inside M(S)
(by construction, the fibrations coming from both sides agree on it up
to isotopy). Denote by P(M(S)) the plumbing structure constructed
like this on M(S).

Proof of Theorem 9.1. The proof is very similar to the ones ex-
plained in the two previous cases, but starting this time from the canon-
ical graph structure on M(S). The main point is Proposition 8.15. We
leave the details to the reader. Q.E.D.

9.4. The invariance theorem

Let (S, 0) be a normal surface singularity. In [57], Neumann proved
that the weighted dual graph Γ(pmnc) of the exceptional divisor of its
minimal normal crossings resolution pmnc is determined by the oriented
manifold M(S). But he says nothing about the action of the group
Diff+(M(S)) on (T (pmnc), F(pmnc)). As a corollary of Theorem 9.1 we
get:
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Theorem 9.7. The plumbing structure (T (pmnc), F(pmnc)) is in-
variant up to isotopy by the group Diff+(M(S)).

Proof. Suppose first that M(S) is not a lens space or a torus fibra-
tion. As the canonical graph structure on it is invariant by the group
Diff+(M(S)) up to isotopy, we deduce that the canonical plumbing
structure is also invariant up to isotopy by this group. This conclu-
sion is also true when M(S) is a lens space or a torus fibration, as one
starts in the construction of P(M(S)) from tori which are invariant up
to isotopy. Then we apply Theorem 9.1. Q.E.D.

An easy study of the fibres of F(pmnc) in the neighborhoods of the
tori of T (pmnc) which correspond to self-intersection points of compo-
nents of Emnc show that the analogous statement about the minimal
good normal crossings resolution of S is also true.

We arrived at the conclusion that the affirmation of Theorem 9.7 was
true while we were thinking about the natural contact structure on M(S)
(see Caubel, Némethi & Popescu-Pampu [11]). Indeed, in that paper we
prove that for normal surface singularities, the natural contact structure
depends only on the topology of M(S) up to contactomorphisms. It was
then natural to look at the subgroup of Diff+(M(S)) which leaves it
invariant up to isotopy. Presently, we do not know how to characterize
it. But we realized that the homotopy type of the underlying unoriented
plane field was invariant by the full group Diff+(M(S)), provided that
Theorem 9.7 was true (see [11, section 5]).
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[10] E. Casas-Alvero, Singularities of plane curves, London Mathematical So-

ciety Lecture Note Series, 276, Cambridge U. P., 2000.
[11] C. Caubel, A. Némethi and P. Popescu-Pampu, Milnor open books and

Milnor fillable contact 3-manifolds, Topology, 45 (2006), 673–689.
[12] H. Cohn, Support polygons and the resolution of modular functional sin-

gularities, Acta Arithmetica, XXIV (1973), 261–278.
[13] V. Cossart, Uniformisation et désingularisation des surfaces d’après
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Exemples de fonctions

de Artin de germes d’espaces analytiques

Guillaume Rond

Abstract.

We define here the Artin functions of a germ of analytic space.
Artin functions are analytic invariants of the germ and a measure of
its singularity. In general these functions are very difficult to compute.
We give a few properties of these functions and we present some
examples.

§1. Préliminaires

Soit k un corps valué (par exemple k = R, C, Qp, . . . ). Pour tout
entier N ≥ 1, notons ON l’anneau local k{T1, . . . , TN}, m son idéal
maximal et ÔN := k[[T1, . . . , TN ]] son complété pour la topologie m-
adique. Nous noterons ord la valuation m-adique sur ON :

ord(x) := max{n ∈ N/x ∈ mn}.

Soit I un idéal de k{X1, . . . , Xn} définissant un germe d’espace analy-
tique (X, 0) plongé dans (kn, 0). Nous allons définir ici la suite des fonc-
tions de Artin de (X, 0) qui sont des fonctions numériques de N dans
N. Ces fonctions sont des invariants analytiques du germe mais, mal-
heureusement, sont très difficiles à calculer en général. Nous présentons
ici les résultats connus à propos de ces fonctions puis nous présentons
quelques exemples.

Pour tout entier p ≥ 1, notons XN
p l’ensemble des morphismes de

k-algèbres locales OX, 0 −→ ÔN/mp+1, et notons XN
∞ l’ensemble des

morphismes de k-algèbres locales OX, 0 −→ ÔN . Les projections cano-
niques

ÔN −→ ÔN/mp+1 −→ ÔN/mq+1, ∀p ≥ q

Received To be given
Revised To be given
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définissent par composition des morphismes

XN
∞

πp �� XN
p

πp,q �� XN
q , ∀p ≥ q.

Les fonctions de Artin de (X, 0) sont des fonctions qui donnent des
conditions nécessaires et suffisantes pour qu’un élément de XN

p puisse
se relever en un élément de XN

∞.
Tout d’abord, nous avons le théorème suivant (qui est un cas légèrement
plus particulier que le théorème énoncé originallement):

Théorème 1.1 ([Wa]). Soit k un corps valué, complet de ca-
ractéristique nulle. Soient f1, . . . , fr ∈ k[[T, X ]], où T = (T1, . . . , TN)
et X = (X1, . . . , Xn).
Alors il existe β : N −→ N telle que:
Pour tout p ∈ N et pour tout x(T ) ∈ Ôn

N tel que

x(0) = 0,

et fi(x(T )) ∈ mβ(p)+1, 1 ≤ i ≤ r,

il existe x(T ) ∈ Ôn
N tel que

fi(x(T )) = 0, 1 ≤ i ≤ r, et x(T ) − x(T ) ∈ mp+1.

Dans la suite, k sera toujours un corps valué, complet de caractéristique
nulle, sauf mention du contraire.
Nous appellerons fonction de Artin des fi la plus petite fonction qui
vérifie le théorème précédent. Il n’est pas difficile à vérifier que cette fonc-
tion de Artin ne dépend que du morphisme k[[T ]] −→ k[[T, X ]]/(f1, . . . , fr).
Nous avons alors la définition suivante

Définition 1.2. Soit I = (f1, . . . , fr) un idéal de k{X1, . . . , Xn}
définissant un germe d’espace analytique (X, 0) plongé dans (kn, 0). Soit
N ≥ 1 un entier. Notons IN l’idéal de k[[T1, . . . , TN , X ]] engendré par
I. Nous appellerons N -ième fonction de Artin de (X, 0) la plus petite
fonction βN qui vérifie le théorème de Artin précédent pour l’idéal IN .

Dans le cas N = 1, un théorème de Greenberg nous permet d’affir-
mer que β1 est bornée par une fonction affine [Gr]. Pour N ≥ 2, ceci
a été conjecturé pendant longtemps, mais c’est en général faux [Ro2].
Nous verrons plus loin certains exemples où ce n’est pas le cas.
Nous pouvons réénoncer l’existence de la fonction βN en écrivant

πp(XN
∞) = πβN (p),p(XN

βN (p)), ∀p ≥ 1.(1)
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C’est-à-dire qu’un élément de XN
p se relève en un élément de XN

∞ si l’on
peut le relever en un élément de XN

βN (p).
Nous avons alors le résultat suivant qui découle d’un théorème de Che-
valley, énonçant que l’image d’un ensemble algébrique par un morphisme
est un sous-ensemble constructible de ensemble d’arrivée:

Proposition 1.3. Soient (X, 0) un germe d’espace analytique sur
un corps valué algébriquement clos, complet de caractéristique nulle et
N ∈ N fixés. Alors pour tout p entier, πp(XN

∞ ) est un sous-ensemble
constructible de XN

p .

La suite des fonctions de Artin d’un germe de variété analytique est
un invariant analytique de celui-ci; d’après ce qui précède, nous voyons
que βN ne dépend que du morphisme k[[T ]] −→ k[[T, X ]]/(f1, . . . , fr).
Par ailleurs, cette suite est, en quelque sorte, une mesure de la singularité
du germe. En effet nous avons la proposition suivante:

Proposition 1.4 ([H1]). Soit (X, 0) un germe d’espace analytique
sur un corps k et N ≥ 1 un entier. Alors la N -ième fonction de Artin de
(X, 0) est égale à l’identité si et seulement si le germe est non-singulier.

Le but de ce travail est d’étudier la suite des fonctions de Artin
d’un germe d’espace analytique. Dans cette optique nous allons tout
d’abord énoncer les premiers résultats connus à propos de ces fonctions
(essentiellement sur β1). Ensuite nous allons introduire deux outils utiles
dans l’étude de fonctions de Artin: le théorème d’Izumi et un théorème
d’approximation diophantienne dû à l’auteur. Enfin nous allons donner
une liste des exemples connus de fonctions de Artin de germes d’espaces
analytiques.

§2. Propriétés des fonctions de Artin d’un germe d’espace
analytique

Nous pouvons énoncer les propriétés suivantes de ces fonctions.

Proposition 2.1. Nous avons le propriétés suivantes:
i) Soient (X, 0) un germe d’espace analytique et (βN )N sa suite

de fonctions de Artin. Nous avons les inégalités

∀N ≥ 1, ∀p ∈ N, βN (p) ≤ βN+1(p)

ii) Soient (X, 0) et (Y, 0) deux germes d’espaces analytiques, définis
respectivement par les idéaux I et J , et (βN )N et (β′

N )N leurs
suites de fonctions de Artin respectives. Notons (γN )N la suite
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de fonctions de Artin du germe (X∪Y, 0) défini par l’idéal I∩J .
Nous avons alors les inégalités

∀N ≥ 1, ∀p ∈ N, γN (p) ≤ βN (p) + β′
N (p).

Preuve. Montrons i). Soit f1, . . . , fr un système de générateurs de
l’idéal I définissant le germe (X, 0). Soit x(T ) ∈ Ôn

N tel que fi(x(T )) ∈
mβN+1(p)+1, 1 ≤ i ≤ r. Nous avons donc l’existence d’un x(T ) ∈ Ôn

N+1

tel que f(x(T )) = 0 et x(T ) − x(T ) ∈ mp+1. En annulant TN+1 dans
l’écriture de x(T ), nous trouvons x(T ) ∈ Ôn

N tel que f(x(T )) = 0 et
x(T ) − x(T ) ∈ mp+1.
Montrons maintenant ii). Soit f1, . . . , fr (resp. g1, . . . , gs) un système
de générateurs de l’idéal I définissant le germe (X, 0) (resp. (Y, 0)).
Soit x ∈ Ôn

N tel que h(x) ∈ mβN (p)+β′
N (p)+1 pour tout h ∈ I ∩ J . En

particulier fj(x)gk(x) ∈ mβN(p)+β′
N (p)+1 pour tout j et k. Alors nous

avons soit fj(x) ∈ mβN(p)+1 pour tout j, soit gk(x) ∈ mβN (p)+1 pour
tout k. D’où l’existence de x tel que x − x ∈ mp+1 et f(x)g(x) = 0, et
donc tel que h(x) = 0 pour tout h ∈ I ∩ J . Q.E.D.

Nous verrons plus tard que la première de ces inégalités peut être
stricte.
Dans le cas des hypersurfaces, plusieurs auteurs ont étudié β1, appelée
parfois fonction de Artin-Greenberg du germe [LJ], [H1]. Le calcul ex-
plicite de β1 pour les courbes planes a même été effectué [H2], et montre
que celle-ci, avec la donnée de la multiplicité, est un invariant topolo-
gique complet pour les courbes planes. M. Hickel a aussi montré que
la constante égale à θ := limpβ1(p)/p est une contrainte sur le nombre
d’éclatements nécessaires à désingulariser un germe d’hypersurface:

Proposition 2.2 ([H2]). Soit (X, 0) un germe d’hypersurface
complexe singulier défini par une équation. Soit une suite d’éclatements
ϕj de centres lisses Zj où Xj est équimultiple le long de Zj, Xj+1 est la
transformée stricte de Xj et où Xn est lisse:

Wn
ϕn �� Wn−1

ϕn−1 �� · · · ϕ1 �� W0

Xn
ϕn ����

��

Xn−1
ϕn−1 ����

��

· · · ϕ1 �� X0 = X
��

��

Alors nous avons

n ≥ θ − 1
m0

(2)
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où θ := limpβ1(p)/p, β1 est la première fonction de Artin de (X, 0) et
m0 est la multiplicité de X en l’origine.

La première fonction de Artin de (X, 0) nous donne donc une condi-
tion nécessaire quant à la désingularisation d’un germe d’espace analy-
tique.
Dans le cas des hypersurfaces, une première majoration effective de β1

a été obtenue [LJ], améliorée ensuite par M. Hickel:

Théorème 2.3 ([H1]). Soient f un germe de fonction holomorphe
à l’origine de Cn et Jf l’idéal jacobien de f (i.e. l’idéal de k{X1, . . . , Xn}
engendré par les dérivées partielles de f). Notons (X, 0) ⊂ (Cn, 0) (resp.
(XJ , 0) ⊂ (Cn, 0)) le germe de variété associé à f (resp. à Jf ) et β1

(resp. β′
1) sa première fonction de Artin. Alors nous avons

β1(p) ≤ β′
1(p) + p, ∀i ∈ N(3)

Ce théorème relie la fonction de Artin de (f) avec celle de son ja-
cobien, et cette inégalité est bien meilleure que celle qui apparâıt dans
la preuve du théorème de Greenberg, et qui est de la forme β1 ≤ 2β′

1

(cf. [Gr]). En particulier, dans le cas d’un germe à singularité isolée, ce
théorème permet d’obtenir le résultat suivant:

Théorème 2.4 ([H1]). Soit f un germe de fonction holomorphe
à l’origine de Cn définissant un germe de variété analytique (X, 0). Sup-
posons que (X, 0) est à singularité isolée et notons ν son exposant de
�Lojasiewicz ([LJ-T] ou [H1]). Alors

β1(i) ≤ 	νi
 + i, ∀i ∈ N.(4)

Ces deux derniers résultats sont cependant faux si N ≥ 2, comme
nous le verrons dans la dernière partie.

§3. théorème d’Izumi et théorème d’approximation diophan-
tienne

Nous présentons ici deux résultats (l’un d’algèbre commutative, l’au-
tre d’arithmétique) qui sont deux cas particuliers de majoration affine
d’une fonction de Artin. Ces deux résultats seront utilisés par la suite
pour estimer certaines fonctions de Artin.

3.1. Théorème d’Izumi

Ce théorème donne une caractérisation des algèbres analytiques intègres:
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Théorème 3.1 ([Iz][Re]). Soient

R := k[[T1, . . . , TN ]]/(f1, . . . , fp),

avec k un corps, et m son idéal maximal. Alors R est intègre si et seule-
ment si il existe deux constantes a et b telles que:

∀x, y ∈ R, ν(xy) ≤ a(ν(x) + ν(y)) + b

où ν est l’ordre m-adique sur R.

Pour tout anneau local R, nous avons toujours ν(xy) ≥ ν(x)+ ν(y),
quelques soient x et y dans R. Ce théorème peut se réénoncer sous la
forme suivante:

Théorème 3.2 ([Ro3]). Si (f1, . . . , fp) est un idéal premier de
ÔN , alors la fonction de Artin de XY −

∑
i fiZi ∈ ÔN [[X, Y, Zi]] est

bornée par une fonction affine de la forme p �−→ 2ap + c où a est la
constante du théorème précédent.

Exemple 3.3. Soit f ∈ ÔN une série irréductible. Alors, XY −f
n’admet pas de zéro (x(T ), y(T )) tel que x(0) = y(0) = 0. Sa fonction de
Artin est donc constante. Notons c(f) cette constante. D’autre part, la
fonction de Artin de XY −fZ est bornée par une fonction affine d’après
le Théorème 3.2.
Si c(f) = ord(f), c’est-à-dire si le cône tangent à la variété formelle
{f = 0} est irréductible, alors ν est une valuation, et les constantes a et
b du Théorème 3.1 peuvent être choisies respectivement égales à 1 et 0.
On peut alors voir que la fonction p �−→ 2p + c (où c est une constante
bien choisie) majore la fonction de Artin de XY − fZ.
La question naturelle qui se pose est de savoir, en général, comment
relier le coefficient de linéarité d’une fonction affine majorant la fonction
de Artin de XY − fZ, et les constantes c(f) et ord(f).

3.2. Théorème d’approximation diophantienne
Nous allons noter ici VN :=

{
(x/y) / x, y ∈ ÔN et ord(x) ≥ ord(y)

}
,

l’anneau de valuation discrète qui domine ÔN pour ord et

V̂N := k(T1/TN , . . . , TN−1/TN)[[TN ]]

le complété pour la topologie m-adique de VN . Les corps KN et K̂N sont
respectivement les corps de fractions de ÔN et de V̂N . La valuation ord
définit une norme | | sur ÔN en posant |x| = e−ord(x) et cette norme
induit une topologie appelée topologie m-adique. Cette norme s’étend
naturellement à KN et K̂N . On peut remarquer que K̂N est le complété
de KN pour la norme | |. Nous avons alors le théorème suivant:
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Théorème 3.4 ([Ro4]). Soit z ∈ K̂N algébrique sur KN tel que
z /∈ KN . Alors il existe a ≥ 1 et K ≥ 0 tels que∣∣∣∣z − x

y

∣∣∣∣ ≥ K|y|a, ∀x, y ∈ ÔN .(5)

Ce théorème est un cas particulier de majoration affine de fonctions
de Artin. En effet, celui-ci est équivalent au théorème suivant:

Théorème 3.5 ([Ro4]). Soit P (X, Y ) un polynôme homogène en
X et Y à coefficients dans ÔN . Alors P admet une fonction de Artin
bornée par une fonction affine de la forme p �−→ (d+a)p+ c, où d est le
degré de P , a est la constante du Théorème 3.4 précédent et c est une
constante.

Exemple 3.6. Nous pouvons faire le parallèle avec le théorème
d’Izumi. Soit Q(Z) un polynôme en une variable à coefficients dans ÔN .
Supposons que Q n’ait pas de zéro dans ÔN . Alors la fonction de Artin de
Q est constante. L’exemple le plus caractéristique est le cas où Q(Z) =
Zd − u et où u n’est pas une puissance d-ième dans ÔN . Dans ce cas
notons c(u) la valeur constante de la fonction de Artin de Q. Notons
P (X, Y ) l’homogénéisé de Q (i.e. P (X, Y ) = Y dQ(X/Y )). D’après le
Théorème 3.5, P admet une fonction de Artin majorée par une fonction
affine.
Si c(u) = ord(u), c’est-à-dire si le terme initial de u n’est pas une puis-
sance p-ième dans ÔN , alors u n’est pas une puissance p-ième dans V̂N

et donc dans K̂N . Le Théorème 3.4 est donc vide dans ce cas, et l’on
peut montrer que la fonction de Artin de P est bornée par une fonction
de la forme p �−→ dp + c, avec c bien choisie.
Là encore, la question naturelle qui se pose est de savoir, en général,
comment relier le coefficient de linéarité d’une fonction affine majorant la
fonction de Artin de P (X, Y ) (où, de manière équivalente, une constante
a intervenant dans le Théorème 3.4 pour z ∈ K̂N tel que zd = u), et les
constantes c(u) et ord(u).

§4. Exemples

Nous allons donner ici, pour plusieurs germes d’espaces analytiques,
le comportement des différentes fonctions de Artin de ceux-ci. Pour N ≥
2, un tel comportement est en général très difficile à déterminer. Dans
chaque cas, βN est la N -ième fonction de Artin du germe considéré.
Nous considérerons parfois le cas où k est de caratéristique positive, si
les βN existent alors.
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4.1. Germe de variété défini par un monôme
Ce premier cas, très simple, est celui d’un germe d’espace (X, 0) ⊂

(kn, 0) défini par une équation de la forme Xn1
1 . . . Xnn

n = 0. Nous avons
alors la proposition:

Proposition 4.1. Pour tout N ≥ 1, nous avons

βN (p) = (n1 + · · · + nn)p, ∀p ∈ N.

Preuve. Il est clair que si xn1
1 · · ·xnn

n ∈ m(n1+···+nn)p+1, alors il
existe i tel que ord(xi) ≥ p+1. D’autre part, si pour tout i nous posons
xi = T p, alors xn1

1 · · ·xnn
n = T (n1+···+nn)p ∈ m(n1+···+nn)p. Cependant

ord(xi) < p + 1. D’où l’égalité. Q.E.D.

4.2. Germe de variété réduite à composantes irréductibles
lisses

Les fonctions de Artin d’un germe d’espace analytique réduit dont
chaque composante irréductible est lisse sont toutes bornées par une
fonction linéaire p �−→ m p où m est le nombre de composantes irréductibles
du germe en 0. Ceci découle du fait que les fonctions de Artin de (X ∪
Y, 0) sont bornées par celles de (X, 0) plus celles de (Y, 0), et que les
fonctions de Artin d’un germe lisse sont toutes égales à l’identité. Plus
précisément nous avons la proposition:

Proposition 4.2. Soient (X, 0) un germe d’espace analytique réduit
dont toutes les composantes irréductibles sont lisses. Supposons que le
corps de base n’est pas de cardinal fini. Alors

βN (p) = m p, ∀p ∈ N, ∀N ∈ N∗

où m est le nombre de composantes irréductibles du germe en 0.

Preuve. D’après la remarque précédente, il suffit de montrer que
βN (p) ≥ m p pour tout p. Supposons que k n’est pas de cardinal fini.
Nous allons donner la preuve de ce résultat dans le cas de 2 composantes
irréductibles (i.e. m = 2), le cas général étant identique. Soient I et
J les idéaux de k{X1, . . . , Xn} définissant respectivement (X, 0) et
(Y, 0) deux germes lisses distincts. Nous avons k{X1, . . . , Xn}/I ∩ J ≡
k{Y1, . . . , Yr}/K où K est inclu dans {X1, . . . , Xn}2 car X ∪ Y n’est
pas lisse. Soient I/I ∩ K et J/J ∩ K les idéaux de k{Y1, . . . , Yr}/K
engendrés par I et J , et I ′ et J ′ les idéaux de k{Y1, . . . , Yr} engendrés
par les images reciproques de I/I∩K et J/J∩K respectivement. Comme
X et Y sont lisses, ces idéaux sont inclus dans (Y1, . . . , Yr) mais pas dans
(Y1, . . . , Yr)2. Soient f et g deux éléments de I ′ et J ′ respectivement
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qui ne sont pas dans (Y1, . . . , Yr)2. Soit (y1, . . . , yr) un élément de kr

n’appartenant ni aux zéros de la forme initiale de f , ni aux zéros de
celle de g. Un tel (y1, . . . , yr) existe car k n’est pas un corps fini. Pour
tout h ∈ I ∩ J , h(y1T

p
1 , . . . , yrT

p
1 ) ∈ m2p car K ⊂ (Y1, . . . , Yr)2. Si

nous avions βN (p) < 2 p, alors il existerait y1(T ), . . . , yr(T ) tels que
h(y(T )) = 0 pour tout h ∈ I∩J , et yi(T )−yiT

p
1 ∈ mp+1 pour tout i. En

particulier, f(y)g(y) = 0. Or (y1, . . . , yr) n’appartenant ni aux zéros de
la forme initiale de f , ni aux zéros de celle de g, ceci est impossible et
βN (p) ≥ 2p. Q.E.D.

4.3. Cusp
Soit (X, 0) ⊂ (k2, 0) le germe d’espace analytique défini par X2 −

Y 3 = 0. Nous avons alors la proposition:

Proposition 4.3. Nous avons les cas suivants:
i) Si N = 1 et k = C, nous avons

β1(p) = 3p, ∀p /∈ (2)
β1(2) = 4 et β1(p) = 3(p − 1), ∀p ∈ (2)\{2}.

ii) Si N = 1 et k est un corps qui contient un élément λ qui n’est
pas un carré (ex: k = R), nous avons

β1(p) = 3p, ∀p ∈ N.

iii) Si N ≥ 2 et si k est un corps de caractéristique différente de
2 ou 3, nous avons

lim
p−→+∞

βN (p)/p ≥ 4.

Preuve. i) La première assertion découle du calcul de la première
fonction de Artin d’une branche plane (cf. Théorème 2.1 [H2]).
ii) Supposons que N = 1 et k est un corps qui contient un élément λ
qui n’est pas un carré. En particulier λ3 n’est pas un carré (si λ3 = µ2

alors (µ/λ)2 = λ ce qui est impossible).
Posons alors x = 0 et y = λT p. Nous avons x2 − y3 = −λ3T 3p. Si
β1(p) < 3p, alors il existe x et y avec x2 − y3 = 0 et x − x et y − y sont
dans mp+1. Dans ce cas, néssairement le terme initial de x2 doit être
égal au terme initial de y3 qui est égal à λ3T 3(p−1). Or λ3 n’est pas un
carré, donc ceci est impossible et β1(p) ≥ 3p.
D’autre part, si x2 − y3 ∈ m3p+1, alors deux cas peuvent se produire:
si ord(x) ≥ p + 1 et ord(y) ≥ p + 1, alors nous posons x = y = 0, et
nous avons x2 − y3 = 0 et x − x, y − y ∈ mp+1. Si ord(x) < p + 1 ou
ord(y) < p + 1, alors les termes initiaux de x2 et de y3 sont égaux, car



206 G. Rond

x2 − y3 ∈ m3p+1. Donc y3 est un carré dans k[[T ]], et nous avons alors
(x−y3/2)(x+y3/2) ∈ m3p+1. Donc ord(x−y3/2) ≥ p+1 par exemple, et
nous posons x = y3/2 et y = y. Dans tous les cas nous avons x2 − y3 = 0
et x − x, y − y ∈ mp+1. Donc β1(p) ≤ 3p.
La troisième assertion découle de [Ro1]. Q.E.D.

4.4. Parapluie de Whitney

Soit (X, 0) ⊂ (k3, 0) le germe de variété défini par X2 − ZY 2 = 0
où k est un corps muni d’une norme. Nous avons alors la proposition:

Proposition 4.4. Nous avons les cas suivants:
i) Si N = 1, nous avons

β1(p) ≤ 3p, ∀p ≥ 1.

ii) Si N ≥ 2 et car k = 2, nous avons

β1(p) ≤ 3p, ∀p ≥ 1.

iii) Si N ≥ 2 et car k 
= 2, nous avons

βN (p) ≥ p2

4
+ p − 4, ∀p ≥ 1.

Preuve. Notons P (X, Y, Z) = X2 − ZY 2.
Le cas i) découle du Théorème 2.3 si k = C. Dans le cas général, suppo-
sons que nous ayons x, y et z dans O1 tels que x2 − zy2 ∈ m3p+1. Alors
trois cas se présentent:
- Supposons que ord(y) < p+1 et ord(x2) = ord(zy2). Donc x2/y2−z ∈
mp+1 et nous posons x = x, y = y et z = x2/y2.
- Supposons que ord(x2) 
= ord(zy2). Alors ord(x) ≥ p + 1, et soit
ord(z) ≥ p + 1 soit ord(y) ≥ p + 1. Nous posons alors x = 0, et z = 0 et
y = y dans le premier cas, et z = z et y = 0 dans le second cas.
- Supposons enfin que ord(y) ≥ p + 1 et ord(x2) = ord(zy2). Alors
ord(x) ≥ p + 1. Nous posons alors x = 0, y = 0 et z = z.
Dans tous les cas P (x, y, z) = 0 et

x − x, y − y, z − z ∈ mp+1.

ii) Soient x, y et z dans ON , avec N ≥ 2, tels que x2 − zy2 ∈ m3p+1.
Notons

α = ord(x), β = ord(y), γ = ord(z).
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Si β > p, nous posons x = 0, y = 0 et z = z. Nous avons alors

(x − x)2 = x2 ∈ mmin{3p+1, 2β+γ} ⊂ m2p+2

et donc x − x ∈ mp+1. Clairement y − y et z − z sont dans mp+1 et
x2 − zy2 = 0.
Supposons maintenant que β ≤ p. Nous pouvons écrire z = zγ + zγ+1 +
zγ+2 + · · · où zd est homogène de degré d. Soit γ1 le plus petit entier
pour lequel zγ1 n’est pas un carré. Comme car k = 2, les monômes
apparaissant dans l’écriture de x2 et de y2 sont tous des carrés et donc
γ1 + 2β ≥ 3p + 1. Notons z = zγ + zγ+1 + · · · + zγ1−1; en particulier
z − z ∈ m3p+1−2β ⊂ mp+1. Cet élément est un carré, disons z = u2, car
car k = 2. Nous avons alors x2 − (uy)2 = (x − uy)(x + uy) ∈ m3p+1.
Donc, par exemple, x − uy ∈ m�(3p+1)/2� ⊂ mp+1. Posons alors x = uy
et y = y. Nous avons alors x− x ∈ mp+1, y − y ∈ mp+1 et z − z ∈ mp+1,
et de plus x2 − zy2 = 0.
iii) Nous allons donner ici une idée de la preuve de ce résultat. Pour
plus de détails, on pourra se reporter à [Ro2]. Considérons le polynôme
Pk(X, Y ) = X2−ukY

2 avec uk = T 2
1 +T k

2 et k > 2. L’idée est de voir que
toute majoration affine de la fonction de Artin de Pk a un coefficient de
linéraité supérieur à k, et ensuite de considérer ce polynôme comme une
“spécialisation” du polynôme P . L’élément uk n’est pas un carré dans
ON , et donc Pk admet une fonction de Artin majorée par une fonction
affine de la forme p �−→ a(k)p + b(k) d’après le théorème 3.5. L’idée est
de voir que le plus petit a(k) possible est minoré par k/2 + 1. Pour cela,
il suffit de voir que uk est un carré dans V̂N .
Notons

zk := T1

(
1 +

1
2

T p
2

T 2
1

− 1
8

T 2p
2

T 4
1

+ · · · + (−1)n−1(2n − 2)!
22n−1(n − 1)!n!

T np
2

T 2n
1

+ · · ·
)

.

Nous avons z2
k = uk. Notons zk,p la troncation de zk à l’ordre p et

soient xk,p et yk,p deux éléments de ON tels que xk,p/yk,p = zk,p, et
tels que xk,p et yk,p sont premiers entre eux. Alors |zk − (xk, p/yk, p)| =
Kk|yk,p|(k/2)−1. En utilisant le théorème 3.5, nous voyons donc que le
plus petit a(k) possible est minoré par k/2 + 1.
Maintenant, P (xk,p, yk,p, uk) ∈ m(k+2)p−4. Or les zéros (x, y, z) de P
sont de deux formes: soit x = y = 0, soit z est un carré. Donc

sup
P (x, y, z)=0

(
min{ord(xk, p − x), ord(yk, p − y), ord(uk − z)}

)
≤ max(2k − 3, p).
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Donc en posant p = k+2, nous voyons que P (xk, k+2, yk, k+2, uk)mk2+4k

mais

sup
P (x, y, z)=0

(
min{ord(xk, k+2 − x), ord(yk, k+2 − y), ord(uk − z)}

)
≤ 2k − 3.

Nous avons donc une solution approchée de P à l’ordre k2 + 4k mais la
différence entre cette solution approchée et une vraie solution est d’ordre
inférieur à 2k − 3. Q.E.D.

4.5. Le germe de variété défini par X1X2 − X3X4 = 0

Considérons (X, 0) ⊂ (k4, 0) le germe de variété défini par X1X2 −
X3X4 = 0 où k est un corps muni d’une norme. Nous avons alors la

Proposition 4.5. Nous avons les cas suivants:
i) Si N = 1, nous avons

β1(p) = 2p, ∀p ≥ 1.

ii) Si N ≥ 3, nous avons

β1(p) ≥ p2 − 1, ∀p ≥ 1.

Preuve. Notons P (X1, X2, X3, X4) = X1X2 − X3X4.
Montrons i). Soient x1, x2, x3, x4 tels que x1x2 − x3x4 ∈ m2p+1. Si
ord(x1) ≥ p + 1 ou ord(x2) ≥ p + 1, alors ord(x3) ≥ p + 1 ou ord(x4) ≥
p + 1. Par exemple ord(x1) ≥ p + 1 et ord(x3) ≥ p +1. Dans ce cas nous
posons x1 = 0, x2 = x2, x3 = 0 et x4 = x4.
Si, pour tout i, ord(xi) ≤ p, alors les termes initiaux de x1x2 et de x3x4

sont égaux. Donc, par exemple x1 divise x3. D’où

ε = x2 −
x3

x1
x4 ∈ m2p−ord(x1)+1 ⊂ mp+1.

Nous posons alors x1 = x1, x2 = x2 − ε, x3 = x3 et x4 = x4.
Dans tous les cas nous avons P (x1, x2, x3, x4) = 0 et

x1 − x1, x2 − x2, x3 − x3, x4 − x4 ∈ m
p+1.

Cela prouve que β1(p) ≤ 2p pour tout p.
Enfin, supposons qu’il n’y ait pas égalité, c’est-à-dire qu’il existe p tel
que β1(p) ≤ 2p − 1. Posons alors x1 = x2 = T p et x3 = x4 = 0. Nous
avons alors x1x2 − x3x4 ∈ m2p. Il existe donc des xi pour 1 ≤ i ≤ 4 tels
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que P (x1, x2, x3, x4) = 0 et xi − xi ∈ mp. Nous pouvons alors écrire
xi = xi + εi où εi ∈ mp. Nous avons alors

T 2p + T p(ε1 + ε2) + ε1ε2 − ε3ε4 = 0(6)

Or ord(T p(ε1 + ε2)), ord(ε1ε2) et ord(ε3ε4) sont tous plus grand que
2p + 1, donc nous ne pouvons avoir l’égalité 6.
ii) Là encore nous n’allons donner ici qu’une idée de la preuve. Pour
plus de détails, on pourra se reporter au théorème 5.1 de [Ro3].
Notons Pk(X1, X2, X3) := X1X2 − (T1T2 − T k

3 )X3. Comme T1T2 − T k
3

est irréductible dans ON , alors Pk admet une fonction de Artin majorée
par une fonction affine de la forme p �−→ a(k)p + b(k). On peut montrer
que le plus petit a(k) possible est au moins égal à k (cf. [Iz]). Soient
x1, p = T p

1 , x2, p = T p
2 . Alors x1, px2, p ∈ (T1T2 − T k

3 ) + mpk. Donc il
existe x3,p,k tel que x1, px2, p − (T1T2 − T k

3 )x3, p, k ∈ mpk.
Posons k = p. Notons x4, p = T1T2 − T p

3 . Soit (x1, x2, x3, x4) une vraie
solution de P .
Si x4−x4, p ∈ mp+1, alors on peut montrer que x4 est irréductible. Dans
ce cas x1 ou x2 est divisible par x4. Or les termes initiaux de x1,p et de
x2,p ne sont pas divisibles par le terme initial de x4, p qui est le terme
initial de x4. Donc soit ord(x1 − x1,p) ≤ p, soit ord(x2 − x2,p) ≤ p.
Le second cas est x4 − x4, p /∈ mp+1.
Dans les deux cas nous avons

sup
P (x)=0

(
min{ord(x1, p − x1), ord(x2, p − x2),

ord(x3, p, p − x3), ord(x4, p − x4)}
)
≤ p.

Nous avons donc une solution approchée de P à l’ordre p2 mais la
différence entre cette solution approchée et une vraie solution de P est
d’ordre inférieur à p. Q.E.D.

Nous pouvons remarquer ici que la première fonction de Artin ne différencie
pas ce germe d’un germe défini par un monôme de degré 2. Cependant
les N -ièmes fonctions de Artin de ces deux germes, pour N ≥ 3, sont
différentes. Une question naturelle qui se pose est la suivante:
Soit (X, 0) un germe d’espace analytique. Si il existe a tel que βN(p) =
ap pour tous p et N entiers, alors l’idéal des fonctions de (X, 0) est-il
un produit d’idéaux définissants des germes lisses ?
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Perverse sheaves and Milnor fibers

over singular varieties

Kiyoshi Takeuchi

Abstract.

We review some recent applications of perverse sheaves (intersec-
tion cohomologies) in singularity theory. Milnor fibers over general
complete intersection varieties will be treated. We also give a proof
of a result announced in [31].

§1. Introduction

The aim of this note is to introduce some recent applications of
perverse sheaves (intersection cohomologies) to the study of complex
hypersurface singularities. In the last two decades the theory of Milnor
fibrations (see for example, Milnor [29], Dimca [7] etc.) was extended to
the Milnor fibers over singular varieties. In particular, for any holomor-
phic function f with (stratified) isolated singularity on any complete
intersection variety, Lê [21], Siersma [34] and Tibar [35] proved that
the Milnor fiber of f admits a bouquet decomposition. This result is
of course a vast generalization of Milnor’s result, but the fact that the
cohomological type of the Milnor fiber of f is the same as that of a bou-
quet of spheres can be easily deduced from the theory of perverse sheaves
(see Theorem 2.2 below). It seems therefore that the above mentioned
authors studied the topological or homotopy types of Milnor fibers mo-
tivated by this cohomological result obtained by perverse sheaves. This
example shows that a general result in the theory of perverse sheaves
sometimes can become a good guide principle in the study of singularity
theory. In this short note, we explain some new topological constraints
of general hypersurface singularities obtained by perverse sheaves. We
hope that these results will help our understanding of non-isolated hy-
persurface singularities.
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§2. Milnor fibers over complete intersection varieties

In this section we review some recent results on the topology of
Milnor fibers over singular varieties. Let X be an irreducible analytic
subset (or an algebraic subvariety) of CN of dimension n + 1 containing
the origin 0 ∈ CN . Throughout this note, unless otherwise stated, we
assume moreover that X is locally a complete intersection (we write it
CI for short) in the ambient affine space CN . This weak assumption
is necessary because we use the fact that the shifted constant sheaf
CX [n + 1] on a CI variety X is a perverse sheaf (see Section 4). Now
let f : X → C be a (non-constant and reduced) holomorphic function
on X satisfying the condition 0 ∈ Y = {z ∈ X | f(z) = 0}. Then
we have a topological fibration over a sufficiently small punctured disk
D∗

η = {t ∈ C | 0 < |t| < η} ⊂ C:

f : f−1(D∗
η) ∩ Bε −→ D∗

η,

where Bε = {z ∈ C
N ∩ X | ‖z‖ < ε} is a small open neighborhood

of 0 ∈ X in X and 0 < η << ε. The general fiber F0 = f−1(t) ∩ Bε

(0 < |t| < η) is called the Milnor fiber of f : X → C at 0. Note that when
X is not smooth the Milnor fiber may have singularities. Nevertheless we
have now a nice bouquet decomposition theorem for the Milnor fibers of
functions f : X → C which have stratified isolated singularities at 0 ∈ X
in the following sense. First take a Whitney stratification X = �α∈AXα

of X and denote it by S. Then the stratified singular locus singS(f) of
f : X → C w.r.t. S is defined by singS(f) = �α∈Asing(f |Xα). Using
the Whitney conditons of S we can easily check that singS(f) is a closed
analytic subset of X . It is also easy to see (essentially by the curve
selection lemma) that singS(f) is contained in the complex hypersurface
Y = {z ∈ X | f(z) = 0} ⊂ X in an open neighborhood of Y in X
(see for example Proposition 1.3 of Massey [24]). Now we say that a
holomorphic function f : X → C has a stratified isolated singular point
at 0 ∈ X w.r.t. S if the dimension of singS(f) at 0 ∈ X is zero. Then
Milnor’s bouquet decomposition theorem over non-singular varieties can
be generalized as follows.

Theorem 2.1 (Lê [21], Siersma [34], Tibar [35]). Let f : X → C

be a holomorphic function having a stratified isolated singular point at
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0 ∈ X w.r.t. a Whitney stratification S of X. Then the Milnor fiber F0

of f at 0 has the homotopy type of a bouquet of n-dimensional spheres:

F0 ∼h Sn ∨ Sn ∨ · · · ∨ Sn.

This theorem was obtained by developing the so-called polar curve
method, which dates back to the work of Lê-Perron in [22]. By the
same method we can also explicitly construct the handle decomposition
of the Milnor fiber F0 when X is smooth. Namely for smooth X we
can completely determine the topological type of F0, though it might be
still difficult to compute the Betti numbers of F0 if Y has non-isolated
singularities at 0. For these important results we recommend the reader
to see a series of papers by Lê or the recent book [25] by Massey etc.
Note also that Massey’s paper [24] gives also a method to compute the
number of spheres in the above bouquet decomposition (i.e. the gener-
alized Milnor number of f at 0). Now let us consider the general case
where f does not necessarily have a stratified isolated singular point at
0. Then we have the following cohomological result.

Theorem 2.2 (the generalized Kato-Matsumoto’s theorem). As-
sume that the dimension of the stratified singular locus singS(f) of f at
0 ∈ X is s ≥ 0. Then for the reduced cohomology groups H̃j(F0; C) of
F0 we have

H̃j(F0; C) = 0 for ∀j /∈ [n − s, n].

In Section 5 we will show that this theorem can be easily deduced from
some well-known properties of perverse sheaves. To end this section we
define the complex link CL(X ; 0) of X at 0, which is an important exam-
ple of Milnor fibers over singular varieties. Recall that X is embedded in
a smooth affine space CN . We take a linear form l : CN → C (l(0) = 0)
on CN and consider its restriction l |X to X ⊂ CN . Then we can show
that for a sufficiently generic linear form l the dimension of the stratified
singular locus singS(l |X) of l |X at 0 ∈ X is zero. Therefore if we define
the complex link CL(X ; 0) of X at 0 to be the Milnor fiber of such a
function l |X : X → C at 0, then we obtain a bouquet decomposition

CL(X ; 0) ∼h Sn ∨ Sn ∨ · · · ∨ Sn

by Theorem 2.1. Note that the topological type of the complex link does
not depend on the choice of linear forms l : CN → C nor embeddings
X ↪→ CN . This notion plays an important role also in stratified Morse
theory (see Goresky-MacPherson [13]).
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§3. Some results and their generalizations

In this section we introduce some results obtained in Nang-T [30],
[31] and Dimca [8]. Recall that X is a CI variety (or a CI analytic
set) of dimension n + 1. Then for a non-constant holomorphic function
f : X → C satisfying f(0) = 0 (0 ∈ X) the dimensions of Y = {z ∈
X | f(z) = 0} ⊂ X and the Milnor fiber F0 are n. We thus have the
monodromy operators

T (j)0 : Hj(F0; C) ∼−→Hj(F0; C)

for j = 0, n−s, n−s+1, . . . , n−1, n at 0 ∈ Y ⊂ X (s = dim0 singS(f)).
Since the lower dimensional monodromy operators

T (j)0 : Hj(F0; C) ∼−→Hj(F0; C) (j = 0, n − s, . . . , n − 1)

are relatively simple as we shall see in Section 5 (in particular

T (0)0 : H0(F0; C) ∼−→H0(F0; C)

is the identity map of C), here we focus our attention on the top dimen-
sional monodromy operator T (n)0 : Hn(F0; C) ∼−→Hn(F0; C).

Definition 3.1. For a complex number a ∈ C, we denote by Na

the number of Jordan blocks with the eigenvalue a in the monodromy
operator T (n)0 : Hn(F0; C) ∼−→Hn(F0; C).

Then we have the following result which gives an upper bound for the
multiplicities of eigenvalues of the monodromy

T (n)0 : Hn(F0; C) ∼−→Hn(F0; C).

Note that as an upper bound for the sizes of Jordan blocks in the mon-
odromy operators we have the famous monodromy theorem (see the
references cited in the paper [10]). For a topological space W we denote
by bj(W ) the j-th Betti number of W .

Theorem 3.2 (Nang-T [30], [31] and Dimca [8]). For any non-
zero complex number a ∈ C we have

Na ≤ bn−1(CL(Y ; 0)) + bn(CL(X ; 0)).

In particular if X is smooth (e.g. X = Cn+1) then Na ≤ bn−1(CL(Y ; 0)).
Namely Na’s are bounded by the number of (n− 1)-dimensional spheres
in the bouquet decomposition CL(Y ; 0) ∼h Sn−1 ∨ · · · ∨ Sn−1 of the
complex link of Y .
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This theorem was first obtained by Nang-T [30] for X = Cn+1 and the
complex numbers a �= 0 satisfying a technical condition. Then Proposi-
tion 6.4.17 of Dimca [8] generalized it to the case of Milnor fibers over
singular varieties assuming the same condition on a �= 0. Finally Nang-T
[31] removed this technical assumption. The proof of Theorem 3.2 will be
given in Section 4. Note that if X is Cn+1 and f is a quasi-homogeneous
polynomial then the monodromy operators are periodic (=⇒ semisim-
ple) and hence Na is nothing but the multiplicity of the eigenvalue a in
the map T (n)0 : Hn(F0; C) ∼−→Hn(F0; C). Even in such simplest cases
Theorem 3.2 seems to be new, because for Y = {z ∈ X | f(z) = 0} with
a non-isolated singular point at 0 it is in general very difficult to com-
pute the monodromy operators. For general hypersurface singularities
we can compute only the monodromy zeta function

Zf (λ) =
n∏

j=0

det(Id−λT (j)0)(−1)j

by constructing an embedded resolution of singularities (see Bierstone-
Milman [3] for an algorithm to construct embedded resolutions) of each
given complex hypersurface Y in X = Cn+1 (A’Campo [1]). If the hyper-
surface Y ⊂ X = C

n+1 has an isolated singular points at 0, Varchenko’s
formula ([36]) for the characteristic polynomial of T (n)0 obtained by
this monodromy zeta function (and a result of Kouchnirenko [20]) is
very useful. However to use his formula, the defining function f of Y
must satisfy the so-called Newton non-degeneracy condition. Hence it
would be difficult to prove Theorem 3.2 along this line even for all com-
plex hypersurfaces Y ⊂ X = Cn+1 having isolated singular points at 0.
For such hypersurfaces we have the following corollary. Let L(Y ; 0) be
the real link of Y at 0 ∈ Y . Namely we set

L(Y ; 0) = Y ∩ Sε (0 < ε << 1),

where Sε ⊂ CN is a small sphere centered at 0 with radius ε.

Corollary 3.3. Assume that X = Cn+1 and the complex hyper-
surface Y = {z ∈ X | f(z) = 0} ⊂ X has an isolated singular point at
0 ∈ Y . Then we have

bn−1(L(Y ; 0)) ≤ bn−1(CL(Y ; 0)).

Under the assumptions of this corollary we can easily prove

N1 = bn−1(L(Y ; 0))
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by Alexander duality. Therefore Corollary 3.3 immediately follows from
Theorem 3.2. In order to understand the topological meaning of Corol-
lary 3.3, recall that if Y has an isolated singular point at 0 ∈ Y then the
real link L(Y ; 0) is a smooth compact orientable (2n−1)-manifold whose
non-zero Betti numbers are b0, bn−1, bn, b2n−1. Since b0 = b2n−1 = 1
and bn−1 = bn by Poincaré duality, the only interesting number among
them is bn−1(L(Y ; 0)). On the other hand, as we saw in Section 2
the complex link CL(Y ; 0) has only two non-zero Betti numbers b0 =
1, bn−1. So the inequality bn−1(L(Y ; 0)) ≤ bn−1(CL(Y ; 0)) means that
the most interesting invariant of the topology of the real link and that
of the complex link are related each other. Finally we remark that this
result was generalized in Proposition 6.1.22 and Corollary 6.1.24 of [8]
to the case where Y is higher-codimensional in X = C

n+1.

§4. Proof of Theorem 3.2

In this section we quickly review the theory of perverse sheaves
and give a proof of Theorem 3.2. For the detail of the theory of per-
verse sheaves and constructible sheaves, we refer to Beilinson-Bernstein-
Deligne [2], Dimca [8], Hotta-T-Tanisaki [14], Kashiwara-Schapira [18]
and Schürmann [33] etc. Now let X be a complex analytic set or an
algebraic variety (endowed with the classical topology). As usual we
denote by Db(X) the derived category of bounded complexes of sheaves
of CX -modules on X . The category of perverse sheaves is a full abelian
subcategory of Db(X) which correponds to that of regular holonomic
DX -modules (when X is smooth) through the Riemann-Hilbert cor-
respondence (see Kashiwara [17] and Hotta-T-Tanisaki [14] etc.). In
order to recall the definition of perverse sheaves by Beilinson-Bernstein-
Deligne [2], denote by Db

c(X) the full subcategory of Db(X) consisting
of complexes of sheaves with C-constructible cohomology sheaves.

Definition 4.1 ([2]). Let F · ∈ Db
c(X). Then F · is a perverse

sheaf on X if the following two conditions are satisfied.
( i ) For any i ∈ Z, we have dim[supp HiF ·] ≤ −i.
(ii) The Verdier dual D(F ·) of F · satisfies the condition

dim[suppHiD(F ·)] ≤ −i for any i ∈ Z.

We denote by Perv(CX) the full subcategory of Db
c(X) consisting of

perverse objects.

As a special class of perverse sheaves we have the following.
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Theorem 4.2. Assume that X is pure-dimensional and locally a
CI. Then the shifted constant sheaf CX [dimX ] ∈ Db

c(X) is a perverse
sheaf on X. Moreover for any local system (i.e. a locally constant sheaf
of finite rank over CX) L, we have L[dimX ] ∈ Perv(CX).

For the proof, see for example Sorite 1.8 (page 15) of Brylinski [5] etc.
The proof of [5] uses D-modules. A purely topological proof can be
found in Theorem 5.1.20 of [8].
Now let us prove Theorem 3.2. For the sake of simplicity let X be an
(n+1)-dimensional CI variety in CN containing the origin 0. Recall that
f : X → C is a holomorphic function s.t. 0 ∈ Y = {z ∈ X | f(z) = 0}.
We prove the theorem by constructing a special perverse sheaf G· on
CN which contains the information of the top dimensional monodromy
operator T (n)0 : Hn(F0; C) ∼−→Hn(F0; C). To begin with, for the given
complex number a �= 0 we define a local system La on C∗ = C \ {0} by
the representation

π1(C∗) 
 Z −→ GL(1, C) = C
∗

n �−→ an.

Next consider a local system L̃a on X \Y obtained by taking the inverse
image of La by f : X \ Y → C∗. Then by Theorem 4.2 the complex of
sheaves L̃a[n+1] is a perverse sheaf on X \Y . Now let us set j : X \Y ↪→
X , j0 : X\Y ↪→ X\{0} and j1 : X\{0} ↪→ X (j = j1◦j0). We will extend
the perverse sheaf L̃a[n +1] to the whole CN in three steps. First, since
j0 is a Stein map, the direct image Rj0∗L̃a[n + 1] is a perverse sheaf on
X \ {0} by M. Artin’s theorem (see for example Corollary 5.2.17 of [8]).
Next we define a perverse sheaf F · on X by F · = j1!(Rj0∗L̃a[n+1]). Here
j1!(∗) stands for the so-called Deligne-Goresky-MacPherson extension
functor. By using the truncation functor τ≤−1(∗) we can rewrite it as
j1!(∗) 
 (τ≤−1 ◦ Rj1∗)(∗). Finally we define a perverse sheaf G· on
CN by G· = ι∗F ·, where we set ι : X ↪→ CN . By the Riemann-Hilbert
correspondence there exists a unique regular holonomic DCN -module M
which corresponds to the perverse sheaf G·. Then, just as the proof
of Theorem 5.4 of Nang-T [30] (or Proposition 6.4.17 of Dimca [8]),
Theorem 3.2 can be proved by calculating the multiplicity m ∈ Z≥0 of
M along the conormal bundle T ∗

{0}C
N ⊂ T ∗X . Namely we obtain the

equality

m = −Na + {bn−1(CL(Y ; 0)) + bn(CL(X ; 0)}

and the theorem follows from the non-negativity of the multiplicity m.
Q.E.D.
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§5. Some other consequences of perversity

In this section, using the notations of previous sections, we intro-
duce some other important consequences of perversity in the topology of
complex hypersurface singularities. In particular we show that the lower
dimensional monodromy operators T (j)0 : Hj(F0; C) ∼−→Hj(F0; C) for
j = 0, n − s, · · · , n − 1 (s = dim0 singS(f)) are usually much simpler
than the top dimensional one. First of all, for a given holomorphic
function f : X → C we associate to it the shifted vanishing cycle functor

pφf (∗) : Db(X) −→ Db(Y )

satisfying the condition

Hj(pφf (CX))x 
 H̃j−1(Fx; C)

for any x ∈ Y = {z ∈ X | f(z) = 0} and j ∈ Z. Here Fx is the
Milnor fiber of f at x ∈ Y . Then it is well-known that this func-
tor preserves the perversity. For the proof, see for example, Corollary
10.3.13 of Kashiwara-Schapira [18] and Theorem 6.0.2 of Schürmann
[33] etc. This important result was first obtained by [2] in the algebraic
case. The proof for the analytic case was given by Kashiwara [16] in
his study of vanishing cycle functors for D-modules (see also Goresky-
MacPherson [12] for a topological approach to this problem). Now we
can easily deduce Theorem 2.2 (the generalized Kato-Matsumoto’s the-
orem) from this very general result. Indeed, applying it to the perverse
sheaf CX [n + 1] (we assume that X is locally a CI) we see that the van-
ishing cycle G· = pφf (CX [n + 1]) is a perverse sheaf whose support is
contained in the stratified singular locus singS(f) of f . Then it remains
to apply the following very elemetary property of perserse sheaves to G·.

Lemma 5.1. Let G· be a perverse sheaf on an analytic set X
whose support is contained in an s-dimensional analytic subset S of X.
Then we have Hj(G·)x 
 0 for any x ∈ X and j /∈ [−s, 0].

Namely we obtain H̃n+j(F0; C) 
 Hn+j+1(pφf (CX))0 
 Hj(G·)0 

0 for j /∈ [−s, 0] (s = dim0 singS(f)). This completes the proof of
Theorem 2.2. By refining this proof, we can obtain also the follow-
ing interesting results on the propagation of monodromy eigenvalues
up to the center 0 ∈ Y . Let us consider the monodromy operators
T (j)x : Hj(Fx; C) ∼−→Hj(Fx; C) at points x ∈ Y outside the origin.
Then we have
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Theorem 5.2. Let a ∈ C be a complex number.
( i ) (Corollary 6.1.7 of Dimca [8]) Assume that a is an eigenvalue of

a lower dimensional monodromy T (j)0 : Hj(F0; C) ∼−→Hj(F0; C)
(j ≤ n − 1) at 0. Then for any open neighborhood U of 0 in Y
there exists a point x �= 0 in U \ {0} such that a is an eigenvalue
of T (k)x : Hk(Fx; C) ∼−→Hk(Fx; C) for some k.

(ii) (Theorem 0.4 of Dimca-Saito [9]) Assume that a lower dimen-
sional monodromy T (j)0 : Hj(F0; C) ∼−→Hj(F0; C) (j ≤ n − 1)
at 0 has a Jordan block with the eigenvalue a of size m. Then
there exist points xk �= 0 sufficiently close to 0 for k ≤ j such that
the monodromy T (k)xk

: Hk(Fxk
; C) ∼−→Hk(Fxk

; C) at xk has a
Jordan block with the eigenvalue a of size mk and

∑
k≤j mk ≥ m.

To prove (i) of this theorem we use the direct sum decomposition

pφf (CX [n + 1]) 

⊕
a∈C

[pφf (CX [n + 1])]a

in the category Perv(CY ). Here [pφf (CX [n + 1])]a denotes the general-
ized eigenspace for the eigenvalue a of the monodromy map

T : pφf (CX [n + 1]) → pφf (CX [n + 1])

in Perv(CY ). Namely [pφf (CX [n + 1])]a is the kernel of (a Id−T )k for
k >> 0. Then we can easily prove (i) by considering the supports of
perverse sheaves [pφf (CX [n + 1])]a as in the proof of Theorem 2.2. To
prove (ii) we use the restriction of pφf (CX [n+1]) to the real link L(Y ; 0)
of Y and a spectral sequence. See [9] for the precise proof. Q.E.D.

Roughly speaking, Theorem 5.2 asserts that some important parts of
the lower dimensional monodromy operators T (j)0 (j ≤ n − 1) at 0
are determined by the monodromy operators at points x ∈ Y , x �= 0.
We can observe a similar phenomenon also in Randell’s theorem for
two-dimensional complex hypersurfaces in C3 obtained by deprojectiviz-
ing plane curves (see Oka [32] for a survey of this subject and related
results). Theorem 5.2 (i) in particular implies that if the singularity
of Y is normal crossing outside the origin then all the eigenvalues of
the lower dimensional monodromy operators T (j)0 (j ≤ n − 1) at the
origin are 1 (see Example 6.1.8 of [8]). In this case, if an embedded
resolution of Y ⊂ X = Cn+1 is given, using the monodromy zeta
function obtained by the methods of [1] we can determine the multi-
plicities of the eigenvalues a �= 1 in the top dimensional monodromy
T (n)0 : Hn(F0; C) ∼−→Hn(F0; C).
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Finally let us list up some related subjects that we could not explain
precisely in this short note. As applications of perverse sheaves (inter-
section cohomologies) in singularity theory we have also the following
results.

( i ) We can generalize vanishing theorems (obtained by Esnault-
Schechtman-Viehweg, Kohno and Schechtman-Terao-Varchenko
etc.) for twisted cohomology groups of the complements to hy-
perplane arrangements. See Cohen-Dimca-Orlik [6] etc.

( ii ) Recently using the theory of perverse sheaves Maxim [28] found
a new construction of Alexander modules of hypersurface com-
plements (see [23] and [32] for the definition) and generalized the
results of Libgober [23] to the case where the hypersurface has
non-isolated singularities.

(iii) The classical theory of projective duality (i.e. the study of dual
varieties in projective geometry) was reformuled in terms of con-
structible sheaves. After the fundamental work by Brylinski [5],
Ernström proved that the topological Radon transform of the
Euler obstruction of a projective variety V is that of the dual
variety V ∗ modulo constant functions (see also [26] and [27] etc.
for its generalizations).
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On Horn-Kapranov uniformisation
of the discriminantal loci

Susumu Tanabé

Abstract.

In this note we give a rational uniformisation equation of the
discriminant loci associated to a non-degenerate affine complete in-
tersection variety. To show this formula we establish a relation of the
fibre-integral with the hypergeometric function of Horn and that of
Gel’fand-Kapranov-Zelevinski.

§0. Introduction

In this note we give a concrete rational uniformisation equation for
the discriminantal loci of non-degenerate affine complete intersection
depending on deformation parameters.

First of all, let us fix the situation. For the complex varieties X =
C×N and S = Ck, we consider the mapping,

f : X → S(0.1)

such that Xs := {(x1, . . . , xN ) ∈ X ; f1(x) + s1 = 0, . . . , fk(x) + sk =
0}. Let f1(x), . . . , fk(x) be polynomials that define a non-degenerate
complete intersection (CI) in the sense of Danilov-Khovanski [3] with
the following specific form:

f�(x) = x�α1,� + · · · + x�ατ�,� , 1 ≤ � ≤ k,(0.2)

where �αi, � ∈ (Z≥0)N . Let n be the dimension of the variety X0,
dimX0 = n ≥ 0. Ws := {(x1, . . . , xN , y1, . . . , yk) ∈ X×(C)k; y1(f1(x)
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+s1) + · · · + yk(fk(x) + sk) = 0}. Then it is known that the discrimi-
nantal loci of Xs coincides with that of Ws. That is to say, the study of
the discriminantal loci of a CI can be reduced to that of an hypersur-
face associated with the original CI in a special manner. This fact has
been discovered by Arthur Cayley [5] and thus the method to reduce
the geometric study of a CI to that of a hypersurface is named ”Cayley
trick” in general, even in contexts apart from the study of discriminantal
loci (e.g. the description of the mixed Hodge structure of the former by
means of the latter given by T. Terasoma, A. Mavlyutov [9] and others).
Here we return to the initial spirit of Cayley who treated the question
of the discriminantal loci.

The main idea is based on that of the paper [6] which states that
the singular loci of the linear differential operators annihilating the fibre
integrals of Xs coincide with the discriminantal loci of Xs. In the modern
terminology of the A-hypergeometric functions (HGF), it is equivalent to
say that A-discriminantal loci are singular loci for generalized A-HGF.
This fact has been proven in [7] and we give a more precise description of
the discriminantal loci by means of combinatorial data of the polynomial
mapping f and the toric geometry of Ws (see Theorem 2.6).

Let us review the contents of the note in short. In §1 we recall some
basic facts on the Cayley trick and Néron-Severi torus. In §2, we cal-
culate the Mellin transform of the fibre integral in an explicit manner.
Using a representation of the Mellin transform we show that fibre in-
tegral satisfies the Horn type system of differential equations (Theorem
2.4). From this expression of the Horn type system, we get the discrim-
inantal loci as the boundary of a convergence domain of solutions to the
system. In §3, we show that the fibre integral calculated in §2 is nothing
but the quotient of the Gel’fand-Kapranov-Zelevinski generalized hy-
pergeometric function (HGF) by the torus action. In §4 we give two
computational examples: discriminantal loci for the D4 type singularity
and the simplest non-quasihomogeneous complete intersection.

Finally we remark that this note is an abridged version of some parts
from [13] where one can find more details.

§1. Cayley trick and Néron-Severi torus

Throughout this section we keep the notation of §0. Further we
introduce the following notations. Let Tm = (C\{0})m = (C×)m be the
complex algebraic torus of dimension m. We denote by xi the monomial
xi := xi1

1 · · ·xiN

N with multi-index i = (i1, . . . , iN) ∈ ZN , and by dx the
N−volume form dx := dx1 ∧ · · · ∧ dxN . We shall also use the notations
x1 := x1 · · ·xN , yζ = yζ1

1 · · · yζk

k , sz = sz1
1 · · · szk

k and ds = ds1 ∧ · · · ∧dsk
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and their analogies for each variable. In this section we consider an
extension of the mapping f to that defined from PΣ̃ to Ck. We follow
the construction by [2] and [9]. Let us define M as the dimension of a
minimal ambient space so that we can quasihomogenize simultaneously
the polynomials (f1(x), . . . , fk(x)) by multiplying certain terms by new
variables:

xi �−→ x′
jx

i, j = 1, 2, . . . .

Let us denote by (f1(x, x′), . . . , fk(x, x′)) the new polynomials ob-
tained in such a way. These polynomials are quasi-homogeneous with
respect to certain weight system i.e. there exists a set of positive integers
(w1, . . . , wN , w′

1, . . . , w′
M−N ) such that their G.C.D. equals 1 and the

following relation holds:

E(x, x′)(f�(x, x′)) = p�f�(x, x′) for � = 1, . . . , k,

where p� is some positive integer and

E(x, x′) =
N∑

i=1

wixi
∂

∂xi
+

M−N∑
j=1

w′
jx

′
j

∂

∂x′
j

,(1.1)

E an Euler vector field.

Example. We modify the polynomial f(x) = xa
1 +x1x2+xb

2, with
a, b > 2, GCD(a, b) = 1, in adding a new variable x′

1 so that the new
polynomial f(x, x′) = xa

1 + x′
1x1x2 + xb

2, becomes quasihomogeneous
with respect to the weight system (b, a, ab − a − b).

In general there are of course many choices of terms that we modify
to realize the quasihomogeneiety.

From now on we will use the notation X := (X1, . . . , XM ) :=
(x1, . . . , xN , x′

1, . . . , x′
M−N ) and that of the polynomial f�(X) := f�(x,

x′). If we introduce the Euler vector field,

E(X ′) =
N∑

i=1

wixi
∂

∂xi
+

M−N∑
j=1

w′
jx

′
j

∂

∂x′
j

+ XM+1
∂

∂XM+1
,

we have the following relation:

E(X ′)(f�(X) + Xp�

M+1s�) = p�(f�(X) + Xp�

M+1s�) for � = 1, . . . , k.

From now on we denote X ′ := (X, XM+1). Let MZ be an integer lattice
of rang N and NZ be its dual, NZ = Hom(MZ, Z). We denote by MR

(resp. NR) the natural extension of MZ (resp. NZ) to its real space. Let
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us take �e1, . . . , �eM+1 a set of generators of one dimensional cones such
that

∑M+1
�=1 R�e� = NR. We can define a simplicial fan Σ in NR as a set

of simplicial cones spanned by the above �e1, . . . , �eM+1. Our construc-
tion of the Euler vector field E(X ′) correspond to the superstructure
NR × N′

R with a basis of generators �̃eN+1, . . .�̃eM+1 such that

N∑
i=1

wi
�̃ei +

M−N∑
j=1

w′
j
�̃ej + �̃eM+1 = 0.

Here we have pN(�̃ej) = �ej for the projection pN : NR × N′
R → NR.

While the dimension of the vector space NR×N′
R must be minimal i.e.

dim(NR × N′
R) = M .

We introduce a polynomial,

H(x, y) := y1f1(x) + · · · + ykfk(x) ∈ Z[x1, . . . , xN , y1, . . . , yk],(1.2)

in adding new variables y1, . . . , yk. Let �n1, . . . , �nM+k be the elements
of the set supp(H(x, y)) ⊂ ZN+k. We define a simplicial rational fan Σ̃
in RN+k as a set of simplicial cones generated by �n1, . . . , �nM+k. We
consider the injective homomorphism

ϕ : M̃Z → ZM+k,

for M̃Z = MZ × Zk, defined by

ϕ( �̃m) = (〈 �̃m, �n1〉, . . . , 〈 �̃m, �nM+k〉).

The cokernel of this mapping is a free abelian group,

Cl(Σ̃) = ZM+k/ϕ(M̃Z)

for which the following group can be defined

D(Σ̃) := SpecC[Cl(Σ̃)].(1.3)

As a matter of fact this group D(Σ̃) is isomorphic to an algebraic torus
TM−N . One can define the toric variety PΣ̃ associated to the affine
space,

AM+k = SpecC[X1, . . . , XM , y1, . . . , yk].

To this end we proceed following way after the method initiated by
M. Audin. Let X̂σ :=

∏
1≤i≤M, �ni �∈σ Xi

∏
1≤j≤k, �nM+j �∈σ yj, be a mono-

mial defining a coordinate plane and the ideal

B(Σ̃) = 〈X̂σ; σ ∈ Σ̃〉 ⊂ C[X1, . . . , XM , y1, . . . , yk].
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Let Z(Σ̃) := V(B(Σ̃)) ⊂ AM+k be the variety defined by the ideal
B(Σ̃). We construct the toric variety PΣ̃ as the quotient of U(Σ̃) :=
AM+k \ Z(Σ̃) by the group action D(Σ̃):

PΣ̃ = U(Σ̃)/D(Σ̃),

with dimD(Σ̃) = M − N, dimU(Σ̃) = M + k.

Definition 1. This group D(Σ̃) ∼= TM−N is called the Néron-
Severi torus associated to the fan Σ̃.

We introduce the following polynomial (named phase function be-
low),

F (X, s, y) := y1(f1(X) + s1) + · · · + yk(fk(X) + sk),(1.4)

that will play essential rôle in our further studies. In §3, we treat the
following affine variety defined for (1.4):

ZF (x,1, 1, y)+1 = {(x, y) ∈ TN+k; F (x, 1, 1, y) + 1 = 0}.(1.5)

Further on we shall prepare several lemmata on combinatorics which
are useful for the derivation of the discriminant loci equation. We denote
by L the number of monomials in (X, s, y) that take part in the phase
function (1.4) for (0.2). That is to say L =

∑k
q=1(τq + 1) Here we

introduce new variables (T1, . . . , TL) ∈ TL that satisfy the following
relations,

T1 = y1x
�α1, 1 , T2 = y1x

�α2, 1 , . . . , TL = yksk.(1.6)

Each Tq represents the q−th monomial present in F (x, 1, s, y) (see (2.3)
below). We will use the following matrix M(A) whose column is a vertex
of the Newton polyhedron ∆(F (x, 1, 1, y)),

M(A)(1.7)

:=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1 0 0 · · · 0 0 · · · 0 0 · · · 0
0 0 · · · 0 1 1 · · · 1 0 · · · 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0 1 · · · 0 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 0 · · · 0 0 0 · · · 0 0 · · · 1 1 · · · 1
0 α111 · · · ατ111 0 α121 · · · ατ221 0 · · · 0 α1k1 · · · ατkk1

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 α11N · · · ατ11N 0 α12N · · · ατ22N 0 · · · 0 α1kN · · · ατkkN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Further we assume that rank(M(A)) = k + N . We always assume the
inequality N + 2k ≤ L for (0.2).
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In this situation we can define a non-negative integer m as the min-
imal number of variables

x′′ = (x′
1, . . . , x′

m)(1.8)

to make the number of variables present in the expression (1.4) equal to
L. That is to say L = N + m + 2k. For example, the relation (1.6) may
be modified into the following form:

T1 = y1x
′
1x

�α1,1 , T2 = y1x
′
2x

�α2,1 , · · · ,(1.6)′

TL−1 = ykx′
mx�ατk, k , TL = yksk.

In other words, proper addition of new variables x′′ = (x′
1, . . . , x′

m) to
f1(x), . . . , fk(x) makes the polynomial F (X, 0, y) quasihomogeneous.
In this way we have

M = N + m.(1.9)

Further we shall consider a simple parametrisation of the variety

ZF (X, s, y) = {(X, y) ∈ TM+k; F (X, s, y) = 0}.(1.10)

Namely we denote,

Ξ := t(x1, . . . , xN , x′
1, . . . , x′

m, s1, . . . , sk, y1, . . . , yk),(1.11)
Log T := t(log T1, . . . , log TL)(1.12)
Log Ξ := t(log x1, . . . , log xN , log x′

1, . . . , log x′
m,(1.13)

log s1, . . . , log sk, log y1, · · · , log yk).

Then we have, for example, a linear equation equivalent to (1.6)′ that
can be written down as follows,

log T1 = log y1 + log x′
1 + 〈�α1, 1, log x〉,(1.14)

log T2 = log y1 + log x′
2 + 〈�α2, 1 log x〉,

...
log TL−1 = log yk + log x′

m + 〈�ατk, k, log x〉,
log TL = log yk + log sk.

Let us write down the relation between (1.12) and (1.13) by means
of a matrix L ∈ End(ZL),

Log T = L · Log X.(1.15)
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Below the columns �vi (resp. �wi) of the matrix L (resp. L−1) shall always
be ordered in accordance with (1.11), (1.12), (1.13) unless otherwise
stated.

For the polynomial mapping (0.2), the choice of monomials to be
modified by supplementary variables is a bit delicate. Namely, we have
to observe the following rules to avoid the degeneracy of the matrix L of
the relation (1.15).

Lemma 1.1. For (0.2) and (1.8), we get a non-degenerate matrix
L if we observe the following rules:

a. For the fixed index q ∈ {1, . . . , k}, it is necessary to choose at
least one of monomials x�αi, q , 1 ≤ i ≤ τq that remains without modifica-
tion.

b. For the fixed index j ∈ {1, . . . , N} it is necessary to choose at
least one of monomials x�αr, i such that αr, i, j �= 0, 1 ≤ i ≤ k, 1 ≤ r ≤ τi,
that remains without modification.

We recall here the notion of non-degenerate hypersurface,

Definition 2. The hypersurface defined by a polynomial g(x) =∑
α∈supp(g) gαxα ∈ C[x1, . . . , xn] is said to be non-degenerate if and

only if for any ξ ∈ Rn the following inclusion takes place,

{
x ∈ Cn; x1

∂gξ

∂x1
= · · · = xn

∂gξ

∂xn
= 0
}
⊂ {x ∈ Cn; x1 · · ·xn = 0}

where gξ(x) =
∑

{β;〈β, ξ〉≤〈α, ξ〉, for all α∈supp(g)} gαxα. We call the CI
X0 for (0.2) non-degenerate if the hypersurface ZF (x, 1, 0, y)+1 is non-
degenerate.

The following is an easy consequence of the above Definition.

Proposition 1.2. If the matrix L is non-degenerate, the hyper-
surface ZF (x,1, 0, y)+1 and the CI X0 are non-degenerate in the sense of
the Definition 2.

§2. Horn’s hypergeometric functions

From this section, we change the name of variables x′′ = (x′
1, . . . , x′

m)
into s′ := (s′1, . . . , s′m). We use both of the notations X = (x, x”) =
(x, s′).

Let us consider the Leray’s coboundary (see [14]) to define the fibre
integral, γ ⊂ HN (TN \ ∪k

i=1{x ∈ TN : fi(X) + si = 0}) such that

(fi(X) + si)|γ < 0. Further on central object of our study is the
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following fibre integral,

Iζ
xi, γ

(s, s′) =
∫

γ

(f1(x, s′) + s1)−ζ1−1 · · · (fk(x, s′) + sk)−ζk−1xi+1 dx

x1
,

(2.1)

and its Mellin transform,

M ζ
i, γ(z, z′) :=

∫
Π

szs′
z′

Iζ
xi, γ

(s, s′)
ds

s1
∧ ds′

s′1
,(2.2)

for certain cycle Π homologous to Rm+k which avoids the singular loci
of Iζ

xi, γ
(s, s′) (cf. [11]). After Definition 1 above, we understand that

s′ ∈ D(Σ̃) is a variable on the Néron-Severi torus. Thus the fibre integral
Iζ
xi, γ

(s, s′) is a ramified function on the torus D(Σ̃)×Tk. It is useful to
understand the calculus of the Mellin transform in connection with the
notion of the generalized HGF in the sense of Mellin-Barnes-Pincherle
[1], [10]. After this formulation, the classical HGF of Gauss can be
expressed by means of the integral,

2F1(α, β, γ|s) =
1

2πi

∫ z0+i∞

z0−i∞
(−s)z Γ(z + α)Γ(z + β)Γ(−z)

Γ(z + γ)
dz,

−
α, −
β < z0.

Next we modify the Mellin transform

M ζ
i, γ(z, z′)

= c(ζ)
∫

Sk−1
+ (w′′)×γΠ

xiωζsz−1s′
z′−1

dx ∧ Ω0(ω) ∧ ds ∧ ds′

(ω1(f1(X) + s1) + · · · + ωk(fk(X) + sk))ζ1+···+ζk+k

= c(ζ)
∫
R+

σζ1+···+ζk+k dσ

σ

∫
Sk−1

+ (w′′)

ωζΩ0(ω)

∫
γ

xidx

∫
Π

szs′
z′

eσ(ω1(f1(X)+s1)+···+ωk(fk(X)+sk)) ds

s1

ds′

s′1
,

with c(ζ) = Γ(ζ1 + · · ·+ ζk + k)/
(
Γ(ζ1 + 1) · · ·Γ(ζk +1)

)
. Here we made

use of notations

Sk−1
+ (w′′) =

{
(ω1, . . . , ωk) : ω

w′′/w′′
1

1 + · · · + ω
w′′/w′′

k

k = 1, ω� > 0

for all �, w′′ =
∏

1≤i≤k

w′′
i

}
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and Ω0(ω) the (k − 1) volume form on Sk−1
+ (w′′),

Ω0(ω) =
k∑

�=1

(−1)�w′′
� ω�dω1∧

�
∨· · · ∧dωk.

In the above transformation we used a classical interpretation of Dirac’s
delta function as a residue:∫

γ

∫
R+

eyj(fj(X)+sj)y
ζj

j dyj ∧ dx = Γ(ζj + 1)
∫

γ

(fj(X) + sj)−ζj−1dx.

We introduce the notation γΠ := ∪(s, s′)∈Π((s, s′), γ). One shall
not confuse it with the thimble of Lefschetz, because γΠ is rather a tube
without thimble. We will rewrite the last expression,∫

(R+)k×γΠ
eΨ(T )xi+1yζ+1szs′

z′ dx

x1
∧ dy

y1
∧ ds

s1
∧ ds′

s′1

where

Ψ(T ) = T1(X, s, y) + · · · + TL(X, s, y) = F (X, s, y),(2.3)

in which each term Ti(X, s, y) stands for a monomial in variables (X, s, y)
of the phase function (1.4). We transform the above integral into the
following form,∫

(R+)k×γΠ
eΨ(T (X, s, y))xi+1szs′

z′
yζ+1 dx

x1
∧ dy

y1
∧ ds

s1
∧ ds′

s′1
(2.4)

= (det L)−1

∫
L∗(R+

k×γΠ)

e
P

a∈I Ta

∏
a∈I

TLa(i, z, z′, ζ)
a

∧
a∈I

dTa

Ta

= (−1)ζ1+···+ζk+k(det L)−1

·
∫
−L∗(R+

k×γΠ)

e−
P

a∈I Ta

∏
a∈I

TLa(i, z, z′, ζ)
a

∧
a∈I

dTa

Ta
.

Here L∗(R+
k ×γΠ) means the image of the chain in CM

X ×Ck
s ×Ck

y into
that in CL

T induced by the transformation (1.15). We define −L∗(R+
k×

γΠ) = {(−T1, . . . , −TL) ∈ CL; (T1, . . . , TL) ∈ L∗(R+
k × γΠ), 
Ta <

0, a ∈ [1, L]}. The second equality of (2.4) follows from Proposition 2.1,
3) below that can be proven in a way independent of the argument to
derive (2.4). We will denote the set of columns and rows of the matrix
L by I,

I := {1, · · · , L}.
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Here we remember the relation L = N + m + 2k = M + 2k.
The following notion helps us to formulate the result in a compact

manner.

Definition 3. A meromorphic function g(z, z′) is called ∆-peri-
odic for ∆ ∈ Z>0, if

g(z, z′) = h(e2π
√
−1

z1
∆ , . . . , e2π

√
−1

zk
∆ , e2π

√
−1

z′
1

∆ , . . . , e2π
√
−1

z′
m
∆ ),

for some rational function h(ζ1, . . . , ζk+m).

For the simplicial CI (0.2) (i.e. we can construct F (X, s, y) for which
the matrix L is non-degenerate), we have the following statement.

Proposition 2.1. 1) For any cycle

Π ∈ Hk+m(Tk+m \ S.S.Iζ
xi, γ

(s, s′))

the Mellin transform (2.1) can be represented as a product of Γ− function
factors up to a ∆−periodic function factor g(z),

M ζ
i, γ(z, z′) = g(z)

∏
a∈I

Γ
(
La(i, z, z′, ζ)

)
,

with

La(i, z, z′, ζ)(2.5)

=

∑N
j=1 Aa

j (ij + 1) +
∑m

j=1 Ca
j z′j +

∑k
�=1 (Ba

� z� + Da
� (ζ� + 1))

∆
, a ∈ I.

Here the following matrix ∆−1T = (L)−1 has integer elements,

tT = (Aa
1 , . . . , Aa

N , Ca
1 , . . . , Ca

m, Ba
1 , . . . , Ba

k , Da
1 , . . . , Da

k)1≤a≤L,(2.6)

with GCD(Aa
1 , . . . , Aa

N , Ca
1 , . . . , Ca

m, Ba
1 , . . . , Ba

k , Da
1 , · · · , Da

k) = 1,
for all a ∈ [1, L]. In this way ∆ > 0 is uniquely determined. The
coefficients of (2.5) satisfy the following properties for each index a ∈ I:

a Either La(i, z, z′, ζ) = ∆
∆z�, i.e. Aa

1 = · · · = Aa
N = 0, Ba

1 =
�
∨· · ·=

Ba
k = 0, Ba

� = 1.
b Or

La(i, z, z′, ζ) =

∑N
j=1 Aa

j (ij + 1) +
∑m

j=1 Ca
j z′j +

∑k
�=1 Ba

� (z� − ζ� − 1)
∆
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2) For each fixed index 1 ≤ � ≤ N, 1 ≤ q ≤ k, 1 ≤ j ≤ m the
following equalities take place:∑

a∈I

Aa
� = 0,

∑
a∈I

Ba
q = 0,

∑
a∈I

Ca
j = 0.(2.7)

3) The following relation holds among the linear functions La, a ∈
I: ∑

a∈I

La(i, z, z′, ζ) = ζ1 + · · · + ζk + k.

Proof. 1) First of all we recall the definition of the Γ-function,∫
Ca

e−TaT σa
a

dTa

Ta
= (1 − e2πiσa)Γ(σa),

for the unique non-trivial cycle Ca that turns around Ta = 0 with the
asymptotes 
Ta → +∞. We consider a transformation of the integral
(2.4) induced by the change of cycle λ : Ca → λ(Ca) defined by the
relation, ∫

λ(Ca)

e−TaT σa
a

dTa

Ta
=
∫

Ca

e−Ta(e2π
√
−1Ta)σa

dTa

Ta
.

By the aid of this action the chain L∗(R+
k × γΠ) turns out to be ho-

mologous to a chain,

∑
(j

(ρ)
1 , ... , j

(ρ)
L )∈[1,∆]L

m
j
(ρ)
1 , ... , j

(ρ)
L

k∏
a=1

λj(ρ)
a (R+)

L∏
a′=k+1

λj
(ρ)
a′ (Ca′ ),

with m
j
(ρ)
1 , ... , j

(ρ)
L

∈ Z. This fact explains the appearance of the factor

g(z, z′) =
∑

(j
(ρ)
1 , ... , j

(ρ)
L )∈[1, ∆]L

m
j
(ρ)
1 , ... , j

(ρ)
L

·
k∏

a=1

e2π
√
−1j(ρ)

a La(i, z, z′, ζ)

·
L∏

a′=k+1

e2π
√
−1j

(ρ)
a′ La′(i, z, z′, ζ)(1 − e2π

√
−1La′(i, z, z′, ζ))

apart from the factors of type Γ(•).
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In the sequel we analyze the Γ− function factors that arise from the
integral (2.4). To this end, we represent the matrix L (resp. L−1) as a
set of L columns properly ordered:

L = (�v1, �v2, . . . , �vL), L−1 = (�w1, �w2, . . . , �wL),(2.8)
�wa = t(wa, 1, . . . , wa, L).

The interior product of vectors (i + 1, z, z′, ζ + 1) and �wa defines
the linear function in question:

La(i, z, z′, ζ) = (i + 1, z, z′, ζ + 1) · �wa.(2.9)

The vector columns of L−1 are divided into 3 groups:
1 the columns with all formally non-zero elements.
2 with unique non-zero element (= 1) that produces zi, 1 ≤ i ≤ k

and z′j, 1 ≤ j ≤ m in (2.9).
3 with the non-zero elements that produce a function linear in

ζ + 1, i + 1 after (2.5).
In the further argument, only the first two groups of columns are

important.
The column that corresponds to log si of L contains the unique non-

zero element (= 1) at the position τ1+· · ·+τi+i. Meanwhile the column
of L that corresponds to the variable log x′

� consists also of an unique
non-zero element (= 1) outside the positions τ1 + · · ·+τi+i, (1 ≤ i ≤ k).
Let us denote this correspondence by

�vρ(i) = t(0, . . . , 0,
σ(i)
∨. . . , 1, 0, . . . , 0),

that yields in L−1,

�wσ(i) = t(0, . . . , 0,
ρ(i)
∨. . ., 1, 0, . . . , 0).

Here the mappings ρ, σ : {N + 1, . . . , M + k} → I are injections that
send the number of columns corresponding to the variables s, x′ to the
total set of indices I. We divide the columns of L−1 into k groups
Λ1, . . . , Λk ⊂ I each of which corresponds to Λb = {τ1 + · · · + τb−1 +
b, · · · , τ1 + · · · + τb + b} ⊂ I. For this group, one can claim following
assertions. a) The column

�vM+k+b = t(0, . . . , 0, 0, . . . , 0, 1

τ1+···+τb−1+b
∨
, 1, . . . , . . . , 1, . . .

τ1+···+τb+b
∨
, 1, 0, . . . , 0),
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with τb + 1, (1 ≤ b ≤ k) non-zero elements (= 1). b) For the vectors �wa

of the case 1 above,∑
a∈Λb

wa, j = 0 if j �= M + k + b, 1 ≤ b ≤ k,(2.10)

and there exists another vector of the same group Λb that satisfies:

wσ(i), j = δρ(i), j ,(2.11)

where δ · , ∗ is the Kronecker delta symbol. The vector (2.11) corresponds
to the group 2.

Thus the columns of the group 2 (resp. 1) give rise to the linear
functions of the group b (resp. a).

2) The 1-st, . . . , M + k-th vector rows of the matrix L−1 are or-
thogonal to the vectors �vM+k+1, · · · , �vM+2k above. This means the
relations (2.7).

3) The statement can be deduced from 2). Q.E.D.

In view of the Proposition 2.1, we introduce the subsets of indices
a ∈ {1, 2, . . . , M} as follows.

Definition 4. The subset I+
q ⊂ {1, 2, . . . , k} (resp. I−q , I0

q ) con-
sists of the indices a such that the coefficient Ba

q of La(i, z, z′, ζ) (2.5)
is positive (resp. negative, zero). Analogously we define the subset
J+

r ⊂ {1, 2, . . . , m} (resp. J−
r , J0

r ) that consists in such indices a that
the coefficient Ca

r of La(i, z, z′, ζ) is positive (resp. negative, zero).

To assure the convergence of the Mellin inverse transform of M ζ
i, γ(z,

z′) from (2.1) in a properly chosen angular sector in the variables (s, s′) ∈
Ck+m, we shall verify that the Mellin transform M ζ

i, γ(z, z′) admits the
following estimation modulo multiplication by a ∆-periodic function
g(z, z′).

|M ζ
i, γ(z, z′)| < Ci exp(−ε| Im z|) while

Im z → ∞, in a sector of aperture < 2π.

for certain ε > 0,
Here we remember an elementary lemma for the integral:

∫ z0+i∞

z0−i∞
szg(z)

ν∏
j=1

Γ(z + αj)
Γ(z + ρj)

dz.(2.12)
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Lemma 2.2. If one chooses one of the following functions g+(z)
(resp. g−(z)) in terms of g(z, z′), then the integrand of (2.12) is expo-
nentially decaying as Im z tends to ∞ within the sector 0 ≤ arg z < 2π,
(resp. −π ≤ arg z < π.)

g±(z) = 1 + e±2πiβν

ν∏
j=1

sin 2π(z + αj)
sin 2π(z + ρj)

,

with βν = −1 +
∑ν

j=1(ρj − αj)

Proof. It is enough to recall
ν∏

j=1

Γ(x + iy + αj)
Γ(x + iy + ρj)

→ const.|y|−(βν+1)

while y → ±∞. Here we used the formula of Binet:

log Γ(z + a) = log Γ(z) + a log z − a − a2

2z
+ O(|z|−2)

if |z| >> 1, The factor |s−(x+iy)| = r−xeθy, for s = reiθ gives the
exponentially decreasing contribution in each cases. Q.E.D.

Let us introduce a simplified notation,

Lj(z) = Aj1z1 + Aj2z2 + · · · + Ajkzk + Aj0, 1 ≤ j ≤ p,

Mj(z) = Bj1z1 + Bj2z2 + · · · + Bjkzk + Bj0, 1 ≤ j ≤ r.

Lemma 2.3. The sufficient conditions so that∫
Π̌

szg(z)

∏p
j=1 Γ(Lj(z))∏r

j=1 Γ(Mj(z))
dz1 ∧ · · · ∧ dzk(2.13)

defines a polynomially increasing function with g(z) a properly chosen
∆-periodic function (including the infinity ∞) are the following.

i) For every i > 0
p∑

j=1

Aj, i =
r∑

j=1

Bj, i

ii) The real number

α = min
z∈Sk−1

( p∑
j=1

|Lj(z) − Aj0| −
r∑

j=1

|Mj(z) − Bj0|
)

is non negative.
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To see the exponential decay property of the integrand, one shall
make reference to Nörlund’s trick [10]. Further we apply the Stirling’s
formula on the asymptotic behaviour of the Γ−function (Whittaker-
Watson, Chapter XII, Example 44).

If we apply this lemma to our integral, we see that there exists a
cycle Π̌ such that

Iζ
xi, γ

(s, s′)(2.14)

:=
∫

Π̌

g(z, z′)

∏
a∈I+

q ∪I0
q
Γ
(
La(i, z, z′, ζ)

)
∏

ā∈I−
q

Γ
(
1 − Lā(i, z, z′, ζ)

)s−zs′
−z′

dz ∧ dz′,

with a ∆-periodic function g(z, z′) rational with respect to
e2π

√
−1La(i, z, z′, ζ), a ∈ I. Here we remember the relation eπ

√
−1zΓ(z)

Γ(1 − z) = π/(1 − e−2π
√
−1z). Thus we get the theorem on the Horn

type system.

Theorem 2.4. The integral Iζ
xi, γ

(s, s′) satisfies the hypergeomet-
ric system of Horn type as follows:

Lq, i(ϑs, ϑs′s, s′, ζ)Iζ
xi, γ

(s, s′)(2.15)1

:=
[
Pq, i(ϑs, ϑs′ , ζ) − s∆

q Qq, i(ϑs, ϑs′ , ζ)
]
Iζ
xi, γ

(s, s′) = 0, 1 ≤ q ≤ k

with

Pq, i(ϑs, ϑs′ , ζ) =
∏

a∈I+
q

Ba
q −1∏

j=0

(
La(i, −ϑs, −ϑs′ , ζ) + j

)
,(2.15)2

Qq, i(ϑs, ϑs′ , ζ) =
∏

ā∈I−
q

−Bā
q −1∏

j=0

(
Lā(i, −ϑs, −ϑs′ , ζ) + j

)
,(2.15)3

where I+
q , I−q , 1 ≤ q ≤ k are the sets of indices defined in Definition 4.

L′
r, i(ϑs, ϑs′ , s, s′, ζ)Iζ

xi, γ
(s, s′)(2.15)4

:=
[
P ′

r, i(ϑs, ϑs′ , ζ) − s′r
∆Q′

r, i(ϑs, ϑs′ , ζ)
]
Iζ
xi, γ

(s, s′) = 0, 1 ≤ q ≤ k

P ′
r, i(ϑs, ϑs′ , ζ) =

∏
a∈J+

r

Ca
r −1∏
j=0

(
La(i, −ϑs, −ϑs′ , ζ) + j

)
(2.15)5
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Q′
r, i(ϑs, ϑs′ , ζ) =

∏
ā∈J−

r

−Cā
r −1∏

j=0

(
Lā(i, −ϑs, −ϑs′ , ζ) + j

)
.(2.15)6

where J+
r , J−

r , 1 ≤ r ≤ m are the sets of indices defined in the Defini-
tion 4. The degree of two operators Pq, i(ϑs, ϑs′ , ζ), Qq, i(ϑs, ϑs′ , ζ) are
equal. Namely,

deg Pq, i(ϑs, ϑs′ , ζ)(2.16)

=
∑

a∈I+
q

Ba
q = −

∑
ā∈I−

q

Bā
q = deg Qq, i(ϑs, ϑs′ , ζ).

Analogously,

deg P ′
r, i(ϑs, ϑs′ , ζ) =

∑
a∈J+

r

Ca
r = −

∑
ā∈J−

r

C ā
r = deg Q′

r, i(ϑs, ϑs′ , ζ).

The proof is mainly based on the Proposition 2.1. To deduce (2.15)
from the Mellin transform M ζ

i, γ(z, z′) we use the following well known
recurrence relation:

Γ
(α(n + ∆)

∆
+ ζ
)

= Γ
(αn

∆
+ ζ
)(αn

∆
+ ζ
)(αn

∆
+ 1 + ζ

)
· · ·
(αn

∆
+ α − 1 + ζ

)
,

if α > 0 a positive integer.

Γ
(α(n + ∆)

∆
+ ζ
)

= Γ
(αn

∆
+ ζ
)(αn

∆
+ ζ − 1

)−1(αn

∆
+ ζ − 2

)−1

· · ·
(αn

∆
+ ζ + α

)−1

,

if α < 0 a negative integer.
The evident compatibility (i.e. integrability) of the above system

(2.15)∗ in the sense of Ore-Sato ([12]) can be formulated like the following
cocycle condition. To state the proposition we introduce the notation
z + ∆er = (z1, . . . , zr−1, zr + ∆, zr+1, . . . , zk).

Proposition 2.5. The rational expression

Rq(z, z′) =
Pq, i(z, z′, ζ)

Qq, i(z + ∆eq, z′, ζ)
,(2.17)



Horn-Kapranov uniformisation 239

defined for the operators (2.15)2, (2.15)3 satisfies the following relation:

Rq(z + ∆er, z′)Rr(z, z′)(2.18)
= Rr(z + ∆eq, z′)Rq(z, z′), q, r = 1, . . . , k.

Similarly for

R′
κ(z, z′) =

P ′
κ, i(z, z′, ζ)

Q′
κ, i(z, z′ + ∆e′κ, ζ)

,(2.19)

satisfies the following relation:

R′
κ(z, z′ + ∆e′ρ)R

′
ρ(z, z′)(2.20)

= R′
ρ(z, z′ + ∆e′κ)R′

κ(z, z′), κ, ρ = 1, . . . , m.

Remark 1. As m = dimD(Σ̃) (see (1.3)), one can consider that
the above system (2.15)∗ is defined on Tk ×D(Σ̃) for D(Σ̃): the Néron-
Severi torus associated to the fan Σ̃.

We introduce here the main object of our study: the discriminantal
loci of the CI defined by the polynomials f1(x, s′)+s1, . . . , fk(x, s′)+sk.

Ds, s′ := {(s, s′) ∈ Tk+m;(2.21)

f1(x, s′) + s1

= · · ·
= fk(x, s′) + sk

= 0

, rank

⎛
⎜⎝gradx f1(x, s′)

...
gradx fk(x, s′)

⎞
⎟⎠ < k,

for certain x ∈ TN}.

As it is easy to see [5], Ds, s′ coincides with the discriminantal loci of
F (x, s′, s, y).

Let us define the ∆-th roots of rational functions associated with
the linear functions (2.5) as follows.

ψq(z, z′) =

( ∏
a∈I+

q
(
∑k

�=1 Ba
� z� +

∑m
j=1 Ca

j z′j)
Ba

q∏
ā∈I−

q
(
∑k

�=1 Bā
� z� +

∑m
j=1 C ā

j z′j)
−Bā

q

) 1
∆

,(2.22)

1 ≤ q ≤ k,

φr(z, z′) =

( ∏
a∈J+

r
(
∑k

�=1 Ba
� z� +

∑m
j=1 Ca

j z′j)
Ca

r∏
ā∈J−

r
(
∑k

�=1 Bā
� z� +

∑m
j=1 C ā

j z′j)−Cā
r

) 1
∆

,(2.23)

1 ≤ r ≤ m.
h : Ck+m \ {0} → (C×)k+m,(2.24)
(z, z′) → (ψ1(z, z′), . . . , ψk(z, z′), φ1(z, z′), . . . , φm(z, z′)).
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By virtue of the property (2.7), the rational function ψq(z, z′)∆ (resp.
φr(z, z′)∆) is of weight zero with respect to the variables (z, z′) and thus
it is possible to consider the mapping h defined on CP k+m−1 instead of
Ck+m.

Let ∆f (s, s′) be a polynomial that defines the discriminantal loci
Ds, s′ without multiplicity.

Theorem 2.6. The image of h : CPk+m−1 → (C×)k+m is identi-
fied with the discriminantal loci Ds, s′ if we choose a proper ∆-th branch
in the equations (2.2), (2.3).

Proof. From the system of equations (2.15) we see that Ds,s′ is
contained in the set:

∇s, s′ := {(s, s′) ∈ Tk+m;(2.25)

σ(Lq, −1)(sξ, s′ξ′, s, s′, −1) = 0, 1 ≤ q ≤ k,

σ(L′
r, −1)(sξ, s′ξ′, s, s′, −1) = 0, 1 ≤ r ≤ m

for some(ξ, ξ′) ∈ Tk+m}.

here we use the notation

(sξ, s′ξ′) = (s1ξ1, . . . , skξk, s′1ξ
′
1, . . . , s′mξ′m).

The existence of (ξ, ξ′) ∈ Tk+m in (2.25) is equivalent to the existence of
(z, z′) = (sξ, s′ξ′) ∈ Tk+m. Thus the set ∇s, s′ admits a representation,⎧⎪⎪⎪⎨

⎪⎪⎪⎩(s, s′) ∈ Tk+m;

s∆
q =

Pq,−1(z, z′, −1)
Qq,−1(z, z′, −1)

, 1 ≤ q ≤ k,

(s′r)
∆ =

P ′
r,−1(z, z′, −1)

Q′
q,−1(z, z′, −1)

, 1 ≤ r ≤ m

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ .

While after Theorem 2.1, a) and Remark 2.4 of [7], this set ∇s, s′ coin-
cides with Ds, s′ if ∆ = 1. As for the case ∆ > 1, it is natural to consider
the ∆-covering h̃ of the mapping h,

h̃ : CPk+m−1 → ˜(C×)k+m,

while the branch of the image of h shall be specified in a proper way.
To do that we remark that h(CPk+m−1) ⊂ ∇s, s′ where the differ-
ence ∇s, s′ \ h(CPk+m−1) consists of the divisors that arise from the
∆-branching effect h̃(CPk+m−1). In considering Ds, s′ we shall discard
the superfluous ∆-branching effect h̃(CPk+m−1)\h(CPk+m−1). Q.E.D.
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The mapping (2.24) is nothing but the inverse mapping of the log-
arithmic Gauss map;

Ds, s′ → CP k+m−1,

(s, s′) →
(
s1

∂

∂s1
∆f (s, s′) : · · · : sk

∂

∂sk
∆f (s, s′)

s′1
∂

∂s′1
∆f (s, s′) : · · · : s′m

∂

∂s′m
∆f (s, s′)

)
.

This is a direct consequence of the cocycle property (2.18), (2.20) of the
operators Lq, i(ϑs, ϑs′ , s, s′, ζ) and L′

r, i(ϑs, ϑs′ , s, s′, ζ), see [7], Theo-
rem 2.1, b).

§3. A-Hypergeometric function of Gel’fand-Kapranov-
Zelevinski

Let us consider the set of polynomials with deformation parameter
coefficients (a0, 1, . . . , aτk, k) associated to the polynomial system (0.2),

f̄�(x, a) = a1, �x
�α1, � + · · · + aτ�, �x

�ατ�, � + a0, �. 1 ≤ � ≤ k.(3.1)

For the sake of simplicity we will further make use of the notation a :=
(a0, 1, . . . , aτk, k) ∈ TL. We consider the Leray coboundary ∂γa of a
cycle γa ∈ Hn(Xa, Z) of the CI Xa = {x ∈ TN ; f̄1(x, a) = · · · =
f̄k(x, a) = 0}.

Then we can define the A-hypergeometric function Φζ
xi, γa

(a0, 1, . . . ,
aτk, k) introduced by Gel’fand-Zelevinski-Kapranov [4] associated to the
polynomials,

f�(x) = x�α1, � + · · · + x�ατ�, � , 1 ≤ � ≤ k,

xi = xi1
1 · · ·xiN

N , x�αj, � = x
αj, �, 1
1 · · ·xαj, �, N

N .

Namely it is defined as a kind of multiple residue along Xa,

Φζ
xi, γa

(a0, 1, . . . , aτk, k) :=
∫

∂γa

k∏
�=1

f̄�(x, a)−ζ�−1xi+1 dx

x1
.(3.2)

We impose here the non-degeneracy condition of the Definition 2 for the
complete intersection Xs after the procedure described in §1.
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In the sequel we consider a lattice Λ ⊂ ZL of L-vectors defined by
the system of following linear equations:

τq∑
i=0

b(j, q, ν) = 0, 1 ≤ q ≤ k,

k∑
q=1

τq∑
j=1

αjq�b(j, q, ν) = 0, 1 ≤ � ≤ N.

Here we denoted by (b(0, 1, ν), . . . , b(τ1, 1, ν), b(0, 2, ν), . . . , b(τ2, 2, ν),
. . . , b(τk, k, ν)), 1 ≤ ν ≤ m + k, a Z basis of Λ.

For the subset K ⊂ {(0, 1), . . . , (k, τk)} such that the columns
�mj, q(A), (j, q) ∈ K of the matrix M(A) (1.7) span RN+k over R and
|K| = N+k we define the set of indices (a generalisation of the Frobenius’
method) after [4],

Π((ζ + 1, i + 1), K) = {((λ(0, 1, ν), . . . , λ(τ1, 1, ν),
. . . , λ(τk, k, ν))}1≤ν≤| det(�mj, q(A))(j, q)∈K|,

which satisfy the following system of equations,

τν∑
j=0

λ(j, q, ν) + ζq + 1 = 0, 1 ≤ q ≤ k,

k∑
q=1

τq∑
j=1

αjq�λ(j, q, ν) − (i� + 1) = 0, 1 ≤ � ≤ N.

Let T be a triangulation of the Newton polyhedron ∆(F (x, 1, 1, y)+1)
for F (x, 1, 1, y) of (1.4) after the definition [4], 1.2. Here we im-
pose that λ(j, q, ν) ∈ Z for (j, q) �∈ K. Let K1, K2 ∈ T be two
different simplices of the triangulation T . We suppose that �λ(νp) :=
(λ(0, 1, νp), . . . , λ(k, τk, νp)) ∈ Π((ζ + 1, i + 1), Kp), λ(j, q, νp) ∈ Z
for (j, q) �∈ Kp, (p = 1, 2) with 1 ≤ νp ≤ | det(�mρ(A))ρ∈Kp |. We intro-
duce the condition of T -non-resonance on (ζ + 1, i + 1)

(λ(0, 1, ν1), . . . , λ(k, τk, ν1)) �≡ (λ(0, 1, ν2), . . . , λ(k, τk, ν2))(3.3)
mod Λ,

for any pair �λ(νp) = (λ(0, 1, νp), . . . , λ(k, τk, νp)) ∈ Π((ζ + 1, i +
1),Kp), p = 1, 2. An adaptation of Theorem 3 [4] to our situation
can be formulated as follows.
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Theorem 3.1. 1) The A-HGF Φζ
xi, γa

(a) satisfies the following
system of equations.

( τq∑
j=0

aji
∂

∂aji
+ ζq + 1

)
Φζ

xi, γa
(a) = 0, 1 ≤ q ≤ k,(3.4)

( ∑
1≤q≤k, 1≤j≤τq

αjq1ajq
∂

∂ajq
− (i1 + 1)

)
Φζ

xi, γa
(a) = · · ·

=
( ∑

1≤q≤k, 1≤j≤τq

αjqN ajq
∂

∂ajq
− (iN + 1)

)
Φζ

xi, γa
(a) = 0,

( ∏
{(j, q);b(j, q, ν)>0}

( ∂

∂ajq

)b(j, q, ν)

−
∏

{(j, q);b(j, q, ν)<0}

( ∂

∂ajq

)−b(j, q, ν))
·Φζ

xi, γa
(a) = 0, 1 ≤ ν ≤ L − (k + N).

2) The dimension of solutions of the system above at a generic
point a ∈ TL is equal to

(N + k)! volN+k ∆(F (x, 1, 1, y) + 1) = |χ(ZF (x,1, 1, y))|

if the T -non-resonant condition (3.3) is satisfied.

In the sequel we shuffle the variables a = (a0, 1, . . . , aτk, k) in accor-
dance with the order of their appearance and we define anew the indexed
parameters a1 = a1, 1, . . . , aτ1 = aτ1, 1, aτ1+1 = a0, 1, . . . , aL−1 =
aτk, k, aL = a0, k. Let us introduce notations analogous to (1.14),

Ξ(A) :=(3.5)
t(log X1, . . . , log XN , log a1, . . . , log aL, log U1, . . . , log Uk).

log T1 = 〈�α1, 1, log X〉 + log a1 + log U1,
...

log Tτ1 = 〈�α1, τ1 , log X〉 + log aτ1 + log U1,
...

log TL = log aL + log Uk.

We consider the equation

L(A) · Log Ξ(A) = L · Log Ξ,

where the matrix L(A) is constructed as follows. The columns ��i(A) = �vi,
1 ≤ i ≤ N with vectors �vi defined like the column of the matrix L in
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(1.15). For the columns of number N + 1 to N + L

(��N+1(A), . . . , ��N+L(A)) = idL .

The columns

��N+L+j(A) = t(

τ1+···+τj−1+j−1︷ ︸︸ ︷
0, . . . , 0, 0, ,

τj+1︷ ︸︸ ︷
1, 1, . . . , 1, 0, . . . , 0), 1 ≤ j ≤ k,

the matrix L(A) is obtained after implementation of the matrix idL into
the transposed matrix tM(A) between the k-th and the (k+1)-th column
up to necessary permutations necessary after the implementation.

Proposition 3.2. There exists a cycle γa such that the following
equality holds for the integral defined in (3.2),

Φζ
xi, γa

(a) = Bζ
i (a)Iζ

xi, γ
(s(a), s′(a)),(3.6)

here

s�(a) =
L∏

j=1

a
wj, N+�

j , 1 ≤ � ≤ k,

s′ρ(a) =
L∏

j=1

a
wj, N+k+ρ

j , 1 ≤ ρ ≤ m,

Bζ
i (a) =

N∏
�=1

( L∏
j=1

a
wj, �

j

)i�+1 k∏
ν=1

( L∏
j=1

a
wj, N+k+m+ν

j

)ζν+1

.

The exponents wj, � are determined by the following relation,

L−1 · L(A)(3.7)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · 0 w1,1 · · · wL,1 0
...

. . .
...

...
...

...
...

...
...

0 · · · 1 w1,N · · · wL,N 0
0 · · · 0 w1,N+1 · · · wL,N+1 0
...

. . .
...

...
...

...
...

...
...

0 · · · 0 w1,N+k+m · · · wL,N+k+m 0
0 · · · 0 w1,N+k+m+1 · · · wL,N+k+m+1 1 · · · 0
...

. . .
...

...
...

...
...

...
...

0 · · · 0 w1,L · · · wL,L 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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that has been essentially introduced in (2.8). The transition of the cycle
γ(a) to γ is controlled by the transformations,

Xi =
( L∏

j=1

a
wj, i

j

)−1

· xi.

Proof. It is enough to remark the following property,

xi+1yζ+1 dx

x1
∧ dy

y1
= Bζ

i (a)xi+1U ζ+1 dx

x1
∧ dU

U1
.

Q.E.D.

One can thus conclude (at least locally on the chart aj �= 0 for
j ∈ I, |I| = k + m) A-HGF of GZK (3.2) is expressed by means of
a fibre integral annihilated by the Horn system (2.15). One can find
a similar statement in [7] where Kapranov restricts himself to a power
series expansion of the solution to (3.2).

Corollary 3.3. The dimension of the solution space of the sys-
tem (3.3) at the generic point is equal to |χ(ZF (x, 1,1, y))| if the T -non-
resonance condition (3.3) is satisfied.

Proof. We shall consider the convex hull of vectors that correspond
to the vertices of the Newton polyhedron of the polynomial y1(f1(x) +
1) + · · · + yk(fk(x) + 1). That is to say

(�α1, 1, 1, 0, . . . , 0), . . . , (�ατ1, 1, 1, 0, . . . , 0),

(�α1, 2, 0, 1, 0, . . . , 0), · · · , (�ατk, k, 0, . . . , 0, 1) ∈ ZN+k.

They are located on the hyperplane ζ1 + · · ·+ ζk = 1. Thus it is possible
to measure (N + k − 1) dimensional volume

(N + k − 1)! volN+k−1(∆(F (x, 1, 1, y))

that is equal to (N + k)! volN+k(∆(F (x, 1, 1, y) + 1). The Euler char-
acteristic admits the following expression

|χ(ZF (x, 1, 1, y))| =
∑

p

| detMKp |

= (N + k − 1)! volN+k−1

(
∆(F (x, 1, 1, y))

)
,

after Khovanski [8]. Q.E.D.
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We define the A-discriminantal loci ∇0
a in TL like following,

∇0
a =

⎧⎪⎪⎨
⎪⎪⎩a ∈ TL;

f̄1(x, a)
= · · ·
= f̄k(x, a)
= 0

, rank

⎛
⎜⎝gradx f̄1(x, a)

...
gradx f̄k(x, a)

⎞
⎟⎠ < k

⎫⎪⎪⎬
⎪⎪⎭ .(3.8)

As it is seen from (3.7) the uniformisation equations (2.22), (2.23) give
rise to an uniformisation of A-discriminantal loci ∇0

a without ∆-branch-
ing effect.

Corollary 3.4. We have the following relations among a ∈ TL

located on the discriminantal loci ∇0
a,

L∏
j=1

(
aj

Lj(−1, z, z′, −1)

)Bq
j

= 1, 1 ≤ q ≤ k,(3.9)1

L∏
j=1

(
aj

Lj(−1, z, z′, −1)

)Cr
j

= 1, 1 ≤ r ≤ m.(3.9)2

This allows us to express ∇0
a by means of the deformation parameters

(z, z′) ∈ CPk+m−1 and a′ ∈ TL−k/D(Σ) ∼= TL−(k+m).

§4. Examples

4.1. Deformation of D4.
Let us consider the versal deformation of D4 singularity of the fol-

lowing form,

f(x, s0, s1, s2, s3) = x3
1 + x1x

2
2 + s3x

2
1 + s2x1 + s1x2 + s0.(4.1)

By means of the resultant calculus on computer, we get a defining equa-
tion of the discriminantal loci as follows,

∆f (s) = 1024s6
1(432s4

0 + 64s6
1 + 576s2

0s
2
1s2 + 128s4

1s
2
2(4.2)

+ 64s2
0s

3
2 + 64s2

1s
4
2 + 192s0s

4
1s3 − 288s3

0s2s3

− 320s0s
2
1s

2
2s3 − 24s2

0s
2
1s

2
3 − 144s4

1s2s
2
3 − 16s2

0s
2
2s

2
3

− 16s2
1s

3
2s

2
3 + 64s3

0s
3
3 + 72s0s

2
1s2s

3
3 + 27s4

1s
4
3).

This is a polynomial with quasihomogeneous weight 24 if we assign to
the variables (x1, x2; s0, s1, s2, s3) the weights (1, 1; 3, 2, 2, 1). Here
we remark that s1 = 0 branch of the discriminantal locus Ds = {s ∈
C3; ∆f (s) = 0} corresponds to the deformation of A2 singularity.
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On the other hand, our Theorem 2.6 states that the uniformisation
equation of the discriminantal loci for the deformation (i.e. torus action
quotient of the deformation parameter space (s0, s1, 0, s3) on the chart
s3 �= 0),

f(x, s0, s1, 0, 1) = x3
1 + x1x

2
2 + x2

1 + s1x2 + s0,

has the following form,

s0 = −z2(3z1 + 4z2)2

4(2z1 + 3z2)3
,(4.3)

s1 =
(
−z1(3z1 + 4z2)3

4(2z1 + 3z2)4

)1/2

.

If we eliminate the variables (z1, z2) from the expressions (4.3), we get
an equation

64s3
0 + 432s4

0 − 24s2
0s

2
1 + 27s4

1 + 192s0s
4
1 + 64s6

1 = 0.

We recall here that our method requires that the expression yf(x, s)
contains so much terms as the variables in it. The reason why the value
(s2, s3) = (0, 1) has been chosen is of purely technical character. In
substituting the special value (0, 1) for (s2, s3) in (4.2) we get,

∆f (s0, s1, 0, 1)
1024s6

1

= 64s3
0 + 432s4

0 − 24s2
0s

2
1 + 27s4

1 + 192s0s
4
1 + 64s6

1.

4.2. Deformation of a non-quasihomogeneous complete intersec-
tion.

Let us consider the following pair of polynomials that define a non-
degenerate complete intersection Xs in C2,

f1 = x3
1 + x2

2 + s1, f2 = x2
1 + x3

2 + s2.(4.4)

The discriminant of this CI in C2 can be calculated as follows,

(s3
1 + s2

2)
3(s3

2 + s2
1)

3(800000 + 387420489s5
1 − 43740000s1s2 +(4.5)

+438438825s2
1s

2
2 + 387420489s3

1s
3
2 + 387420489s5

2).

Evidently the fibres corresponding to the parameter values on the divisor
(s3

1 + s2
2)3(s3

2 + s2
1)3 = 0 are contained in {(x1, x2) ∈ C2; x1x2 = 0}.

Thus the discriminant of CI Xs ∩ T2 is given by the third factor of
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(4.5). After Theorem 2.6, we can find an uniformisation equation of the
discriminantal loci Ds,

s1 = −
(

(4z1 + 6z2)4(5z1)5(6z1 + 4z2)6

(9z1 + 6z2)9(6z1 + 9z2)6

)1/5

,

s2 = −
(

(4z1 + 6z2)6(5z2)5(6z1 + 4z2)4

(9z1 + 6z2)6(6z1 + 9z2)9

)1/5

.

(4.6)

If we eliminate the variables (z1, z2) from the expressions (4.6), we get
an equation of ∇s,

(800000 + 387420489s5
1 − 43740000s1s2 + 438438825s2

1s
2
2

+ 387420489s3
1s

3
2 + 387420489s5

2)R(z1, z2),

where R(z1, z2) is a polynomial whose Newton polyhedron is contained
in a four sided rectilinear figure with vertices (0, 0), (20, 0), (12, 12),
(0, 20). This factor contains the image of h̃(CP1) outside of Ds.
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Duality of Euler data for affine varieties

Mihai Tibăr

Abstract.

We compare the Euler-Poincaré characteristic to the global Euler
obstruction, in case of singular affine varieties, and point out a cer-
tain duality among their expressions in terms of strata of a Whitney
stratification.

The local Euler obstruction was defined by MacPherson [MP], as a
key ingredient for introducing Chern classes for singular spaces. Results
on the local Euler obstruction have been obtained during the time by,
among others, A. Dubson, M.-H. Schwartz, J.-P. Brasselet, G. Gonzalez-
Sprinberg, B. Teissier, Lê D.T, J. Schürmann, J. Seade. Some of them
are surveyed in [Br] and [Sch2]. For more recent results and generaliza-
tions one can look up [BLS, BMPS, Sch1, STV1, STV2].

For a connected singular algebraic closed affine space Y ⊂ CN we
have defined in [STV1] a global Euler obstruction Eu(Y ). The definition
in the global setting can be traced back to Dubson’s viewpoint [Du]. It
immediately follows that, for a non-singular Y , Eu(Y ) equals the Euler
characteristic χ(Y ). The natural question that we address here is how
these two “Euler data” compare to each other whenever Y is singular.

Both objects, Eu and χ, can be viewed as constructible functions
with respect to some Whitney (b)-regular algebraic stratification of Y .
Let us fix such a stratification A = {Ai}i∈Λ on Y . We first show how
Eu(Y ) and χ(Y ) can be expressed in terms of strata such that the for-
mulas are, in a certain sense, dual:

Eu(Y ) =
∑
i∈Λ

χ(Ai) EuY (Ai),(0.1)

χ(Y ) =
∑
i∈Λ

Eu(Ai)χ(NMD(Ai)).(0.2)
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Revised May 19, 2005
2000 Mathematics Subject Classification. 32S20, 32S50.
Key words and phrases. Euler obstruction, Lefschetz pencils, Euler-

Poincaré characteristic, affine varieties.
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The duality consists in the observation that the formulas are ob-
tained one from another by interchanging Eu with χ. To the Euler char-
acteristic χ(Ai) of some stratum Ai in formula (0.1) corresponds the
global Euler obstruction Eu(Ai) of the same stratum in formula (0.2).
The latter has the following meaning: as it will be explained in §1, the
Euler obstruction Eu(Āi) of the algebraic closure Āi of Ai in CN is well
defined and depends only on the open part Ai. We may therefore set
Eu(Ai) := Eu(Āi). In case of a point-stratum {y}, we set Eu({y}) = 1.

Let us explain how the “normal Euler data” χ(NMD(Ai)) and
EuY (Ai) fit into this correspondence. Both data are attached to a gen-
eral slice Ni of complementary dimension of the stratum Ai at some
point pi ∈ Ai.

Firstly, NMD(Ai) stands for the normal Morse data of the stratum
Ai (after Goresky-MacPherson’s [GM]), i.e. the Morse data of (Ni, pi),
see §2.

Secondly, EuY (Ai) denotes the normal Euler obstruction of the stra-
tum Ai, i.e. the local Euler obstruction of Ni at pi.

It is known that both data are independent on the choices of Ni and
of pi. We refer to §2 for the definitions and more details.

We finally consider the case when Y is a locally complete intersec-
tion with arbitrary singularities. We show (Proposition 3.1) how the
difference χ(Y ) − Eu(Y ) can be expressed in terms of Betti numbers of
complex links and the polar invariants αY defined in §1. If the singular-
ities are isolated then the difference χ(Y ) − Eu(Y ) measures the total
“quantity of slice-singularities” of Y , see (3.3).

For another comparison of the Euler characteristic, namely to the
total curvature, in case of an affine hypersurface, we send the reader to
[ST].

§1. Global Euler obstruction

Since Y ⊂ CN is affine, one has a well defined link at infinity of Y ,
denoted by K∞(Y ) := Y ∩ SR. It follows from Milnor’s finiteness argu-
ment [Mi, Cor. 2.8] and from standard isotopy arguments that K∞(Y )
does not depend on the radius R, provided that R is large enough.

Let Ỹ = closure{(x, TxYreg) | x ∈ Yreg} ⊂ Y ×G(d, N) be the Nash
blow-up of Y , where G(d, N) is the Grassmannian of complex d-planes
in C

N . Let ν : Ỹ → Y denote the natural projection and let T̃ denote
the restriction over Ỹ of the bundle CN × U(d, N) → CN × G(d, N),
where U(d, N) is the tautological bundle over G(d, N). This is the
“Nash bundle” over Ỹ . We next consider a continuous, stratified vector
field v on a subset V ⊂ Y . The restriction of v to V has a well-defined
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canonical lifting ṽ to ν−1(V ) as a section of the Nash bundle T̃ → Ỹ
(see e.g. [BS], Prop. 9.1).

We refer to [STV1] for other details concerning the following defini-
tion (which can be traced back to Dubson’s approach), and in particular
for the discussion on the independence on the choices:

Definition 1.1. Let ṽ be the lifting to a section of the Nash bun-
dle T̃ of a stratified vector field v over K∞(Y ) = Y ∩ SR, which is
radial with respect to the sphere SR. The obstruction to extend ṽ as a
nowhere zero section of T̃ within ν−1(Y ∩BR) is a relative cohomology
class o(ṽ) ∈ H2d(ν−1(Y ∩ BR), ν−1(Y ∩ SR)) � H2d(Ỹ ).

One calls global Euler obstruction of Y , and denotes it by Eu(Y ),
the evaluation of o(ṽ) on the fundamental class of the pair (ν−1(Y ∩BR),
ν−1(Y ∩ SR)).

By obstruction theory, Eu(Y ) is an integer and does not depend on
the radius of the sphere defining the link at infinity K∞(Y ). We have
shown in [STV1, Theorem 3.4] that Eu(Y ) can be expressed in terms of
polar multiplicities as follows, denoting d = dimY :

Eu(Y ) =
d+1∑
j=1

(−1)d−j+1α
(j)
Y ,(1.1)

where:

(1.2) α
(1)
Y := the number of Morse points

of a global generic linear function onYreg.

After taking a general hyperplane slice H ∩ Y , the second number is
α

(2)
Y := α

(1)
H∩Y . This continues by induction and yields a sequence of

non-negative integers:

α
(1)
Y , α

(2)
Y , . . . , α

(d)
Y ,

which we complete by α
(d+1)
Y := the number of points of the intersection

of Yreg with a global generic codimension d plane in CN .
Of course α

(k)
Y depends on the embedding of Y into CN . Neverthe-

less, these invariants (and therefore, by the equality (1.1), Eu(Y ) too)
depend only on some Zariski open part of Y . Now, for a stratum Ai

from the stratification A = {Ai}i∈Λ of Y , the global Euler obstruction
Eu(Āi) of its Zariski closure Āi is well-defined. However, since we have
seen that this depends only on the open part Ai, we can use the notation
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Eu(Ai) for Eu(Āi). This convention explains the occurrence of Eu(Ai)
instead of Eu(Āi) in formula (0.2).

If the highest dimensional stratum is denoted by A0, then we have
Ā0 = Y and therefore Eu(Y ) = Eu(A0).

§2. The dual formula

The equality (0.1) was explained in [STV1]. It follows by Dubson’s
[Du, Theorem 1] applied to our setting. In case of germs of spaces a
similar formula was proved in [BLS, Theorem 3.1] by using the Lefschetz
slicing method. A different proof may be derived from [BS, Theorem
4.1]. For a more general proof, in terms of constructible functions, we
send to [Sch2, (5.65)].

We now give a proof of the equality (0.2). This can be viewed as
a global index theorem, similar to Kashiwara’s local index theorem (see
for this [Sch2, (5.38), (5.38)]). Our proof will only use the equality (1.1).

Definition 2.1 (cf. [GM]). The complex link of a space germ
(X, x) is the general fibre in the local Milnor-Lê fibration defined by
a general (linear) function germ at x. Up to homotopy type, this does
not depend on the stratification or the choices of the representatives of
the space or of the general function.

Let CLY (Ai) denote the complex link of the stratum Ai of Y . This is
by definition the complex link of the germ (Ni, pi), where Ni is a generic
slice of Y at some pi ∈ Ai, of codimension equal to the dimension of Ai.
Let us remark that the complex link of a point-stratum {y} is precisely
the complex link of the germ (Y, y).

Let Cone(CLY (Ai)) denote the cone over this complex link. We
denote by NMD(Ai) the normal Morse data at some point of Ai, that
is the pair of spaces (Cone(CLY (Ai)), CLY (Ai)). After Goresky and
MacPherson [GM], the local normal Morse data are local invariants up
to homotopy and do not depend on the various choices in cause. The
complex link of the highest dimensional stratum A0 is empty, and we
set by definition χ(NMD(A0)) = 1. In the same case, for the normal
Euler obstruction we have EuY (A0) = 1 by definition.

Theorem 2.2. Let Y ⊂ CN be an algebraic closed affine space
and let A = {Ai}i∈Λ be some Whitney stratification of Y . Then:

χ(Y ) =
∑
i∈Λ

Eu(Ai)χ(NMD(Ai)).(2.1)

Proof. Take an affine Lefschetz pencil of hyperplanes in CN defined
by a linear function lH : CN → C. By the genericity of the pencil, there
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are only finitely many stratified Morse singularities of the pencil, each
one contained in a different slice. By the definition (1.2), the number
of stratified Morse points on a stratum Ai of dimension > 0 is precisely
α

(dimAi)

Āi
.

According to the Lefschetz slicing method applied to singular spaces
(see e.g. [GM]), the space Y is obtained from a generic hyperplane slice
Y ∩H of the pencil, to which are attached cones over the complex links
of each singularity of the pencil. Goresky and MacPherson have proved
that the Milnor data of a stratified Morse function germ is the (dimAi)-
times suspension of NMD(Ai). At the level of Euler characteristic, we
then have:

χ(Y ) = χ(Y ∩H) +
∑
i∈Λ

(−1)dimAiα
(1)

Āi
χ(NMD(Ai)),(2.2)

The sign (−1)dimAi is due to the repeated suspension of the normal
Morse data. By convention, for 0 dimensional strata Ai we put α

(1)

Āi
:= 1,

and therefore Eu(Āi) = 1. We apply formula (2.2) to Y ∩H and to the
successive generic slicings in decreasing dimensions. In the resulting
equality, we get the sum of all the coeffients of χ(NMD(Ai)), for each
i ∈ Λ. We may then identify this sum to Eu(Āi) via the formula (1.1).
This ends our proof. Q.E.D.

§3. Case of locally complete intersections

We consider here the case of a locally complete intersection Y ⊂ C
N

of dimension d, with arbitrary singularities. Being a locally complete
intersection implies however that the complex link of any stratum Ai

is homotopy equivalent to a bouquet of spheres of dimension equal to
codimY Ai − 1, by Lê’s result [Lê]. Let bd−dimAi−1(CLY (Ai)) denote
the Betti number of this complex link. One can then write the formula
(2.2) in the following form:

χ(Y ) = χ(Y ∩H) + (−1)d(α(1)
Y + β

(1)
Y )(3.1)

where β
(1)
Y collects the contributions from all the lower dimensional

strata in the sum (2.2), more precisely, under our assumption we have:

β
(1)
Y :=

∑
i∈Λ\{0}

α
(1)

Āi
bd−dimAi−1(CLY (Ai)).

According to their definitions, α
(1)
Y and β

(1)
Y are both non-negative in-

tegers. Their sum represents the number of d-cells which have to be
attached to Y ∩H in order to obtain Y .
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Let us define β
(k)
Y for k ≥ 2, by:

β
(2)
Y := β

(1)
Y ∩H

and so on by induction, for successive slices of Y , as in case of the
α

(k)
Y -series defined before. 1

After repeatedly applying (3.1), and then using (1.1), we get the
following expression of the difference among the two Euler data:

Proposition 3.1.

χ(Y ) − Eu(Y ) =
d∑

k=1

(−1)d−k+1β
(k)
Y .(3.2)

Remark 3.2. Let us see what becomes this difference in case Y
is a hypersurface, or a locally complete intersection, with isolated sin-
gularities. For an isolated singular point q ∈ Y , let µ

〈d−1〉
q (Y ) denote

the Milnor number of the local complete intersection (Y ∩ H, q) which
is the result of slicing Y by a generic hyperplane H. In case Y is a
hypersurface, this is the second highest Milnor-Teissier number in the
sequence µ∗

q(Y ). We get:

χ(Y ) − Eu(Y ) = (−1)d
∑

q∈Sing Y

µ〈d−1〉
q (Y ).(3.3)

Since by convention α
(1)
{q} = 1, and since bd−1(CLY ({q}))= µ

〈d−1〉
q (Y ),

formula (3.3) is indeed a particular case of formula (3.2). This can be
also proved by using the local Euler obstruction formula [BLS, Theorem
3.1].

Acknowledgement. We thank Jörg Schürmann for several dis-
cussions concerning Dubson’s paper [Du], index theorems, and his work
[Sch2].
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Algèbre graduée associée à une valuation de K[x]

Michel Vaquié

Abstract.

We extend some results on augmented valuations and key-poly-
nomials to limit augmented valuations and limit key-polynomials.
As any valuation µ of K[x] is obtained as a limit of an admissible
family of valuations, we deduce a description of the graded algebra
associated to µ.

§ Introduction

Dans cet article nous donnons une description de l’algèbre graduée
grµK[x] associée à une valuation µ de l’anneau des polynômes K[x] sur
un corps K. La nature de cette algèbre graduée dépend essentiellement
du fait que la valuation µ est ou n’est pas bien spécifiée, c’est-à-dire du
fait que l’extension (K(x), µ)/(K, ν) de corps valués vérifie ou ne vérifie
pas l’égalité d’Abhyankar.

Nous caractérisons cette propriété de la valuation µ en utilisant la
notion de famille admissible associée à la valuation µ, telle qu’elle a été
introduite et étudiée dans [Va 1] et [Va 2].

Dans la première partie, pour étudier certaines propriétés des fa-
milles admissibles, nous étendons aux valuations augmentées limites et
aux polynômes-clé limites quelques résultats déjà connus pour les valua-
tions augmentées et les polynômes-clés. Nous donnons ensuite plusieurs
propriétés caractéristiques des valuations bien spécifiées.

Dans la deuxième partie, nous étudions plus précisément l’algèbre
graduée grµK[x].

Je remercie vivement le rapporteur pour toutes ses remarques et ses
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§1. Valuation bien spécifiée

Nous considérons un corps K muni d’une valuation ν, de corps
résiduel κν et de groupe des valeurs Γν . Nous choisissons un plonge-
ment de Γν dans un groupe totalement ordonné Γ̄ suffisamment grand
et toutes les valeurs finies γ que nous considèrerons seront dans Γ̄.

Nous appelons E = E(K[x], ν) l’ensemble des valuations ou pseudo-
valuations de l’anneau des polynômes K[x] dont la restriction à K est
égale à ν. Dans la suite toutes les valuations de K[x] appartiendront à
E .

Une famille admissible de valuations de K[x] est une famille de la
forme A =

(
µi

)
i∈I

, où I est un ensemble totalement ordonné, obtenue
comme réunion de familles admissibles simples S(j), pour j parcourant
J , avec J = {1, . . . , N} ou J = N∗, chaque famille simple S(j) étant
constituée d’une partie discrète D(j) et d’une partie continue C(j), la
dernière famille continue C(N) pouvant être éventuellement vide.

Les valuations µi de la famille A apparaissant dans les parties dis-
crètes D(j), sauf la première de chaque partie, ainsi que celles appa-
raissant dans les parties continues C(j) sont définies comme valuations
augmentées, et les valuations apparaissant comme première valuations
d’une partie discrète D(j) sont définies comme valuations augmentées
limites. Dans le premier cas nous avons

µi = [µi−1; µi(φi) = γi],

et φi est un polynôme-clé définissant la valuation µi à partir de la va-
luation µi−1, et dans le deuxième cas nous avons

µi =
[(

µα

)
α∈A

; µi(φi) = γi

]
,

et φi est un polynôme-clé limite définissant la valuation µi à partir de
la famille continue C(j−1) =

(
µα

)
α∈A

.
Nous disons que la famille A est close si l’ensemble I possède un plus

grand élément ῑ, dans ce cas la valuation µ est la valuation µῑ. Sinon,
nous disons que la famille A est ouverte et dans ce cas la valuation
µ n’appartient pas à la famille A. Dans [Va 2] nous appelions famille
admissible complète une famille close.

A toute valuation ou pseudo-valuation µ de E nous pouvons associer
une famille admissible A que nous notons A(µ), cette famille n’est pas
unique mais définie à équivalence près, le fait que la famille A(µ) soit
close ou ouverte ne dépend que de la valuation µ donnée.

Nous renvoyons le lecteur aux articles [Va 1] et [Va 2] de l’auteur
pour des définitions précises et pour les propriétés de ces valuations, de
ces polynômes et de ces familles.
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Définition. Si la famille A associée à la valuation µ est close, nous
disons que µ est bien spécifiée. Le polynôme-clé ou polynôme-clé limite
φ = φῑ définissant µ comme valuation augmentée ou comme valuation
augmentée limite est appelé le polynôme définissant µ.

Remarque 1.1. Les valuations bien spécifiées sont les valuations
µ de K(x) dont le corps résiduel κµ est une extension transcendante
de κν ou dont le groupe des valeurs Γµ est tel que le groupe quotient
Γµ/Γν contient des éléments sans torsion. Nous en déduisons que les
valuations bien spécifiées µ sont les valuations telles que l’extension
(K(x), µ)/(K, ν) de corps valués vérifie l’égalité d’Abhyankar:

dim.alg.KK(x) = dim.alg.κν
κµ + rang.rat.Γµ/Γν = 1.

Soit µ une valuation bien spécifiée et soit φ le polynôme qui la définit,
nous pouvons alors écrire soit µ = [µ0; µ(φ) = γ] si µ est une valuation
augmentée pour la valuation µ0, soit µ =

[(
µα

)
α∈A

; µ(φ) = γ] si µ

est une valuation augmentée limite pour la famille continue
(
µα

)
α∈A

.
Dans le dernier cas, pour tout polynôme f tel que la famille de valeurs(
µα(f)

)
α∈A

devient stationnaire, nous notons µ0(f) = µA(f) la valeur
limite de cette famille. Alors pour tout polynôme f de K[x], si nous
notons f = fmφm + . . . + f0 le développement de f selon les puissances
de φ, nous avons par définition:

µ(f) = Inf
(
µ0(fj) + jγ, 0 ≤ j ≤ m

)
,

et de plus nous avons pour tout j, µ(fj) = µ0(fj).
Nous avons alors la proposition suivante qui généralise les résultats

de MacLane ([McL 1] Lemma 9.2 et [McL 2] Lemma 4.3).

Proposition 1.1. Si µ est une valuation bien spécifiée, le po-
lynôme φ définissant µ est un polynôme-clé pour la valuation µ.

Preuve. Soit f = fmφm + . . . + f0 le développement de f selon les
puissances de φ, alors nous avons:

µ(f0) ≥ µ(f) et µ(f0) > µ(f) ⇐⇒ φ |
µ
f.

Nous en déduisons immédiatement que tout polynôme f µ-divisible
par φ est de degré supérieur ou égal au degré de φ, c’est-à-dire que φ est
µ-minimal.

Soient f et g deux polynômes qui ne sont pas µ-divisibles par φ,
alors nous avons d’après ce qui précède µ(f0) = µ(f) et µ(g0) = µ(g), où
nous notons f0 et g0 les restes de la division euclidienne respectivement
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de f et g par φ. Nous avons alors f0g0 = h′φ + h0, avec h′ et h0 de
degré strictement inférieur au degré de φ et h0 est le reste de la division
de h = fg par φ. Nous avons donc l’inégalité µ(h0) ≥ µ(f0g0) et si
nous montrons que nous avons µ(f0g0) = µ(h0), alors nous pourrons en
déduire l’égalité µ(h) = µ(h0), donc que h = fg n’est pas µ-divisible par
φ, cela nous donnera la µ-irréductibilité de φ.

Dans le cas où µ est une valuation augmentée, comme φ est un
polynôme-clé pour la valuation µ0, le produit f0g0 n’est pas µ0-divisible
par φ par conséquent nous avons bien µ(f0g0) = µ0(f0g0) = µ0(h0) =
µ(h0).

Dans le cas où µ est une valuation augmentée limite, il existe α dans
A tel que pour tout β dans A vérifiant β ≥ α nous avons les égalités
µβ = µ0 = µ pour f0, g0 et h0. Si nous avions l’inégalité stricte µ(h0) >
µ(f0g0), alors pour tout β ≥ α nous aurions µβ(f0g0) = µβ(h′φ), ce qui
est impossible car la famille

(
µβ(φ)

)
est strictement croissante.

La proposition 1.1 énonce une propriété commune aux valuations
augmentées et aux valuations augmentées limites. Nous allons étendre
ce résultat et montrer que les valuations augmentées limites et les poly-
nômes-clés limites ont d’autres propriétés équivalentes à celles des valua-
tions augmentées et des polynômes-clés, telles qu’elles ont été données
par MacLane ([McL 1] et [McL 2]).

Soit S une famille admissible simple de valuations de K[x], constituée
de la partie discrète finie D =

(
µi

)
i∈I

, et de la partie continue C =(
µα

)
α∈A

. Les valuations µα sont des valuations augmentées de la forme
µα = [µ0; µα(φα) = γα], où les polynômes-clés φα sont tous de même
degré, deg φα = dA, et où la famille de valeurs

(
γα

)
α∈A

est strictement
croissante, de plus ces valuations ont même groupe des ordres ΓA.

Nous supposons que l’ensemble Φ̃(A) des polynômes f vérifiant
µα(f) < µβ(f) pour tout α < β dans A est non vide. Rappelons que si
un polynôme f n’appartient pas à Φ̃(A), c’est-à-dire s’il existe un couple
α < β dans A tel que µα(f) = µβ(f), alors pour tout α′ ≥ α nous avons
l’égalité µα′(f) = µα(f), et nous notons µA(f) cette valeur. Nous ap-
pelons mA le degré minimal d’un polynôme de Φ̃(A) et nous définissons
l’ensemble Φ(A) par:

Φ(A) =
{

φ ∈ K[x]
∣∣∣∣ µα(φ) < µβ(φ) ∀α < β ∈ A,

φ unitaire, deg φ = mA

}
.

Alors tout polynôme φ de Φ(A) est un polynôme-clé limite pour
la famille C =

(
µα

)
α∈A

(cf. [Va 1] Proposition 1.21), et pour tout γ

vérifiant γ > µα(φ) pour tout α dans A, nous pouvons définir la valua-
tion, ou la pseudo-valuation dans le cas γ = +∞, augmentée limite µ
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associée à φ et à γ, que nous notons:

µ =
[(

µα

)
α∈A

; µ(φ) = γ
]
.

Dans la suite nous supposons que nous avons choisi un polynôme-
clé limite φ pour la famille C et que nous avons défini une valuation
augmentée limite µ associée à φ et à une valeur γ.

Lemme 1.2. Pour tout polynôme f n’appartenant pas à Φ̃(A), par
exemple pour f vérifiant deg f < deg φ, il existe un polynôme g, avec
deg g < deg φ, tel que fg soit µ-équivalent à 1.

Preuve. Si le polynôme f n’appartient pas à Φ̃(A), f est premier
à φ et nous pouvons trouver des polynômes h et g, avec deg g < deg φ,
tels que fg + hφ = 1, et nous supposons f /∈ K, d’où h �= 0. Pour α
suffisamment grand nous avons alors

µ(hφ) > µα(hφ) ≥ Inf
(
µα(fg), µα(1)

)
= Inf

(
µ(fg), µ(1)

)
d’où fg µ-équivalent à 1.

Proposition 1.3. Soit φ′ un polynôme unitaire de K[x] vérifiant
deg φ′ ≥ deg φ et non µ-équivalent à φ, et soit φ′ = fmφm + · · ·+ f0 son
développement selon les puissances de φ. Alors φ′ est un polynôme-clé
pour la valuation µ si et seulement si

- φ′ est µ-irréductible,
- fm = 1, c’est-à-dire φ′ = φm + · · · + f0, et µ(φ′) = mγ = µA(f0).

Preuve. La démonstration est identique à celle dans le cas où µ
est une valuation augmentée associée à un polynôme-clé φ (cf. [McL 1]
Theorem 9.4, [Va 1] Théorème 1.11).

Remarque 1.2. Soit µ une valuation bien spécifiée définie par le
polynôme φ, et nous reprenons la notation µ0 définie plus haut, alors
pour tout f dans K[x] nous avons les implications (i) =⇒ (ii) =⇒ (iii)
avec:

( i ) µ(f) = µ0(f),
( ii ) il existe f0 avec deg f0 < deg φ µ-équivalent à f ,
(iii) f est µ-unitaire, c’est-à-dire il existe f ′ dans K[x] tel que ff ′

soit µ-équivalent à 1, et nous pouvons choisir f ′ avec deg f ′ < deg φ.

Nous avons sur l’ensemble E des valuations ou pseudo-valuations de
K[x] prolongeant ν la relation d’ordre partiel ≤ définie de la manière
suivante:

µ ≤ µ′ si et seulement si µ(f) ≤ µ′(f) pour tout f dans K[x].
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La Proposition 1.1 montre que toute valuation bien spécifiée ad-
met un polynôme-clé, nous avons en fait le résultat plus précis suivant
qui répond en particulier à la question de savoir à quelle condition une
valuation µ de K[x] possède un polynôme-clé.

Proposition 1.4. Les propositions suivantes sont équivalentes:
1) La valuation µ est bien spécifiée.
2) La valuation µ n’est pas maximale pour la relation d’ordre ≤.
3) La valuation µ admet un polynôme-clé.
4) La valuation µ peut être obtenue comme valuation augmentée

µ = [µ0; µ(φ) = γ],

ou comme valuation augmentée limite

µ =
[(

µα

)
α∈A

; µ(φ) = γ].

Nous allons d’abord rappeler le lemme suivant (cf. [Va 2] Lemme
2.8).

Lemme 1.5. Soient µ0, µ et µ′ trois valuations de K[x] vérifiant
µ0 < µ ≤ µ′. Nous appelons Φ̃, respectivement Φ̃′, l’ensemble des po-
lynômes f de K[x] vérifiant µ0(f) < µ(f), respectivement µ0(f) < µ′(f).
Alors les ensembles Φ̃ et Φ̃′ sont égaux.

Preuve de la proposition. Par définition nous avons 1) implique 4),
et nous avons montré à la Proposition 1.1 que 4) implique 3).

Les propriétés 2) et 3) sont équivalentes, en effet si la valuation µ ad-
met un polynôme-clé φ alors pour toute valeur γ′ strictement plus grande
que µ(φ) nous pouvons définir la valuation augmenté µ′ = [µ; µ′(φ) = γ′]
qui vérifie µ ≤ µ′ et µ �= µ′. Réciproquement si µ′ est une valuation avec
µ ≤ µ′ et µ �= µ′, nous pouvons en déduire l’existence d’un polynôme-
clé φ pour µ, il suffit de choisir un polynôme unitaire de degré minimal
vérifiant µ′(φ) > µ(φ).

Montrons que 2) implique 1). Soit µ une valuation qui n’est pas bien
spécifiée et nous supposons qu’il existe une valuation µ′ vérifiant µ ≤ µ′.
La famille admise A(µ) associée à µ est alors une famille de la forme
A =

(
µi

)
i∈I

où l’ensemble I n’a pas de plus grand élément, et pour tout
i dans I nous avons µi ≤ µ ≤ µ′. Pour tout polynôme f de K[x] il existe
i0 dans I tel que pour tout i ≥ i0 nous ayons µi0(f) = µi(f) = µ(f), par
conséquent si nous appelons comme précédemment Φ̃(µi), respectivment
Φ̃′(µi), l’ensemble des polynômes f vérifiant µi(f) < µ(f), respective-
ment µi(f) < µ′(f), l’ensemble

⋂
i∈I Φ̃(µi) est vide. Nous déduisons alors

du lemme que l’ensemble
⋂

i∈I Φ̃′(µi) est vide lui aussi, par conséquent
la valuation µ′ est forcément égale à la valuation µ.
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Définition. Soient µ une valuation bien spécifiée de K[x] et φ le
polynôme qui la définit. Un polynôme-clé φ′ pour la valuation µ est dit
admissible s’il vérifie deg φ′ ≥ deg φ et s’il n’est pas µ-équivalent à φ.

Soit A une famille admissible de valuations de K[x], nous considérons
deux valuations µ et µ′ appartenant à la même sous-famille admissible
simple S de A telle que µ′ est obtenue comme valuation augmentée
µ′ = [µ; µ′(φ′) = γ′]. Cela correspond au cas µ = µi et µ′ = µi+1

deux valuations successives appartenant à la partie discrète D, au cas
µ = µn dernière valuation de la partie discrète D et µ′ = µα une valua-
tion quelconque de la partie continue C, ou au cas de deux valuations
µ = µα et µ′ = µβ de la partie continue C avec α < β. En particulier le
polynôme-clé φ′ est un polynôme-clé admissible pour la valuation µ.

Définition. Nous appelons un couple de valuations (µ, µ′) vérifiant
la propriété précédente un couple de valuations successives de la famille
admissible A.

Soit µ une valuation bien spécifiée définie par le polynôme φ et la
valeur γ, nous reprenons la notation µ0 précédente et nous appelons Γ0

soit le groupe des valeurs Γµ0 de la valuation µ0 si µ est une valuation
augmentée, soit le groupe des valeurs ΓA commun aux valuations de la
famille continue

(
µα

)
α∈A

si µ est une valuation augmentée limite.

Proposition 1.6. Pour tout δ dans Γ0 il existe p appartenant à
K[x] avec deg p < deg φ tel que µ(p) = µ0(p) = δ.

Preuve. Appelons (p0) la propriété

∀δ ∈ Γ0∃p ∈ K[x] avec deg p < deg φ tel que µ(p) = δ.

La propriété (p0) est évidemment vérifiée par toute valuation µ
définie par µ(f) = Inf(ν(aj) + jγ; 0 ≤ j ≤ d) pour f = adx

d + · · · + a0,
c’est-à-dire pour la première valuation de toute famille admissible. Com-
me toute valuation est obtenue à partir d’une famille admissible, il suffit
alors de montrer les deux résultats suivants.

- Si une valuation bien spécifiée µ vérifie (p0) alors toute valuation
augmentée µ′ = [µ; µ′(φ′) = γ′] avec φ′ polynôme-clé admissible pour µ,
vérifie encore la propriété (p0), c’est-à-dire:

∀δ′ ∈ Γµ = Γ0 + γZ ∃p′ ∈ K[x] avec deg p′ < deg φ′ tel que µ(p′) = δ′.

En effet si la valuation µ possède un polynôme-clé admissible φ′, alors
d’après le théorème de MacLane ([McL 1] Theorem 9.4) et la Proposition
1.3 la valeur γ vérifie mγ ∈ Γ0 avec m = deg φ′/ deg φ. Par conséquent
pour tout δ′ dans Γµ il existe δ ∈ Γ0 et t avec 0 ≤ t < m tel que
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δ′ = δ + tγ, et le résultat est une conséquence de la propriété (p0) pour
la valuation µ.

- Si
(
µα

)
α∈A

est une famille continue de valuations qui vérifient (p0)
alors toute valuation augmentée limite µ′ =

[(
µα

)
; µ′(φ′) = γ′] avec φ′

polynôme-clé limite pour µ, vérifie encore la propriété (p0), c’est-à-dire:

∀δ′ ∈ ΓA ∃p′ ∈ K[x] avec deg p′ < deg φ′ tel que µ(p′) = δ′.

Il suffit de considérer α < β dans A, alors la valuation µβ est une
valuation augmentée µβ = [µα; µβ(φβ) = γβ ] qui vérifie la propriété
(p0). Le résultat est alors une conséquence de l’égalité Γα = ΓA et de
deg φβ < deg φ′.

Corollaire. Soit A une famille admissible de valuations de K[x],
alors pour tout couple (µ, µ′) de valuations successives de A, avec µ′ =
[µ; µ′(φ′) = γ′], il existe q et q′ dans K[x] vérifiant qq′ µ-équivalent à 1
et µ(q) = −µ(q′) = µ(φ′).

De plus si µ′ n’est pas la dernière valuation de la famille A, γ′

appartient à Γµ ⊗Z Q et si nous appelons τ le plus petit entier t > 0 tel
que tγ′ ∈ Γµ, alors il existe p et p′ = p′(τγ′) dans K[x] vérifiant pp′

µ′-équivalent à 1 et µ′(p) = µ(p) = −µ′(p′) = −µ(p′) = τγ′.

Preuve. Si φ′ est un polynôme-clé admissible pour la valuation µ
la valeur µ(φ′) appartient au groupe Γ0, par conséquent le résultat est
une conséquence de la proposition précédente et de la Remarque 1.2.

De même, si µ′ n’est pas la dernière valuation de la famille, elle
admet un polynôme-clé admissible φ′′ et nous pouvons appliquer le
théorème de MacLane ([McL 1] Theorem 9.4) ou la Proposition 1.3,
et comme la valeur τγ′ est dans Γµ nous avons encore l’existence des
polynômes p et p′.

§2. Algèbre graduée

Pour toute valuation µ de K[x] et pour tout γ dans Γ̄, nous défi-
nissons les groupes Pγ = {f ∈ K[x] | µ(f) ≥ γ} et P+

γ = {f ∈ K[x] |
µ(f) > γ}. Par définition l’algèbre graduée grµK[x] associée à la valua-
tion µ est égale à:

grµ(K[x]) =
⊕
γ∈Γ̄

Pγ/P+
γ .

Nous notons Hµ l’application de K[x] dans grµK[x] qui à tout polynôme
f avec µ(f) = γ associe l’image de f dans Pγ/P+

γ , et nous notons ∆µ

la composante
(
grµK[x]

)
0

de degré 0.
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Rappelons que si µ′ est une valuation augmentée µ′ = [µ; µ′(φ) = γ]
ou une valuation augmentée limite µ′ =

[(
µα

)
α∈A

; µ′(φ) = γ
]
, nous

pouvons déterminer l’algèbre graduée grµ′K[x] associée à la valuation
µ′ à partir de celle associée à la valuation µ, ou à celles associées aux
valuations µα ([Va 1] Théorème 1.7 et Théorème 1.26).

Plus précisément si µ′ est une valuation augmentée pour µ définie
par le polynôme-clé φ, µ′ = [µ; µ′(φ) = γ], l’application naturelle g de
grµK[x] dans grµ′K[x] induit un isomorphisme d’algèbres graduées

G :
(
grµK[x]/(Hµ(φ))

)
[T ]−−→grµ′K[x],

qui envoie T sur G(T ) = Hµ′(φ), où grµK[x]/(Hµ(φ)) est muni de la
structure d’algèbre graduée induite par celle de grµK[x] et où T est muni
du poids γ.

D’après le corollaire à la Proposition 1.6 il existe un polynôme µ-
unitaire q′ tel que µ(q′φ) = 0 et le noyau de la composante de degré 0
g0 : ∆µ → ∆µ′ est l’idéal engendré par ϕ = Hµ(q′φ). Nous avons alors:

si γ n’appartient pas à Γµ ⊗Z Q

∆µ′ �
(
∆µ/(ϕ)

)
,

si γ appartient à Γµ⊗ZQ, en utilisant la deuxième partie du corollaire
à la Proposition 1.6,

∆µ′ �
(
∆µ/(ϕ)

)
[S],

avec S = Hµ′
(
p′(τγ)φτ

)
(cf. [Va 1] Remarque 1.5).

Nous avons un résultat similaire pour une valuation augmentée li-
mite µ′ =

[(
µα

)
α∈A

; µ′(φ) = γ
]
. Soit C =

(
µα

)
α∈A

une famille continue
de valuations, et nous pouvons toujours supposer que A admet un plus
petit élément θ, ce qui permet d’écrire toute valuation µα de C comme
valuation augmentée µα = [µθ; µα(φα) = γα], où tous les polynômes-clés
φα sont de même degré d.

Nous remarquons que pour tout α dans A, l’image Hµα(φβ) du po-
lynôme-clé φβ dans l’algèbre graduée grµα

K[x] ne dépend pas de β > α.
De plus grâce au corollaire à la Proposition 1.6, nous pouvons trouver
p′(γα) dans K[x] dont l’image dans grµα

K[x] est inversible et de poids
−γα = −µα(φβ). Nous notons ϕα+ l’image de p′(γα)φβ dans grµα

K[x],
c’est un élément de degré 0 qui engendre le même idéal que Hµα(φβ).

Si nous posons:

grA = grµθ
K[x]/(ϕθ+),
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alors pour tout α > θ, l’algèbre grµα
K[x] est isomorphe à l’anneau de

polynômes grA[Tα] avec Tα = Hµα(φα).
Alors pour tout α > θ l’algèbre quotient grµα

K[x]/(ϕα+) est aussi
isomorphe à grA et pour tout β > α, le morphisme d’algèbres graduées
grµα

K[x] −→ grµβ
K[x] se factorise par:

grµα
K[x]
��

�
��

Uα �� �� grµα
K[x]/(ϕα+)

��

�

��

� � Vβ �� grµβ
K[x]
��
�

��
grA[Tα]

uα �� �� grA � � vβ �� grA[Tβ ]

où vβ est le morphisme naturel mais où uα n’est pas un morphisme de
grA-algèbres, en particulier son noyau n’est pas (Tα). Mais nous pouvons
remarquer que le morphisme composé Uβ ◦Vβ de grµα

K[x]/(ϕα+) � grA
dans grµβ

K[x]/(ϕβ+) � grA est un isomorphisme.
Nous appelons ∆A la partie homogène de degré 0 de grA, alors

comme ϕθ+ est de degré nul, nous avons:

∆A � ∆θ/(ϕθ+),

où nous notons comme précédemment ∆θ la partie homogène de degré
0 de grµθ

K[x].
En prenant les parties homogènes de degré 0 des algèbres du dia-

gramme précédent nous trouvons le nouveau diagramme:

∆µα��

�
��

(Uα)0 �� �� ∆µα/(ϕα+)
��

�
��

� � (Vβ)0 �� ∆µβ��

�
��

∆A[Sα]
(uα)0 �� �� ∆A

� � (vβ)0 �� ∆A[Sβ ]

où Sα = Hµα

(
p′(γα)φα

)
, et nous avons encore le morphisme composé

(Uβ)0 ◦ (Vβ)0 qui induit un isomorphisme de ∆A dans lui-même.
Si l’ensemble Φ̃(A) est vide, c’est-à-dire si pour tout f dans K[x] il

existe α dans A tel que µα(f) = µβ(f) pour tout β ≥ α, nous définissons
une valuation limite µA de K[x] par µA(f) = Supα∈A

(
µα(f)

)
. Dans ce

cas la famille C n’admet pas de valuation augmentée limite et la valuation
µA n’est pas une valuation bien spécifiée.

Proposition 2.1. Si Φ̃(A) est vide et si µA est la valuation li-
mite de la famille continue C =

(
µα

)
α∈A

, alors pour tout α dans A le
morphisme naturel de grµα

K[x] dans grµA
K[x] induit un isomorphisme
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d’algèbres graduées:

Q : grA
∼−−→ grµA

K[x].

Cet isomorphisme induit un isomorphisme entre les parties homo-
gènes de degré 0:

Q0 : ∆A
∼−−→ ∆µA .

Preuve. Cf. [Va 1] Corollaire à la Proposition 1.25.

Si l’ensemble Φ̃(A) n’est pas vide, pour φ appartenant à Φ(A) et
pour γ vérifiant γ > µα(φ) pour tout α dans A, nous définissons une
valuation augmentée limite µ′ =

[(
µα

)
α∈A

; µ′(φ) = γ
]
.

Proposition 2.2. Soit µ′ =
[(

µα

)
α∈A

; µ′(φ) = γ
]

une valuation
augmentée limite pour la famille continue C =

(
µα

)
α∈A

, alors pour tout
α dans A le morphisme naturel de grµα

K[x] dans grµ′K[x] induit un
isomorphisme d’algèbres graduées:

Q : grA[T ] ∼−−→ grµ′K[x],

qui envoie T sur Q(T ) = Hµ′(φ).
De plus nous avons:

- si γ n’appartient pas à ΓA⊗Z Q, ce morphisme induit un isomorphisme
en degré 0:

Q0 : ∆A
∼−−→ ∆µ′ .

- si γ appartient à ΓA ⊗Z Q, ce morphisme induit un isomorphisme en
degré 0:

Q0 : ∆A[S] ∼−−→ ∆µ′ .

qui envoie S sur Hµ′(p′φτ ), où nous appelons τ le plus petit entier positif
t tel que tγ appartienne à ΓA et où p′ est un polynôme µα-unitaire pour
α suffisamment grand tel que µα(p′) = −τγ.

Preuve. L’existence de l’isomorphisme Q d’algèbres graduées entre
grA[T ] et grµA

K[x] est démontrée dans [Va 1] Théorème 1.26.
Grâce au corollaire à la Proposition 1.6, la démonstration des ré-

sultats qui s’en déduisent pour les parties homogènes de degré 0 est
identique au cas d’une valuation augmentée (cf. [Va 1] Corollaire au
Théorème 1.7).
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Proposition 2.3. Soit µ une valuation de l’anneau des polynômes
K[x], alors l’algèbre graduée associée grµK[x] est de la forme suivante:

i) si la valuation µ n’est pas bien spécifiée

grµK[x] = G0,

où G0 est une algèbre graduée simple, c’est-à-dire telle que tout élément
homogène non nul admette un inverse;

ii) si la valuation µ est bien spécifiée

grµK[x] = G0[T ],

où G0 est une algèbre graduée simple et T est l’image Hµ(φ) du polynôme
φ définissant la valuation µ.

De plus un élément homogène ψ de grµK[x] est irréductible si et
seulement si il existe f polynôme-clé pour la valuation µ dans K[x] et ε
élément homogène inversible de grµK[x] tels que εψ soit égal à l’image
Hµ(f) de f dans grµK[x].

Preuve. Considérons d’abord le cas d’une valuation augmentée
µ = [µ0; µ(φ) = γ], alors l’algèbre graduée grµK[x] est isomorphe à
G0[T ] avec G0 = grµ0

K[x]/
(
Hµ0(φ)

)
. Nous pouvons identifier G0 à

la sous-algèbre graduée engendrée par les éléments homogènes ψ de la
forme Hµ(f) avec f tels qu’il existe g dans K[x] µ-équivalent à f vérifiant
µ0(g) = µ(g). Il existe alors g′ dans K[x] vérifiant µ0(g′) = µ(g′) tel que
gg′ soit µ-équivalent à 1 ([Va 1] Lemme 1.4), par conséquent ψ′ = Hµ(g′)
est un inverse de ψ dans G0.

Supposons maintenant que nous avons une famille continue de va-
luations

(
µα

)
α∈A

, et nous notons comme précédemment grA l’algèbre
graduée grµθ

K[x]/(ϕθ+). Nous déduisons de ce qui précède que grA est
aussi une algèbre graduée simple, et la première partie de la proposition
est une conséquence des Propositions 2.1 et 2.2.

Si f est un polynôme-clé pour une valuation µ alors par définition
il est µ-irréductible, c’est-à-dire que son image Hµ(f) est un élément
irréductible de l’algèbre graduée grµK[x].

Réciproquement soit ψ un élément homogène irréductible de l’algè-
bre graduée grµK[x]. Nous déduisons de la première partie de la pro-
position que la valuation µ est bien spécifiée, c’est-à-dire µ est soit une
valuation augmentée µ = [µ0; µ(φ) = γ], soit une valuation augmentée
limite µ =

[(
µα

)
α∈A

; µ(φ) = γ
]
. Nous choisissons f dans K[x] tel que

Hµ(f) = ψ, et nous écrivons le développement de f selon les puissances
de φ, f = fmφm + . . . + f0. Quitte à remplacer f par un polynôme µ-
équivalent nous pouvons supposer que nous avons µ(f) = µ0(fm) + mγ,
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et quitte à multiplier f par un polynôme h avec deg h < deg φ nous
pouvons supposer que f est µ-équivalent à un polynôme de la forme
φm + . . . + f0 avec µ(f) = mγ. Comme ψ est µ-irréductible nous avons
aussi µ(f0) = mγ, par conséquent nous déduisons de [McL 1] Theorem
9.4 ou de [Va 1] Théorème 1.11 dans le cas d’une valuation augmentée,
et de la Proposition 1.3 dans le cas d’une valuation augmentée limite,
que f est un polynôme-clé pour µ.

Nous disons qu’un polynôme e de K[x] est µ-unitaire s’il existe un
polynôme e′ dans K[x] tel que ee′ soit µ-équivalent à 1, c’est-à-dire si
son image Hµ(e) dans grµK[x] est inversible. Nous déduisons alors de la
proposition précédente la généralisation suivante du résultat de MacLane
([McL 2] Theorem 4.2).

Corollaire. Soit µ une valuation de K[x], alors pour tout po-
lynôme f il existe un polynôme µ-unitaire e et des polynômes-clés pour
la valuation µ φ1, . . . , φt, t ≥ 0, tels que nous ayons:

f ∼
µ

eφ1 · · ·φt.

De plus cette décomposition est unique à µ-équivalence près.
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Plane curve singularities
whose Milnor and Tjurina numbers differ by three

Masahiro Watari

Abstract.

Bayer and Hefez described irreducible plane curve singularities
whose Milnor and Tjurina numbers differ by one or two, modulo
analytic equivalence. After their work, we classify the case in which
their difference is three.

§ Introduction

We first define a plane curve singularity, which is the main subject in
the present paper. Let f be an irreducible element of C[[X, Y ]] such that
its partial derivatives fX and fY belong to the maximal ideal (X, Y ).
Set

C := {u · f | u is a unit of C[[X, Y ]]}.

If f is a convergent power series, f = 0 defines a singular germ of a plane
curve at the origin. So it is natural that we call C an irreducible plane
curve singularity. The Milnor and Tjurina numbers of C at the origin
are defined by,

µ := dimC C[[X, Y ]]/(fX , fY ) and τ := dimC C[[X, Y ]]/(f, fX , fY ).

It follows from these definitions that µ ≥ τ . We set r := µ− τ . Let n be
the multiplicity of C at the origin. Then there exists a positive integer
m with m > n and n � m such that C has the following parametrization
at the origin:

x = tn, y = tm + am+1t
m+1 + · · · ,(1)

where x ≡ X mod (f) and y ≡ Y mod (f). The local ring of C is defined
by OC := C[[X, Y ]]/(f). Using the parametrization (1), we have the
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Revised December 17, 2005
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following isomorphism: OC
∼= C[[x, y]] = C[[tn, tm + am+1t

m+1 + · · · ]].
Let D be an irreducible plane curve singularity. Then C and D are said
to be analytically equivalent, if there exists a C-algebra isomorphism
OC

∼= OD.
Zariski ([7]) showed that r = 0 if and only if C is analytically equiv-

alent to the singularity Y n −Xm = 0 with gcd(n, m) = 1. When r �= 0,
he introduced an important invariant λ. Recently, Bayer and Hefez ([3])
classified irreducible plane curve singularities with r = 1 and 2. Their
work was reviewed by Azevedo in [2]. The aim of this paper is to classify
irreducible plane curve singularities with r = 3.

Theorem. Let C be an irreducible plane curve singularity whose
parametrization is of the form (1). Then we have r = 3 if and only if
gcd(n, m) = 1 and the parametrization takes one of the following three
types. We write m = pn + q with 0 < q < n.

Type ( i ): λ = (n − 1)m − 4n.
(A) x = tn, y = tm + tλ, where n ≥ 3, p ≥ 2.
(B) x = tn, y = tm + tλ + at(n−2)m−2n,

where n ≥ 5, p = 1 and a ∈ C.
Type ( ii ): λ = (n − 2)m − 2n.

(C) x = tn, y = tm + tλ + at(n−1)m−4n + bt(n−1)m−3n,
where n ≥ 5, p ≥ 2 and a (�= 0), b ∈ C.

(D) x = t4, y = tm + tλ + at3m−16 + bt3m−12,
where p ≥ 2 and a (�= (3m − 8)/2m), b ∈ C.

Type (iii) λ = (n − 3)m − 2n

(E) x = tn, y = tm + tλ +
∑p

i=1(ait
mi + bit

ni) +
∑2p

i=p+1 bit
ni ,

where n > 2q, n ≥ 5, m > 2n/(n − 4), ai, bi ∈ C, mi =
(n − 2)m − (p + 3 − i)n and ni = (n − 1)m − (2p + 3 − i)n.

(F) x = tn, y = tm + tλ +
∑p

i=1(ait
mi + bit

ni) +
∑2p+1

i=p+1 ait
mi ,

where n < 2q, n ≥ 5, m > 2n/(n − 4), ai, bi ∈ C, mi =
(n − 1)m − (2p + 4 − i)n and ni = (n − 2)m − (p + 4 − i)n.

Furthermore, the coefficients in the parametrizations (E) and (F) must
satisfy the relations given in Tables 1 and 2 in Section 4, respectively.

The present paper is organized as follows: In Section 1, we recall
some results on the parametrization of plane curve singularities. The
notion “genus” g of an irreducible plane curve singularity plays an im-
portant role. We infer from a result of Bayer and Hefez that if r = 3,
then g = 1 or g = 2. In Section 2, we study the properties of plane curve
singularities of genus one. In particular, we consider the certain types
of λ which are needed in the proof of Theorem. In Section 3, we prove
the following fact.
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Proposition 1. If r = 3, then we have g = 1.

In Section 4, we develop the method in [3] and prove Theorem by using
it.

Acknowledgement. The author would like to express his sincere
gratitude to Professor Fumio Sakai for his valuable advices and warm en-
couragement during the preparation of the present article. He also would
like to thank Dr. Ken-ichi Nishiyama who helped us with Lemma 18.

§1. Semigroups and differentials

Let C̃ be the nonsingular model of C and we denote by O
eC its

local ring. Since O
eC
∼= C[[t]], the order function ν on C((t)) gives a

discrete normalized valuation of O
eC . We define the semigroup of C to

be S := {ν(A) | A ∈ OC}. The conductor c of S is characterized by the
following properties:

c − 1 /∈ S and c + n ∈ S for any n ∈ N.(2)

It is well known that µ = c (See [6], Theorem 1). An element of G :=
N ∪ {0} \ S is called a gap of S. The properties (2) implies that c− 1 is
the biggest gap of S. We define two sequences (ei) and (βi) associated
to the parametrization (1) as follows:

e0 = β0 = n, βj = min{i | i �≡ 0 mod ej−1 and ai �= 0},
ej = gcd(ej−1, βj).

It follows that β1 = m. Since the relevant exponents in a parametriza-
tion of C are coprime, there exists an integer g such that eg−1 �= 1 and
eg = 1. We call this integer g and the set {β0, . . . , βg} the genus of
C and the characteristic of C respectively. The characteristic of C is
denoted by Ch(C). Define the integers ni by

n0 = 1 and ei−1 = niei, (i = 1, . . . , g).

It follows that n = n1 · · ·ng. The semigroup S of C is minimally gener-
ated by the set of integers {v0, v1, . . . , vg}, defined by

v0 = n and vi = ni−1vi−1 + βi − βi−1, (i = 1, . . . , g).

(See [8], Theorem 3.9) We easily see that v1 = m and v0 < v1 < · · · < vg.
We denote by Ω1

C and Ω1
eC

the module of differentials of OC and
that of O

eC , respectively. Note that Ω1
C is the OC -module generated by
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dx and dy, modulo fxdx + fydy = 0. Similarly, Ω1
eC

is the O
eC -module

generated by dt. Consider the map π∗ from Ω1
C to Ω1

eC
defined by

π∗(A(x, y)dx + B(x, y)dy
)

= A (tn, ϕ(t)) dtn + B(tn, ϕ(t))d(ϕ(t)),

where (tn, ϕ(t)) is the parametrization of C. We naturally extend the
valuation ν of O

eC to Ω1
eC

through π∗. Namely, for ζ = H(t)dt ∈ Ω1
eC
,

we define ν(ζ) to be ν(H(t)). Let ξ be an element of Ω1
C . Since Ω1

C

can be regarded as a submodule of Ω1
eC

through its image of π∗, we
define ν(ξ) to be ν

(
π∗(ξ)

)
. A differential ξ is said to be exact, if there

exists an element A ∈ OC such that ξ = dA. We denote by dOC

the set of all exact differentials. Set V := ν
(
Ω1

C

)
\ ν(dOC). Since

ν(dOC) = {l − 1 ∈ N | l ∈ S}, we have V =
{
l − 1 ∈ ν

(
Ω1

C

)
| l ∈ G

}
.

Zariski ([7]) showed that

r = dimC

(
Ω1

C/dOC

)
= 	(V ).(3)

For the case where r > 0, he also showed that λ = min{V }−n + 1 is an
analytic invariant with the following property:

λ, λ + n /∈ S and m < λ ≤ β2 = v2 − (n1 − 1)v1.(4)

We call λ the Zariski invariant of C. The differential ω := mydx−nxdy
gives the minimal order λ + n − 1 in V (See [7]). Furthermore, C is
analytically equivalent to the plane curve singularity given by

x = tn, y = tm + tλ + · · · .(5)

By the way, any integer t can be written in a unique way as

t = tgvg + · · · + t1v1 − t0v0,(6)

where t0, . . . , tg are integers such that 0 ≤ ti ≤ ni − 1 for i = 1, . . . , g
(See [1], Lemma I.2.4). It follows from (6) that t belongs to S if and
only if t0 ≤ 0. The biggest gap of S, c − 1, is expressed as (ng −
1)vg + · · · + (n1 − 1)v1 − v0. The Zariski invariant is also written as
λ = λgvg + · · · + λ1v1 − λ0v0 where 0 ≤ λi ≤ ni − 1 for i = 1, . . . , g.
By the properties (4), we easily see that λ0 ≥ 2.

The C-vector space Ω1
C is expressed as the following form ([3], Propo-

sition 2):

Ω1
C = OCω + dOC .(7)

So any element of Ω1
C can be written as Aω + dB for some A, B ∈ OC .
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Definition 2. We define the subsets V0, V1 of V by

V0 := ν(OCω) \ ν(dOC), V1 := V \ V0.

Furthermore, define the sets V +, V +
0 and V +

1 by

V + := {α + 1 | α ∈ V }, V +
0 := {α + 1 | α ∈ V0},

V +
1 := {α + 1 | α ∈ V1}.

Note that we have V + = V +
0 ∪ V +

1 ⊂ G where V +
0 ∩ V +

1 = ∅. A
positive integer α is contained in V if and only if α + 1 is contained
in V +. So we have 	(V ) = 	(V +). It is also clear that the relations
	(V +) = 	(V ) = 	(V0) + 	(V1), 	(V +

0 ) = 	(V0) and 	(V +
1 ) = 	(V1) hold.

The formula (3) can be rewritten as

r = 	(V +
0 ) + 	(V +

1 ).(8)

Lemma 3. Let the genus of C be 1. Then we have

	(V +
0 ) = (λ0 − 1)(n − λ1).

Proof. Recall that v0 = n, v1 = m and ν(ω) = λ1m−(λ0−1)n−1.
If γ ∈ V +

0 , then we have γ = ν(Aω) + 1 for some A ∈ OC . The gap γ is
expressed as (l1 + λ1)m− (λ0 − l0 − 1)n where ν(A) = l1m + l0n. So we
have

V +
0 =

{
(l1 + λ1)m − (λ0 − l0 − 1)n ∈ V +

∣∣∣∣∣ 0 ≤ l0 ≤ λ0 − 2,
l1 ≥ 0

}
.

Define a subset U+
0 of V +

0 by

U+
0 =

{
(l1 + λ1)m − (λ0 − l0 − 1)n

∣∣∣∣∣ 0 ≤ l0 ≤ λ0 − 2,
0 ≤ l1 + λ1 ≤ n − 1

}
.

We prove that V +
0 = U+

0 , which gives the desired result. It is enough to
show that V +

0 ⊂ U+
0 . Take an element γ = (l1 + λ1)m − (λ0 − l0 − 1)n

from V +
0 . If l1 + λ1 ≤ n − 1, then there is nothing to prove. So we

assume that l1 + λ1 > n− 1. Then there exists a positive integer k such
that 0 ≤ l1 +λ1 − kn ≤ n− 1. By using this k, we rewrite γ as the form
of (6). That is,

γ = (l1 + λ1 − kn)m − (λ0 − km − l0 − 1)n.

Since γ ∈ V +, the inequality λ0−km− l0−1 > 0 holds. Then γ is given
by ν(xkm+l0ω) + 1, so γ ∈ U+

0 . Q.E.D.
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Remark 4. We infer from Lemma 3 that 	(V +
0 ) is determined by

λ for the case where g = 1.

For any genus, the following relations hold (See [3], Proposition 1, Corol-
lary 5):

r ≥ (λ0 − 1)(n1 − λ1) · · · (ng − λg),(9)

r ≥ 2g−1.(10)

Let ζ =
(
atν(ζ)+terms of higher degree

)
dt be an element of Ω1

eC
. We

denote by lt(ζ) the leading term atν(ζ). Let lc(ζ) denote the leading
coefficient a. For ξ ∈ Ω1

C , we simply write lt(ξ) = lt(π∗(ξ)) and
lc(ξ) = lc(π∗(ξ)).

Lemma 5. Let C be an irreducible plane curve singularity of genus
g. If ξ = Aω + dB is an element of Ω1

C with ν(ξ) + 1 ∈ V +
1 , then ξ sat-

isfies the following conditions:

lt(Aω) + lt(dB) = 0,(11)

ν(ξ) + 1 <

g∑
i=1

(ni − 1)vi − v0.(12)

Proof. If lt(Aω) + lt(dB) �= 0, then ν(ξ) belongs to V0 or to
ν(dOC). Hence the condition (11) must occur. Let λ =

∑g
i=1 λivi−λ0v0

be the Zariski invariant of C. Then ν(ω)+1 is expressed as
∑g

i=1 λivi −
(λ0 − 1)v0. We know that max {V +} ≤

∑g
i=1(ni − 1)vi − v0. Let zi be

an element of OC with ν(zi) = vi for i = 0, . . . , g. Then the differential
zλ0−2
0 Πg

i=1z
(ni−λi−1)
i ω gives the order

∑g
i=1(ni − 1)vi − v0 − 1. Hence∑g

i=1(ni − 1)vi − v0 ∈ V +
0 . We have the desired consequence. Q.E.D.

There are some criteria for simplifying the parametrization of C
modulo analytic equivalence (See [4] and [8], Ch.III, Proposition 1.2;
Ch.IV, Lemma 2.6 and Proposition 3.1).

Lemma 6. Let ast
s be a term of y in the parametrization (5)

where s > λ and as �= 0. If either
(EC 1): s belongs to S, or
(EC 2): s + n = lm for some l ∈ N, or
(EC 3): s − λ belongs to the subset of S generated by n and m,

then C is analytically equivalent to an irreducible plane curve singularity
given by a parametrization of the same form, but with as = 0 and ai

unchanged for i < s.
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Applying Lemma 6 to the parametrization (5), we have the following
parametrization:

x = tn, y = tm + tλ +
∑
i∈G

ait
i.

We always consider such parametrizations of C in this paper.

§2. Singularities of genus one

In this section, we consider irreducible plane curve singularities of
genus 1. Note that g = 1 if and only if gcd(n, m) = 1. In this case, we
have v0 = n = n1 and v1 = m. We write m = pn + q where 0 < q < n.
We first prove the following proposition:

Proposition 7. If C is given by

x = tn, y = tm + t(n−1)m−(R+1)n,(13)

where 1 ≤ R ≤ p + 1, then we have r = R.

Proof. Note that λ = (n − 1)m − (R + 1)n in (13). If 1 ≤ R ≤ p,
then we have (n−2)m−n < (n−1)m− (p+1)n ≤ (n−1)m− (R+1)n.
So the gaps which are greater than λ are

(n − 1)m − Rn, . . . , (n − 1)m − n.(14)

If R = p + 1, then we have (n − 1)m − (R + 1)n < (n − 2)m − n <
(n − 1)m − Rn. The gaps which are greater than λ are

(n − 2)m − n, (n − 1)m − Rn, . . . , (n − 1)m − n.

For both cases, clearly, we have V0 =
{
ν(ω), ν(xω), . . . , ν

(
xR−1ω

)}
.

Note that ν(xiω) + 1 = (n− 1)m− (R− i)n for i = 0, . . . , R− 1. Since
min{V +} = ν(ω) + 1, we conclude that V +

1 = ∅. Hence we conclude
that r = R by (8). Q.E.D.

Remark 8. Since λ = (n− 1)m− (R + 1)n, we infer from Propo-
sition 7 that r is determined by λ for the plane curve singularity given
by the parametrization (13).

Remark 9. The cases where R = 1 and R = 2 in Proposition 7
correspond to Theorems 7 and 17 in [3], respectively.

Corollary 10. Fix a positive integer n (≥ 3). For any positive
integer R, there exists an irreducible plane curve singularity of g = 1
with multiplicity n and r = R.
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Proof. Put m = (R+1)n+1 and λ = (n−1)m−(R+1)n. Then we
have λ > m and (n−1)m−(R+1)n > (n−2)m−n. Hence the gaps which
are greater than λ are same as (14). Therefore the parametrization

x = tn, y = tm + t(n−1)m−(R+1)n

gives the desired singularity. Q.E.D.

In what follows, we consider three types of the values of λ: (i) λ =
(n − 1)m − 4n, (ii) λ = (n − 2)m − 2n, (iii) λ = (n − 3)m − 2n, which
will be used in the proof of Theorem.

2.1. Type (i): λ = (n − 1)m − 4n

Since λ > m, we must have (n − 2)m > 4n, hence n ≥ 3. We first
consider the case in which p ≥ 2. Furthermore, if p ≥ 3, then the gaps
which are greater than λ are

(n − 1)m − 3n, (n − 1)m − 2n, (n − 1)m − n.

On the other hand, if p = 2, then we have the following gaps:

(n − 2)m − n, (n − 1)m − 3n, (n − 1)m − 2n, (n − 1)m − n.

For both cases, by Lemma 6, the parametrization of C can be taken as

x = tn, y = tm + tλ.(15)

Next we consider the case in which p = 1. This case occurs only when
n ≥ 5. The gaps which are greater than λ are

(n − 2)m − 2n, (n − 1)m − 3n, (n − 2)m − n,

(n − 1)m − 2n, (n − 1)m − n.

By Lemma 6, the parametrization of C can be taken as

x = tn, y = tm + tλ + at(n−2)m−2n, (a ∈ C).(16)

Remark 11. According to the conditions: (1) gcd(n, m) = 1, (2)
m > 4n/(n− 2), we have some restrictions on p, q. First of all, we must
have q ≥ 1. We also infer that gcd(n, q) = 1.
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2.2. Type (ii): λ = (n − 2)m − 2n

It follows from λ > m that n ≥ 4 and m > 2n/(n − 3). Since
ν(ω) + 1 = (n − 2)m − n, we find that V0 = {ν(ω), ν(yω)}. The gaps
which are greater than λ are

(n − 1)m − (p + 2)n, (n − 2)m − n, (n − 1)m − (p + 1)n,

(n − 1)m − pn, . . . , (n − 1)m − n.

By Lemma 6, the parametrization of C can be taken as

x = tn, y = tm + tλ +
p∑

i=1

ait
mi ,(17)

where mi = (n − 1)m − (p + 3 − i)n and ai ∈ C.

Definition 12. Define the differentials ηk for k ≥ 1 by

ηk := xkω + d
(
ukxk−1yn−2

)
where uk =

−n(m − λ)
(k − 1)n + (n − 2)m

.

Then we have

ηk = xkω + uk

{
(k − 1)xk−2yn−2dx + (n − 2)xk−1yn−3dy

}
.

Furthermore, we see that

π∗(ηk) = n

[
(m − λ)t(n−2)m+(k−1)n−1

+
p∑

i=1

ai(m − mi)t(n−1)m−(p+2−i−k)n−1

]
dt

+ uk(k − 1)n
[
t(n−2)m+(k−1)−1

+ (n − 2)t(2n−5)m−(3−k)n−1 + · · ·
]
dt

+ uk(n − 2)
[
mt(n−2)m+(k−1)−1

+ {m(n − 3) + λ}t(2n−5)m−(3−k)n−1 + · · ·
]
dt.

(18)

So we have lt(xkω) + lt

(
d

(
ukxk−1yn−2

))
= 0 for any k. Comparing

(n− 1)m− (3− k)n− 1 with (2n− 5)m− (3− k)n− 1 in (18), we have
the following relations according to n.

(n − 1)m − (3 − k)n − 1 < (2n − 5)m − (3 − k)n − 1 for n ≥ 5,

(n − 1)m − (3 − k)n − 1 = (2n − 5)m − (3 − k)n − 1 for n = 4.
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So we consider the cases (C) n ≥ 5 and (D) n = 4 separately.

Lemma 13. Let ξ be an element of Ω1
C with ν(ξ)+1 ∈ V +

1 . Then
we have ν(ξ) ≥ ν(ηk) for some k.

Proof. Put ξ = Aω + dB where A, B ∈ OC . There exists only one
term c1x

k1yl1 in A such that ν(A) = ν(c1x
k1yl1). Then we must have

l1 = 0. Indeed, if not, we have

ν(Aω) + 1 = (l1 + n − 2)m + (k1 − 1)n ≥ (n − 1)m − n.

By (12), we see that ν(ξ) + 1 /∈ V +, which is a contradiction.
Since the cancellation (11) occurs, we have ν(dB) = (n−2)m+(k1−

1)n−1. So the function B contains only one term h1x
k1−1yn−2 such that

ν(dB) = ν(h1x
k1−1yn−2). Since lt

(
c1x

k1ω
)

+ lt

(
d

(
h1x

k1−1yn−2
) )

=
0, we easily see that h1 = c1uk1 . Hence ξ can be written as c1ηk1 + ξ1

where ξ1 =
(
A − c1x

k1
)
ω + d

(
B − h1x

k1−1yn−2
)
. If ν(ξ1) + 1 ∈ V +

1 ,
then we can apply the same argument to ξ1. Namely, there exists ηk2

such that ξ = c1ηk1 + c2ηk2 + ξ2 where ξ2 =
(
A − c1x

k1 − c2x
k2

)
ω +

d
(
B − h1x

k1−1yn−2 − h2x
k2−1yn−2

)
. Note that ν(A− c1x

k1 − c2x
k2) >

ν(A − c1x
k1). We can continue this procedure successively. After the

j-th step, we have

ξ =
j∑

i=1

ciηki + ξj ,

where ξj =

(
A −

j∑
i=1

cix
ki

)
ω + d

(
B −

j∑
i=1

hix
ki−1yn−2

)
.

Since we have ν
(
A −

∑j+1
i=1 cix

ki

)
> ν

(
A −

∑j
i=1 cix

ki

)
, there exists

a positive integer j such that ν(ξj) ≥ ν
((

A −
∑j

i=1 cix
ki

)
ω
)

> (n −
1)m − n − 1. It follows from (12) that ν(ξj) + 1 /∈ V +

1 . So we have
ξ =

∑
ciηki + ξj where ν(

∑
ciηki) < ν(ξj). Thus we obtain ν(ξ) ≥

min{ν(ηki)}. Q.E.D.

Lemma 14. Let C be an irreducible plane curve singularity given
by (17). If n ≥ 5 and p = 1, then we have V +

1 = ∅.
Proof. Assume that V1 �= ∅. Let ξ be a differential with ν(ξ) ∈ V1.

Then we have ν(ξ) ≥ ν(ηk) for some k by Lemma 13. However we have

ν(ηk) ≥
{

(n − 1)m − n − 1 for k = 1,

(n − 1)m + (k − 2)n − 1 for k ≥ 2.
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Since ν(ηk) + 1 ≥ (n − 1)m − n for any k, we have ν(ξ) + 1 /∈ V +
1 by

(12). This is a contradiction. Q.E.D.

Lemma 15. If V +
1 �= ∅, then we have ν(η1) + 1 = min{V +

1 }.
Proof. We here prove this lemma for Case (C). We can similarly

deal with Case (D). We have

π∗(η1) =

[
n

p−1∑
i=1

ai(m − mi)t(n−1)m−(p+1−i)n−1 + · · ·
]

dt,(19)

where we abbreviate the terms whose degree is greater than (n− 1)m−
2n − 1. Assume that V +

1 �= ∅. We must have p ≥ 2 by Lemma 14.
We first show that ν(η1) ∈ V1. If ν(η1) /∈ V1, then ν(η1) ∈ V0 or
ν(η1) ∈ ν(dOC). Now we have V0 = {ν(ω), ν(yω)}. If ν(η1) ∈ V0, then
we have ν(η1) = ν(yω) by the definition of η1. At least the coefficients
in (19) must satisfy

ai = 0 for i = 1, . . . , p − 1.(20)

Let ξ be a differential with ν(ξ) ∈ V1. By Lemma 13, we have ν(ξ) ≥
ν(ηk) for some k. Under the conditions (20), if k ≥ 2, then we have

π∗(ηk) =
[
apn(m − mp)t(n−1)m+(k−2)n−1 + · · ·

]
dt.

Since ν(ηk) + 1 ≥ (n − 1)m − n for all k, we have ν(ξ) + 1 /∈ V +
1 by

(12), which is a contradiction. On the other hand, if ν(η1) ∈ ν(dOC),
then (20) must hold again. Since same contradiction occurs, we have
ν(η1) ∈ V1.

Next we show that min{V +
1 } = ν(η1)+ 1. It suffices to consider the

case where 	(V +
1 ) ≥ 2. Let ξ be an element of Ω1

C with ν(ξ) ∈ V1 and
ν(ξ) �= ν(η1). By Lemma 13, we have ν(ξ) ≥ ν(ηk) for some k (≥ 2).
We have

π∗(ηk) =

[
n

p∑
i=1

ai(m − mi)t(n−1)m−(p+2−i−k)n−1 + · · ·
]

dt.(21)

Set N := min{i | ai �= 0}. Then we have ν(ηk) = (n − 1)m − (p + 2 −
N −k)n−1. It follows from (12) that (n−1)m− (p+2−N −k)n−1 <
(n − 1)m − n − 1. It yields the inequality

N < p + 1 − k.(22)

On the other hand, it follows from (19) that ν(η1) = (n − 1)m − (p +
1−N)n− 1. We see that ν(η1) < ν(ηk) by (22), which gives the desired
consequence. Q.E.D.
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2.3. Type (iii): λ = (n − 3)m − 2n

It follows from λ > m that n ≥ 5 and m > 2n/(n − 4). Since
ν(ω) = (n − 3)m − n− 1, we find that V0 = {ν(ω), ν(yω), ν(y2ω)}. We
divide Type (iii) into two cases: (E) n > 2q, (F) n < 2q.
(E): n > 2q. The following gaps are greater than λ:

(n − 2)m − (p + 2)n, (n − 1)m − (2p + 2)n, (n − 3)m − n,

(n − 2)m − (p + 1)n, (n − 1)m − (2p + 1)n, (n − 2)m − pn,

(n − 1)m − 2pn, (n − 2)m − (p − 1)n, . . . , (n − 2)m − n,

(n − 1)m − (p + 1)n, . . . , (n − 1)m − n.

By Lemma 6 with the above gaps, we see that C has the parametrization

x = tn, y = tm + tλ +
p∑

i=1

(ait
mi + bit

ni) +
2p∑

i=p+1

bit
ni ,(23)

where

mi = (n − 2)m − (p + 3 − i)n, ni = (n − 1)m − (2p + 3 − i)n

and ai, bi ∈ C.
(F): n < 2q. The gaps which are greater than λ are

(n − 1)m − (2p + 3)n, (n − 2)m − (p + 2)n, (n − 3)m − n,

(n − 1)m − (2p + 2)n, (n − 2)m − (p + 1)n,

(n − 1)m − (2p + 1)n, (n − 2)m − pn, (n − 1)m − 2pn, . . .

(n − 2)m − n, (n − 1)m − (p + 1)n, . . . , (n − 1)m − n.

Then C has the following parametrization:

x = tn, y = tm + tλ +
p∑

i=1

(ait
mi + bit

ni) +
2p+1∑

i=p+1

ait
mi ,(24)

where

mi = (n − 1)m − (2p + 4 − i)n, ni = (n − 2)m − (p + 3 − i)n

and ai, bi ∈ C.

Definition 16. Define the differentials ζkl (k ≥ 1, l ≥ 0) by

ζkl := xkylω + d
(
sklx

k−1yn+l−3
)
,

where skl =
−n(m − λ)

(k − 1)n + (n + l − 3)m
.
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We rewrite the differentials ζkl as follows:

ζ1l = ylφ1l and ζkl = xk−2ylφkl,

where

⎧⎪⎪⎨⎪⎪⎩
φ1l = xω + skl(n + l − 3)yn−4dy,

φkl = x2ω + skl

{
(k − 1)yn−3dx

+ (n + l − 3)xyn−4dy
}
(k ≥ 2).

We can easily check that lt

(
xkylω

)
+lt

(
d

(
sklx

k−1yn+l−3
))

= 0. Note
that φ10 = ζ10 and φ20 = ζ20. The following lemma is an analogue of
Lemma 13.

Lemma 17. If ξ is an element of Ω1
C with ν(ξ) + 1 ∈ V +

1 , then ξ
has the form aζkl + ξ′ for some ζkl where ν(ζkl) ≤ ν(ξ′) and a ∈ C.

Proof. This proof is similar to that of Lemma 13. So we omit it.
Q.E.D.

§3. Singularities of genus two

We consider irreducible plane curve singularities of genus 2 in this
section. The aim of this section is to prove Proposition 1. We first prove
some technical auxiliary results needed in the proof of Proposition 1.
Recall that if g = 2, then we have S = 〈v0, v1, v2〉 where v0 < v1 < v2,
v0 = n = n1n2 with ni ≥ 2 (i = 1, 2), v1 = m = e1m1 for some positive
integer m1 and e1 = n2. Set λ = λ2v2 + λ1v1 − λ0v0. In case r = 3, by
(9), we have

3 ≥ (λ0 − 1)(n1 − λ1)(n2 − λ2) > 0.(25)

Lemma 18 (Nishiyama). If C is an irreducible plane curve sin-
gularity of genus 2 with r = 3, then we have λ = (n1 − 1)m − 2n and
Ch(C) = {3n1, 3m1, β2} where n1 and m1 are coprime, n1 < m1 and
β2 is not divisible by 3.

Proof. We first show that n2 �= 2 (cf. Lemma 10 in [3]). If n2 = 2,
then we have S = 〈2p, 2q, v2〉 where p < q, gcd(p, q) = 1, p = n1 and
v2 > n1v1 = 2pq. Furthermore, we can rewrite S with some positive and
odd integer d as

S = 〈2p, 2q, 2pq + d〉.

Luengo and Pfister ([5]) showed that the irreducible plane curve sin-
gularity C with such semigroup has τ = µ − (p − 1)(q − 1). That is,
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r = (p − 1)(q − 1). So if we set r = (p − 1)(q − 1) = 3, then we have
p = 2 and q = 4. This implies that m = 2n, which is a contradiction.

Let λ = λ2v2 + λ1v1 − λ0v0 be the Zariski invariant of C. We first
consider the case where λ2 �= 0. Recall that λ ≤ β2 (See (4)). Assume
that λ < β2. Since v2 = n1v1 + β2 − β1 and β2 can not be divisible by
e1, λ is also not divisible by e1. This contradicts the definition of β2.
Hence we have λ = β2 = v2 + v1 −m1v0. It follows that λ2 = 1, λ1 = 1,
λ0 = m1. Since m1 > n1 ≥ 2, we easily see that n2 = 2 by (25). So the
case in which λ2 �= 0 does not occur by the above argument.

On the other hand, if λ2 = 0, then we must have n2 = 3 by the above
argument and (25). It follows that S = 〈3n1, 3m1, v2〉. We also obtain
λ1 = n1 − 1 and λ0 = 2 by (25). The corresponding characteristic is
Ch(C) = {3n1, 3m1, β2} where β2 = v2−(n1−1)m. We have completed
the proof of Lemma 18. Q.E.D.

By Lemma 18, we have only to consider the case where

λ = (n1 − 1)m − 2n and Ch(C) = {3n1, 3m1, β2}.

In this case, We have S = 〈v0, v1, v2〉 where v0 = n = 3n1, v1 = m =
3m1 and v2 = 2m+β2. We also have n1 ≥ 3 by λ > m and the following
conditions are satisfied:

m1 ≥
{

n1 + 1 for n1 ≥ 4.

7 for n1 = 3.

Lemma 19. Let C be an irreducible plane curve singularity with
Ch(C) = {3n1, 3m1, β2} and λ = (n1−1)m−2n. Then the parametriza-
tion of C can be taken as

x = tn, y = tm + tλ + atβ2 + · · · , (a �= 0).(26)

Proof. Let h1 be the biggest positive integer satisfying m+h1e1 <
β2. Note that e1 = 3 and λ = m + 3{(n1− 2)m1 − 2n1}. So we can take
the parametrization of C as

x = tn, y = tm + tλ +
∑

(n1−2)m1−n1≤i≤h1

ait
m+3i + atβ2 + · · · ,(27)

where m + 3i ∈ G for any i. Since each m + 3i is a gap, it is written in
a unique way as

m + 3i = t2v2 + t1v1 − t0v0,(28)
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where 0 ≤ t2 ≤ 2, 0 ≤ t1 ≤ n1 − 1 and t0 > 0 (See (6)). Since the left
hand side of (28) is divisible by 3 and v2 is not divisible by 3, we must
have t2 = 0. Since λ = (n1−1)m−2n, no integer satisfies this condition
other than (n1 − 1)m − n. If β2 < (n1 − 1)m − n, then we obtain (26).
On the other hand, if (n1 − 1)m − n < β2, then (27) becomes

x = tn, y = tm + tλ + a(n1−2)m1−n1t
(n1−1)m−n + atβ2 + · · · .

By using (EC 2) in Lemma 6, we can rewrite this as (26). Q.E.D.

Lemma 20. If a positive integer k = am+bn (a, b ∈ Z) is greater
than (n1 − 1)m − n, then we have k ∈ 〈n, m〉 ⊂ S.

Proof. By (6), we can rewrite k as l2v2+l1v1−l0v0 where 0 ≤ l2 ≤ 2
and 0 ≤ l1 ≤ n1 − 1. Now we have l2 = 0. Indeed, if not, then we have

l2v2 = 3{(a − l1)m1 + (b + l0)m1}.

Since l2 is equal to 1 or 2, the integer v2 must be divisible by 3, which
is a contradiction. Thus we have k = l1m − l0n. Since the biggest gap
of such form is (n1 − 1)m − n, the positive integer k is contained in S.

Q.E.D.

Proof of Proposition 1. It follows from (10) that if r = 3, then
g = 1 or 2. We shall show that if g = 2, then r �= 3. It is enough to
consider the plane curve singularity C with λ = (n1 − 1)m − 2n and
Ch(C) = {3n1, 3m1, β2} by Lemma 18. By Lemma 19, we may assume
that C is given by (26). Since (λ0 − 1)(n1 − λ1)(n2 − λ2) = 3, there
exist three distinct elements of V0. They are given by ν(ω), ν(zω) and
ν(z2ω) where z ∈ OC with ν(z) = v2. We shall inductively construct a
differential ξ such that

π∗(ξ) =
{
am(m − β2)tβ2+2n−1 + · · ·

}
dt.(29)

Since β2 +2n− 1 = v2 +m− (m1 − 2)n− 1 is different from ν(ω), ν(zω)
and ν(z2ω), we would have r ≥ 4 by (8). We first set ξ0 = (m/n)xω.
Then we have

π∗ (ξ0) =
{

m(m − λ)t(n1−1)m−1

+ am(m − β2)tβ2+2n−1 + · · ·
}
dt.

Next we set ξ1 = ξ0 − (m − λ)yn1−2dy as the first step. We have
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yn1−2 = t(n1−2)m

[
1 +

(
n1 − 2

1

) {
tλ−m + atβ2−m + · · ·

}
+

(
n1 − 2

2

) {
t2(λ−m) + 2atβ2+λ−2m + · · ·

}
+

(
n1 − 2

3

) {
t3(λ−m) + · · ·

}
+ · · ·

+
(

n1 − 2
n1 − 2

) {
t(n1−2)(λ−m) + · · ·

} ]
.

(30)

We consider the cases where β2 − m < 2(λ − m) and where 2(λ − m) <
β2 − m separately.

If β2 − m < 2(λ − m), then we have

π∗ (
yn1−2dy

)
=

[
mt(n1−1)m−1 + {m(n1 − 2) + λ}t(2n1−3)m−2n−1

+ a{m(n1 − 2) + β2}tβ2+(n1−2)m−1 + · · ·
]
dt.

Since (2n1 − 3)m − 2n > β2 + 2n, we have

π∗(ξ1) =
[
am(m − β2)tβ2+2n−1 + · · ·

]
dt,

which is the desired differential. In particular, if n1 = 3, then this case
always occurs.

Next we consider the case where 2(λ − m) < β2 − m. This case
occurs only when n1 ≥ 4. Set N1 := max{i | i(λ−m) < β2−m and 2 ≤
i ≤ n1 − 2}. Then (30) becomes

yn1−2 =t(n1−2)m +
N1∑
i=1

(
n1 − 2

i

)
t(i+1)(n1−2)m−2in

+ a(n1 − 2)tβ2+(n1−3)m + · · · .

So we have

π∗ (
yn1−2dy

)
=

[
mt(n1−1)m−1

+
N1∑
i=1

{
m

(
n1 − 2

i

)
+ λ

(
n1 − 2
i − 1

)}
tni−1 + · · ·

]
dt,

where ni = {(i + 1)n1 − 2i − 1}m − 2in. In a similar manner as in the
previous case, we set ξ1 = ξ0−(m−λ)yn1−2dy. Since nN1−1 < β2+2n <
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nN1 holds, we have

π∗(ξ1) =

[
− (m − λ)

N1−1∑
i=1

{
m

(
n1 − 2

i

)
+ λ

(
n1 − 2
i − 1

)}
tni−1

+ am(m − β2)tβ2+2n−1 + · · ·
]
dt.

Note that ni ∈ 〈n, m〉 by Lemma 20. Starting with ξ1, we inductively
define a differential ξk. Assume that ξk (k ≥ 1) satisfies the following
condition:

π∗(ξk) =

{ ∑
finite sum

ck, αtmα−1 + am(m − β2)tβ2+2n−1 + · · ·
}

dt,(31)

where mα ∈ 〈n, m〉. Putting ν(ξk) = akm + bkn − 1, we set

ξk+1 :=

⎧⎪⎨⎪⎩
ξk −

(
lt(ξk)/n

)
xbkdx, if ak = 0 and bk �= 0.

ξk −
(
lt(ξk)/n

)
xbk−1yakdx, if ak �= 0 and bk �= 0.

ξk −
(
lt(ξk)/m

)
yak−1dy, if ak �= 0 and bk = 0.

It follows from this definition that ν(ξk+1) > ν(ξk). We prove that ξk+1

above satisfies the condition (31).
Case 1) ak = 0 and bk �= 0. We have

π∗(ξk+1) =
{∑

ck+1,αtmα−1 + am(m − β2)tβ2+2n−1 + · · ·
}

dt,

where mα ∈ 〈n, m〉. Note that the number of mα is finite. The differ-
ential ξk+1 satisfies the condition (31).
Case 2) ak �= 0 and bk �= 0. Consider the differential xbk−1yakdx.
Writing

yak = takm

[
1 +

(
ak

1

) {
tλ−m + atβ2−m + · · ·

}
+

(
ak

2

) {
t2(λ−m) + 2atβ2+λ−2m + · · ·

}
+

(
ak

3

) {
t3(λ−m) + · · ·

}
+ · · ·

+
(

ak

ak

) {
tak(λ−m) + · · ·

}]
,
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we set Nk+1 := max{i | i(λ − m) < β2 − m and 2 ≤ i ≤ ak}. Then we
have

π∗ (
xbk−1yakdx

)
= n

[
takm+bkn−1

+
Nk+1∑
i=1

cit
{(n1−2)i+ak}m+(bk−2i)n−1

+ aaktβ2+(ak−1)m+bkn−1 + · · ·
]
dt.

By Lemma 20, the integers {(n1 − 2)i + ak}m + (bk − 2i)n belong to
〈n, m〉. It is easy to see that β2 + (ak − 1)m + bkn − 1 > β2 + 2n − 1.
So ξk+1 satisfies the condition (31).
Case 3) ak �= 0 and bk = 0. We consider the differential yak−1dy. By
the same argument as Case 2, we define Nk+1 := max{i | i(λ − m) <
β2 − m and 2 ≤ i ≤ ak − 1} for yak−1. We have

π∗ (
yak−1dy

)
=

[
mtakm−1 +

∑
finite sum

cαtmα−1

+ a(m + β2)tβ2+(ak−1)m−1 + · · ·
]
dt,

where mα ∈ 〈n, m〉. So we see that ξk+1 satisfies the condition (31).
We can therefore inductively construct ξk+1 from ξk. Since there

exist finitely many elements of 〈n, m〉 which are smaller than β2 +2n−1
and ν(ξ0) < ν(ξ1) < · · · < ν(ξk) < · · · holds, we obtain ξ with π∗ (ξ) =[
am(m − β2)tβ2+2n−1 + · · ·

]
dt after finitely many steps. Q.E.D.

§4. Proof of Theorem

By Proposition 1, it is enough to consider the case where g = 1.
Substituting r = 3 and g = 1 to (9), we obtain 3 = r ≥ (λ0 −1)(n−λ1).
This inequality yields the following possible five types of λ:

(i) λ = (n − 1)m − 4n, (ii)λ = (n − 2)m − 2n, (iii) λ = (n − 3)m − 2n,

(iv)λ = (n − 1)m − 2n, (v)λ = (n − 1)m − 3n.

Lemma 21. If λ is either of type (iv) or of type (v), then r �= 3.

Proof. For type (iv) (resp. type (v)), letting R = 1 (resp. R = 2)
in Proposition 7, we conclude that r = 1 (resp. r = 2). Q.E.D.
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We consider the remaining three types separately. We freely use the
notations and the results in Section 2.
Type (i): λ = (n − 1)m − 4n. We show that r = 3. We first consider
the case in which p ≥ 2. We may assume that C is given by (15). By
Proposition 7, we have r = 3.

Next we consider the case in which p = 1. The parametrization of
C has the form (16). We have

π∗(ω) = n
{
(m − λ)t(n−1)m−3n−1 + a(m − m1)t(n−2)m−n−1

}
dt.

It follows from ν(ω) = (n−1)m−3n−1 that V0 = {ν(ω), ν(xω), ν(x2ω)}.
By (8), we have r = 3 if and only if V +

1 = ∅. Assume that V +
1 �= ∅.

Let ξ = Aω + dB be an element of Ω1
C with ν(ξ) ∈ V1. If we set

(Aω) =
(
uxkyl + · · ·

)
ω where u ∈ C, then we have

ν(Aω) = (n + l − 1)m + (k − 3)n − 1.(32)

Since ν(Aω) ∈ dOC by (11), we have k ≥ 3 or l ≥ 1. Suppose k ≥ 3.
Then we see from (32) that ν(Aω) > (n − 1)m − n − 1. So the order
ν(ξ) can not belong to V1 by (12). Thus we must have l ≥ 1. If l ≥ 2,
then we have ν(Aω) > (n − 1)m − n − 1 again. Hence l = 1. Then (12)
yields (k − 1)n + q < 0. We infer from this that k = 0. Thus we have
Aω = (uy + terms of higher degree)ω. We have

π∗(uyω) = un
[
(m − λ)t(m−3)n−1 − abt(n−1)m−n−1

]
dt.

where b := (n − 3)m − 2n. Since (11) holds, the differential dB has
the form d

(
−u(m− λ)xm−3/(m − 3) + · · ·

)
. So ξ can be rewritten as

uyω + d
(
−u(m− λ)xm−3/(m − 3)

)
+ ξ′. If we write ξ′ = (u′xkyl +

· · · )ω + dB′, then (k, l) �= (0, 1) and hence ν(ξ′) /∈ V1. This fact implies
that ν(ξ) = ν(yω) + d

(
−u(m − λ)xm−3/(m − 3)

)
If n = 5, 6, we find

that ν(Aω) > (n − 2)m − n − 1. Since (n − 1)m − n is the only gap
greater than (n−2)m−n, there exists no element of V1. That is, V1 = ∅.
For 7 ≥ n, we have

π∗
(

uyω + d

(
−u(m− λ)

(m − 3)
xm−3

))
= −abunt(n−1)m−n−1dt.

By (12), ν(ξ) can not be in V1. We conclude that V1 = ∅ for 7 ≥ n.
Type (ii): λ = (n − 2)m − 2n. By Lemma 3, 	(V +

0 ) = 2 holds. So we
have r = 3 if and only if 	(V +

1 ) = 1 by (8). Furthermore, by Lemma 15,
we obtain 	(V +

1 ) = 1 if and only if V +
1 = {ν(η1) + 1}.
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(C): n ≥ 5. It follows from the inequality λ > m that p ≥ 1 for n ≥ 5.
However we must have p ≥ 2 by Lemma 14. If 	(V +

1 ) = 1, then the
coefficients in (19) must satisfy

ai = 0 for i = 1, . . . , p − 2 and ap−1 �= 0.(33)

Conversely, assume that the coefficients in the parametrization (17) sat-
isfy (33). Then we have ν(η1) = (n−1)m−2n−1. Since (n−1)m−n is
the only one gap of S which is greater than (n−1)m−2n, by Lemma 15,
we have V +

1 = {ν(η1) + 1}.
(D): n = 4. It follows from the inequality λ > m that p ≥ 2. We have

π∗(η1) =

[
4

p−2∑
i=1

ai(m − mi)t3m−4(p+1−i)−1

+ 4
{

ap−1(m − mp−1) −
m2 − λ2

m

}
t3m−8−1 + · · ·

]
dt.

If 	(V +
1 ) = 1, then we must have the following condition:

ai = 0 for i = 1, . . . , p − 2 and ap−1 �= 3m− 8
2m

.(34)

Conversely, if C is given by the parametrization (17) with (34), then we
find that 	(V +

1 ) = 1 by the same argument as in (C).

Type (iii): λ = (n − 3)m − 2n. Since 	(V +
0 ) = 3, we have r = 3 if and

only if V +
1 = ∅ (See (8)). We here prove Case (E). We can similarly deal

with Case (F). Now we have

π∗(ζ10) = n

[
(m − λ)t(n−3)m−1

+
p∑

i=1

{
ai(m − mi)t(n−2)m−(p+1−i)n−1

}
+

p∑
i=1

{
bi(m − ni)t(n−1)m−(2p+1−i)n−1

}
+

2p∑
i=p+1

bi(m − ni)t(n−1)m−(2p+1−i)n−1

]
dt

− s10

[
(n − 3)mt(n−3)m−1

+
{
λ + m(n − 4)

}
t(2n−7)m−2n−1 + · · ·

]
dt.
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Comparing the exponent (2n− 7)m− 2n− 1 with (n− 1)m−n− 1, the
following three subcases occur:

(E1): (2n − 7)m − 2n− 1 > (n − 1)m − n − 1 for n ≥ 7.
(E2): (2n − 7)m − 2n− 1 = (n − 1)m − 2n − 1 for n = 6.
(E3): (2n − 7)m − 2n− 1 < (n − 1)m − 2n − 1 for n = 5.

It follows from λ > m and n > 2q that the conditions (i) p ≥ 1 for n ≥ 7,
(ii) p ≥ 1 and q = 1 for n = 6, (iii) p ≥ 2 and q = 1, 2 for n = 5.
(E1): n ≥ 7. The differential π∗(ζ10) becomes

π∗(ζ10) =

[
n

p∑
i=1

ai(m − mi)t(n−2)m−(p+1−i)n−1

+ n

p∑
i=1

bi(m − ni)t(n−1)m−(2p+1−i)n−1

+ n

2p∑
i=p+1

bi(m − mi)t(n−1)m−(2p+1−i)n−1 + · · ·
]
dt.

(35)

If V +
1 = ∅, then the order ν(ζ10) must belong to ν(dOC) or V0. Further-

more, if ν(ζ10) ∈ V0, then ν(ζ10) equals ν(yω) or ν(y2ω).
E1.1: ν(ζ10) �= ν(yω). If V +

1 = ∅, then the coefficients in (35) must
satisfy the following conditions.

ai = 0 for i = 1, . . . , p

bi = 0 for i = 1, . . . , 2p − 1 and ∀b2p.
(36)

Conversely, assume that (23) has (36). If V +
1 �= ∅, then there exists

a differential ξ with ν(ξ) + 1 ∈ V +
1 . By Lemma 17, ξ has the form

ξ = aζkl + ξ′. Recall that there exists the following relation between
ν(ζkl) and ν(φkl):

ν(ζkl) =

{
ν(φ1l) + lm, if k = 1.

ν(φkl) + lm + (k − 2)m, if k ≥ 2.
(37)

(See Subsection 2.3). If k = 1, then we have

π∗ (φ1l) =
[
b2pn(m − n2p)t(n−1)m−n−1 + higher degree terms

]
dt.

So we have ν(ξ) ≥ ν(φ1l) ≥ (n − 1)m − n − 1. By Lemma 12, ν(ξ) + 1
can not be in V +

1 .
On the other hand, if k ≥ 2, then we have

π∗(φkl) =
[
b2p(m − np)t(n−1)m−1 + higher degree terms

]
dt.
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Since ν(ξ) ≥ ν(φkl) > (n − 1)m − n − 1, we have ν(ξ) + 1 /∈ V +
1 again.

Thus, we conclude that V +
1 = ∅.

E1.2: ν(ζ10) = ν(yω). If V +
1 = ∅, then the parametrization (35) must

have the following coefficients:

ai = bi = 0 for i = 1, . . . , p − 1 and ap �= 0.(38)

For the parametrization (35) with the condition (38), we consider the
differential ζ10 − (lt(ζ10)/ lt(yω))yω.

π∗
(

ζ10 −
lt(ζ10)
lt(yω)

yω

)
=

[
2p−2∑
i=p

bin(m − ni)t(n−1)m−(2p+1−i)n−1

+

{
b2p−1(m − n2p−1) −

a2
p(m − mp)2

(m − λ)

}
nt(n−1)m−2n−1

− apbpmn(m − mp)(m − np)
(m − λ)

t(m−p−2)n−1 + · · ·
]
dt.

(39)

In (39), we must put

bi = 0 for i = p, . . . , 2p − 2

b2p−1 =
a2

p(m − mp)2

(m − n2p−1)(m − λ)
.

(40)

Conversely, assume that the parametrization (23) has (38) and (40). If
V +

1 �= ∅, then we take a differential ξ with ν(ξ)+1 ∈ V +
1 . By Lemma 17,

ξ has the form c1ζk1l1 +ξ1 where ν(ζk1l1) ≤ ν(ξ1). Note that ξ1 does not
contain ζk1l1 . We first consider the case where k1 = 1. Then we have

π∗(φ1l1) =
[
apn(m − mp)t(n−2)m−n−1 + · · ·

]
dt.

If l1 ≥ 1, then we have ν(ζ11) ≥ (n−1)m−n−1 by (37). Since ν(ξ)+1
can not be an element of V +

1 by (12), it contradicts assumption. So we
must have l1 = 0. Then we have ν(ζ10) = ν(yω) = (n− 2)m− n− 1. So
the relation lt(ζ10)+ lt(ξ1) = 0 must need for ν(ξ)+1 ∈ V +

1 . We show
that ξ1 has the form {−c1 lt(ζ10)/ lt(yω)}yω+ξ′1. Set ξ1 = A1ω+dB1.
If ν(A1ω) > ν(dB1), then ν(ξ1) ∈ dOC . This case does not occur. If
ν(A1ω) = ν(dB1), then lt(A1ω) + lt(dB1) = 0 holds. By the same
argument as in the proof of Lemma 13, we have the expression ξ1 =
aζkl + ξ′1 for some ζkl. It is clear that k �= 1. For k ≥ 2, we have

π∗(φkl) =
[
ap(m − mp)t(n−2)m−1 + · · ·

]
dt.(41)
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It follows from (37) and (41) that ν(ζkl) > ν(yω). Thus, only the case
where ν(A1ω) < ν(dB1) occurs. By the same argument as in the proof of
Lemma 13, there exists only one term axkyl in A1 such that ν(axkyl) =
ν(A1ω). It follows from ν(ξ1) = ν(A1ω) = ν(yω) that k = 0 and l = 1.
Since lt(ζ10)+lt(ξ1) = 0, we must set a = −c1 lt(ζ10)/ lt(yω). Putting
ξ′1 = ξ1 +{c1 lt(ζ10)/ lt(yω)}yω, we obtain the desired expression. Now
we have ξ = c1ζ10 − {c1 lt(ζ10)/ lt(yω)}yω + ξ′1. Since

π∗

(
c1ζ10−

c1 lt(ζ10)
lt(yω)

yω

)
=

c1

[
b2pn(m − n2p)t(n−1)m−n−1 + · · ·

]
dt

holds, the order ν(ξ′1) must equal ν(ξ).
(∗) By Lemma 17, there exists ζk2l2 such that ξ′1 = c2ζk2l2 + ξ2 where
ξ2 does not contain ζk2l2 . Now ζk2l2 is different from ζ10 and ζ11. So we
must have k2 ≥ 2. If l2 ≥ 1, then ν(ζkl) > (n− 1)m−n− 1 by (37). We
must have l2 = 0. Note that we have

π∗(ζk0) =
[
apn(m − mp)t(n−2)m+(k−2)n−1

+ b2p−1n(m − n2p−1)t(n−1)m+(k−3)n−1 + · · ·
]
dt,

(42)

for k ≥ 2. Since ν(ζk20) ∈ ν(dOC), the equality lt(c2ζk20) + lt(ξ2) = 0
must hold for ν(ξ) ∈ V1. Write ξ2 = A2ω + dB2. By the same argument
as in the proof of Lemma 13, there exists only one term e2x

kyl in A2

such that ν(e2x
kyl) = ν(A2ω). Similarly, B2 contains only one term

h2x
kyl such that ν(h2x

kyl) = ν(dB2). It is easily checked that ξ2 has
the form

ξ2 =
(
e2x

k2−1y + · · ·
)
ω + d

(
h2x

k2−2yn−2 + · · ·
)
,

where lt(c2ζk20) + lt

(
e2x

k2−1yω + d
(
h2x

k2−2yn−2
))

= 0. Further-
more, if we set ξ′2 = ξ2 −

{
e2x

k2−1yω + d
(
h2x

k2−2yn−2
)}

, then we have
ν(ξ′2) > ν

(
e2x

k2−1yω + d
(
h2x

k2−2yn−2
))

= ν(ζk20) holds. The differ-
ential ξ′1 is expressed as

ξ′1 = c2ζk2l2 + e2x
k2−1yω + d

(
h2x

k2−2yn−2
)

+ ξ′2.

Since ξ2 dose not contain ζk20, so does not ξ′2. We easily see that ν(ξ′1 −
ξ′2) ≥ (n−1)m−n−1. Hence we must have ν(ξ) = ν(ξ′2). The argument
started from (∗) is applicable to ξ′2. So we obtain

ξ′2 = c3ζk30 + e3x
k3−1yω + d

(
h3x

k3−2yn−2
)

+ ξ′3,
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where ν(ξ′3) > ν
(
c3ζk30 + e3x

k3−1yω + d
(
h3x

k3−2yn−2
))

∈ ν(dOC).
Note that ν(ζk0) < ν(ζk′0) if and only if k < k′ by (42). Since ν(ζk20) <
ν(ξ′3), we obtain k2 < k3. We continue this process successively and
after j-th step we have

ξ′j−1 = cjζkj0 + ejx
kj−1yω + d

(
hjx

kj−2yn−2
)

+ ξ′j .

where ν(ξ′j) > ν
(
cjζkj0 + ejx

kj−1yω + d
(
hjx

kj−2yn−2
))

∈ ν(dOC).
Then ξ is rewritten as

ξ = c1ζ10 −
c1 lt(ζ10)
lt(yω)

yω

+
j∑

i=2

{
ciζki0 + eix

ki+1yω + d
(
hix

kiyn−2
)}

+ ξ′j .

where k2 < k3 < . . . < kj and ν(ξ′j) > ν(ζkj0). Since ν
(
ξ − ξ′j

)
/∈ V1,

we must have ν(ξ) = ν(ξ′j). However, the inequalities ν(ξ′j) > ν(ζkj0) >

(n − 1)m − n − 1 occur after finitely many steps. It contradicts the
assumption ν(ξ) + 1 ∈ V +

1 . Hence we have V +
1 = ∅.

For the case where k1 ≥ 2, we can apply the argument started
from (∗) to ξ by replacing ξ′1 by ξ. Then we find V +

1 = ∅, so r = 3.
The proofs of (E2), (E3) and Case (F) are essentially same. So we

omit them. Q.E.D.

We summarized the consequences for Case (E) and Case (F). If
r = 3, then the parametrizations (23) and (24) have the coefficients in
Table 1 and in Table 2 respectively.

Table 1
No. Conditions Coefficients
E1.1 n ≥ 7 ai = 0 (i = 1, . . . , p),

bi = 0 (i = 1, . . . , 2p − 1), ∀b2p.
E1.2 n ≥ 7 ai = 0 (i = 1, . . . , p − 1), ap �= 0,

bi = 0 (i = p, . . . , 2p − 2),
b2p−1 = a2

p(m − mp)2/(m − n2p−1)(m − λ), ∀b2p.
E2.1 n = 6 ai = 0 (i = 1, . . . , p), bi = 0 (i = 1, . . . , 2p − 2),

m = 6p + 1 b2p−1 = (5m − 12)/2m, ∀b2p.
E2.2 n = 6 ai = 0 (i = 1, . . . , p − 1), ap �= 0,

m = 6p + 1 bi = 0 (i = 1, . . . , 2p − 2),
b2p−1 =

(
9a2

pm + 20m− 48
)
/8m, ∀b2p.
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E3.1 n = 5 ai = 0 (i = 1, . . . , p − 2, p),
ap−1 = (3m − 10)/2m,

p ≥ 3 bi = 0 (i = 1, . . . , 2p − 4, 2p − 2, 2p − 1),
b2p−3 = 4(m − 5)(2m− 5)/3m2, ∀b2p.

E3.2 n = 5 ai = 0 (i = 1, . . . , p − 2), ap−1 = (3m − 10)/2m,
p ≥ 3 ap �= 0, bi = 0 (i = 1, . . . , 2p − 4),

b2p−3 = 4(m − 5)(2m− 5)/3m2,
b2p−2 = 3ap(4m2 − 45m + 100)/m(3m− 25),
b2p−1 = a2

p(2m − 15)2/(3m − 20)(m − 10), ∀b2p.
E3.3 n = 5 a1 = 23/22, ∀a2, b1 = 136/121,

m = 11 b2 = 440215/56689952+ 267a2/88, ∀b4,
b3 = −103195941517/43159874536064

−440813a2/66997216 + 49a2
2/13.

E3.4 n = 5 a1 = 13/12, a2 = 0,
m = 12 b1 = 133/108, b2 = 0, b3 = 5225/559872, ∀b4.

E3.5 n = 5 a1 = 13/12, a2 �= 0, b1 = 133/108, b2 = 34a2/11,
m = 12 b3 = 81a2

2/32 + 5225/559872, ∀b4.

Table 2
No. Conditions Coefficients
F1.1 n ≥ 7 ai = 0 (i = 1, . . . , 2p), ∀a2p+1,

bi = 0 (i = 1, . . . , p).
F1.2 n ≥ 7 ai = 0 (i = 1, . . . , 2p − 1),

bi = 0 (i = 1, . . . , p − 1), bp �= 0,
a2p = b2

p(m − np)2/(m − m2p)(m − λ), ∀a2p+1.
F2.1 n = 6 ai = 0 (i = 1, . . . , 2p − 1), a2p = (5m − 12)/2m,

m = 6p + 5 ∀a2p+1, bi = 0 (i = 1, . . . , p).
F2.2 n = 6 ai = 0 (i = 1, . . . , 2p − 1)

m = 6p + 5 a2p =
(
9b2

pm + 20m − 48
)
/8m, ∀a2p+1,

m = 6p + 5 bi = 0 (i = 1, . . . , p − 1), bp �= 0.
F3.1 n = 5 ai = 0 (i = 1, . . . , 2p − 3, 2p − 1, 2p),

p ≥ 2 a2p−2 = 4(m − 5)(2m − 5)/3m2,
∀a2p+1, bi = 0 (i = 1, . . . , p − 2, p),
bp−1 = (3m − 10)/2m.

F3.2 n = 5 ai = 0 (i = 1, . . . , 2p − 3),
p ≥ 3 a2p−2 = 4(m − 5)(2m − 5)/3m2,

a2p−1 = 3bp(4m2 − 45m + 100)/m(3m− 25),
a2p = b2

p(2m − 15)2/(3m − 20)(m − 10),
∀a2p+1, bi = 0 (i = 1, · · · , p − 2),
bp−1 = (3m − 10)/2m, bp �= 0.
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Characteristic classes of (pro)algebraic varieties
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on the occasion of his sixtieth birthday

§1. Introduction

Various characteristic classes of singular varieties have been intro-
duced and studied. One of them is the so-called Chern–Schwartz–
MacPherson class. Its unique existence was conjectured by P. Deligne
and A. Grothendieck and it was affirmatively solved by R. MacPherson.
This characteristic class is a fundamental and important characteristic
class from the viewpoint of investigation of other characteristic classes.

In this paper, in the first half we make a quick survey on three
interesting characteristic classes of singular varieties with a näıve moti-
vation of constructing a “singular version” of the so-called generalized
Hirzebruch–Riemann–Roch theorem behind, and state a “unification”
theorem concerning these three characteristic classes and its bivariant-
theoretic version. And in the latter half we make a quick survey on
characrteristic classes of proalgebraic varieties, which are very much re-
lated to motivic measure and motivic integration.

§2. Hirzebruch–Riemann–Roch and Grothendieck–Riemann–
Roch

A characteristic class of a vector bundle over a topological space X is
defined to be a map from the set of isomorphism classes of vector bundles
over X to the cohomology group (ring) H∗(X ; Λ) with a coefficient ring
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Λ, which is supposed to be compatible with the pullback of vector bundle
and cohomology group for a continuous map. Namely, it is an assignment
c� : Vect(X) → H∗(X ; Λ) which satisfies that for a continuous map
f : X → Y the following diagram commutes:

Vect(Y ) cl−−−−→ H∗(Y ; Λ)

f∗
⏐⏐� ⏐⏐�f∗

Vect(X) −−−−→
cl

H∗(X ; Λ).

Here Vect(W ) is the set of isomorphism classes of vector bundles over
W . In this paper we only deal with complex vector bundles.

If cl is multiplicative, i.e., cl satisfies the Whitney sum condition

cl(E ⊕ F ) = cl(E)cl(F ),

then the contravariant functor Vect can be replaced by the Grothendieck
K-theory:

K(Y ) cl−−−−→ H∗(Y ; Λ)

f∗
⏐⏐� ⏐⏐�f∗

K(X) −−−−→
cl

H∗(X ; Λ).

For complex vector bundles, the Chern class is essential in the
sense that any characteristic class is expressed as a polynomial of Chern
classes. And furthermore any multiplicative characteristic class can
be described via Hirzebruch’s multiplicative sequence of Chern classes
[Hir1].

For a complex manifold M its complex tangent bundle TM is avail-
able and thus we can define a characteristic class cl(TM ), which is called
a characteristic class cl(M) of the manifold M .

Let X be a non-singular complex projective variety and E a holo-
morphic vector bundle over X . Let

χ(X, E) =
∑
i≥0

(−1)i dimC Hi(X ; Ω(E))

be the Euler–Poincaré characteristic, where Ω(E) is the coherent sheaf of
germs of sections of E. J.-P. Serre conjectured (in his letter to Kodaira
and Spencer, dated September 29, 1953): There exists a polynomial
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P (X, E) of Chern classes of the base variety X and the vector bundle
E such that

χ(X, E) =
∫

X

P (X, E) ∩ [X ].

Within three months (December 9, 1953) F. Hirzebruch solved this
conjecture: the above looked-for polynomial P (X, E) can be expressed
as

P (X, E) = ch(E) ∪ td(X)

where ch(E) is the total Chern character of E and td(TX) is the total
Todd class of the tangent bundle TX of X . For the sake of later use , we
recall that for a complex vector bundle V the total cohomology classes
ch(V ) and td(V ) are defined as follows:

ch(V ) =
rank V∑

i=1

eαi

and

td(V ) =
rank V∏

i=1

αi

1 − e−αi

where αi’s are the Chern roots of V . Namely, we have the following
celebrated theorem of Hirzebruch:

Theorem (2.1)(Hirzebruch–Riemann–Roch)(HRR).

χ(X, E) = T (X, E) :=
∫

X

(ch(E) ∪ td(X)) ∩ [X ].

T (X, E) is called the T -characteristic ([Hir1]). For a more detailed
historical aspect of HRR, see [Hir2].

A. Grothendieck (cf. [BoSe]) generalized HRR for non-singular qua-
si-projective algebraic varieties over any field and proper morphisms with
Chow cohomology ring theory instead of ordinary cohomology theory.
For the complex case we can still take the ordinary cohomology theory
(or the homology theory by the Poincaré duality). Here we stick our-
selves to complex projective algebraic varieties for the sake of simplicity.
For a variety X , let G0(X) denote the Grothendieck group of algebraic
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coherent sheaves on X and for a morphism f : X → Y the pushforward
f! : G0(X) → G0(Y ) is defined by

f!(F) :=
∑
i≥0

(−1)iRif∗F ,

where Rif∗F is (the class of ) the higher direct image sheaf of F . Then
G0 is a covariant functor with the above pushforward (see [Grot1] and
[Man]). Then Grothendieck showed the existence of a natural trans-
formation from the covariant functor G0 to the Q-homology covariant
functor H∗( ; Q) (see [BoSe]):

Theorem (2.2)(Grothendieck–Riemann–Roch)(GRR). Let the
transformation τ : G0( ) → H∗( ; Q) be defined by τ(F) = td(X)ch(F)∩
[X ] for any smooth variety X. Then τ is actually natural, i.e., for any
morphism f : X → Y the following diagram commutes:

G0(X) τ−−−−→ H∗(X ; Q)

f!

⏐⏐� ⏐⏐�f∗

G0(Y ) −−−−→
τ

H∗(Y ; Q)

i.e.,

td(TY )ch(f!F) ∩ [Y ] = f∗(td(TX)ch(F) ∩ [X ]).

Clearly HRR is induced from GRR by considering a map from X
to a point.

Note that the target of the transformation of the original GRR is
the cohomology H∗( ; Q) with the Gysin homomorphism instead of the
homology H∗( ; Q), but, by the definition of the Gysin homomorphism
the original GRR can be put in as above.

§3. The Generalized Hirzebruch–Riemann–Roch

In Hirzebruch’s book [Hir1, §12.1 and §15.5] he has generalized the
characteristics χ(X, E) and T (X, E) to the so-called χy-characteristic
χy(X, E) and Ty-characteristic Ty(X, E) as follows, using a parameter
y (see also [HBJ, Chapter 5]).
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Definition (3.1).

χy(X, E) : =
∑
p≥0

⎛
⎝∑

q≥0

(−1)q dimC Hq(X, Ω(E) ⊗ ΛP T∨
X)

⎞
⎠ yp

=
∑
p≥0

χ(X, E ⊗ ΛP T∨
X))yp

where T∨
X is the dual of the tangent bundle TX , i.e., the cotangent bundle

of X .

Ty(X, E) :=
∫

X

t̃d(y)(TX)ch(1+y)(E) ∩ [X ],

t̃d(y)(TX) :=
dim X∏
i=1

(
αi(1 + y)

1 − e−αi(1+y)
− αiy

)
,

ch(1+y)(E) :=
rank E∑

j=1

eβj(1+y),

where αi
′s are the Chern roots of TX and βj

′s are the Chern roots of E.

F. Hirzebruch [Hir1, §21.3] showed the following theorem:

Theorem (3.2)(The generalized Hirzebruch–Riemann–Roch)(g-HRR).

χy(X, E) = Ty(X, E).

The above modified Todd class t̃d(y)(TX) defined above unifies the
following three important characteristic cohomology classes:

(y = −1) the total Chern class

t̃d(−1)(TX) = c(TX),

(y = 0) the total Todd class

t̃d(0)(TX) = td(TX),

(y = 1) the total Thom–Hirzebruch L-class

t̃d(1)(TX) = L(TX).

In particular, for E=the trivial line bundle, for these special values
y = −1, 0, 1 the g-HRR reads as follows:
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(y = −1) Gauss–Bonnet–Chern Theorem:

e(X) =
∫

X

c(TX) ∩ [X ],

(y = 0) Riemann–Roch:

χ(X) =
∫

X

td(TX) ∩ [X ],

(y = 1) Hirzebruch’s Signature Theorem:

σ(X) =
∫

X

L(TX) ∩ [X ].

§4. Characteristic classes of singular varieties

In the following we consider only compact spaces.
For a singular complex algebraic or analytic variety X its tangent

bundle is not available any longer because of the existence of singulari-
ties, thus one cannot define its characteristic class cl(X) as in the above
case of manifolds, although a “tangent-like” bundle such as Zariski tan-
gents is available. A main theme for defining reasonable characteristic
classes for singular varieties is that reasonable ones should be interest-
ing enough; for example, they must be geometrically or topologically
interesting, and they should be quite well related to other well-known
interesting invariants of varieties (see [Mac3]).

The theory of characteristic classes of vector bundles is nothing but
saying that the assignment c� : Vect(X) → H∗(X ; Λ) is a natural trans-
formation from the contravariant functor Vect to the contravariant co-
homology functor H∗( ; Λ). This naturality is a key for various theories
of characteristic classes for singular varieties.

The first example of a characteristic class formulated as a natu-
ral transformation was the Stiefel–Whitney class transformation due to
Dennis Sullivan [Sull] (also see [Fu-Mc]). And the complex version of the
Stiefel–Whitney class, i.e., the first characteristic class of singular com-
plex varieties formulated as a natural transformation is MacPherson’s
Chern class transformation [Mac2].

Let F (X) be the abelian group of constructible functions on a variety
X . Then the assignment F : V → A is a contravariant functor (from the
category of varieties to the category of abelian groups) by the usual
functional pullback: for a morphism f : X → Y

f∗ : F (Y ) → F (X) defined by f∗(α) := α ◦ f.
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For a constructible set Z ⊂ X , we define

χ(Z; α) :=
∑
n∈Z

nχ(Z ∩ α−1(n)).

Then it turns out that the assignment F : V → A also becomes a covari-
ant functor by the following pushforward:

f∗ : F (X) → F (Y ) defined by f∗(α)(y) := χ(f−1(y); α).

To show this requires a stratification theory (see [Mac2]).
P. Deligne and A. Grothendieck conjectured (around 1969) and R.

MacPherson [Mac2] solved the following:

Theorem (4.1). There exists a unique natural transformation

c∗ : F → H∗

from the constructible function covariant functor F to the homology co-
varaint functor H∗ satisfying the “normalization” that the value of the
characteristic function 11X of a smooth complex algebraic variety X is
the Poincaré dual of the total Chern cohomology class:

c∗(11X) = c(TX) ∩ [X ].

The main ingredients are Chern–Mather classes, local Euler obstruc-
tions (also see [Br3], [Gon] and [Sa]) and “graph construction” (also see
[Mac1]). The uniqueness follows from the resolution of singularities. For
recent investigations on local Euler obstruction, e.g. see [BLS], [BMPS]
and [STV1, STV2], etc.

J.-P. Brasselet and M.-H. Schwartz [BrSc] showed that the distin-
guished value c∗(11X) of the characteristic function of a variety embedded
into a complex manifold is isomorphic under this transformation to the
Schwartz class [Sc1, Sc2] via the Alexander duality. Thus, for a complex
algebraic variety X , singular or nonsingular, c∗(11X) is called the total
Chern–Schwartz–MacPherson class of X and denoted simply by c∗(X).
By considering mapping X to a point, one can get

e(X) =
∫

X

c∗(X)

which is a singular version of the Gauss–Bonnet–Chern theorem.
Motivated by the formulation of MacPherson’s Chern class transfor-

mation, P. Baum, W. Fulton and R. MacPherson [BFM] have extended
GRR to singular varieties, by introducing the so-called localized Chern
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character chM
X (F) of a coherent sheaf F with X embedded into a non-

singular quasi-projective variety M , as a substitute of ch(F ) ∩ [X ] in
the above GRR. Note that if X is smooth chX

X(F) = ch(F ) ∩ [X ]. In
[BFM] they showed the following theorem:

Theorem (4.2)(Baum–Fulton–MacPherson’s Riemann–Roch)
(BFM-RR). ( i ) td∗(F) := td(i∗MTM ) ∩ chM

X (F) is independent of the
embedding iM : X → M .
(ii) Let the transformation td∗ : G0( ) → H∗( ; Q) be defined by

td∗(F) = td(i∗MTM ) ∩ chM
X (F)

for any variety X. Then td∗ is actually natural, i.e., for any morphism
f : X → Y the following diagram commutes:

G0(X) td∗−−−−→ H∗(X ; Q)

f!

⏐⏐� ⏐⏐�f∗

G0(Y ) −−−−→
td∗

H∗(Y ; Q)

i.e., for any embeddings iM : X → M and iN : Y → N

td(i∗NTN) ∩ chN
Y (f!F) = f∗(td(i∗MTM ) ∩ chM

X (F)).

For a complex algebraic variety X , singular or nonsingular, td∗(X) :=
c∗(OX) is called the Baum–Fulton–MacPherson’s Todd homology class
of X . And we get

χ(X) =
∫

X

td∗(X)

which is a singular version of the Riemann–Roch.
Using the notion of “perversity”, M. Goresky and R. MacPherson

[GM1, GM2] have introduced Intersection Homology Theory, in which
almost all properties, such as the Poincaré duality, of the (co)homology
of smooth manifolds are saisfied. Note that the intersection homology
group is not a homotopy invariant unlike the (co)homology group. For
the intersection homology theory, e.g., see also [Bor], [Br2] and [Kir].

In [GM1], they introduced a homology L-class LGM
∗ (X) such that

if X is nonsingular it becomes the Poincaré dual of the original Thom–
Hirzebruch L-class:

LGM
∗ (X) = L(TX) ∩ [X ].
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Later, S. Cappell and J. Shaneson [CS1] (see also [CS2] and [Sh]),
using some topological aspects of perverse sheaves [BBD], introduced a
homology L-class transformation L∗, which turns out to be a natural
transformation from the abelian group Ω of cobordism classes of self-
dual constructible complexes to the rational homology group [BSY2]
(cf. [Y1]):

Theorem (4.3)(Cappell–Shaneson’s homology L-class). There
exists a natural transformation

L∗ : Ω → H∗( ; Q)

such that for X smooth

L∗(QX [2 dimX ]) = L(TX) ∩ [X ].

Here QX is the constant sheaf (considered as a complex concentrated at
degree 0) of X.

For a complex algebraic variety X , singular or nonsingular, the value
L∗(ICX) of the middle intersection cohomology complex ICX is the
total Goresky-MacPherson’s homology L-class LGM

∗ (X) of X and simply
denoted by L∗(X). And we get

σ(X) =
∫

X

L∗(X)

which is a singular version of Hirzebruch’s signature theorem. Here σ(X)
is defined by the pairing of the intersection homology group with middle
perversity.

For a survey concerning characteristic classes of singular varieties
other than MacPherson’s survey article [Mac3], there are now various
articles available, e.g., [Alu1], [Br4], [Pa] (also see [PP]), [Su3] (also see
[Su1, Su2]), [Sch2] (also see [Sch4]), [SY] etc., and also consult various
papers therein.

§5. A “unification” theorem

So far we have seen that the generalized Hirzebruch–Riemann–Roch
g-HRR unifies the three important and distinguished characteristics (or
genera):

(y = −1) the topological Euler–Poincaré characteristic e(X),
(y = 0) the arithmetic genus χ(X),
(y = 1) the signature σ(X),
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and that corresponding to these three invariants there are three dis-
tinguished natural transformations of characteristic homology classes of
possibly singular varieties, which are respectively,

(y = −1) MacPherson’s Chern class transformation c∗ : F ( ) →
H∗( ; Z),

(y = 0) Baum–Fulton–MacPherson’s Riemann–Roch td∗ : G0( ) →
H∗( ; Q),

(y = 1) Cappell–Shaneson’s homology L-class L∗ : Ω( ) → H∗( ; Q).
It seems to be natural to pose the following näıve problem (cf. [Mac2]

and [Y2]):

Problem (5.1). Is there a theory of characteristic homology clas-
ses unifying the above three characteristic homology classes of possibly
singular varieties ? A näıve question is whether or not there is a rea-
sonable “singular version” ?

y
of the generalized Hirzebruch–Riemann–

Roch g-HRR such that
(y = −1) ? −1

gives rise to the rationalized MacPherson’s Chern class
transformation c∗ ⊗ Q,
(y = 0) ?

0
gives rise to the Baum–Fulton–MacPherson’s Riemann–

Roch td∗, and
(y = 1) ?

1
gives rise to the Cappell–Shaneson’s homology L-class L∗.

An obvious problem for this unification problem is that the source
covariant functors of these three natural transformations are all different!

A “reasonable” answer for the above problem has been obtained
[BSY2] (cf. [BSY3] and [SY]) via the so-called relative Grothendieck ring
of complex algebraic varieties over X , denoted by K0(V/X). This ring
was introduced by E. Looijenga in [Lo] and further studied by F. Bittner
in [Bit].

The relative Grothendieck group K0(V/X) (of morphisms over a va-
riety X) is the quotient of the free abelian group of isomorphism classes
of morphisms to X (denoted by [Y → X ] or [Y h−→ X ]), modulo the
following relation:

[Y h−→ X ] = [Z ↪→ Y
h−→ X ] + [Y \ Z ↪→ Y

h−→ X ]

for Z ⊂ Y a closed subvariety of Y . The ring structure is given by the
fiber square: for [Y

f−→ X ], [W
g−→ X ] ∈ K0(V/X)

[Y
f−→ X ] · [W g−→ X ] := [Y ×X W

f×Xg−→ X ].
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Here Y ×X W
f×Xg−→ X is g ◦ f ′ = f ◦ g′ where f ′ and g′ are as in the

following diagram

Y ×X W
f ′

−−−−→ W ′

g′
⏐⏐� ⏐⏐�g

Y
f−−−−→ X.

The relative Grothendieck ring K0(V/X) has the unit 1X := [X idX−→ X ].
Note that when X = pt is a point, the relative Grothendieck ring

K0(V/pt) is nothing but the usual Grothendieck ring K0(V) of V , which
is the free abelian group generated by the isomorphism classes of varie-
ties modulo the subgroup generated by elements of the form [V ]− [V ′]−
[V \ V ′] for a subvariety V ′ ⊂ V , and the ring structure is given by the
Cartesian product of varieties.

For a morphism f : X ′ → X , the pushforward

f∗ : K0(V/X ′) → K0(V/X)

is defined by

f∗[Y
h−→ X ′] := [Y

f◦h−→ X ].

With this pushforward, the assignement X 	−→ K0(V/X) is a covariant
functor. The pullback

f∗ : K0(V/X) → K0(V/X ′)

is defined as follows: for a fiber square

Y ′ g′

−−−−→ X ′

f ′
⏐⏐� ⏐⏐�f

Y
g−−−−→ X

the pullback f∗[Y
g−→ X ] := [Y ′ g′

−→ X ′]. With this pullback, the
assignement X 	−→ K0(V/X) is a contravariant functor.

Theorem (5.2). Let K0(V/X) be the Grothendieck group of mor-
phisms over X. Then there exists a unique natural transformation

Ty : K0(V/ ) → H∗( ) ⊗ Q[y]

such that for X nonsingular

Ty([X id−→ X ]) = t̃d(y)(X) ∩ [X ].
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And we have the following theorem:

Theorem (5.3). (y = −1) There exists a unique natural trans-
formation ε : K0(V/ ) → F ( ) such that for X nonsingular ε([X id−→
X ]) = 11X . And the following diagram commutes

K0(V/X)

T−1 �������������
ε �� F (X)

c∗������������

H∗(X) ⊗ Q

(y = 0) There exists a unique natural transformation γ : K0(V/ ) →
G0( ) such that for X nonsingular γ([X id−→ X ]) = [OX ]. And the
following diagram commutes

K0(V/X)

T0 �������������
γ �� G0(X)

td∗������������

H∗(X) ⊗ Q

(y = 1) There exists a unique natural transformation ω : K0(V/ ) →
Ω( ) such that for X nonsingular ω([X id−→ X ]) =

[
QX [2 dimX ]

]
. And

the following diagram commutes

K0(V/X)

T1 �������������
ω �� Ω(X)

L∗������������

H∗(X) ⊗ Q

An original proof of Theorem (5.2) uses Saito’s theory of mixed
Hodge modules [Sai] and it turns out that it can be also proved without
it and, instead, via a Bittner-Looijenga’s theorem about the relative
Grothendieck group [Bit].

§6. Bivariant Theories

In [FM] W. Fulton and R. MacPherson introduced the notion of
Bivariant Theory, which is a simultaneous generalization of a pair of
covariant and contravariant functors. Most pairs of covariant and con-
travariant theories, e.g., such as homology theory, K-theory, etc, extend
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to bivariant theories. They also introduced the operational bivariant the-
ory (also see [Fu]), which can be always constructed from any covariant
functor.

A bivariant theory B on a category C with values in the category
of abelian groups is an assignment to each morphism X

f−→ Y in the
category C a graded abelian group B(X

f−→ Y ), which is equipped with
the following three basic operations:
(Product operations): For morphisms f : X → Y and g : Y → Z, the
product operation

• : B(X
f−→ Y ) ⊗ B(Y

g−→ Z) → B(X
gf−→ Z)

is defined.
(Pushforward operations): For morphisms f : X → Y and g : Y → Z
with f proper, the pushforward operation

f� : B(X
gf−→ Z) → B(Y

g−→ Z)

is defined.
(Pullback operations): For a fiber square

X ′ g′

−−−−→ X

f ′
⏐⏐� ⏐⏐�f

Y ′ −−−−→
g

Y,

the pullback operation

g� : B(X
f−→ Y ) → B(X ′ f ′

−→ Y ′)

is defined. And these three operations are required to satisfy the seven
compatibility axioms (see [FM, Part I, §2.2] for details).

Let B, B′ be two bivariant theories on a category C. Then a Grothen-
dieck transformation from B to B′

γ : B → B′

is a collection of homomorphisms

B(X → Y ) → B′(X → Y )

for a morphism X → Y in the category C, which preserves the above
three basic operations:
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( i ) γ(α •B β) = γ(α) •B′ γ(β),
( ii ) γ(f�α) = f�γ(α), and
(iii) γ(g�α) = g�γ(α).
B∗(X) := B(X → pt) and B∗(X) := B(X id−→ X) become a covari-

ant functor and a contravariant functor, respectively. And a Grothen-
dieck transformation γ : B → B′ induces natural transformations γ∗ : B∗
→ B′

∗ and γ∗ : B∗ → B′∗. If we have a Grothendieck transformation

γ : B → B′, then via a bivariant class b ∈ B(X
f−→ Y ) we get the

commutative diagram

B∗(Y )
γ∗−−−−→ B′

∗(Y )

b•
⏐⏐� ⏐⏐�γ(b)•

B∗(X) −−−−→
γ∗

B′
∗(X).

This is called the Verdier-type Riemann–Roch formula associated to the
bivariant class b.

Fulton–MacPherson’s bivariant group F(X
f−→ Y ) of constructible

functions consists of all the constructible functions on X which satisfy
the local Euler condition with respect to f . Here a constructible function
α ∈ F (X) is said to satisfy the local Euler condition with respect to f
if for any point x ∈ X and for any local embedding (X, x) → (CN , 0)
the equality α(x) = χ

(
Bε ∩ f−1(z); α

)
holds, where Bε is a sufficiently

small open ball of the origin 0 with radius ε and z is any point close to
f(x) (cf. [Br1], [Sa]). In particular, if 11f := 11X belongs to the bivariant

group F(X
f−→ Y ), then the morphism f : X → Y is called an Euler

morphism. For example, a holomorphic submersion between complex
spaces is an Euler morphism.

The three operations on F are defined as follows:
( i ) the product operation • : F(X

f−→ Y )⊗F(Y
g−→ Z) → F(X

gf−→
Z) is defined by

α • β := α · f∗β,

( ii ) the pushforward operation f� : F(X
gf−→ Z) → F(Y

g−→ Z) is
the usual pushforward f∗, i.e.,

f�(α)(y) :=
∫

c∗(α|f−1),
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(iii) for a fiber square

X ′ g′

−−−−→ X

f ′
⏐⏐� ⏐⏐�f

Y ′ −−−−→
g

Y,

the pullback operation g� : F(X
f−→ Y ) → F(X ′ f ′

−→ Y ′) is the func-
tional pullback g′

∗, i.e..,

g�(α)(x′) := α(g′(x′)).

Note that for any bivariant constructible function α ∈ F(X
f−→ Y ),

the Euler–Poincaré characteristic χ
(
f−1(y); α

)
=

∫
c∗

(
α|f−1(y)

)
of α

restricted to each fiber f−1(y) is locally constant, i.e., constant along
connected components of the base variety Y ; in particular, if f : X → Y
is an Euler morphism, then the Euler–Poincaré characteristic of the
fibers are locally constant.

The correspondence Fs(X → Y ) := F (X) assigning to a morphism
f : X → Y the abelian group F (X) of the source variety X , whatever
the morphism f is, becomes a bivariant theory with the same operations
above. This bivariant theory is called the simple bivariant theory of con-
structible functions (see [Y3] and [Sch3]). In passing, what we need to
do to show that the Fulton–MacPherson’s group of constructible func-
tions satisfying the local Euler condition with respect to a morphism is
a bivariant theory is to show that the local Euler condition with respect
to a morphism is preserved by each of the above three operations.

Let H be Fulton–MacPherson’s bivariant homology theory, con-
structed from the cohomology theory [FM, §3.1]. W. Fulton and R.
MacPherson conjectured or posed as a question the existence of a so-
called bivariant Chern class and J.-P. Brasselet [Br1] solved it:

Theorem (6.1)(J.-P. Brasselet). For the category of embed-
dable complex analytic varieties with cellular morphisms, there exists
a Grothendieck transformation

γ : F → H

such that for a morphism f : X → pt from a nonsingular variety X to a
point pt and the bivariant constructible function 11f := 11X the following
normalization condition holds:

γ(11f) = c(TX) ∩ [X ].
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In [Z1, Z2] J. Zhou showed that the bivariant Chern classes con-
structed by J.-P. Brasselet [Br1] and by C. Sabbah [Sa] are identical
in the case when the target variety is a nonsingular curve. And the
present author showed the following uniqueness theorem of bivariant
Chern classes for morphisms whose target varieties are nonsingular and
of any dimension:

Theorem (6.2)([Y4, Theorem (3.7)]). If there exists a bivariant
Chern class γ : F → H, then it is unique when restricted to morphisms
whose target varieties are nonsingular; explicitly, for a morphism f : X
→ Y with Y nonsingular and for any bivariant constructible function
α ∈ F(X

f−→ Y ) the bivariant Chern class γ(α) is expressed by

γ(α) = f∗s(TY ) ∩ c∗(α)

where s(TY ) := c(TY )−1 is the Segre class of the tangent bundle.

See [Sch3] and [Y5, Y6, Y7, Y8, Y9] for other related results.
And in [BSY1] (see also [BSY4]) the above theorem is furthermore

generalized to the case when the target variety can be singular but is
“like a manifold”:

Theorem (6.3). Let Y be a complex analytic variety which is an
oriented A-homology manifold. If there exists a bivariant Chern class
γ : F → H, then for any morphism f : X → Y the bivariant Chern class
γf : F(X

f−→ Y ) ⊗ A → H(X
f−→ Y ) ⊗ A is uniquely determined and it

is described by

γf (α) = f∗c∗(Y )−1 ∩ c∗(α).

Here c∗(Y ) is the unique cohomology class such that c∗(11Y ) = c∗(Y ) ∩
[Y ]. (Note that c∗(Y ) is invertible.)

Notice that c∗(Y ) = c(TY ) for Y smooth and thus Theorem (6.3)
indeed generalizes Theorem (6.2).

Remark (6.4). As to the uniqueness of operational bivariant
Chern class [EY1, EY2] and operational bivariant Riemann–Roch [FM],
one can also use a result due to S.-I. Kimura [Kim1] (also see [Kim2]).

Remark (6.5). In [BSY1] we have also shown that a natural
transformation of covariant theories extends uniquely to a Grothendieck
transformation of suitable bivariant subtheories associated to them, pro-
vided that the given transformation commutes with exterior products.
This gives in a sense a positive solution to [FM, §10.9 Uniqueness ques-
tions]. For more details of this result and other results, see [BSY1].
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Hence it follows from this general result that our natural transformation
Ty : K0(V/ ) → H∗( ) ⊗ Q[y] can be extended to a suitable bivariant
version. Here, to get the suitable bivariant subtheories, the bivariant
theories associated to the covariant functors which we consider are re-
spectively the simple bivariant theory Ks

0(V/X
f−→ Y ) := K0(V/X),

just like the simple bivariant theory Fs of constructible functions as
above, and the Fulton–MacPherson’s bivariant homology theory H de-
scribed above.

§7. Proconstructible functions and Euler–Poincaré character-
istics of proalgebraic varieties

Let I be a directed set and let C be a given category. Then a
projective system is, by definition, a system

{Xi, πii′ : Xi′ → Xi(i < i′), I}

consisting of objects Xi ∈ Obj(C), morphisms πii′ : Xi′ → Xi ∈ Mor(C)
for each i < i′ and the index set I. The object Xi is called a term and
the morphism πii′ : Xi′ → Xi a bonding morphism or structure morphism
([MS]). The projective system

{Xi, πii′ : Xi′ → Xi(i < i′), I}

is sometimes simply denoted by {Xi}i∈I .
Given a category C, Pro-C is the category whose objects are pro-

jective systems X = {Xi}i∈I in C and whose set of morphisms from
X = {Xi}i∈I to Y = {Yj}j∈J is

Pro-C(X, Y ) := lim←−
J

(lim−→
I

C(Xi, Yj)).

Note that given a projective system X = {Xi}i∈I ∈ Pro-C, the
projective limit X∞ := lim←−Xi may not exist or may not belong to the
source category C; for a certain sufficient condition for the existence of
the projective limit in the category C, see [MS] for example.

An object in Pro-C is called a pro-object. A projective system of
algebraic varieties is called a pro-algebraic variety or simply pro-variety
and its projective limit is called a proalgebraic variety or simply prova-
riety, which may not be an algebraic variety but simply a topological
space.

Remark (7.1). In Etale Homotopy Theory [AM] and Shape The-
ory (e.g., see [Boru], [Ed], [MS]) they stay in the pro-category and do
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not consider limits and colimits, because doing so throw away some geo-
metric informations (also see [Grot2]).

A pro-morphism between two pro-objects is quite complicated. How-
ever, it follows from [MS] that the pro-morphism can be described more
naturally as a so-called level preserving pro-morphism. Suppose that we
have two pro-algebraic varieties X = {Xγ}γ∈Γ and Y = {Yλ}λ∈Λ. Then
a pro-algebraic morphism Φ = {fλ}λ∈Λ : X → Y is described as follows:
there is an order-preserving map ξ : Λ → Γ, i.e., ξ(λ) < ξ(µ) for λ < µ,
and for each λ ∈ Λ there is a morphism fλ : Xξ(λ) → Yλ such that for
λ < µ the following diagram commutes:

Xξ(µ)
fµ−−−−→ Yµ

ρξ(λ)ξ(µ)

⏐⏐� ⏐⏐�πλµ

Xξ(λ) −−−−→
fλ

Yλ,

Then, the projective limit of the system {fλ} is a morphism from the
provariety X∞ = lim←− λ∈ΛXλ to the provariety Y∞ = lim←− γ∈ΓYλ. It is
called a promorphism and denoted by f∞ : X∞ → Y∞.

From here on, for the sake of simplicity, we only deal with the case
when the directed set Λ is the natural numbers N and a pro-morphism
{fn} of two pro-varieties {Xn} and {Yn} is such that for each n the
following diagram commutes:

Xn+1
fn+1−−−−→ Yn+1

ρn(n+1)

⏐⏐� ⏐⏐�πn(n+1)

Xn −−−−→
fn

Yn.

The projective system {Xn} induces the projective system of abelian
groups of constructible functions:

{F (Xn), πnm∗ : F (Xm) → F (Xn)(n < m)}.

And a system of morphims fn : Xn → Yn induces the system of homo-
morphisms

fn∗ : F (Xn) → F (Yn).



Characteristic classes of (pro)algebraic varieties 317

Thus the system of commutative diagrams

F (Xm)
fm∗−−−−→ F (Ym)

ρnm∗

⏐⏐� ⏐⏐�πnm∗

F (Xn) −−−−→
fn∗

F (Yn),

induces the homomorphism

f∗∞ : lim←−
n

F (Xn) → lim←−
n

F (Yn).

Similarly we get the homomorphism of the projective limits of homology
groups

f∗∞ : lim←−
n

H∗(Xn) → lim←−
n

H∗(Yn).

Furthermore the commutative diagram of Chern–Schwartz–MacPherson
class homomorphisms

F (Xm) c∗−−−−→ H∗(Xm)

πnm∗

⏐⏐� ⏐⏐�πnm∗

F (Xn) −−−−→
c∗

H∗(Xn),

induces the projective limit of MacPherson’s Chern class transforma-
tions:

c∗∞ : lim←−
n

F (Xn) → lim←−
n

H∗(Xn)

So, we define, for the proalgebraic variety X∞ = lim←− λ∈ΛXλ,

proF (X∞) := lim←−
n

F (Xn) and proH∗(X∞) := lim←−
n

H∗(Xn).

If we define pro c∗ : proF → proH∗ to be the above c∗∞ and define
f∞∗ to be the above f∗∞, then we have a näıve proalgebraic version of
MacPherson’s Chern class transformation

pro c∗ : proF → proH∗,
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i.e., for a proalgebraic morphism f∞ : X∞ → Y∞ we have the commu-
tative diagram

proF (X∞)
pro c∗−−−−→ proH∗(X∞)

f∞∗

⏐⏐� ⏐⏐�f∞∗

proF (Y∞) −−−−→
pro c∗

proH∗(Y∞).

Although the above construction by taking the projective limits is
quite easy, the structure of the progroup proF (X∞) is not so obvious
and also it is not obvious how to capture an element of lim←− nF (Xn) as a
function on the proalgebraic variety X∞ = lim←− nXn.

Remark (7.2). In [Alu3] P. Aluffi considered the above projec-
tive limit for a certain special projective system of morphisms called
modification system, which is more precisely a projective system of bi-
rational morphisms.

So, we consider the inductive limits:

Definition (7.3). For a proalgebraic variety X∞ = lim←− nXn, the
inductive limit of the inductive system {F (Xn), ρ∗nm : F (Xn) → F (Xm)
(n < m)} is denoted by F pro(X∞);

F pro(X∞) := lim−→
n

F (Xn) =
⋃
n

ρn (F (Xn))

where ρn : F (Xn) → lim−→ nF (Xn) is the homomorphism sending αn to
its equivalence class [αn] of αn. An element of the group F pro(X∞) is
called a proconstructible function on the proalgebraic variety X∞. As a
function on X∞, the value of [αn] at a point (xm) ∈ X∞ is defined by

[αn]
(
(xm)

)
:= αn(xn).

The terminology proconstructible is used in [Grom1] (cf. [Grom2]),
but its definition is not given there.

Lemma (7.4). For each positive integer n, let Gn = Z be the
integers and πn, n+1 : Gn → Gn+1 be the homomorphism defined by mul-
tiplication by a non-zero integer pn, i.e., πn, n+1(m) = mpn. Then there
exists a unique (injective) homomorphism

Ψ: lim−→
n

Gn → Q



Characteristic classes of (pro)algebraic varieties 319

such that the following diagram commutes

Gn

ρn

����
��

��
�� × 1

p0p1···pn−1

���
��

��
��

�

lim−→
n

Gn
Ψ

�� Q.

Here we set p0 := 1.

Using this lemma we can show the following theorem:

Theorem (7.5). Let X∞ = lim←− n∈NXn be a provariety such that
for each n the structure morphism πn(n+1) : Xn+1 → Xn satisfies the
condition that the Euler–Poincaré characteristics of the fibers of πn, n+1

are non-zero (which implies the surjectivity of the morphism πn(n+1))
and the same; for example, πn(n+1) : Xn+1 → Xn is a locally trivial
fiber bundle with fiber variety being Fn and χ(Fn) �= 0. Let us denote
the constant Euler–Poincaré characteristic of the fibers of the morphism
πn(n+1) : Xn+1 → Xn by χn and we set χ0 := 1.

( i ) The canonical Euler–Poincaré (pro)characteristic homomor-
phism, i.e., a “canonical realization” of the inductive limit of the Euler–
Poincaré characteristic homomorphisms {χ : F (Xn) → Z}n∈N, is de-
scribed as the homomorphism

χpro : F pro(X∞) → Q

defined by

χpro ([αn]) =
χ(αn)

χ0 · χ1 · χ2 · · ·χn−1
.

(Here “canonical realization” means “through the injective homomor-
phism in the above lemma”.)

(ii) In particular, if the Euler–Poincaré characteristics χn are all
the same, say χn = χ for any n, then the canonical Euler–Poincaré
(pro)characteristic homomorphism χpro : F pro(X∞) → Q is described by

χpro ([αn]) =
χ(αn)
χn−1

.

In this special case, the target ring Q can be replaced by the ring Z [1/χ].

In a more special case, the target ring Q in the above theorem can
be replaced by the Grothendieck ring of varieties.
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Let K0(VC) be the Grothendieck ring of algebraic varieties, i.e., the
free abelian group generated by the isomorphism classes of varieties mod-
ulo the subgroup generated by elements of the form [V ]− [V ′]− [V \V ′]
for a closed subset V ′ ⊂ V with the ring structure [V ] · [W ] := [V ×W ].
There are distinguished elements in K0(VC): 11 is the class [p] of a point
p and L is the Tate class [C] of the affine line C. From this definition,
we can see that any constructible set of a variety determines an element
in the Grothendieck ring K0(VC). Provisionally the element [V ] in the
Grothendieck ring K0(VC) is called the Grothendieck “motivic” class of
V and let us denote it by Γ(V ). Hence we get the following homomor-
phism, called the Grothendieck “motivic” class homomorphism: for any
variety X

Γ: F (X) → K0(VC),

which is defined by

Γ(α) =
∑
n∈Z

n
[
α−1(n)

]
.

Or Γ (
∑

aV 11V ) :=
∑

aV [V ] where V is a constructible set in X and
aV ∈ Z. From now on, we somtimes write [α] for Γ(α) for a constructible
function α.

This Grothendieck “motivic” class homomorphism is tautological
and its more “geometric” one is the Euler–Poincaré characteristic ho-
momorphsim χ : F (X) → Z. The above theorem is about extend-
ing the Euler–Poincaré characteristic homomorphsim χ : F (X) → Z
to the category of proalgebraic varieties. Thus a very natural prob-
lem is to generalize the Grothendieck “motivic” class homomorphism
Γ: F (X) → K0(VC) to the category of proalgebraic varieties. Here one
should be a bit careful; the Grothendieck ring K0(VC) is not a domain
unlike the ring Z of integers as shown recently by B. Poonen [Po, The-
orem 1].

Theorem (7.6). Let X∞ = lim←− n∈NXn be a proalgebraic vari-
ety such that each structure morphism πn(n+1) : Xn+1 → Xn satisfies
the condition that for each n there exists a γn ∈ K0(VC) such that
[πn(n+1)

−1(Sn)] = γn · [Sn] for any constructible set Sn ⊂ Xn, for ex-
ample, πn(n+1) : Xn+1 → Xn is a Zariski locally trivial fiber bundle with
fiber variety being Fn (in which case γn = [Fn]).

( i ) The canonical Grothendieck “motivic” proclass homomorphism,

Γpro : F pro(X∞) → K0(VC)G
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is described by

Γpro ([αn]) =
[αn]

γ0 · γ1 · γ2 · · ·γn−1
.

Here γ0 := 11 and K0(VC)G is the localization of K0(VC) with respect to
the multiplicative set consisting of all the finite products of γ

mj

j , i.e,

G :=
{
γm1

j1
γm2

j2
· · ·γms

js
|ji ∈ N, mi ∈ N

}
.

(ii) In particular, if all the fibers are the same, say γn = γ for any
n, then the canonical Grothendieck “motivic” (ind)class homomorphism

Γpro : F pro(X∞) → K0(VC)G

is described by

Γpro ([αn]) =
[αn]
γn−1

.

In this special case the quotient ring K0(VC)G shall be simply denoted by
K0(VC)γ .

Thus one can see that the so-called motivic measure (e.g., see [Bit],
[Cr], [DL1, DL2], [Kon], [Loo], [Ve], etc., and also see [Na]) is a natural
and reasonable object from the viewpoint of proconstructible functions.
For a more general case when πn(n+1) : Xn+1 → Xn is not necessarily a
Zariski locally trivial fiber bundle, see [Y10]. In this sense, our definition
of proconstructible function is quite reasonable.

§8. Characteristic classes of proalgebraic varieties

In this section we make a quick review of the author’s recent work on
characteristic classes of proalgebraic varities (for more details see [Y10,
Y11]).

Theorem (7.5) can be extended to a class version cpro
∗ via the Bi-

variant Theory, in particular a bivariant Chern class [Br1]. Note that
for a morphism f : X → pt from a variety X to a point pt, γ : F(X →
pt) → H(X → pt) is nothing but the original MacPherson’s Chern class
transformation c∗ : F (X) → H∗(X).

Theorem (8.1)(Verdier-type Riemann–Roch formula for Chern

classes) For a bivariant constructible function α ∈ F(X
f−→ Y ) we
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have the following commutative diagram:

F (Y ) c∗−−−−→ H∗(Y )

α•F=α·f∗
⏐⏐� ⏐⏐�γ(α)•H

F (X) −−−−→
c∗

H∗(X).

In particular, for an Euler morphism we have the following diagram:

F (Y ) c∗−−−−→ H∗(Y )

11f•F=f∗
⏐⏐� ⏐⏐�γ(11f )•H

F (X) −−−−→
c∗

H∗(X).

(The homomorphism γ(11f)•H shall be denoted by f∗∗.)

For example, for a holomorphic submersion f : X → Y of complex
varieties one gets γ(1f )•H = c(Tf)∩f∗, where f∗ is the smooth pullback
in homology and Tf is the relative tangent bundle of the morphism f .

Using this Verdier–Riemann–Roch for Chern class (also see [FM]
and [Sch1]), we can get the following theorem:

Theorem (8.2). Let X∞ = lim←− nXn be a proalgebraic variety
such that for each n < m the structure morphism πnm : Xm → Xn is
an Euler proper morphism (hence surjective) of topologically connected
algebraic varieties. Let Hpro

∗∗ (X∞) be the inductive limit of the inductive
system

{
π∗∗

nm : H∗(Xn) → H∗(Xm)
}
. Then there exists a proalgebraic

MacPherson’s Chern class homomorphism

cpro
∗ : F pro(X∞) → Hpro

∗∗ (X∞) defined by cpro
∗ ([αn]) = ρn

(
c∗(αn)

)
.

What we have done so far is the proalgebraic Chern–Schwartz–
MacPherson class homomorphism, and our eventual problem is whether
one can capture this homomorphism as a natural transformation as in
the original MacPherson’s Chern class transformation.

If the commutative diagram

Ym
fm−−−−→ Xm

ρnm

⏐⏐� ⏐⏐�πnm

Yn −−−−→
fn

Xn

is a fiber square, then we call the pro-morphism {fn : Yn → Xn} a fiber-
square pro-morphism, abusing words.
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Theorem (8.3). Let {fn : Yn → Xn} be a fiber-square pro-mor-
phism between two pro-algebraic varieties with structure morphisms be-
ing Euler morphisms. Then we have the following commutative diagram:

F pro(Y∞)
cpro
∗−−−−→ Hpro

∗∗ (Y∞)

f∞∗

⏐⏐� ⏐⏐�f∞∗

F pro(X∞) −−−−→
cpro
∗

Hpro
∗∗ (X∞).

This can be furthermore generalized. First we introduce the fol-
lowing notion. For a morphism f : X → Y and a bivariant class b ∈
B(X

f−→ Y ), the pair (f ; b) is called a bivariant-class-equipped mor-
phism and we just express (f ; b) : X → Y . If a system

{
bnm

}
of bivariant

classes satisfies that

bnm • bln = blm (l < n < m),

then we call the system a projective system of bivariant classes, abusing
words. If

{
πnm : Xm → Xn

}
and

{
bnm

}
are projective systems, then

the system
{
(πnm; bnm) : Xm → Xn

}
shall be called a projective system

of bivariant-class-equipped morphisms.
For a bivariant theory B on the category C and for a projective

system
{
(πλµ; bλµ) : Xµ → Xλ

}
of bivariant-class-equipped morphisms,

the inductive limit

lim−→
n

{
B∗(Xn), bnm• : B∗(Xn) → B∗(Xm)

}
shall be denoted by

Bpro
∗

(
X∞; {bnm}

)
emphasizing the projective system {bnm} of bivariant classes, because
the above inductive limit surely depends on the choice of it. For example,
in Theorem (7.4) we have that

F pro(X∞) = F pro
∗

(
X∞;

{
11πnm

})
.

Our more general theorem is the following

Theorem (8.4). ( i ) Let γ : B → B′ be a Grothendieck transfor-
mation between two bivariant theories B, B′ : C → C′ and let{

(πnm; bnm) : Xm → Xn)
}
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be a projective system of bivariant-class-equipped morphisms. Then we
get the following pro-version of the natural transformation γ∗ : B∗ → B′

∗:

γpro
∗ : Bpro

∗
(
X∞; {bnm}

)
→ B′

∗
pro(

X∞; {γ(bnm)}
)
.

(ii) Let {fn : Yn → Xn} be a fiber-square pro-morphism between
two projective systems of bivariant-class-equipped morphisms such that
bnm = f�

n bnm. Then we have the following commutative diagram:

Bpro
∗ (Y∞)

γpro
∗−−−−→ B′pro

∗ (Y∞)

f∞∗

⏐⏐� ⏐⏐�f∞∗

Bpro
∗ (X∞) −−−−→

γpro
∗

B′pro
∗ (X∞).

As remarked in Remark (6.5), the “motivic” characteristic class
Ty : K0(V/ ) → H∗( ) ⊗ Q[y] can be extended to a Grothendieck
transformation of suitable bivariant theories. Therefore it follows from
the above general Theorem (8.4) that the “motivic” characteristic class
Ty : K0(V/ ) → H∗( ) ⊗ Q[y] can be extended in a suitable way to a
category of provarieties. More details and some other related work will
be done in a different paper.

We hope to do further investigations on (motivic) characteristic
classes of proalgebraic varieties and some applications of them. (Also,
see recent articles [Alu2, Alu3], [dFLNU], [O1, O2], [PM], [To], [Ve] etc.)
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[BSY2] J.-P. Brasselet, J. Schürmann and S. Yokura, Hirzebruch classes and
motivic Chern classes for singular spaces, math. AG/0503492.
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VII (1986).

[Sai] M. Saito, Mixed Hodge Modules, Publ. RIMS., Kyoto Univ., 26
(1990), 221–333.
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201.
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